/* * Copyright (c) 2013 Dave Collins * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ package spew import ( "bytes" "encoding/hex" "fmt" "io" "os" "reflect" "strconv" "strings" ) // dumpState contains information about the state of a dump operation. type dumpState struct { w io.Writer depth int pointers map[uintptr]int ignoreNextType bool ignoreNextIndent bool cs *ConfigState } // indent performs indentation according to the depth level and cs.Indent // option. func (d *dumpState) indent() { if d.ignoreNextIndent { d.ignoreNextIndent = false return } d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth)) } // unpackValue returns values inside of non-nil interfaces when possible. // This is useful for data types like structs, arrays, slices, and maps which // can contain varying types packed inside an interface. func (d *dumpState) unpackValue(v reflect.Value) reflect.Value { if v.Kind() == reflect.Interface && !v.IsNil() { v = v.Elem() } return v } // dumpPtr handles formatting of pointers by indirecting them as necessary. func (d *dumpState) dumpPtr(v reflect.Value) { // Remove pointers at or below the current depth from map used to detect // circular refs. for k, depth := range d.pointers { if depth >= d.depth { delete(d.pointers, k) } } // Keep list of all dereferenced pointers to show later. pointerChain := make([]uintptr, 0) // Figure out how many levels of indirection there are by dereferencing // pointers and unpacking interfaces down the chain while detecting circular // references. nilFound := false cycleFound := false indirects := 0 ve := v for ve.Kind() == reflect.Ptr { if ve.IsNil() { nilFound = true break } indirects++ addr := ve.Pointer() pointerChain = append(pointerChain, addr) if pd, ok := d.pointers[addr]; ok && pd < d.depth { cycleFound = true indirects-- break } d.pointers[addr] = d.depth ve = ve.Elem() if ve.Kind() == reflect.Interface { if ve.IsNil() { nilFound = true break } ve = ve.Elem() } } // Display type information. d.w.Write(openParenBytes) d.w.Write(bytes.Repeat(asteriskBytes, indirects)) d.w.Write([]byte(ve.Type().String())) d.w.Write(closeParenBytes) // Display pointer information. if len(pointerChain) > 0 { d.w.Write(openParenBytes) for i, addr := range pointerChain { if i > 0 { d.w.Write(pointerChainBytes) } printHexPtr(d.w, addr) } d.w.Write(closeParenBytes) } // Display dereferenced value. d.w.Write(openParenBytes) switch { case nilFound == true: d.w.Write(nilAngleBytes) case cycleFound == true: d.w.Write(circularBytes) default: d.ignoreNextType = true d.dump(ve) } d.w.Write(closeParenBytes) } // dumpSlice handles formatting of arrays and slices. Byte (uint8 under // reflection) arrays and slices are dumped in hexdump -C fashion. func (d *dumpState) dumpSlice(v reflect.Value) { // Handle byte (uint8 under reflection) arrays and slices uniquely. numEntries := v.Len() if (numEntries > 0) && (v.Index(0).Kind() == reflect.Uint8) { // We need an addressable interface to convert the type back into a byte // slice. However, the reflect package won't give us an interface on // certain things like unexported struct fields in order to enforce // visibility rules. We use unsafe to bypass these restrictions since // this package does not mutate the values. vs := v if !vs.CanInterface() || !vs.CanAddr() { vs = unsafeReflectValue(vs) } vs = vs.Slice(0, numEntries) // Type assert a uint8 slice and hexdump it. Also fix indentation // based on the depth. iface := vs.Interface() if buf, ok := iface.([]uint8); ok { indent := strings.Repeat(d.cs.Indent, d.depth) str := indent + hex.Dump(buf) str = strings.Replace(str, "\n", "\n"+indent, -1) str = strings.TrimRight(str, d.cs.Indent) d.w.Write([]byte(str)) return } // We shouldn't ever get here, but the return is intentionally in the // above if statement to ensure we fall through to normal behavior if // the type assertion fails for some reason. } // Recursively call dump for each item. for i := 0; i < numEntries; i++ { d.dump(d.unpackValue(v.Index(i))) if i < (numEntries - 1) { d.w.Write(commaNewlineBytes) } else { d.w.Write(newlineBytes) } } } // dump is the main workhorse for dumping a value. It uses the passed reflect // value to figure out what kind of object we are dealing with and formats it // appropriately. It is a recursive function, however circular data structures // are detected and handled properly. func (d *dumpState) dump(v reflect.Value) { // Handle invalid reflect values immediately. kind := v.Kind() if kind == reflect.Invalid { d.w.Write(invalidAngleBytes) return } // Handle pointers specially. if kind == reflect.Ptr { d.indent() d.dumpPtr(v) return } // Print type information unless already handled elsewhere. if !d.ignoreNextType { d.indent() d.w.Write(openParenBytes) d.w.Write([]byte(v.Type().String())) d.w.Write(closeParenBytes) d.w.Write(spaceBytes) } d.ignoreNextType = false // Call Stringer/error interfaces if they exist and the handle methods flag // is enabled if !d.cs.DisableMethods { if (kind != reflect.Invalid) && (kind != reflect.Interface) { if handled := handleMethods(d.cs, d.w, v); handled { return } } } switch kind { case reflect.Invalid: // Do nothing. We should never get here since invalid has already // been handled above. case reflect.Bool: printBool(d.w, v.Bool()) case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int: printInt(d.w, v.Int(), 10) case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint: printUint(d.w, v.Uint(), 10) case reflect.Float32: printFloat(d.w, v.Float(), 32) case reflect.Float64: printFloat(d.w, v.Float(), 64) case reflect.Complex64: printComplex(d.w, v.Complex(), 32) case reflect.Complex128: printComplex(d.w, v.Complex(), 64) case reflect.Array, reflect.Slice: d.w.Write(openBraceNewlineBytes) d.depth++ if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { d.indent() d.w.Write(maxNewlineBytes) } else { d.dumpSlice(v) } d.depth-- d.indent() d.w.Write(closeBraceBytes) case reflect.String: d.w.Write([]byte(strconv.Quote(v.String()))) case reflect.Interface: // Do nothing. We should never get here due to unpackValue calls. case reflect.Ptr: // Do nothing. We should never get here since pointers have already // been handled above. case reflect.Map: d.w.Write(openBraceNewlineBytes) d.depth++ if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { d.indent() d.w.Write(maxNewlineBytes) } else { numEntries := v.Len() keys := v.MapKeys() for i, key := range keys { d.dump(d.unpackValue(key)) d.w.Write(colonSpaceBytes) d.ignoreNextIndent = true d.dump(d.unpackValue(v.MapIndex(key))) if i < (numEntries - 1) { d.w.Write(commaNewlineBytes) } else { d.w.Write(newlineBytes) } } } d.depth-- d.indent() d.w.Write(closeBraceBytes) case reflect.Struct: d.w.Write(openBraceNewlineBytes) d.depth++ if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) { d.indent() d.w.Write(maxNewlineBytes) } else { vt := v.Type() numFields := v.NumField() for i := 0; i < numFields; i++ { d.indent() vtf := vt.Field(i) d.w.Write([]byte(vtf.Name)) d.w.Write(colonSpaceBytes) d.ignoreNextIndent = true d.dump(d.unpackValue(v.Field(i))) if i < (numFields - 1) { d.w.Write(commaNewlineBytes) } else { d.w.Write(newlineBytes) } } } d.depth-- d.indent() d.w.Write(closeBraceBytes) case reflect.Uintptr: printHexPtr(d.w, uintptr(v.Uint())) case reflect.UnsafePointer, reflect.Chan, reflect.Func: printHexPtr(d.w, v.Pointer()) // There were not any other types at the time this code was written, but // fall back to letting the default fmt package handle it in case any new // types are added. default: if v.CanInterface() { fmt.Fprintf(d.w, "%v", v.Interface()) } else { fmt.Fprintf(d.w, "%v", v.String()) } } } // fdump is a helper function to consolidate the logic from the various public // methods which take varying writers and config states. func fdump(cs *ConfigState, w io.Writer, a ...interface{}) { for _, arg := range a { if arg == nil { w.Write(interfaceBytes) w.Write(spaceBytes) w.Write(nilAngleBytes) w.Write(newlineBytes) continue } d := dumpState{w: w, cs: cs} d.pointers = make(map[uintptr]int) d.dump(reflect.ValueOf(arg)) d.w.Write(newlineBytes) } } // Fdump formats and displays the passed arguments to io.Writer w. It formats // exactly the same as Dump. func Fdump(w io.Writer, a ...interface{}) { fdump(&Config, w, a...) } // Sdump returns a string with the passed arguments formatted exactly the same // as Dump. func Sdump(a ...interface{}) string { var buf bytes.Buffer fdump(&Config, &buf, a...) return buf.String() } /* Dump displays the passed parameters to standard out with newlines, customizable indentation, and additional debug information such as complete types and all pointer addresses used to indirect to the final value. It provides the following features over the built-in printing facilities provided by the fmt package: * Pointers are dereferenced and followed * Circular data structures are detected and handled properly * Custom Stringer/error interfaces are optionally invoked, including on unexported types * Custom types which only implement the Stringer/error interfaces via a pointer receiver are optionally invoked when passing non-pointer variables * Byte arrays and slices are dumped like the hexdump -C command which includes offsets, byte values in hex, and ASCII output The configuration options are controlled by an exported package global, spew.Config. See ConfigState for options documentation. See Fdump if you would prefer dumping to an arbitrary io.Writer. */ func Dump(a ...interface{}) { fdump(&Config, os.Stdout, a...) }