Go to file
Jean-Paul Chaput 9e6463c217 Support for density estimation for the global router.
* Bug: In Anabatic::Edge::getDistance(), remove the additionnal 0.1
    added to horizontal edges. This was for testing before the hScaling
    parameter was added (to the distance computation in GlobalRoute).
* New: Anabatic::Path_Edges, collectio to walkthrough all the edges
    between two node. More complex than in Knik as we are no longer
    using a regular grid. We may request the north bound path or south
    bound path.
      Collection returned by AnabaticEngine::getEdgesUnderPath().
* New: In Anabatic::NetData, add a new flag GlobalEstimated to tell if
    the net RMST has been computed (using FLUTE).
* New: In Anabatic::PriorityQueue, used to sort Vertexes by increasing
    distances, add a new criterion to be used in case of distance
    equality. The attractor which should be the center of the search
    area. In case of equality, we choose the Vertex which is closest
    to the attractor. Give a small improvement, and more "dendritic"
    trees.
      For a more simple implementation of the comparison function it is
    made as a static member (so no two Dijkstra objects at the same
    time...).
* Change: In Anabatic::Edge, make the estimate occupance a floating
    point number instead of an integer.
* New: In Katana::GlobalRoute, finally implement the estimated congestion
    driven router. Net RMST estimated using FLUTE.
      Use the historic cost from Knik implementation and not the one
    given in Damien's thesis, which seems not be the same and a bit
    strange.
* New: In KatanaEngine, add the ability to exclude nets from routing,
    and export it to Python.
2019-02-26 20:03:53 +01:00
anabatic Support for density estimation for the global router. 2019-02-26 20:03:53 +01:00
bootstrap Make FLUTE an independant tool in the Coriolis git repository. 2019-02-12 12:48:52 +01:00
bora Make FLUTE an independant tool in the Coriolis git repository. 2019-02-12 12:48:52 +01:00
coloquinte Add a fully generated documentation in the git repository. 2018-06-06 18:42:26 +02:00
crlcore Correct H/K parameters for global routing. New cmos45 symbolic. 2019-02-26 20:00:28 +01:00
cumulus Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
documentation Analog integration part II. Analog place & route (slicing tree). 2018-10-18 18:10:01 +02:00
equinox Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
etesian Add a fully generated documentation in the git repository. 2018-06-06 18:42:26 +02:00
hurricane More robust deterministic netmap. Use classic string hash. 2019-02-26 19:56:29 +01:00
ispd Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
karakaze Analog integration part II. Analog place & route (slicing tree). 2018-10-18 18:10:01 +02:00
katabatic Make FLUTE an independant tool in the Coriolis git repository. 2019-02-12 12:48:52 +01:00
katana Support for density estimation for the global router. 2019-02-26 20:03:53 +01:00
kite Support for density estimation for the global router. 2019-02-26 20:03:53 +01:00
knik Make FLUTE an independant tool in the Coriolis git repository. 2019-02-12 12:48:52 +01:00
lefdef Correct dependency problems in lefdef. 2018-11-27 13:43:59 +01:00
mauka Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
metis Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
nimbus Add a fully generated documentation in the git repository. 2018-06-06 18:42:26 +02:00
oroshi Analog integration part II. Analog place & route (slicing tree). 2018-10-18 18:10:01 +02:00
solstice Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
stratus1 Corrected coordinates policy in stratus1. 2018-09-11 19:21:11 +02:00
tutorial Add a fully generated documentation in the git repository. 2018-06-06 18:42:26 +02:00
unicorn Make FLUTE an independant tool in the Coriolis git repository. 2019-02-12 12:48:52 +01:00
unittests Implementation of a red-black tree and an interval tree. 2018-11-07 23:48:43 +01:00
vlsisapd Analog intergration part III. Removing obsoleted vlsisapd/openChams. 2018-10-18 18:26:15 +02:00
.gitignore Anlog integration part I. Atomic devices support (transistors). 2018-10-01 16:52:17 +02:00
Makefile No longer build doc in top Makefile as it is already build. 2018-07-12 10:02:02 +02:00
README.rst Complete hoverhaul of the documentation to Sphinx. 2017-07-15 17:35:02 +02:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============


Coriolis is a free database, placement tool and routing tool for VLSI designs.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Kite
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptables.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/_build/html/index.html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script is tasked to guess it's location and setup appropriatly
the UNIX environment, then lauch ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V