Go to file
Jean-Paul Chaput 7bcf47212b Improved management of AutoContactTerminal for VH gauges (real ones).
* New: In Anabatic & Katana, add the new "drag" feature.
    With VH gauges used by real technologies (M1-H, M2-V, M3-H) a new
    routing configuration that was not efficiently handled did appear.
      While the preferred routing direction for metal1 is officially
    horizontal, due to the way the standard cell must be designed,
    their metal1 terminals are still verticals (or punctuals).
      Thus, when connecting to them, we face the case where the metal1
    terminal (RoutingPad) is vertical *and* the metal2 wire is also
    vertical. With that setup, the position of the AutoContactTerminal
    via12 cannot be deduced, it may range all the way over the
    metal1 RoutingPad. What may define it's position is the metal3 the
    metal2 finally connects to. That, is, when we have one horizontal
    (the metal3) and one vertical (the metal1 RoutingPad).
      The intermediate wire of metal2 can be kept to a minimum size
    by "dragging" the via12 close to the via23 when the metal3 wire is
    moved.
* New: In Anabatic & Katana, problem of closely vertically aligneds
    RoutingPads in metal1 is managed first in PreProcess by restricting
    the span of the connecteds metal3 and in _makeDogleg also by restricting
    the span even more tightly (to the RoutingPad itself).
* New: In Anabatic::AutoContactTerminal, add the "drag" support.
    Automatically check if the connecting segment is in the same
    direction as the RoutingPad, if so, sets the "SegDrag" flag.
      The dragging state can be known with the "::canDrag()" predicate.
* New: In Anabatic::AutoHorizontal, add the "drag" support.
    The drag state can be known with the "::isDrag()" predicate.
      In "::_makeDogleg()", when making a dogleg on a dragable segment
    pass the drag state correctly and restrict the perpandicular span
    of the perpandicular to the RoutingPad (though segment user constraints).
    If we make a dogleg on the metal2 is it likely than we cannot go
    straigth out vertically from the RoutingPad, so the new perpandicular
    *is* restricted to the RoutingPad span.
      Idem for AutoVertical.
* New: In Katana::Manipulator, add method "::dragMinimize()" which find a
    hole where to minimize a draggable segment. We finally did not use it,
    but keep it for potential further use.
* New: In Katana::PreProcess, adds a "protectAlignedaccesses()" local
    function to check for vertically aligned metal1 RoutingPads, in that
    case setup user constraints on the metal3 segments so they cannot
    completly cover the other RoutingPad with metal2.
      We also keep a "metal2protect()" function that create a fixed segment
    to lock/protect a RoutingPad. Not used for now.
* New: In Katana::Session, add a RoutingPad locking event mechanism.
    This allows us to request the creation of a locking (fixed segment)
    over a draggable segment. Not used for now.
      Lock events are processeds before all others as they create new
    TrackElements.
* New: In Katana::Track, "::getNextFree()" and "::getPreviousFree()"
    method to find the nearest free interval in a Track after/before a
    position.
* Bug: In Anabatic::AutoHorizontal::getConstraints(), merge with user
    constraints *only* if it's not an empty interval (as we use min/max
    functions). Idem for AutoVertical.
* Bug: In AutoSegments_OnContacts::Locator::isValid(), the boolean test
    must be inverted. Seems it never worked, but we never used it until
    now...
2018-01-25 11:58:04 +01:00
anabatic Improved management of AutoContactTerminal for VH gauges (real ones). 2018-01-25 11:58:04 +01:00
bootstrap Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
coloquinte Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
crlcore Improved management of AutoContactTerminal for VH gauges (real ones). 2018-01-25 11:58:04 +01:00
cumulus Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
documentation Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
equinox Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
etesian Working aspect ratio and feed cell loading in Etesian. 2018-01-10 17:46:11 +01:00
hurricane Adjustements for analog routing. 2018-01-10 12:45:00 +01:00
ispd Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
katabatic Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
katana Improved management of AutoContactTerminal for VH gauges (real ones). 2018-01-25 11:58:04 +01:00
kite Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
knik Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
lefdef Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
mauka Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
metis Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
nimbus Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
solstice Compliance with cmake 3.0 (Debian 9.2). Corrects all warnings. 2017-12-02 14:30:05 +01:00
stratus1 Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
tutorial Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
unicorn Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
vlsisapd Happy New Year 2018 ! Update license years... 2018-01-06 17:55:44 +01:00
.gitignore Update documentation to build on Debian 9.2 (stretch). 2017-10-30 15:33:37 +01:00
Makefile Implementation of DataBase native save/restore in JSON (step 2). 2016-01-21 00:25:39 +01:00
README.rst Complete hoverhaul of the documentation to Sphinx. 2017-07-15 17:35:02 +02:00

README.rst

.. -*- Mode: rst -*-


===============
Coriolis README
===============


Coriolis is a free database, placement tool and routing tool for VLSI designs.


Purpose
=======

Coriolis provides several tools to perform the layout of VLSI circuits.  Its
main components are the Hurricane database, the Etesian placer and the Kite
router, but other tools can use the Hurricane database and the parsers
provided.

The user interface <cgt> is the prefered way to use Coriolis, but all
Coriolis tools are Python modules and thus scriptables.


Documentation
=============

The complete documentation is available here, both in pdf & html:

   ./documentation/_build/html/index.html
   ./documentation/UsersGuide/UsersGuide.pdf

The documentation of the latest *stable* version is also
available online. It may be quite outdated from the *devel*
version.

    https://soc-extras.lip6.fr/en/coriolis/coriolis2-users-guide/


Building Coriolis
=================

To build Coriolis, ensure the following prerequisites are met:

* Python 2.7.
* cmake.
* boost.
* bison & flex.
* Qt 4 or 5.
* libxml2.
* RapidJSON
* A C++11 compliant compiler.

The build system relies on a fixed directory tree from the root
of the user currently building it. Thus first step is to get a clone of
the repository in the right place. Proceed as follow: ::

   ego@home:~$ mkdir -p ~/coriolis-2.x/src/support
   ego@home:~$ cd ~/coriolis-2.x/src/support
   ego@home:~$ git clone http://github.com/miloyip/rapidjson
   ego@home:~$ git checkout ec322005072076ef53984462fb4a1075c27c7dfd
   ego@home:~$ cd ~/coriolis-2.x/src
   ego@home:src$ git clone https://www-soc.lip6.fr/git/coriolis.git
   ego@home:src$ cd coriolis

If you want to use the *devel* branch: ::

    ego@home:coriolis$ git checkout devel

Then, build the tool: ::

    ego@home:coriolis$ make install

Coriolis gets installed at the root of the following tree: ::

    ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/

Where ``<OS>`` is the name of your operating system and ``<DISTRIB>`` your
distribution.


Using Coriolis
==============

The Coriolis main interface can be launched with the command: ::

    ego@home:~: ~/coriolis-2.x/<OS>.<DISTRIB>/Release.Shared/install/bin/coriolis

The ``coriolis`` script is tasked to guess it's location and setup appropriatly
the UNIX environment, then lauch ``cgt`` (or *any* command, with the
``--run=<COMMAND>`` option).

Conversely, you can setup the current shell environement for Coriolis by 
using the helper ``coriolisEnv.py``, then run any Coriolis tool: ::

    ego@home:~$ eval `~/coriolis-2.x/src/coriolis/bootstrap/coriolisEnv.py`
    ego@home:~$ cgt -V