1212 lines
31 KiB
C
1212 lines
31 KiB
C
/*
|
|
* carl9170 firmware - used by the ar9170 wireless device
|
|
*
|
|
* Interface to the WLAN part of the chip
|
|
*
|
|
* Copyright (c) 2000-2005 ZyDAS Technology Corporation
|
|
* Copyright (c) 2007-2009 Atheros Communications, Inc.
|
|
* Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
|
|
* Copyright 2009-2011 Christian Lamparter <chunkeey@googlemail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "carl9170.h"
|
|
#include "shared/phy.h"
|
|
#include "hostif.h"
|
|
#include "timer.h"
|
|
#include "wl.h"
|
|
#include "printf.h"
|
|
#include "rf.h"
|
|
#include "linux/ieee80211.h"
|
|
#include "wol.h"
|
|
|
|
static void wlan_txunstuck(unsigned int queue)
|
|
{
|
|
set_wlan_txq_dma_addr(queue, ((uint32_t) fw.wlan.tx_queue[queue].head) | 1);
|
|
}
|
|
|
|
#ifdef CONFIG_CARL9170FW_DMA_QUEUE_BUMP
|
|
static void wlan_txupdate(unsigned int queue)
|
|
{
|
|
set_wlan_txq_dma_addr(queue, ((uint32_t) fw.wlan.tx_queue[queue].head));
|
|
}
|
|
|
|
static void wlan_dma_bump(unsigned int qidx)
|
|
{
|
|
unsigned int offset = qidx;
|
|
uint32_t status, trigger;
|
|
|
|
status = get(AR9170_MAC_REG_DMA_STATUS) >> 12;
|
|
trigger = get(AR9170_MAC_REG_DMA_TRIGGER) >> 12;
|
|
|
|
while (offset != 0) {
|
|
status >>= 4;
|
|
trigger >>= 4;
|
|
offset--;
|
|
}
|
|
|
|
status &= 0xf;
|
|
trigger &= 0xf;
|
|
|
|
if ((trigger == 0xa) && (status == 0x8)) {
|
|
DBG("UNSTUCK");
|
|
wlan_txunstuck(qidx);
|
|
} else {
|
|
DBG("UPDATE");
|
|
wlan_txupdate(qidx);
|
|
}
|
|
}
|
|
#endif /* CONFIG_CARL9170FW_DMA_QUEUE_BUMP */
|
|
|
|
#ifdef CONFIG_CARL9170FW_DEBUG
|
|
static void wlan_dump_queue(unsigned int qidx)
|
|
{
|
|
|
|
struct dma_desc *desc;
|
|
struct carl9170_tx_superframe *super;
|
|
int entries = 0;
|
|
|
|
__for_each_desc(desc, &fw.wlan.tx_queue[qidx]) {
|
|
super = get_super(desc);
|
|
DBG("%d: %p s:%x c:%x tl:%x ds:%x n:%p l:%p ", entries, desc,
|
|
desc->status, desc->ctrl, desc->totalLen,
|
|
desc->dataSize, desc->nextAddr, desc->lastAddr);
|
|
|
|
DBG("c:%x tr:%d ri:%d l:%x m:%x p:%x fc:%x",
|
|
super->s.cookie, super->s.cnt, super->s.rix,
|
|
super->f.hdr.length, super->f.hdr.mac.set,
|
|
(unsigned int) le32_to_cpu(super->f.hdr.phy.set),
|
|
super->f.data.i3e.frame_control);
|
|
|
|
entries++;
|
|
}
|
|
|
|
desc = get_wlan_txq_addr(qidx);
|
|
|
|
DBG("Queue: %d: te:%d td:%d h:%p c:%p t:%p",
|
|
qidx, entries, queue_len(&fw.wlan.tx_queue[qidx]),
|
|
fw.wlan.tx_queue[qidx].head,
|
|
desc, fw.wlan.tx_queue[qidx].terminator);
|
|
|
|
DBG("HW: t:%x s:%x ac:%x c:%x",
|
|
(unsigned int) get(AR9170_MAC_REG_DMA_TRIGGER),
|
|
(unsigned int) get(AR9170_MAC_REG_DMA_STATUS),
|
|
(unsigned int) get(AR9170_MAC_REG_AMPDU_COUNT),
|
|
(unsigned int) get(AR9170_MAC_REG_DMA_TXQX_ADDR_CURR));
|
|
}
|
|
#endif /* CONFIG_CARL9170FW_DEBUG */
|
|
|
|
static void wlan_send_buffered_tx_status(void)
|
|
{
|
|
unsigned int len;
|
|
|
|
while (fw.wlan.tx_status_pending) {
|
|
len = min((unsigned int)fw.wlan.tx_status_pending,
|
|
CARL9170_RSP_TX_STATUS_NUM);
|
|
len = min(len, CARL9170_TX_STATUS_NUM - fw.wlan.tx_status_head_idx);
|
|
|
|
/*
|
|
* rather than memcpy each individual request into a large buffer,
|
|
* we _splice_ them all together.
|
|
*
|
|
* The only downside is however that we have to be careful around
|
|
* the edges of the tx_status_cache.
|
|
*
|
|
* Note:
|
|
* Each tx_status is about 2 bytes. However every command package
|
|
* must have a size which is a multiple of 4.
|
|
*/
|
|
|
|
send_cmd_to_host((len * sizeof(struct carl9170_tx_status) + 3) & ~3,
|
|
CARL9170_RSP_TXCOMP, len, (void *)
|
|
&fw.wlan.tx_status_cache[fw.wlan.tx_status_head_idx]);
|
|
|
|
fw.wlan.tx_status_pending -= len;
|
|
fw.wlan.tx_status_head_idx += len;
|
|
fw.wlan.tx_status_head_idx %= CARL9170_TX_STATUS_NUM;
|
|
}
|
|
}
|
|
|
|
static struct carl9170_tx_status *wlan_get_tx_status_buffer(void)
|
|
{
|
|
struct carl9170_tx_status *tmp;
|
|
|
|
tmp = &fw.wlan.tx_status_cache[fw.wlan.tx_status_tail_idx++];
|
|
fw.wlan.tx_status_tail_idx %= CARL9170_TX_STATUS_NUM;
|
|
|
|
if (fw.wlan.tx_status_pending == CARL9170_TX_STATUS_NUM)
|
|
wlan_send_buffered_tx_status();
|
|
|
|
fw.wlan.tx_status_pending++;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/* generate _aggregated_ tx_status for the host */
|
|
void wlan_tx_complete(struct carl9170_tx_superframe *super,
|
|
bool txs)
|
|
{
|
|
struct carl9170_tx_status *status;
|
|
|
|
status = wlan_get_tx_status_buffer();
|
|
|
|
/*
|
|
* The *unique* cookie and AC_ID is used by the driver for
|
|
* frame lookup.
|
|
*/
|
|
status->cookie = super->s.cookie;
|
|
status->queue = super->s.queue;
|
|
super->s.cookie = 0;
|
|
|
|
/*
|
|
* This field holds the number of tries of the rate in
|
|
* the rate index field (rix).
|
|
*/
|
|
status->rix = super->s.rix;
|
|
status->tries = super->s.cnt;
|
|
status->success = (txs) ? 1 : 0;
|
|
}
|
|
|
|
static bool wlan_tx_consume_retry(struct carl9170_tx_superframe *super)
|
|
{
|
|
/* check if this was the last possible retry with this rate */
|
|
if (unlikely(super->s.cnt >= super->s.ri[super->s.rix].tries)) {
|
|
/* end of the road - indicate tx failure */
|
|
if (unlikely(super->s.rix == CARL9170_TX_MAX_RETRY_RATES))
|
|
return false;
|
|
|
|
/* check if there are alternative rates available */
|
|
if (!super->s.rr[super->s.rix].set)
|
|
return false;
|
|
|
|
/* try next retry rate */
|
|
super->f.hdr.phy.set = super->s.rr[super->s.rix].set;
|
|
|
|
/* finally - mark the old rate as USED */
|
|
super->s.rix++;
|
|
|
|
/* update MAC flags */
|
|
super->f.hdr.mac.erp_prot = super->s.ri[super->s.rix].erp_prot;
|
|
super->f.hdr.mac.ampdu = super->s.ri[super->s.rix].ampdu;
|
|
|
|
/* reinitialize try counter */
|
|
super->s.cnt = 1;
|
|
} else {
|
|
/* just increase retry counter */
|
|
super->s.cnt++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline u16 get_tid(struct ieee80211_hdr *hdr)
|
|
{
|
|
return (ieee80211_get_qos_ctl(hdr))[0] & IEEE80211_QOS_CTL_TID_MASK;
|
|
}
|
|
|
|
/* This function will only work on uint32_t-aligned pointers! */
|
|
static bool same_hdr(const void *_d0, const void *_d1)
|
|
{
|
|
const uint32_t *d0 = _d0;
|
|
const uint32_t *d1 = _d1;
|
|
|
|
/* BUG_ON((unsigned long)d0 & 3 || (unsigned long)d1 & 3)) */
|
|
return !((d0[0] ^ d1[0]) | /* FC + DU */
|
|
(d0[1] ^ d1[1]) | /* addr1 */
|
|
(d0[2] ^ d1[2]) | (d0[3] ^ d1[3]) | /* addr2 + addr3 */
|
|
(d0[4] ^ d1[4])); /* addr3 */
|
|
}
|
|
|
|
static inline bool same_aggr(struct ieee80211_hdr *a, struct ieee80211_hdr *b)
|
|
{
|
|
return (get_tid(a) == get_tid(b)) || same_hdr(a, b);
|
|
}
|
|
|
|
static void wlan_tx_ampdu_reset(unsigned int qidx)
|
|
{
|
|
fw.wlan.ampdu_prev[qidx] = NULL;
|
|
}
|
|
|
|
static void wlan_tx_ampdu_end(unsigned int qidx)
|
|
{
|
|
struct carl9170_tx_superframe *ht_prev = fw.wlan.ampdu_prev[qidx];
|
|
|
|
if (ht_prev)
|
|
ht_prev->f.hdr.mac.ba_end = 1;
|
|
|
|
wlan_tx_ampdu_reset(qidx);
|
|
}
|
|
|
|
static void wlan_tx_ampdu(struct carl9170_tx_superframe *super)
|
|
{
|
|
unsigned int qidx = super->s.queue;
|
|
struct carl9170_tx_superframe *ht_prev = fw.wlan.ampdu_prev[qidx];
|
|
|
|
if (super->f.hdr.mac.ampdu) {
|
|
if (ht_prev &&
|
|
!same_aggr(&super->f.data.i3e, &ht_prev->f.data.i3e))
|
|
ht_prev->f.hdr.mac.ba_end = 1;
|
|
else
|
|
super->f.hdr.mac.ba_end = 0;
|
|
|
|
fw.wlan.ampdu_prev[qidx] = super;
|
|
} else {
|
|
wlan_tx_ampdu_end(qidx);
|
|
}
|
|
}
|
|
|
|
/* for all tries */
|
|
static void __wlan_tx(struct dma_desc *desc)
|
|
{
|
|
struct carl9170_tx_superframe *super = get_super(desc);
|
|
|
|
if (unlikely(super->s.fill_in_tsf)) {
|
|
struct ieee80211_mgmt *mgmt = (void *) &super->f.data.i3e;
|
|
uint32_t *tsf = (uint32_t *) &mgmt->u.probe_resp.timestamp;
|
|
|
|
/*
|
|
* Truth be told: this is a hack.
|
|
*
|
|
* The *real* TSF is definitely going to be higher/older.
|
|
* But this hardware emulation code is head and shoulders
|
|
* above anything a driver can possibly do.
|
|
*
|
|
* (even, if it's got an accurate atomic clock source).
|
|
*/
|
|
|
|
read_tsf(tsf);
|
|
}
|
|
|
|
wlan_tx_ampdu(super);
|
|
|
|
#ifdef CONFIG_CARL9170FW_DEBUG
|
|
BUG_ON(fw.phy.psm.state != CARL9170_PSM_WAKE);
|
|
#endif /* CONFIG_CARL9170FW_DEBUG */
|
|
|
|
/* insert desc into the right queue */
|
|
dma_put(&fw.wlan.tx_queue[super->s.queue], desc);
|
|
}
|
|
|
|
static void wlan_assign_seq(struct ieee80211_hdr *hdr, unsigned int vif)
|
|
{
|
|
hdr->seq_ctrl &= cpu_to_le16(~IEEE80211_SCTL_SEQ);
|
|
hdr->seq_ctrl |= cpu_to_le16(fw.wlan.sequence[vif]);
|
|
|
|
if (ieee80211_is_first_frag(hdr->seq_ctrl))
|
|
fw.wlan.sequence[vif] += 0x10;
|
|
}
|
|
|
|
/* prepares frame for the first transmission */
|
|
static void _wlan_tx(struct dma_desc *desc)
|
|
{
|
|
struct carl9170_tx_superframe *super = get_super(desc);
|
|
|
|
if (unlikely(super->s.assign_seq))
|
|
wlan_assign_seq(&super->f.data.i3e, super->s.vif_id);
|
|
|
|
if (unlikely(super->s.ampdu_commit_density)) {
|
|
set(AR9170_MAC_REG_AMPDU_DENSITY,
|
|
MOD_VAL(AR9170_MAC_AMPDU_DENSITY,
|
|
get(AR9170_MAC_REG_AMPDU_DENSITY),
|
|
super->s.ampdu_density));
|
|
}
|
|
|
|
if (unlikely(super->s.ampdu_commit_factor)) {
|
|
set(AR9170_MAC_REG_AMPDU_FACTOR,
|
|
MOD_VAL(AR9170_MAC_AMPDU_FACTOR,
|
|
get(AR9170_MAC_REG_AMPDU_FACTOR),
|
|
8 << super->s.ampdu_factor));
|
|
}
|
|
}
|
|
|
|
/* propagate transmission status back to the driver */
|
|
static bool wlan_tx_status(struct dma_queue *queue,
|
|
struct dma_desc *desc)
|
|
{
|
|
struct carl9170_tx_superframe *super = get_super(desc);
|
|
unsigned int qidx = super->s.queue;
|
|
bool txfail = false, success;
|
|
|
|
success = true;
|
|
|
|
/* update hangcheck */
|
|
fw.wlan.last_super_num[qidx] = 0;
|
|
|
|
/*
|
|
* Note:
|
|
* There could be a corner case when the TXFAIL is set
|
|
* even though the frame was properly ACKed by the peer:
|
|
* a BlockAckReq with the immediate policy will cause
|
|
* the receiving peer to produce a BlockACK unfortunately
|
|
* the MAC in this chip seems to be expecting a legacy
|
|
* ACK and marks the BAR as failed!
|
|
*/
|
|
|
|
if (!!(desc->ctrl & AR9170_CTRL_FAIL)) {
|
|
txfail = !!(desc->ctrl & AR9170_CTRL_TXFAIL);
|
|
|
|
/* reset retry indicator flags */
|
|
desc->ctrl &= ~(AR9170_CTRL_TXFAIL | AR9170_CTRL_BAFAIL);
|
|
|
|
/*
|
|
* Note: wlan_tx_consume_retry will override the old
|
|
* phy [CCK,OFDM, HT, BW20/40, MCS...] and mac vectors
|
|
* [AMPDU,RTS/CTS,...] therefore be careful when they
|
|
* are used.
|
|
*/
|
|
if (wlan_tx_consume_retry(super)) {
|
|
/*
|
|
* retry for simple and aggregated 802.11 frames.
|
|
*
|
|
* Note: We must not mess up the original frame
|
|
* order.
|
|
*/
|
|
|
|
if (!super->f.hdr.mac.ampdu) {
|
|
/*
|
|
* 802.11 - 7.1.3.1.5.
|
|
* set "Retry Field" for consecutive attempts
|
|
*
|
|
* Note: For AMPDU see:
|
|
* 802.11n 9.9.1.6 "Retransmit Procedures"
|
|
*/
|
|
super->f.data.i3e.frame_control |=
|
|
cpu_to_le16(IEEE80211_FCTL_RETRY);
|
|
}
|
|
|
|
if (txfail) {
|
|
/* Normal TX Failure */
|
|
|
|
/* demise descriptor ownership back to the hardware */
|
|
dma_rearm(desc);
|
|
|
|
/*
|
|
* And this will get the queue going again.
|
|
* To understand why: you have to get the HW
|
|
* specs... But sadly I never saw them.
|
|
*/
|
|
wlan_txunstuck(qidx);
|
|
|
|
/* abort cycle - this is necessary due to HW design */
|
|
return false;
|
|
} else {
|
|
/* (HT-) BlockACK failure */
|
|
|
|
/*
|
|
* Unlink the failed attempt and put it into
|
|
* the retry queue. The caller routine must
|
|
* be aware of this so the frames don't get lost.
|
|
*/
|
|
|
|
#ifndef CONFIG_CARL9170FW_DEBUG
|
|
dma_unlink_head(queue);
|
|
#else /* CONFIG_CARL9170FW_DEBUG */
|
|
BUG_ON(dma_unlink_head(queue) != desc);
|
|
#endif /* CONFIG_CARL9170FW_DEBUG */
|
|
dma_put(&fw.wlan.tx_retry, desc);
|
|
return true;
|
|
}
|
|
} else {
|
|
/* out of frame attempts - discard frame */
|
|
success = false;
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_CARL9170FW_DEBUG
|
|
dma_unlink_head(queue);
|
|
#else /* CONFIG_CARL9170FW_DEBUG */
|
|
BUG_ON(dma_unlink_head(queue) != desc);
|
|
#endif /* CONFIG_CARL9170FW_DEBUG */
|
|
if (txfail) {
|
|
/*
|
|
* Issue the queue bump,
|
|
* We need to do this in case this was the frame's last
|
|
* possible retry attempt and it unfortunately: it failed.
|
|
*/
|
|
|
|
wlan_txunstuck(qidx);
|
|
}
|
|
|
|
unhide_super(desc);
|
|
|
|
if (unlikely(super == fw.wlan.fw_desc_data)) {
|
|
fw.wlan.fw_desc = desc;
|
|
fw.wlan.fw_desc_available = 1;
|
|
|
|
if (fw.wlan.fw_desc_callback)
|
|
fw.wlan.fw_desc_callback(super, success);
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
|
|
if (unlikely(super->s.cab))
|
|
fw.wlan.cab_queue_len[super->s.vif_id]--;
|
|
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
|
|
|
|
wlan_tx_complete(super, success);
|
|
|
|
if (ieee80211_is_back_req(super->f.data.i3e.frame_control)) {
|
|
fw.wlan.queued_bar--;
|
|
}
|
|
|
|
/* recycle freed descriptors */
|
|
dma_reclaim(&fw.pta.down_queue, desc);
|
|
down_trigger();
|
|
return true;
|
|
}
|
|
|
|
static void handle_tx_completion(void)
|
|
{
|
|
struct dma_desc *desc;
|
|
int i;
|
|
|
|
for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) {
|
|
__while_desc_bits(desc, &fw.wlan.tx_queue[i], AR9170_OWN_BITS_SW) {
|
|
if (!wlan_tx_status(&fw.wlan.tx_queue[i], desc)) {
|
|
/* termination requested. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
wlan_tx_ampdu_reset(i);
|
|
|
|
for_each_desc(desc, &fw.wlan.tx_retry)
|
|
__wlan_tx(desc);
|
|
|
|
wlan_tx_ampdu_end(i);
|
|
if (!queue_empty(&fw.wlan.tx_queue[i]))
|
|
wlan_trigger(BIT(i));
|
|
}
|
|
}
|
|
|
|
void __hot wlan_tx(struct dma_desc *desc)
|
|
{
|
|
struct carl9170_tx_superframe *super = DESC_PAYLOAD(desc);
|
|
|
|
if (ieee80211_is_back_req(super->f.data.i3e.frame_control)) {
|
|
fw.wlan.queued_bar++;
|
|
}
|
|
|
|
/* initialize rate control struct */
|
|
super->s.rix = 0;
|
|
super->s.cnt = 1;
|
|
hide_super(desc);
|
|
|
|
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
|
|
if (unlikely(super->s.cab)) {
|
|
fw.wlan.cab_queue_len[super->s.vif_id]++;
|
|
dma_put(&fw.wlan.cab_queue[super->s.vif_id], desc);
|
|
return;
|
|
}
|
|
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
|
|
|
|
_wlan_tx(desc);
|
|
__wlan_tx(desc);
|
|
wlan_trigger(BIT(super->s.queue));
|
|
}
|
|
|
|
void wlan_tx_fw(struct carl9170_tx_superdesc *super, fw_desc_callback_t cb)
|
|
{
|
|
if (!fw.wlan.fw_desc_available)
|
|
return;
|
|
|
|
fw.wlan.fw_desc_available = 0;
|
|
|
|
/* Format BlockAck */
|
|
fw.wlan.fw_desc->ctrl = AR9170_CTRL_FS_BIT | AR9170_CTRL_LS_BIT;
|
|
fw.wlan.fw_desc->status = AR9170_OWN_BITS_SW;
|
|
|
|
fw.wlan.fw_desc->totalLen = fw.wlan.fw_desc->dataSize = super->len;
|
|
fw.wlan.fw_desc_data = fw.wlan.fw_desc->dataAddr = super;
|
|
fw.wlan.fw_desc->nextAddr = fw.wlan.fw_desc->lastAddr =
|
|
fw.wlan.fw_desc;
|
|
fw.wlan.fw_desc_callback = cb;
|
|
wlan_tx(fw.wlan.fw_desc);
|
|
}
|
|
|
|
static void wlan_send_buffered_ba(void)
|
|
{
|
|
struct carl9170_tx_ba_superframe *baf = &dma_mem.reserved.ba.ba;
|
|
struct ieee80211_ba *ba = (struct ieee80211_ba *) &baf->f.ba;
|
|
struct carl9170_bar_ctx *ctx;
|
|
|
|
if (likely(!fw.wlan.queued_ba))
|
|
return;
|
|
|
|
/* there's no point to continue when the ba_desc is not available. */
|
|
if (!fw.wlan.fw_desc_available)
|
|
return;
|
|
|
|
ctx = &fw.wlan.ba_cache[fw.wlan.ba_head_idx];
|
|
fw.wlan.ba_head_idx++;
|
|
fw.wlan.ba_head_idx %= CONFIG_CARL9170FW_BACK_REQS_NUM;
|
|
fw.wlan.queued_ba--;
|
|
|
|
baf->s.len = sizeof(struct carl9170_tx_superdesc) +
|
|
sizeof(struct ar9170_tx_hwdesc) +
|
|
sizeof(struct ieee80211_ba);
|
|
baf->s.ri[0].tries = 1;
|
|
baf->s.cookie = 0;
|
|
baf->s.queue = AR9170_TXQ_VO;
|
|
baf->f.hdr.length = sizeof(struct ieee80211_ba) + FCS_LEN;
|
|
|
|
baf->f.hdr.mac.no_ack = 1;
|
|
|
|
baf->f.hdr.phy.modulation = 1; /* OFDM */
|
|
baf->f.hdr.phy.tx_power = 34; /* 17 dBm */
|
|
baf->f.hdr.phy.chains = 1;
|
|
baf->f.hdr.phy.mcs = AR9170_TXRX_PHY_RATE_OFDM_6M;
|
|
|
|
/* format outgoing BA */
|
|
ba->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
|
|
ba->duration = cpu_to_le16(0);
|
|
|
|
/* the BAR contains all necessary MACs. All we need is to swap them */
|
|
memcpy(ba->ra, ctx->ta, 6);
|
|
memcpy(ba->ta, ctx->ra, 6);
|
|
|
|
/*
|
|
* Unfortunately, we cannot look into the hardware's scoreboard.
|
|
* Therefore we have to proceed as described in 802.11n 9.10.7.5
|
|
* and send a null BlockAck.
|
|
*/
|
|
memset(ba->bitmap, 0x0, sizeof(ba->bitmap));
|
|
|
|
/*
|
|
* Both, the original firmare and ath9k set the NO ACK flag in
|
|
* the BA Ack Policy subfield.
|
|
*/
|
|
ba->control = ctx->control | cpu_to_le16(1);
|
|
ba->start_seq_num = ctx->start_seq_num;
|
|
wlan_tx_fw(&baf->s, NULL);
|
|
}
|
|
|
|
static struct carl9170_bar_ctx *wlan_get_bar_cache_buffer(void)
|
|
{
|
|
struct carl9170_bar_ctx *tmp;
|
|
|
|
tmp = &fw.wlan.ba_cache[fw.wlan.ba_tail_idx];
|
|
fw.wlan.ba_tail_idx++;
|
|
fw.wlan.ba_tail_idx %= CONFIG_CARL9170FW_BACK_REQS_NUM;
|
|
if (fw.wlan.queued_ba < CONFIG_CARL9170FW_BACK_REQS_NUM)
|
|
fw.wlan.queued_ba++;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
static void handle_bar(struct dma_desc *desc __unused, struct ieee80211_hdr *hdr,
|
|
unsigned int len, unsigned int mac_err)
|
|
{
|
|
struct ieee80211_bar *bar;
|
|
struct carl9170_bar_ctx *ctx;
|
|
|
|
if (unlikely(mac_err)) {
|
|
/*
|
|
* This check does a number of things:
|
|
* 1. checks if the frame is in good nick
|
|
* 2. checks if the RA (MAC) matches
|
|
*/
|
|
return ;
|
|
}
|
|
|
|
if (unlikely(len < (sizeof(struct ieee80211_bar) + FCS_LEN))) {
|
|
/*
|
|
* Sneaky, corrupted BARs... but not with us!
|
|
*/
|
|
|
|
return ;
|
|
}
|
|
|
|
bar = (void *) hdr;
|
|
|
|
if ((bar->control & cpu_to_le16(IEEE80211_BAR_CTRL_MULTI_TID)) ||
|
|
!(bar->control & cpu_to_le16(IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA))) {
|
|
/* not implemented yet */
|
|
|
|
return ;
|
|
}
|
|
|
|
ctx = wlan_get_bar_cache_buffer();
|
|
|
|
memcpy(ctx->ra, bar->ra, 6);
|
|
memcpy(ctx->ta, bar->ta, 6);
|
|
ctx->control = bar->control;
|
|
ctx->start_seq_num = bar->start_seq_num;
|
|
}
|
|
|
|
static void wlan_check_rx_overrun(void)
|
|
{
|
|
uint32_t overruns, total;
|
|
|
|
fw.tally.rx_total += total = get(AR9170_MAC_REG_RX_TOTAL);
|
|
fw.tally.rx_overrun += overruns = get(AR9170_MAC_REG_RX_OVERRUN);
|
|
if (unlikely(overruns)) {
|
|
if (overruns == total) {
|
|
DBG("RX Overrun");
|
|
fw.wlan.mac_reset++;
|
|
}
|
|
|
|
wlan_trigger(AR9170_DMA_TRIGGER_RXQ);
|
|
}
|
|
}
|
|
|
|
static unsigned int wlan_rx_filter(struct dma_desc *desc)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
unsigned int data_len;
|
|
unsigned int rx_filter;
|
|
unsigned int mac_err;
|
|
|
|
data_len = ar9170_get_rx_mpdu_len(desc);
|
|
mac_err = ar9170_get_rx_macstatus_error(desc);
|
|
|
|
#define AR9170_RX_ERROR_BAD (AR9170_RX_ERROR_FCS | AR9170_RX_ERROR_PLCP)
|
|
|
|
if (unlikely(data_len < (4 + 6 + FCS_LEN) ||
|
|
desc->totalLen > CONFIG_CARL9170FW_RX_FRAME_LEN) ||
|
|
mac_err & AR9170_RX_ERROR_BAD) {
|
|
/*
|
|
* This frame is too damaged to do anything
|
|
* useful with it.
|
|
*/
|
|
|
|
return CARL9170_RX_FILTER_BAD;
|
|
}
|
|
|
|
rx_filter = 0;
|
|
if (mac_err & AR9170_RX_ERROR_WRONG_RA)
|
|
rx_filter |= CARL9170_RX_FILTER_OTHER_RA;
|
|
|
|
if (mac_err & AR9170_RX_ERROR_DECRYPT)
|
|
rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL;
|
|
|
|
hdr = ar9170_get_rx_i3e(desc);
|
|
if (likely(ieee80211_is_data(hdr->frame_control))) {
|
|
rx_filter |= CARL9170_RX_FILTER_DATA;
|
|
} else if (ieee80211_is_ctl(hdr->frame_control)) {
|
|
switch (le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE) {
|
|
case IEEE80211_STYPE_BACK_REQ:
|
|
handle_bar(desc, hdr, data_len, mac_err);
|
|
rx_filter |= CARL9170_RX_FILTER_CTL_BACKR;
|
|
break;
|
|
case IEEE80211_STYPE_PSPOLL:
|
|
rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL;
|
|
break;
|
|
case IEEE80211_STYPE_BACK:
|
|
if (fw.wlan.queued_bar) {
|
|
/*
|
|
* Don't filter block acks when the application
|
|
* has queued BARs. This is because the firmware
|
|
* can't do the accouting and the application
|
|
* has to sort out if the BA belongs to any BARs.
|
|
*/
|
|
break;
|
|
}
|
|
/* otherwise fall through */
|
|
default:
|
|
rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
|
|
break;
|
|
}
|
|
} else {
|
|
/* ieee80211_is_mgmt */
|
|
rx_filter |= CARL9170_RX_FILTER_MGMT;
|
|
}
|
|
|
|
if (unlikely(fw.suspend_mode == CARL9170_HOST_SUSPENDED)) {
|
|
wol_rx(rx_filter, hdr, min(data_len,
|
|
(unsigned int)AR9170_BLOCK_SIZE));
|
|
}
|
|
|
|
#undef AR9170_RX_ERROR_BAD
|
|
|
|
return rx_filter;
|
|
}
|
|
|
|
static void handle_rx(void)
|
|
{
|
|
struct dma_desc *desc;
|
|
|
|
for_each_desc_not_bits(desc, &fw.wlan.rx_queue, AR9170_OWN_BITS_HW) {
|
|
if (!(wlan_rx_filter(desc) & fw.wlan.rx_filter)) {
|
|
dma_put(&fw.pta.up_queue, desc);
|
|
up_trigger();
|
|
} else {
|
|
dma_reclaim(&fw.wlan.rx_queue, desc);
|
|
wlan_trigger(AR9170_DMA_TRIGGER_RXQ);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
|
|
void wlan_cab_flush_queue(const unsigned int vif)
|
|
{
|
|
struct dma_queue *cab_queue = &fw.wlan.cab_queue[vif];
|
|
struct dma_desc *desc;
|
|
|
|
/* move queued frames into the main tx queues */
|
|
for_each_desc(desc, cab_queue) {
|
|
struct carl9170_tx_superframe *super = get_super(desc);
|
|
if (!queue_empty(cab_queue)) {
|
|
/*
|
|
* Set MOREDATA flag for all,
|
|
* but the last queued frame.
|
|
* see: 802.11-2007 11.2.1.5 f)
|
|
*
|
|
* This is actually the reason to why
|
|
* we need to prevent the reentry.
|
|
*/
|
|
|
|
super->f.data.i3e.frame_control |=
|
|
cpu_to_le16(IEEE80211_FCTL_MOREDATA);
|
|
} else {
|
|
super->f.data.i3e.frame_control &=
|
|
cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
|
|
}
|
|
|
|
/* ready to roll! */
|
|
_wlan_tx(desc);
|
|
__wlan_tx(desc);
|
|
wlan_trigger(BIT(super->s.queue));
|
|
}
|
|
}
|
|
|
|
static uint8_t *beacon_find_ie(uint8_t ie, void *addr,
|
|
const unsigned int len)
|
|
{
|
|
struct ieee80211_mgmt *mgmt = addr;
|
|
uint8_t *pos, *end;
|
|
|
|
pos = mgmt->u.beacon.variable;
|
|
end = (uint8_t *) ((unsigned long)mgmt + (len - FCS_LEN));
|
|
while (pos < end) {
|
|
if (pos + 2 + pos[1] > end)
|
|
return NULL;
|
|
|
|
if (pos[0] == ie)
|
|
return pos;
|
|
|
|
pos += pos[1] + 2;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void wlan_modify_beacon(const unsigned int vif,
|
|
const unsigned int addr, const unsigned int len)
|
|
{
|
|
uint8_t *_ie;
|
|
struct ieee80211_tim_ie *ie;
|
|
|
|
_ie = beacon_find_ie(WLAN_EID_TIM, (void *)addr, len);
|
|
if (likely(_ie)) {
|
|
ie = (struct ieee80211_tim_ie *) &_ie[2];
|
|
|
|
if (!queue_empty(&fw.wlan.cab_queue[vif]) && (ie->dtim_count == 0)) {
|
|
/* schedule DTIM transfer */
|
|
fw.wlan.cab_flush_trigger[vif] = CARL9170_CAB_TRIGGER_ARMED;
|
|
} else if ((fw.wlan.cab_queue_len[vif] == 0) && (fw.wlan.cab_flush_trigger[vif])) {
|
|
/* undo all chances to the beacon structure */
|
|
ie->bitmap_ctrl &= ~0x1;
|
|
fw.wlan.cab_flush_trigger[vif] = CARL9170_CAB_TRIGGER_EMPTY;
|
|
}
|
|
|
|
/* Triggered by CARL9170_CAB_TRIGGER_ARMED || CARL9170_CAB_TRIGGER_DEFER */
|
|
if (fw.wlan.cab_flush_trigger[vif]) {
|
|
/* Set the almighty Multicast Traffic Indication Bit. */
|
|
ie->bitmap_ctrl |= 0x1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ideally, the sequence number should be assigned by the TX arbiter
|
|
* hardware. But AFAIK that's not possible, so we have to go for the
|
|
* next best thing and write it into the beacon fifo during the open
|
|
* beacon update window.
|
|
*/
|
|
|
|
wlan_assign_seq((struct ieee80211_hdr *)addr, vif);
|
|
}
|
|
|
|
static void wlan_send_buffered_cab(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < CARL9170_INTF_NUM; i++) {
|
|
if (unlikely(fw.wlan.cab_flush_trigger[i] == CARL9170_CAB_TRIGGER_ARMED)) {
|
|
/*
|
|
* This is hardcoded into carl9170usb driver.
|
|
*
|
|
* The driver must set the PRETBTT event to beacon_interval -
|
|
* CARL9170_PRETBTT_KUS (usually 6) Kus.
|
|
*
|
|
* But still, we can only do so much about 802.11-2007 9.3.2.1 &
|
|
* 11.2.1.6. Let's hope the current solution is adequate enough.
|
|
*/
|
|
|
|
if (is_after_msecs(fw.wlan.cab_flush_time, (CARL9170_TBTT_DELTA))) {
|
|
wlan_cab_flush_queue(i);
|
|
|
|
/*
|
|
* This prevents the code from sending new BC/MC frames
|
|
* which were queued after the previous buffered traffic
|
|
* has been sent out... They will have to wait until the
|
|
* next DTIM beacon comes along.
|
|
*/
|
|
fw.wlan.cab_flush_trigger[i] = CARL9170_CAB_TRIGGER_DEFER;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
|
|
|
|
static void handle_beacon_config(void)
|
|
{
|
|
uint32_t bcn_count;
|
|
|
|
bcn_count = get(AR9170_MAC_REG_BCN_COUNT);
|
|
send_cmd_to_host(4, CARL9170_RSP_BEACON_CONFIG, 0x00,
|
|
(uint8_t *) &bcn_count);
|
|
}
|
|
|
|
static void handle_pretbtt(void)
|
|
{
|
|
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
|
|
fw.wlan.cab_flush_time = get_clock_counter();
|
|
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
|
|
|
|
#ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS
|
|
rf_psm();
|
|
|
|
send_cmd_to_host(4, CARL9170_RSP_PRETBTT, 0x00,
|
|
(uint8_t *) &fw.phy.psm.state);
|
|
#endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */
|
|
}
|
|
|
|
static void handle_atim(void)
|
|
{
|
|
send_cmd_to_host(0, CARL9170_RSP_ATIM, 0x00, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_CARL9170FW_DEBUG
|
|
static void handle_qos(void)
|
|
{
|
|
/*
|
|
* What is the QoS Bit used for?
|
|
* Is it only an indicator for TXOP & Burst, or
|
|
* should we do something here?
|
|
*/
|
|
}
|
|
|
|
static void handle_radar(void)
|
|
{
|
|
send_cmd_to_host(0, CARL9170_RSP_RADAR, 0x00, NULL);
|
|
}
|
|
#endif /* CONFIG_CARL9170FW_DEBUG */
|
|
|
|
static void wlan_janitor(void)
|
|
{
|
|
#ifdef CONFIG_CARL9170FW_CAB_QUEUE
|
|
wlan_send_buffered_cab();
|
|
#endif /* CONFIG_CARL9170FW_CAB_QUEUE */
|
|
|
|
wlan_send_buffered_tx_status();
|
|
|
|
wlan_send_buffered_ba();
|
|
|
|
wol_janitor();
|
|
}
|
|
|
|
void handle_wlan(void)
|
|
{
|
|
uint32_t intr;
|
|
|
|
intr = get(AR9170_MAC_REG_INT_CTRL);
|
|
/* ACK Interrupt */
|
|
set(AR9170_MAC_REG_INT_CTRL, intr);
|
|
|
|
#define HANDLER(intr, flag, func) \
|
|
do { \
|
|
if ((intr & flag) != 0) { \
|
|
func(); \
|
|
} \
|
|
} while (0)
|
|
|
|
intr |= fw.wlan.soft_int;
|
|
fw.wlan.soft_int = 0;
|
|
|
|
HANDLER(intr, AR9170_MAC_INT_PRETBTT, handle_pretbtt);
|
|
|
|
HANDLER(intr, AR9170_MAC_INT_ATIM, handle_atim);
|
|
|
|
HANDLER(intr, AR9170_MAC_INT_RXC, handle_rx);
|
|
|
|
HANDLER(intr, (AR9170_MAC_INT_TXC | AR9170_MAC_INT_RETRY_FAIL),
|
|
handle_tx_completion);
|
|
|
|
#ifdef CONFIG_CARL9170FW_DEBUG
|
|
HANDLER(intr, AR9170_MAC_INT_QOS, handle_qos);
|
|
|
|
HANDLER(intr, AR9170_MAC_INT_RADAR, handle_radar);
|
|
#endif /* CONFIG_CARL9170FW_DEBUG */
|
|
|
|
HANDLER(intr, AR9170_MAC_INT_CFG_BCN, handle_beacon_config);
|
|
|
|
if (unlikely(intr))
|
|
DBG("Unhandled Interrupt %x\n", (unsigned int) intr);
|
|
|
|
wlan_janitor();
|
|
|
|
#undef HANDLER
|
|
}
|
|
|
|
enum {
|
|
CARL9170FW_TX_MAC_BUMP = 4,
|
|
CARL9170FW_TX_MAC_DEBUG = 6,
|
|
CARL9170FW_TX_MAC_RESET = 7,
|
|
};
|
|
|
|
static void wlan_check_hang(void)
|
|
{
|
|
struct dma_desc *desc;
|
|
int i;
|
|
|
|
for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) {
|
|
if (queue_empty(&fw.wlan.tx_queue[i])) {
|
|
/* Nothing to do here... move along */
|
|
continue;
|
|
}
|
|
|
|
/* fetch the current DMA queue position */
|
|
desc = (struct dma_desc *)get_wlan_txq_addr(i);
|
|
|
|
/* Stuck frame detection */
|
|
if (unlikely(DESC_PAYLOAD(desc) == fw.wlan.last_super[i])) {
|
|
fw.wlan.last_super_num[i]++;
|
|
|
|
if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_RESET)) {
|
|
/*
|
|
* schedule MAC reset (aka OFF/ON => dead)
|
|
*
|
|
* This will almost certainly kill
|
|
* the device for good, but it's the
|
|
* recommended thing to do...
|
|
*/
|
|
|
|
fw.wlan.mac_reset++;
|
|
}
|
|
|
|
#ifdef CONFIG_CARL9170FW_DEBUG
|
|
if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_DEBUG)) {
|
|
/*
|
|
* Sigh, the queue is almost certainly
|
|
* dead. Dump the queue content to the
|
|
* user, maybe we find out why it got
|
|
* so stuck.
|
|
*/
|
|
|
|
wlan_dump_queue(i);
|
|
}
|
|
#endif /* CONFIG_CARL9170FW_DEBUG */
|
|
|
|
#ifdef CONFIG_CARL9170FW_DMA_QUEUE_BUMP
|
|
if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_BUMP)) {
|
|
/*
|
|
* Hrrm, bump the queue a bit.
|
|
* maybe this will get it going again.
|
|
*/
|
|
|
|
wlan_dma_bump(i);
|
|
wlan_trigger(BIT(i));
|
|
}
|
|
#endif /* CONFIG_CARL9170FW_DMA_QUEUE_BUMP */
|
|
} else {
|
|
/* Nothing stuck */
|
|
fw.wlan.last_super[i] = DESC_PAYLOAD(desc);
|
|
fw.wlan.last_super_num[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_CARL9170FW_FW_MAC_RESET
|
|
/*
|
|
* NB: Resetting the MAC is a two-edged sword.
|
|
* On most occasions, it does what it is supposed to do.
|
|
* But there is a chance that this will make it
|
|
* even worse and the radio dies silently.
|
|
*/
|
|
static void wlan_mac_reset(void)
|
|
{
|
|
uint32_t val;
|
|
uint32_t agg_wait_counter;
|
|
uint32_t agg_density;
|
|
uint32_t bcn_start_addr;
|
|
uint32_t rctl, rcth;
|
|
uint32_t cam_mode;
|
|
uint32_t ack_power;
|
|
uint32_t rts_cts_tpc;
|
|
uint32_t rts_cts_rate;
|
|
int i;
|
|
|
|
#ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS
|
|
uint32_t rx_BB;
|
|
#endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */
|
|
|
|
#ifdef CONFIG_CARL9170FW_NOISY_MAC_RESET
|
|
INFO("MAC RESET");
|
|
#endif /* CONFIG_CARL9170FW_NOISY_MAC_RESET */
|
|
|
|
/* Save aggregation parameters */
|
|
agg_wait_counter = get(AR9170_MAC_REG_AMPDU_FACTOR);
|
|
agg_density = get(AR9170_MAC_REG_AMPDU_DENSITY);
|
|
|
|
bcn_start_addr = get(AR9170_MAC_REG_BCN_ADDR);
|
|
|
|
cam_mode = get(AR9170_MAC_REG_CAM_MODE);
|
|
rctl = get(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_L);
|
|
rcth = get(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_H);
|
|
|
|
ack_power = get(AR9170_MAC_REG_ACK_TPC);
|
|
rts_cts_tpc = get(AR9170_MAC_REG_RTS_CTS_TPC);
|
|
rts_cts_rate = get(AR9170_MAC_REG_RTS_CTS_RATE);
|
|
|
|
#ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS
|
|
/* 0x1c8960 write only */
|
|
rx_BB = get(AR9170_PHY_REG_SWITCH_CHAIN_0);
|
|
#endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */
|
|
|
|
/* TX/RX must be stopped by now */
|
|
val = get(AR9170_MAC_REG_POWER_STATE_CTRL);
|
|
|
|
val |= AR9170_MAC_POWER_STATE_CTRL_RESET;
|
|
|
|
/*
|
|
* Manipulate CCA threshold to stop transmission
|
|
*
|
|
* set(AR9170_PHY_REG_CCA_THRESHOLD, 0x300);
|
|
*/
|
|
|
|
/*
|
|
* check Rx state in 0(idle) 9(disable)
|
|
*
|
|
* chState = (get(AR9170_MAC_REG_MISC_684) >> 16) & 0xf;
|
|
* while( (chState != 0) && (chState != 9)) {
|
|
* chState = (get(AR9170_MAC_REG_MISC_684) >> 16) & 0xf;
|
|
* }
|
|
*/
|
|
|
|
set(AR9170_MAC_REG_POWER_STATE_CTRL, val);
|
|
|
|
delay(2);
|
|
|
|
/* Restore aggregation parameters */
|
|
set(AR9170_MAC_REG_AMPDU_FACTOR, agg_wait_counter);
|
|
set(AR9170_MAC_REG_AMPDU_DENSITY, agg_density);
|
|
|
|
set(AR9170_MAC_REG_BCN_ADDR, bcn_start_addr);
|
|
set(AR9170_MAC_REG_CAM_MODE, cam_mode);
|
|
set(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_L, rctl);
|
|
set(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_H, rcth);
|
|
|
|
set(AR9170_MAC_REG_RTS_CTS_TPC, rts_cts_tpc);
|
|
set(AR9170_MAC_REG_ACK_TPC, ack_power);
|
|
set(AR9170_MAC_REG_RTS_CTS_RATE, rts_cts_rate);
|
|
|
|
#ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS
|
|
set(AR9170_PHY_REG_SWITCH_CHAIN_2, rx_BB);
|
|
#endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */
|
|
|
|
/*
|
|
* Manipulate CCA threshold to resume transmission
|
|
*
|
|
* set(AR9170_PHY_REG_CCA_THRESHOLD, 0x0);
|
|
*/
|
|
|
|
val = AR9170_DMA_TRIGGER_RXQ;
|
|
/* Reinitialize all WLAN TX DMA queues. */
|
|
for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) {
|
|
struct dma_desc *iter;
|
|
|
|
__for_each_desc_bits(iter, &fw.wlan.tx_queue[i], AR9170_OWN_BITS_SW);
|
|
|
|
/* kill the stuck frame */
|
|
if (!is_terminator(&fw.wlan.tx_queue[i], iter) &&
|
|
fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_RESET &&
|
|
fw.wlan.last_super[i] == DESC_PAYLOAD(iter)) {
|
|
struct carl9170_tx_superframe *super = get_super(iter);
|
|
|
|
iter->status = AR9170_OWN_BITS_SW;
|
|
/*
|
|
* Mark the frame as failed.
|
|
* The BAFAIL flag allows the frame to sail through
|
|
* wlan_tx_status without much "unstuck" trouble.
|
|
*/
|
|
iter->ctrl &= ~(AR9170_CTRL_FAIL);
|
|
iter->ctrl |= AR9170_CTRL_BAFAIL;
|
|
|
|
super->s.cnt = CARL9170_TX_MAX_RATE_TRIES;
|
|
super->s.rix = CARL9170_TX_MAX_RETRY_RATES;
|
|
|
|
fw.wlan.last_super_num[i] = 0;
|
|
fw.wlan.last_super[i] = NULL;
|
|
iter = iter->lastAddr->nextAddr;
|
|
}
|
|
|
|
set_wlan_txq_dma_addr(i, (uint32_t) iter);
|
|
if (!is_terminator(&fw.wlan.tx_queue[i], iter))
|
|
val |= BIT(i);
|
|
|
|
DBG("Q:%d l:%d h:%p t:%p cu:%p it:%p ct:%x st:%x\n", i, queue_len(&fw.wlan.tx_queue[i]),
|
|
fw.wlan.tx_queue[i].head, fw.wlan.tx_queue[i].terminator,
|
|
get_wlan_txq_addr(i), iter, iter->ctrl, iter->status);
|
|
}
|
|
|
|
fw.wlan.soft_int |= AR9170_MAC_INT_RXC | AR9170_MAC_INT_TXC |
|
|
AR9170_MAC_INT_RETRY_FAIL;
|
|
|
|
set(AR9170_MAC_REG_DMA_RXQ_ADDR, (uint32_t) fw.wlan.rx_queue.head);
|
|
wlan_trigger(val);
|
|
}
|
|
#else
|
|
static void wlan_mac_reset(void)
|
|
{
|
|
/* The driver takes care of reinitializing the device */
|
|
BUG("MAC RESET");
|
|
}
|
|
#endif /* CONFIG_CARL9170FW_FW_MAC_RESET */
|
|
|
|
void __cold wlan_timer(void)
|
|
{
|
|
unsigned int cached_mac_reset;
|
|
|
|
cached_mac_reset = fw.wlan.mac_reset;
|
|
|
|
/* TX Queue Hang check */
|
|
wlan_check_hang();
|
|
|
|
/* RX Overrun check */
|
|
wlan_check_rx_overrun();
|
|
|
|
if (unlikely(fw.wlan.mac_reset >= CARL9170_MAC_RESET_RESET)) {
|
|
wlan_mac_reset();
|
|
fw.wlan.mac_reset = CARL9170_MAC_RESET_OFF;
|
|
} else {
|
|
if (fw.wlan.mac_reset && cached_mac_reset == fw.wlan.mac_reset)
|
|
fw.wlan.mac_reset--;
|
|
}
|
|
}
|