coriolis/documentation/examples/scripts/polygons.py

172 lines
6.2 KiB
Python

#!/usr/bin/python
import sys
from Hurricane import *
from CRL import *
def toDbU ( l ): return DbU.fromLambda(l)
def toMicron ( u ): return DbU.toPhysical( u, DbU.UnitPowerMicro )
def doBreak ( level, message ):
UpdateSession.close()
Breakpoint.stop( level, message )
UpdateSession.open()
def buildPolygons ( editor ):
#DbU.setPolygonStep( toDbU(0.1) )
UpdateSession.open()
cell = AllianceFramework.get().createCell( 'polygons' )
cell.setTerminal( True )
cell.setAbutmentBox( Box( toDbU(-5.0), toDbU(-5.0), toDbU(65.0), toDbU(75.0) ) )
#cell.setAbutmentBox( Box( toDbU(-5.0), toDbU(-5.0), toDbU(21.0), toDbU(35.0) ) )
if editor:
UpdateSession.close()
editor.setCell( cell )
editor.fit()
UpdateSession.open()
technology = DataBase.getDB().getTechnology()
metal1 = technology.getLayer( "METAL1" )
metal2 = technology.getLayer( "METAL2" )
metal3 = technology.getLayer( "METAL3" )
metal4 = technology.getLayer( "METAL4" )
poly = technology.getLayer( "POLY" )
ptrans = technology.getLayer( "PTRANS" )
ntrans = technology.getLayer( "NTRANS" )
pdif = technology.getLayer( "PDIF" )
ndif = technology.getLayer( "NDIF" )
contdifn = technology.getLayer( "CONT_DIF_N" )
contdifp = technology.getLayer( "CONT_DIF_P" )
nwell = technology.getLayer( "NWELL" )
contpoly = technology.getLayer( "CONT_POLY" )
ntie = technology.getLayer( "NTIE" )
net = Net.create( cell, 'my_net' )
net.setExternal( True )
#points = [ Point( toDbU( 0.0), toDbU( 0.0) )
# , Point( toDbU( 10.0), toDbU( 0.0) )
# , Point( toDbU( 7.0), toDbU( 8.0) )
# , Point( toDbU( 3.0), toDbU( 8.0) ) ]
#p = Polygon.create( net, metal4, points )
# Counter-clockwise, slope > 1.
points = [ Point( toDbU( 3.0), toDbU( 0.0) )
, Point( toDbU( 13.0), toDbU( 0.0) )
, Point( toDbU( 16.0), toDbU( 10.0) )
, Point( toDbU( 16.0), toDbU( 20.0) )
, Point( toDbU( 13.0), toDbU( 30.0) )
, Point( toDbU( 3.0), toDbU( 30.0) )
, Point( toDbU( 0.0), toDbU( 20.0) )
, Point( toDbU( 0.0), toDbU( 10.0) ) ]
p = Polygon.create( net, metal2, points )
#p.translate( toDbU(40.0), toDbU(0.0) )
# clockwise, slope > 1.
points = [ Point( toDbU( 0.0), toDbU( 10.0) )
, Point( toDbU( 0.0), toDbU( 20.0) )
, Point( toDbU( 3.0), toDbU( 30.0) )
, Point( toDbU( 13.0), toDbU( 30.0) )
, Point( toDbU( 16.0), toDbU( 20.0) )
, Point( toDbU( 16.0), toDbU( 10.0) )
, Point( toDbU( 13.0), toDbU( 0.0) )
, Point( toDbU( 3.0), toDbU( 0.0) ) ]
p = Polygon.create( net, metal2, points )
p.translate( toDbU(0.0), toDbU(40.0) )
# Counter-clockwise, slope < 1.
points = [ Point( toDbU( 10.0), toDbU( 0.0) )
, Point( toDbU( 20.0), toDbU( 0.0) )
, Point( toDbU( 30.0), toDbU( 3.0) )
, Point( toDbU( 30.0), toDbU( 13.0) )
, Point( toDbU( 20.0), toDbU( 16.0) )
, Point( toDbU( 10.0), toDbU( 16.0) )
, Point( toDbU( 0.0), toDbU( 13.0) )
, Point( toDbU( 0.0), toDbU( 3.0) ) ]
p = Polygon.create( net, metal2, points )
p.translate( toDbU(30.0), toDbU(0.0) )
# clockwise.
points = [ Point( toDbU( 0.0), toDbU( 3.0) )
, Point( toDbU( 0.0), toDbU( 13.0) )
, Point( toDbU( 10.0), toDbU( 16.0) )
, Point( toDbU( 20.0), toDbU( 16.0) )
, Point( toDbU( 30.0), toDbU( 13.0) )
, Point( toDbU( 30.0), toDbU( 3.0) )
, Point( toDbU( 20.0), toDbU( 0.0) )
, Point( toDbU( 10.0), toDbU( 0.0) ) ]
p = Polygon.create( net, metal2, points )
p.translate( toDbU(30.0), toDbU(40.0) )
# Big parallelogram.
points = [ Point( toDbU( 0.0), toDbU( 0.0) )
, Point( toDbU( 20.0), toDbU( 20.0) )
, Point( toDbU( 60.0), toDbU( 20.0) )
, Point( toDbU( 40.0), toDbU( 0.0) ) ]
p = Polygon.create( net, metal3, points )
p.translate( toDbU(70.0), toDbU(0.0) )
points = [ Point( toDbU( 0.0), toDbU( 20.0) )
, Point( toDbU( 40.0), toDbU( 20.0) )
, Point( toDbU( 60.0), toDbU( 0.0) )
, Point( toDbU( 20.0), toDbU( 0.0) ) ]
p = Polygon.create( net, metal3, points )
p.translate( toDbU(140.0), toDbU(0.0) )
points = [ Point( toDbU( 0.0), toDbU( 0.0) )
, Point( toDbU( 0.0), toDbU( 10.0) )
, Point( toDbU( 20.0), toDbU( 30.0) )
, Point( toDbU( 60.0), toDbU( 30.0) )
, Point( toDbU( 60.0), toDbU( 20.0) )
, Point( toDbU( 40.0), toDbU( 0.0) ) ]
p = Polygon.create( net, metal3, points )
p.translate( toDbU(70.0), toDbU(40.0) )
points = [ Point( toDbU( 0.0), toDbU( 20.0) )
, Point( toDbU( 0.0), toDbU( 30.0) )
, Point( toDbU( 40.0), toDbU( 30.0) )
, Point( toDbU( 60.0), toDbU( 10.0) )
, Point( toDbU( 60.0), toDbU( 0.0) )
, Point( toDbU( 20.0), toDbU( 0.0) ) ]
p = Polygon.create( net, metal3, points )
p.translate( toDbU(140.0), toDbU(40.0) )
print 'Normalized and manhattanized contour:'
i = 0
for point in p.getMContour():
print '| %d '%i, point \
, '[%fum %fum]' % ( toMicron(point.getX()) \
, toMicron(point.getY()) )
i += 1
print 'Sub-polygons (for GDSII generation)'
subpolygons = p.getSubPolygons()
for i in range(len(subpolygons)):
print '+ Sub-Polygon %d:' % i
for j in range(len(subpolygons[i])):
print ' [%3d]' % j, subpolygons[i][j] \
, '[%fum %fum]' % ( toMicron(subpolygons[i][j].getX()) \
, toMicron(subpolygons[i][j].getY()) )
UpdateSession.close()
Gds.save( cell )
return
def ScriptMain ( **kw ):
editor = None
if kw.has_key('editor') and kw['editor']:
editor = kw['editor']
buildPolygons( editor )
return True