coriolis/hurricane/src/isobar/PyTechnology.cpp

519 lines
20 KiB
C++

// -*- C++ -*-
//
// This file is part of the Coriolis Project.
// Copyright (C) Laboratoire LIP6 - Departement ASIM
// Universite Pierre et Marie Curie
//
// Main contributors :
// Christophe Alexandre <Christophe.Alexandre@lip6.fr>
// Sophie Belloeil <Sophie.Belloeil@lip6.fr>
// Hugo Clément <Hugo.Clement@lip6.fr>
// Jean-Paul Chaput <Jean-Paul.Chaput@lip6.fr>
// Damien Dupuis <Damien.Dupuis@lip6.fr>
// Christian Masson <Christian.Masson@lip6.fr>
// Marek Sroka <Marek.Sroka@lip6.fr>
//
// The Coriolis Project is free software; you can redistribute it
// and/or modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// The Coriolis Project is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with the Coriolis Project; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
//
// License-Tag
// Authors-Tag
//
// +-----------------------------------------------------------------+
// | C O R I O L I S |
// | I s o b a r - Hurricane / Python Interface |
// | |
// | Author : Damien DUPUIS |
// | E-mail : Damien.Dupuis@asim.lip6.fr |
// | =============================================================== |
// | C++ Module : "./PyTechnology.cpp" |
// +-----------------------------------------------------------------+
#include "hurricane/isobar/PyDataBase.h"
#include "hurricane/isobar/PyTechnology.h"
#include "hurricane/isobar/PyLayer.h"
#include "hurricane/isobar/PyLayerMask.h"
#include "hurricane/isobar/PyBasicLayer.h"
#include "hurricane/isobar/PyRegularLayer.h"
#include "hurricane/isobar/PyViaLayer.h"
#include "hurricane/isobar/PyLayerCollection.h"
#include "hurricane/isobar/PyBasicLayerCollection.h"
#include "hurricane/isobar/PyRegularLayerCollection.h"
#include "hurricane/isobar/PyViaLayerCollection.h"
#include "hurricane/isobar/PyUnitRule.h"
#include "hurricane/isobar/PyPhysicalRule.h"
#include "hurricane/isobar/PyTwoLayersPhysicalRule.h"
#include "hurricane/isobar/PyDeviceDescriptor.h"
namespace Isobar {
using namespace Hurricane;
extern "C" {
#define METHOD_HEAD(function) GENERIC_METHOD_HEAD(Technology,techno,function)
// +=================================================================+
// | "PyTechnology" Python Module Code Part |
// +=================================================================+
#if defined(__PYTHON_MODULE__)
// +-------------------------------------------------------------+
// | "PyTechnology" Attribute Methods |
// +-------------------------------------------------------------+
static PyObject* PyTechnology_create ( PyTechnology*, PyObject* args )
{
cdebug_log(20,0) << "Technology.create()" << endl;
Technology* technology = NULL;
HTRY
PyDataBase* pyDb = NULL;
char* name = NULL;
if (PyArg_ParseTuple(args,"Os:Technology.create", &pyDb, &name)) {
if (not IsPyDataBase(pyDb) ) {
PyErr_SetString(ConstructorError,"Technology.create(): First parameter is not a DataBase.");
return NULL;
}
technology = Technology::create( PYDATABASE_O(pyDb), Name(name) );
} else {
PyErr_SetString(ConstructorError, "Technology.create(): Bad parameter(s) number or type.");
return NULL;
}
HCATCH
return PyTechnology_Link(technology);
}
static PyObject* PyTechnology_getDataBase ( PyTechnology* self )
{
cdebug_log(20,0) << "PyTechnology_getDataBase()" << endl;
DataBase* db = NULL;
HTRY
METHOD_HEAD("Technology.getDataBase()")
db = techno->getDataBase();
HCATCH
if (db == NULL) Py_RETURN_NONE;
return PyDataBase_Link(db);
}
static PyObject* PyTechnology_getLayer ( PyTechnology *self, PyObject* args )
{
cdebug_log(20,0) << "Technology.getLayer()" << endl;
METHOD_HEAD("Technology.getLayer()")
Layer* layer = NULL;
HTRY
PyObject* arg0 = NULL;
PyObject* arg1 = NULL;
if (PyArg_ParseTuple(args,"O|OO:Technology.getLayer", &arg0, &arg1)) {
if (PyString_Check(arg0)) {
layer = techno->getLayer(Name(PyString_AsString(arg0)));
} else if (IsPyLayerMask(arg0)) {
bool useSymbolic = (arg1 != NULL) ? PyObject_IsTrue(arg1) : true;
layer = techno->getLayer(PYLAYERMASK_O(arg0), useSymbolic);
} else {
PyErr_SetString(ConstructorError, "invalid number of parameters for getLayer.");
return NULL;
}
} else {
PyErr_SetString(ConstructorError, "Hurricane.getLayer(): Bad parameter(s) type.");
return NULL;
}
HCATCH
return PyLayer_LinkDerived(layer);
}
static PyObject* PyTechnology_getBasicLayers ( PyTechnology* self, PyObject* args )
{
cdebug_log(20,0) << "PyTechnology_getBasicLayers()" << endl;
PyBasicLayerCollection* pyObjects = NULL;
HTRY
METHOD_HEAD("Technology.getBasicLayers()")
PyObject* pyMask = NULL;
BasicLayers* objects = NULL;
if (PyArg_ParseTuple( args, "O:Technology.getBasicLayers()", &pyMask)) {
if (not IsPyLayerMask(pyMask)) {
PyErr_SetString ( ConstructorError
, "Technology.getBasicLayers(): First argument is not of Layer.Mask type." );
return NULL;
}
} else {
PyErr_SetString ( ConstructorError
, "Invalid number of parameters passed to Technology.getBasicLayers()." );
return NULL;
}
if (pyMask != NULL)
objects = new BasicLayers(techno->getBasicLayers(PYLAYERMASK_O(pyMask)));
else
objects = new BasicLayers(techno->getBasicLayers());
pyObjects = PyObject_NEW(PyBasicLayerCollection,&PyTypeBasicLayerCollection);
if (pyObjects == NULL) return NULL;
pyObjects->_object = objects;
HCATCH
return (PyObject*)pyObjects;
}
static PyObject* PyTechnology_setSymbolicLayer ( PyTechnology *self, PyObject* args ) {
cdebug_log(20,0) << "Technology.setSymbolicLayer()" << endl;
METHOD_HEAD("Technology.setSymbolicLayer()")
bool rvalue = false;
HTRY
PyObject* arg0 = NULL;
if (PyArg_ParseTuple(args,"O:Technology.setSymbolicLayer", &arg0)) {
if (PyString_Check(arg0)) {
rvalue = techno->setSymbolicLayer(Name(PyString_AsString(arg0)));
} else if (IsPyLayer(arg0)) {
rvalue = techno->setSymbolicLayer(PYLAYER_O(arg0));
} else {
PyErr_SetString(ConstructorError, "Hurricane.setSymbolicLayer(): Invalid number of parameters.");
return NULL;
}
} else {
PyErr_SetString(ConstructorError, "Hurricane.setSymbolicLayer(): Bad parameter type.");
return NULL;
}
HCATCH
if (rvalue) Py_RETURN_TRUE;
Py_RETURN_FALSE;
}
static PyObject* PyTechnology_getUnitRule ( PyTechnology *self, PyObject* args )
{
cdebug.log(49) << "PyTechnology_getUnitRule()" << endl;
METHOD_HEAD("Technology.getUnitRule()")
UnitRule* rule = NULL;
HTRY
char *arg0 = NULL;
if (not PyArg_ParseTuple(args,"s:Technology.getUnitRule", &arg0)) {
PyErr_SetString( ProxyError
, "invalid number of parameters for getUnitRule on Technology." );
return NULL;
}
if (arg0) {
rule = new UnitRule( techno->getUnitRule(arg0) );
} else {
PyErr_SetString( ProxyError, "invalid number of parameters for getUnitRule on Technology." );
return NULL;
}
HCATCH
return PyRule_LinkDerived(rule);
}
static PyObject* PyTechnology_getPhysicalRule ( PyTechnology *self, PyObject* args )
{
cdebug.log(49) << "PyTechnology_getPhysicalRule()" << endl;
METHOD_HEAD("Technology.getPhysicalRule()")
PhysicalRule* rule = NULL;
HTRY
char *arg0=NULL, *arg1=NULL, *arg2=NULL;
if (not PyArg_ParseTuple(args,"s|ss:Technology.getPhysicalRule", &arg0, &arg1, &arg2)) {
PyErr_SetString( ProxyError
, "invalid number of parameters for getPhysicalRule on Technology." );
return NULL;
}
if (arg2) {
rule = new PhysicalRule( techno->getPhysicalRule(arg0,arg1,arg2) );
} else if (arg1) {
rule = new PhysicalRule( techno->getPhysicalRule(arg0,arg1) );
} else if (arg0) {
rule = new PhysicalRule( techno->getPhysicalRule(arg0) );
} else {
PyErr_SetString( ProxyError, "invalid number of parameters for getPhysicalRule on Technology." );
return NULL;
}
HCATCH
return PyRule_LinkDerived(rule);
}
static PyObject* PyTechnology_addUnitRule ( PyTechnology* self, PyObject *args )
{
cdebug.log(49) << "PyTechnology_addUnitRule()" << endl;
METHOD_HEAD("Technology.addUnitRule()")
PyObject* arg0 = NULL;
PyObject* arg1 = NULL;
PyObject* arg2 = NULL;
HTRY
__cs.init ("Technology.addUnitRule");
if (not PyArg_ParseTuple(args,"O&O&O&:Technology.addUnitRule"
,Converter,&arg0
,Converter,&arg1
,Converter,&arg2
)) {
PyErr_SetString( ConstructorError, "Technology.addUnitRule(): invalid number of parameters." );
return NULL;
}
if (__cs.getObjectIds() == ":string:float:string")
techno->addUnitRule( PyString_AsString(arg0)
, PyFloat_AsDouble(arg1)
, PyString_AsString(arg2) );
else {
PyErr_SetString( ConstructorError, "Technology.addUnitRule(): Invalid number or bad type of parameters." );
return NULL;
}
HCATCH
Py_RETURN_NONE;
}
static PyObject* PyTechnology_addPhysicalRule ( PyTechnology* self, PyObject *args )
{
cdebug.log(49) << "PyTechnology_addPhysicalRule()" << endl;
METHOD_HEAD("Technology.addPhysicalRule()")
PyObject* arg0 = NULL;
PyObject* arg1 = NULL;
PyObject* arg2 = NULL;
PyObject* arg3 = NULL;
PyObject* arg4 = NULL;
PyObject* arg5 = NULL;
HTRY
__cs.init ("Technology.addPhysicalRule");
if (not PyArg_ParseTuple(args,"O&O&O&|O&O&O&:Technology.addPhysicalRule"
,Converter,&arg0
,Converter,&arg1
,Converter,&arg2
,Converter,&arg3
,Converter,&arg4
,Converter,&arg5
)) {
PyErr_SetString( ConstructorError, "Technology.addPhysicalRule(): invalid number of parameters." );
return NULL;
}
if (__cs.getObjectIds() == ":string:int:string")
techno->addPhysicalRule( PyString_AsString(arg0)
, PyAny_AsLong (arg1)
, PyString_AsString(arg2) );
else if (__cs.getObjectIds() == ":string:string:int:string")
techno->addPhysicalRule( PyString_AsString(arg0)
, PyString_AsString(arg1)
, PyAny_AsLong (arg2)
, PyString_AsString(arg3) );
else if (__cs.getObjectIds() == ":string:string:string:bool:int:string")
techno->addPhysicalRule( PyString_AsString(arg0)
, PyString_AsString(arg1)
, PyString_AsString(arg2)
, PyObject_IsTrue (arg3)
, PyAny_AsLong (arg4)
, PyString_AsString(arg5) );
else {
PyErr_SetString( ConstructorError, "Technology.addPhysicalRule(): Invalid number or bad type of parameters." );
return NULL;
}
HCATCH
Py_RETURN_NONE;
}
extern PyObject* PyTechnology_addDeviceDescriptor ( PyTechnology* self, PyObject* args )
{
cdebug.log(49) << "PyTechnology_addDeviceDescriptor ()" << endl;
DeviceDescriptor* devDesc = NULL;
HTRY
METHOD_HEAD("Technology.addDeviceDescriptor()")
char* name = NULL;
if (PyArg_ParseTuple(args,"s:Technology.addDeviceDescriptor", &name)) {
devDesc = techno->addDeviceDescriptor( name );
} else {
PyErr_SetString( ConstructorError
, "Technology::addDeviceDescriptor(): Invalid number of parameters." );
return NULL;
}
HCATCH
return PyDeviceDescriptor_Link( devDesc );
}
extern PyObject* PyTechnology_getDeviceDescriptor ( PyTechnology* self, PyObject* args )
{
cdebug.log(49) << "PyTechnology_getDeviceDescriptor ()" << endl;
DeviceDescriptor* devDesc = NULL;
HTRY
METHOD_HEAD("Technology.getDeviceDescriptor()")
char* name = NULL;
if (PyArg_ParseTuple(args,"s:Technology.getDeviceDescriptor", &name)) {
devDesc = techno->getDeviceDescriptor( name );
} else {
PyErr_SetString( ConstructorError
, "Technology::getDeviceDescriptor(): Invalid number of parameters." );
return NULL;
}
HCATCH
return PyDeviceDescriptor_Link( devDesc );
}
// Standart Accessors (Attributes).
GetNameMethod (Technology,techno)
SetNameMethod (Technology,techno)
predicateFromLayer (isMetal ,PyTechnology,Technology)
accessorAnyLayerFromName (getBasicLayer ,PyTechnology,Technology,BasicLayer )
accessorAnyLayerFromName (getRegularLayer ,PyTechnology,Technology,RegularLayer)
accessorAnyLayerFromName (getViaLayer ,PyTechnology,Technology,ViaLayer )
accessorCollectionFromVoid (getLayers ,PyTechnology,Technology,Layer )
accessorCollectionFromVoid (getRegularLayers,PyTechnology,Technology,RegularLayer)
accessorCollectionFromVoid (getViaLayers ,PyTechnology,Technology,ViaLayer )
accessorLayerFromLayerOptBool (getMetalAbove ,PyTechnology,Technology)
accessorLayerFromLayerOptBool (getMetalBelow ,PyTechnology,Technology)
accessorLayerFromLayerOptBool (getCutAbove ,PyTechnology,Technology)
accessorLayerFromLayerOptBool (getCutBelow ,PyTechnology,Technology)
accessorLayerFromLayerLayerOptBool(getViaBetween ,PyTechnology,Technology)
accessorLayerFromInt (getNthMetal ,PyTechnology,Technology)
// Standard destroy (Attribute).
DBoDestroyAttribute(PyTechnology_destroy, PyTechnology)
// ---------------------------------------------------------------
// PyTechnology Attribute Method table.
PyMethodDef PyTechnology_Methods[] =
{ { "create" , (PyCFunction)PyTechnology_create , METH_VARARGS|METH_STATIC
, "Create the Technology object." }
, { "isMetal" , (PyCFunction)PyTechnology_isMetal , METH_VARARGS
, "Tells if the given layer is of metal kind (Material)." }
, { "getDataBase" , (PyCFunction)PyTechnology_getDataBase , METH_NOARGS
, "Returns the associated DataBase." }
, { "getName" , (PyCFunction)PyTechnology_getName , METH_NOARGS
, "Returns the name of the technology." }
, { "getLayer" , (PyCFunction)PyTechnology_getLayer , METH_VARARGS
, "Returns the layer named name." }
, { "getBasicLayer" , (PyCFunction)PyTechnology_getBasicLayer , METH_VARARGS
, "Returns the BasicLayer named name." }
, { "getRegularLayer" , (PyCFunction)PyTechnology_getRegularLayer , METH_VARARGS
, "Returns the RegularLayer named name." }
, { "getViaLayer" , (PyCFunction)PyTechnology_getViaLayer , METH_VARARGS
, "Returns the ViaLayer named name." }
, { "getLayers" , (PyCFunction)PyTechnology_getLayers , METH_NOARGS
, "Returns the collection of all Layers." }
, { "getBasicLayers" , (PyCFunction)PyTechnology_getBasicLayers , METH_VARARGS
, "Returns the collection of all BasicLayers." }
, { "getRegularLayers" , (PyCFunction)PyTechnology_getRegularLayers , METH_NOARGS
, "Returns the collection of all RegularLayers." }
, { "getViaLayers" , (PyCFunction)PyTechnology_getViaLayers , METH_NOARGS
, "Returns the collection of all BasicLayers." }
, { "getMetalAbove" , (PyCFunction)PyTechnology_getMetalAbove , METH_VARARGS
, "Returns the metal layer immediatly above this one." }
, { "getMetalBelow" , (PyCFunction)PyTechnology_getMetalBelow , METH_VARARGS
, "Returns the metal layer immediatly below this one." }
, { "getCutAbove" , (PyCFunction)PyTechnology_getCutAbove , METH_VARARGS
, "Returns the cut layer immediatly above this one." }
, { "getCutBelow" , (PyCFunction)PyTechnology_getCutBelow , METH_VARARGS
, "Returns the cut layer immediatly below." }
, { "getViaBetween" , (PyCFunction)PyTechnology_getViaBetween , METH_VARARGS
, "Returns the VIA between those two layers (must be adjacent)." }
, { "getNthMetal" , (PyCFunction)PyTechnology_getNthMetal , METH_VARARGS
, "Returns Nth metal (zero is nearest substrate)." }
, { "setName" , (PyCFunction)PyTechnology_setName , METH_VARARGS
, "Allows to change the technology name." }
, { "setSymbolicLayer" , (PyCFunction)PyTechnology_setSymbolicLayer , METH_VARARGS
, "Mark a Layer as the symbolic one (by name or by Layer)." }
, { "getUnitRule" , (PyCFunction)PyTechnology_getUnitRule , METH_VARARGS
, "Returns the Unit Rule named name." }
, { "getPhysicalRule" , (PyCFunction)PyTechnology_getPhysicalRule , METH_VARARGS
, "Returns the Physical Rule named name." }
, { "getLayer" , (PyCFunction)PyTechnology_getLayer , METH_VARARGS
, "Returns the Layer named name." }
, { "addPhysicalRule" , (PyCFunction)PyTechnology_addPhysicalRule , METH_VARARGS
, "Adds a new physical rule." }
, { "addUnitRule" , (PyCFunction)PyTechnology_addUnitRule , METH_VARARGS
, "Adds a new Unit rule." }
, { "getDeviceDescriptor", (PyCFunction)PyTechnology_getDeviceDescriptor , METH_VARARGS
, "Get the DeviceDescriptor <name>." }
, { "addDeviceDescriptor", (PyCFunction)PyTechnology_addDeviceDescriptor , METH_VARARGS
, "Add (create) the DeviceDescriptor <name>." }
, { "destroy" , (PyCFunction)PyTechnology_destroy , METH_NOARGS
, "Destroy associated hurricane object The python object remains." }
, {NULL, NULL, 0, NULL} /* sentinel */
};
DBoDeleteMethod(Technology)
PyTypeObjectLinkPyType(Technology)
#else // End of Python Module Code Part.
// +=================================================================+
// | "PyTechnology" Shared Library Code Part |
// +=================================================================+
// Link/Creation Method.
DBoLinkCreateMethod(Technology)
// ---------------------------------------------------------------
// PyTechnology Object Definitions.
PyTypeObjectDefinitions(Technology)
#endif // End of Shared Library Code Part.
} // extern "C".
} // Isobar namespace.