Go to file
Jean-Paul Chaput 95713ac66b Align power lines on QuadTree leaf area centers (X).
* Bug: In cumulus/plugins.block.block.py, always import Python modules
    using the exact same path. Otherwise the module may get imported
    twice and static variables are duplicated, generating a big mess.
      This was causing problem for the LUT in macro.py, and got SRAMs
    blocks encapsulated twice.
* New: In cumulus/plugins.block.block.Block.addPlaceHolder(), create
    a "place holder" instance over a given area to prevent the placer
    from using it. Allow to make space reservation.
* New: In cumulus/plugins.block.configuration.BlockConf, copy the
    toXPitch() and toYSlice() methods from spare in order to share
    them between modules. Still have to remove some other local copies.
* New: In cumulus/plugins.block.spare.QuadTree, keep a list of all
    the X centers of the partitionned areas. For yse by the power lines.
* New: In cumulus/plugins.chip.chip, move doPowerLayout() call from
    doChipFloorplan() to doConnectCore(), this is to delay the call
    until *after* the spare QuadTree has been created and we can
    align the power lines to the centers of the QuadTree.
* New: In cumulus/plugins.chip.pads.Corona.doPowerLayout(), if a
    spare QuadTree has been created, align the power lines on the
    X center of the leaf areas. This is a cheap way to avoid DRC
    errors between the power BigVias and the wires from the various
    clock trees (on METAL5).
* New: In cumulus/plugins.block.macro, add an ad-hoc patch for Staf's
    SRAMs. The blockage areas are slightly too narrow. We enlarge
    them by one pitch.
2021-04-15 23:44:19 +02:00
anabatic Add a zero-length segment compaction stage in Anabatic DTOR. 2021-04-12 23:50:25 +02:00
bootstrap Added utlity script bootstrap/resetDoc.sh to revert the generated doc. 2020-11-14 18:54:23 +01:00
bora Bug fix, reset Cell flags after unrouting an analog design. 2020-04-30 00:38:32 +02:00
coloquinte Add updators to modify cell sizes on the fly in Coloquinte. 2021-01-13 19:10:31 +01:00
crlcore Comment out debug messages in GdsDriver & GdsParser. 2021-04-15 23:22:07 +02:00
cumulus Align power lines on QuadTree leaf area centers (X). 2021-04-15 23:44:19 +02:00
documentation Updated PDFs, November 13, 2020 (15:02). 2020-11-13 15:02:56 +01:00
equinox Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
etesian Use the extention cap in Anabatic to ensure the METAL minimum area. 2021-04-01 08:46:02 +02:00
flute Added support for loading user defined global routing in Anabatic. 2020-09-30 11:55:39 +02:00
hurricane Bug fixes in the VST/VHDL driver coupled with BlifParser. 2021-04-05 23:53:44 +02:00
ispd Various typos correction (courtesy of G. Gouvine). 2019-07-30 13:13:57 +02:00
karakaze Correct Cell object detection while reading Oceane parameters. 2020-05-27 16:11:53 +02:00
katabatic Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
katana Fix bug in Track::repair(), select the right segment to extend. 2021-04-12 23:34:55 +02:00
kite Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
knik Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
lefdef Migrating doc from Sphinx towards Pelican. 2020-02-03 17:44:15 +01:00
mauka Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
metis Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
nimbus Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
oroshi Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
solstice Compliance with Debian 10 Buster. 2020-03-19 18:18:35 +01:00
stratus1 Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
tutorial More PEP8 compliant Python code. Start rewrite Python/C++ wrappers. 2020-04-08 11:24:42 +02:00
unicorn Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
unittests Enhanced techno rule support. Inspector support bug fix. 2020-07-21 11:22:04 +02:00
vlsisapd Documentation cleanup & rebuild. 2020-11-12 14:22:31 +01:00
.gitignore Various bug corrections to pass the alliance-check-toolkit reference benchs. 2019-05-24 23:57:22 +02:00
Makefile Enabling the user to choose the devtoolset it needs. 2019-03-04 14:20:13 +01:00
README.rst Update doc link for the new Pelican generated one. 2020-02-10 13:38:06 +01:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============

Coriolis is a free database, placement tool and routing tool for VLSI design.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Katana
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptable.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/output/html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://www-soc.lip6.fr/sesi-docs/coriolis2-docs/coriolis2/en/latex/users-guide/UsersGuide.pdf


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script detects its location and setups the UNIX
environment appropriately, then lauches ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V