Updated Flute 2.4 to Flute 3.1
* Theoretically slightly better * Removed the artifical limitation to 150 terminals
This commit is contained in:
parent
1aa416e82a
commit
e97d4ca06a
|
@ -2,7 +2,7 @@
|
|||
|
||||
# include ( ${QT_USE_FILE} )
|
||||
include_directories ( ${KNIK_SOURCE_DIR}/src
|
||||
${KNIK_SOURCE_DIR}/src/flute-2.4/src
|
||||
${KNIK_SOURCE_DIR}/src/flute-3.1/src
|
||||
${HURRICANE_INCLUDE_DIR}
|
||||
${CORIOLIS_INCLUDE_DIR}
|
||||
${UTILITIES_INCLUDE_DIR}
|
||||
|
@ -39,13 +39,29 @@
|
|||
KnikEngine.cpp
|
||||
GraphicKnikEngine.cpp
|
||||
)
|
||||
set ( fluteIncludes flute-2.4/src/knik/flute.h )
|
||||
set ( fluteCpps flute-2.4/src/flute.cpp )
|
||||
set ( fluteIncludes flute-3.1/src/knik/flute.h
|
||||
flute-3.1/src/knik/dl.h
|
||||
flute-3.1/src/knik/mst2.h
|
||||
flute-3.1/src/knik/err.h
|
||||
flute-3.1/src/knik/heap.h
|
||||
flute-3.1/src/knik/dist.h
|
||||
flute-3.1/src/knik/global.h
|
||||
flute-3.1/src/knik/neighbors.h
|
||||
)
|
||||
set ( fluteCpps flute-3.1/src/flute.cpp
|
||||
flute-3.1/src/flute_mst.cpp
|
||||
flute-3.1/src/dist.cpp
|
||||
flute-3.1/src/dl.cpp
|
||||
flute-3.1/src/err.cpp
|
||||
flute-3.1/src/mst2.cpp
|
||||
flute-3.1/src/heap.cpp
|
||||
flute-3.1/src/neighbors.cpp
|
||||
)
|
||||
qtX_wrap_cpp ( mocCpps ${mocIncludes} )
|
||||
|
||||
|
||||
add_library ( flute ${fluteCpps} )
|
||||
set_target_properties ( flute PROPERTIES VERSION 2.4 SOVERSION 2 )
|
||||
set_target_properties ( flute PROPERTIES VERSION 3.1 SOVERSION 3 )
|
||||
target_link_libraries ( flute ${HURRICANE_LIBRARIES}
|
||||
${CORIOLIS_LIBRARIES}
|
||||
)
|
||||
|
@ -71,5 +87,5 @@
|
|||
install ( FILES ${includes}
|
||||
${mocIncludes}
|
||||
${fluteIncludes} DESTINATION include/coriolis2/knik )
|
||||
install ( FILES flute-2.4/etc/POST9.dat
|
||||
flute-2.4/etc/POWV9.dat DESTINATION share/coriolis2/flute-2.4 )
|
||||
install ( FILES flute-3.1/etc/POST9.dat
|
||||
flute-3.1/etc/POWV9.dat DESTINATION share/coriolis2/flute-3.1 )
|
||||
|
|
|
@ -39,7 +39,6 @@
|
|||
#define __USE_MATRIXVERTEX__
|
||||
|
||||
#define EPSILON 10e-4
|
||||
#define FLUTE_LIMIT 150
|
||||
#define HISTORIC_INC 1.5 // define the increment of historic cost for ripup & reroute
|
||||
|
||||
namespace Knik {
|
||||
|
@ -1547,13 +1546,6 @@ void Graph::UpdateEstimateCongestion ( bool create )
|
|||
{
|
||||
if ( _vertexes_to_route.size() < 2 )
|
||||
return;
|
||||
if ( _vertexes_to_route.size() >= FLUTE_LIMIT ) {
|
||||
if ( create )
|
||||
cerr << Warning( "Graph::UpdateEstimateCongestion(): %s\n"
|
||||
" has more than %d vertex/terminals and cannot be handled by FLUTE."
|
||||
, getString(_working_net).c_str(), FLUTE_LIMIT ) << endl;
|
||||
return;
|
||||
}
|
||||
//cerr << "Running FLUTE for net : " << _working_net << endl;
|
||||
auto_ptr<FTree> flutetree ( createFluteTree() );
|
||||
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
#include "knik/global.h"
|
||||
|
||||
/*********************************************************************/
|
||||
/*
|
||||
Return the Manhattan distance between two points
|
||||
*/
|
||||
|
||||
long dist(
|
||||
Point p,
|
||||
Point q
|
||||
)
|
||||
{
|
||||
long dx, dy;
|
||||
|
||||
dx = (p.x) - (q.x);
|
||||
if( dx < 0 ) dx = -dx;
|
||||
dy = (p.y) - (q.y);
|
||||
if( dy < 0 ) dy = -dy;
|
||||
|
||||
return dx + dy;
|
||||
}
|
||||
|
||||
/*********************************************************************/
|
||||
/*
|
||||
Return the Manhattan distance between two points
|
||||
*/
|
||||
|
||||
long dist2(
|
||||
Point* p,
|
||||
Point* q
|
||||
)
|
||||
{
|
||||
long dx, dy;
|
||||
|
||||
dx = (p->x) - (q->x);
|
||||
if( dx < 0 ) dx = -dx;
|
||||
dy = (p->y) - (q->y);
|
||||
if( dy < 0 ) dy = -dy;
|
||||
|
||||
return dx + dy;
|
||||
}
|
||||
|
||||
/*********************************************************************/
|
||||
/*********************************************************************/
|
|
@ -0,0 +1,161 @@
|
|||
#include "knik/dl.h"
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
dl_t dl_alloc()
|
||||
{
|
||||
dl_t dl = (dl_t)malloc(sizeof(dl_s));
|
||||
if (!dl) {
|
||||
printf("Out of memory!!\n");
|
||||
} else {
|
||||
dl->first = dl->last = 0; dl->count = 0;
|
||||
}
|
||||
return dl;
|
||||
}
|
||||
|
||||
void dl_delete(dl_t dl, dl_el *el)
|
||||
{
|
||||
if (dl->first == el) {
|
||||
dl->first = el->next;
|
||||
}
|
||||
if (dl->last == el) {
|
||||
dl->last = el->prev;
|
||||
}
|
||||
if (el->next) {
|
||||
el->next->prev = el->prev;
|
||||
}
|
||||
if (el->prev) {
|
||||
el->prev->next = el->next;
|
||||
}
|
||||
free(el); dl->count--;
|
||||
}
|
||||
|
||||
void dl_clear(dl_t dl)
|
||||
{
|
||||
dl_el *el, *next;
|
||||
if (dl->count > 0) {
|
||||
for (el=dl->first; el; el=next) {
|
||||
next = el->next;
|
||||
free(el);
|
||||
}
|
||||
}
|
||||
dl->first = dl->last = 0;
|
||||
dl->count = 0;
|
||||
}
|
||||
|
||||
void dl_concat(dl_t first_list, dl_t second_list)
|
||||
{
|
||||
if (first_list->count <= 0) {
|
||||
*first_list = *second_list;
|
||||
} else if (second_list->count > 0) {
|
||||
first_list->last->next = second_list->first;
|
||||
second_list->first->prev = first_list->last;
|
||||
first_list->last = second_list->last;
|
||||
first_list->count += second_list->count;
|
||||
}
|
||||
|
||||
free(second_list);
|
||||
}
|
||||
|
||||
static void dl_insertion_sort(dl_t dl, size_t el_size,
|
||||
int(*compar)(void *, void *))
|
||||
{
|
||||
char *buf;
|
||||
void *curr_d, *srch_d;
|
||||
dl_el *curr, *srch;
|
||||
|
||||
if (dl_length(dl) <= 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
buf = (char*)malloc(el_size);
|
||||
|
||||
for (curr=dl->first; curr!=dl->last; curr=curr->next) {
|
||||
curr_d = (void*)(((dl_el*)curr)+1);
|
||||
|
||||
for (srch=dl->last; srch!=curr; srch=srch->prev) {
|
||||
srch_d = (void*)(((dl_el*)srch)+1);
|
||||
if (compar(curr_d, srch_d) > 0) {
|
||||
memcpy((void*)buf, curr_d, el_size);
|
||||
memcpy(curr_d, srch_d, el_size);
|
||||
memcpy(srch_d, (void*)buf, el_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
free(buf);
|
||||
}
|
||||
|
||||
void dl_sort(dl_t dl, size_t el_size, int(*compar)(void *, void *))
|
||||
{
|
||||
dl_el *el, *first_head, *second_head;
|
||||
dl_s first_list, second_list;
|
||||
void *first_item, *second_item;
|
||||
int i, len;
|
||||
|
||||
if (dl_length(dl) <= 25) {
|
||||
dl_insertion_sort(dl, el_size, compar);
|
||||
return;
|
||||
}
|
||||
|
||||
len = dl_length(dl)/2;
|
||||
for (i=0, el=dl->first; i<len; i++) {
|
||||
el = el->next;
|
||||
}
|
||||
|
||||
first_list.first = dl->first;
|
||||
first_list.last = el->prev;
|
||||
first_list.count = len;
|
||||
first_list.last->next = 0;
|
||||
|
||||
second_list.first = el;
|
||||
second_list.last = dl->last;
|
||||
second_list.count = dl_length(dl)-len;
|
||||
second_list.first->prev = 0;
|
||||
|
||||
dl_sort(&first_list, el_size, compar);
|
||||
dl_sort(&second_list, el_size, compar);
|
||||
|
||||
/* in-place merging */
|
||||
first_head = first_list.first;
|
||||
second_head = second_list.first;
|
||||
|
||||
first_item = (void*)(((dl_el*)first_head)+1);
|
||||
second_item = (void*)(((dl_el*)second_head)+1);
|
||||
if (compar(first_item, second_item) <= 0) {
|
||||
dl->first = el = first_head;
|
||||
first_head = first_head->next;
|
||||
} else {
|
||||
dl->first = el = second_head;
|
||||
second_head = second_head->next;
|
||||
}
|
||||
|
||||
while (1) {
|
||||
first_item = (void*)(((dl_el*)first_head)+1);
|
||||
second_item = (void*)(((dl_el*)second_head)+1);
|
||||
if (compar(first_item, second_item) <= 0) {
|
||||
el->next = first_head;
|
||||
first_head->prev = el;
|
||||
el = first_head;
|
||||
first_head = first_head->next;
|
||||
if (!first_head) {
|
||||
el->next = second_head;
|
||||
second_head->prev = el;
|
||||
dl->last = second_list.last;
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
el->next = second_head;
|
||||
second_head->prev = el;
|
||||
el = second_head;
|
||||
second_head = second_head->next;
|
||||
if (!second_head) {
|
||||
el->next = first_head;
|
||||
first_head->prev = el;
|
||||
dl->last = first_list.last;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/**************************************************************************/
|
||||
/*
|
||||
print error message and continue
|
||||
*/
|
||||
|
||||
void err_msg(
|
||||
char* msg
|
||||
)
|
||||
{
|
||||
fprintf(stderr, "%s\n", msg);
|
||||
}
|
||||
|
||||
/**************************************************************************/
|
||||
/*
|
||||
print error message and exit
|
||||
*/
|
||||
|
||||
void err_exit(
|
||||
char* msg
|
||||
)
|
||||
{
|
||||
fprintf(stderr, "%s\n", msg);
|
||||
exit(1);
|
||||
}
|
||||
|
|
@ -17,11 +17,6 @@ using CRL::AllianceFramework;
|
|||
#include <math.h>
|
||||
#include "knik/flute.h"
|
||||
|
||||
#define max(x,y) ((x)>(y)?(x):(y))
|
||||
#define min(x,y) ((x)<(y)?(x):(y))
|
||||
#define abs(x) ((x)<0?(-x):(x))
|
||||
#define ADIFF(x,y) ((x)>(y)?(x-y):(y-x)) // Absolute difference
|
||||
|
||||
#if D<=7
|
||||
#define MGROUP 5040/4 // Max. # of groups, 7! = 5040
|
||||
#define MPOWV 15 // Max. # of POWVs per group
|
||||
|
@ -37,13 +32,19 @@ int numgrp[10]={0,0,0,0,6,30,180,1260,10080,90720};
|
|||
struct csoln
|
||||
{
|
||||
unsigned char parent;
|
||||
unsigned char seg[11]; // add: 0..i, Sub: j..10; seg[i+1]=seg[j-1]=0
|
||||
unsigned char seg[11]; // Add: 0..i, Sub: j..10; seg[i+1]=seg[j-1]=0
|
||||
unsigned char rowcol[D-2]; // row = rowcol[]/16, col = rowcol[]%16,
|
||||
unsigned char neighbor[2*D-2];
|
||||
};
|
||||
struct csoln *LUT[D+1][MGROUP]; // storing 4 .. D
|
||||
int numsoln[D+1][MGROUP];
|
||||
|
||||
struct point
|
||||
{
|
||||
DTYPE x, y;
|
||||
int o;
|
||||
};
|
||||
|
||||
void readLUT();
|
||||
DTYPE flute_wl(int d, DTYPE x[], DTYPE y[], int acc);
|
||||
DTYPE flutes_wl_LD(int d, DTYPE xs[], DTYPE ys[], int s[]);
|
||||
|
@ -56,10 +57,12 @@ FTree flutes_RDP(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
|||
FTree dmergetree(FTree t1, FTree t2);
|
||||
FTree hmergetree(FTree t1, FTree t2, int s[]);
|
||||
FTree vmergetree(FTree t1, FTree t2);
|
||||
void local_refinement(FTree *tp, int p);
|
||||
DTYPE wirelength(FTree t);
|
||||
void printtree(FTree t);
|
||||
void plottree(FTree t);
|
||||
|
||||
|
||||
void readLUT()
|
||||
{
|
||||
unsigned char charnum[256], line[32], *linep, c;
|
||||
|
@ -151,15 +154,13 @@ void readLUT()
|
|||
fclose ( fprt );
|
||||
}
|
||||
|
||||
|
||||
DTYPE flute_wl(int d, DTYPE x[], DTYPE y[], int acc)
|
||||
{
|
||||
DTYPE xs[MAXD], ys[MAXD], minval, l, xu, xl, yu, yl;
|
||||
int s[MAXD];
|
||||
int i, j, /*k,*/ minidx;
|
||||
struct point {
|
||||
DTYPE x, y;
|
||||
int o;
|
||||
} pt[MAXD], *ptp[MAXD], *tmpp;
|
||||
int i, j, k, minidx;
|
||||
struct point pt[MAXD], *ptp[MAXD], *tmpp;
|
||||
|
||||
if (d==2)
|
||||
l = ADIFF(x[0], x[1]) + ADIFF(y[0], y[1]);
|
||||
|
@ -248,7 +249,7 @@ DTYPE flute_wl(int d, DTYPE x[], DTYPE y[], int acc)
|
|||
// xs[] and ys[] are coords in x and y in sorted order
|
||||
// s[] is a list of nodes in increasing y direction
|
||||
// if nodes are indexed in the order of increasing x coord
|
||||
// i.e., s[i] = s_i in defined in paper
|
||||
// i.e., s[i] = s_i as defined in paper
|
||||
// The points are (xs[s[i]], ys[i]) for i=0..d-1
|
||||
// or (xs[i], ys[si[i]]) for i=0..d-1
|
||||
|
||||
|
@ -405,13 +406,13 @@ DTYPE flutes_wl_MD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc)
|
|||
if (lb < 2) lb = 2;
|
||||
ub=d-1-lb;
|
||||
|
||||
// compute scores
|
||||
// Compute scores
|
||||
#define AAWL 0.6
|
||||
#define BBWL 0.3
|
||||
float CCWL = 7.4/((d+10.)*(d-3.));
|
||||
float DDWL = 4.8/(d-1);
|
||||
|
||||
// compute penalty[]
|
||||
// Compute penalty[]
|
||||
dx = CCWL*(xs[d-2]-xs[1]);
|
||||
dy = CCWL*(ys[d-2]-ys[1]);
|
||||
for (r = d/2, pnlty = 0; r>=0; r--, pnlty += dx)
|
||||
|
@ -422,7 +423,7 @@ DTYPE flutes_wl_MD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc)
|
|||
// for (r=0; r<d; r++)
|
||||
// penalty[r] = abs(d-1-r-r)*dx + abs(d-1-si[r]-si[r])*dy;
|
||||
|
||||
// compute distx[], disty[]
|
||||
// Compute distx[], disty[]
|
||||
xydiff = (xs[d-1] - xs[0]) - (ys[d-1] - ys[0]);
|
||||
if (s[0] < s[1])
|
||||
mins = s[0], maxs = s[1];
|
||||
|
@ -568,15 +569,36 @@ DTYPE flutes_wl_MD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc)
|
|||
return minl;
|
||||
}
|
||||
|
||||
static int orderx(const void *a, const void *b)
|
||||
{
|
||||
struct point *pa, *pb;
|
||||
|
||||
pa = *(struct point**)a;
|
||||
pb = *(struct point**)b;
|
||||
|
||||
if (pa->x < pb->x) return -1;
|
||||
if (pa->x > pb->x) return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int ordery(const void *a, const void *b)
|
||||
{
|
||||
struct point *pa, *pb;
|
||||
|
||||
pa = *(struct point**)a;
|
||||
pb = *(struct point**)b;
|
||||
|
||||
if (pa->y < pb->y) return -1;
|
||||
if (pa->y > pb->y) return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
FTree flute(int d, DTYPE x[], DTYPE y[], int acc)
|
||||
{
|
||||
DTYPE xs[MAXD], ys[MAXD], minval;
|
||||
int s[MAXD];
|
||||
int i, j, /*k,*/ minidx;
|
||||
struct point {
|
||||
DTYPE x, y;
|
||||
int o;
|
||||
} pt[MAXD], *ptp[MAXD], *tmpp;
|
||||
DTYPE *xs, *ys, minval;
|
||||
int *s;
|
||||
int i, j, k, minidx;
|
||||
struct point *pt, **ptp, *tmpp;
|
||||
FTree t;
|
||||
|
||||
if (d==2) {
|
||||
|
@ -591,6 +613,12 @@ FTree flute(int d, DTYPE x[], DTYPE y[], int acc)
|
|||
t.branch[1].n = 1;
|
||||
}
|
||||
else {
|
||||
xs = (DTYPE *)malloc(sizeof(DTYPE)*(d));
|
||||
ys = (DTYPE *)malloc(sizeof(DTYPE)*(d));
|
||||
s = (int *)malloc(sizeof(int)*(d));
|
||||
pt = (struct point *)malloc(sizeof(struct point)*(d+1));
|
||||
ptp = (struct point **)malloc(sizeof(struct point*)*(d+1));
|
||||
|
||||
for (i=0; i<d; i++) {
|
||||
pt[i].x = x[i];
|
||||
pt[i].y = y[i];
|
||||
|
@ -598,18 +626,22 @@ FTree flute(int d, DTYPE x[], DTYPE y[], int acc)
|
|||
}
|
||||
|
||||
// sort x
|
||||
for (i=0; i<d-1; i++) {
|
||||
minval = ptp[i]->x;
|
||||
minidx = i;
|
||||
for (j=i+1; j<d; j++) {
|
||||
if (minval > ptp[j]->x) {
|
||||
minval = ptp[j]->x;
|
||||
minidx = j;
|
||||
if (d<200) {
|
||||
for (i=0; i<d-1; i++) {
|
||||
minval = ptp[i]->x;
|
||||
minidx = i;
|
||||
for (j=i+1; j<d; j++) {
|
||||
if (minval > ptp[j]->x) {
|
||||
minval = ptp[j]->x;
|
||||
minidx = j;
|
||||
}
|
||||
}
|
||||
tmpp = ptp[i];
|
||||
ptp[i] = ptp[minidx];
|
||||
ptp[minidx] = tmpp;
|
||||
}
|
||||
tmpp = ptp[i];
|
||||
ptp[i] = ptp[minidx];
|
||||
ptp[minidx] = tmpp;
|
||||
} else {
|
||||
qsort(ptp, d, sizeof(struct point *), orderx);
|
||||
}
|
||||
|
||||
#if REMOVE_DUPLICATE_PIN==1
|
||||
|
@ -632,31 +664,46 @@ FTree flute(int d, DTYPE x[], DTYPE y[], int acc)
|
|||
}
|
||||
|
||||
// sort y to find s[]
|
||||
for (i=0; i<d-1; i++) {
|
||||
minval = ptp[i]->y;
|
||||
minidx = i;
|
||||
for (j=i+1; j<d; j++) {
|
||||
if (minval > ptp[j]->y) {
|
||||
minval = ptp[j]->y;
|
||||
minidx = j;
|
||||
if (d<200) {
|
||||
for (i=0; i<d-1; i++) {
|
||||
minval = ptp[i]->y;
|
||||
minidx = i;
|
||||
for (j=i+1; j<d; j++) {
|
||||
if (minval > ptp[j]->y) {
|
||||
minval = ptp[j]->y;
|
||||
minidx = j;
|
||||
}
|
||||
}
|
||||
ys[i] = ptp[minidx]->y;
|
||||
s[i] = ptp[minidx]->o;
|
||||
ptp[minidx] = ptp[i];
|
||||
}
|
||||
ys[d-1] = ptp[d-1]->y;
|
||||
s[d-1] = ptp[d-1]->o;
|
||||
} else {
|
||||
qsort(ptp, d, sizeof(struct point *), ordery);
|
||||
for (i=0; i<d; i++) {
|
||||
ys[i] = ptp[i]->y;
|
||||
s[i] = ptp[i]->o;
|
||||
}
|
||||
ys[i] = ptp[minidx]->y;
|
||||
s[i] = ptp[minidx]->o;
|
||||
ptp[minidx] = ptp[i];
|
||||
}
|
||||
ys[d-1] = ptp[d-1]->y;
|
||||
s[d-1] = ptp[d-1]->o;
|
||||
|
||||
t = flutes(d, xs, ys, s, acc);
|
||||
|
||||
free(xs);
|
||||
free(ys);
|
||||
free(s);
|
||||
free(pt);
|
||||
free(ptp);
|
||||
}
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
// xs[] and ys[] are coords in x and y in sorted order
|
||||
// s[] is a list of nodes in increasing y direction
|
||||
// if nodes are indexed in the order of increasing x coord
|
||||
// i.e., s[i] = s_i in defined in paper
|
||||
// i.e., s[i] = s_i as defined in paper
|
||||
// The points are (xs[s[i]], ys[i]) for i=0..d-1
|
||||
// or (xs[i], ys[si[i]]) for i=0..d-1
|
||||
|
||||
|
@ -917,13 +964,13 @@ FTree flutes_MD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc)
|
|||
if (lb < 2) lb = 2;
|
||||
ub=d-1-lb;
|
||||
|
||||
// compute scores
|
||||
// Compute scores
|
||||
#define AA 0.6 // 2.0*BB
|
||||
#define BB 0.3
|
||||
float CC = 7.4/((d+10.)*(d-3.));
|
||||
float DD = 4.8/(d-1);
|
||||
|
||||
// compute penalty[]
|
||||
// Compute penalty[]
|
||||
dx = CC*(xs[d-2]-xs[1]);
|
||||
dy = CC*(ys[d-2]-ys[1]);
|
||||
for (r = d/2, pnlty = 0; r>=2; r--, pnlty += dx)
|
||||
|
@ -939,7 +986,7 @@ FTree flutes_MD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc)
|
|||
// for (r=0; r<d; r++)
|
||||
// penalty[r] = v(r)*dx + v(si[r])*dy;
|
||||
|
||||
// compute distx[], disty[]
|
||||
// Compute distx[], disty[]
|
||||
xydiff = (xs[d-1] - xs[0]) - (ys[d-1] - ys[0]);
|
||||
if (s[0] < s[1])
|
||||
mins = s[0], maxs = s[1];
|
||||
|
@ -1096,9 +1143,22 @@ FTree flutes_MD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc)
|
|||
}
|
||||
}
|
||||
|
||||
if (BreakInX(bestbp))
|
||||
#if LOCAL_REFINEMENT==1
|
||||
if (BreakInX(bestbp)) {
|
||||
t = hmergetree(bestt1, bestt2, s);
|
||||
else t = vmergetree(bestt1, bestt2);
|
||||
local_refinement(&t, si[BreakPt(bestbp)]);
|
||||
} else {
|
||||
t = vmergetree(bestt1, bestt2);
|
||||
local_refinement(&t, BreakPt(bestbp));
|
||||
}
|
||||
#else
|
||||
if (BreakInX(bestbp)) {
|
||||
t = hmergetree(bestt1, bestt2, s);
|
||||
} else {
|
||||
t = vmergetree(bestt1, bestt2);
|
||||
}
|
||||
#endif
|
||||
|
||||
free(bestt1.branch);
|
||||
free(bestt2.branch);
|
||||
|
||||
|
@ -1289,6 +1349,108 @@ FTree vmergetree(FTree t1, FTree t2)
|
|||
return t;
|
||||
}
|
||||
|
||||
void local_refinement(FTree *tp, int p)
|
||||
{
|
||||
int d, dd, i, ii, j, prev, curr, next, root;
|
||||
int SteinerPin[2*MAXD], index[2*MAXD];
|
||||
DTYPE x[MAXD], xs[D], ys[D];
|
||||
int ss[D];
|
||||
FTree tt;
|
||||
|
||||
d = tp->deg;
|
||||
root = tp->branch[p].n;
|
||||
|
||||
// Reverse edges to point to root
|
||||
prev = root;
|
||||
curr = tp->branch[prev].n;
|
||||
next = tp->branch[curr].n;
|
||||
while (curr != next) {
|
||||
tp->branch[curr].n = prev;
|
||||
prev = curr;
|
||||
curr = next;
|
||||
next = tp->branch[curr].n;
|
||||
}
|
||||
tp->branch[curr].n = prev;
|
||||
tp->branch[root].n = root;
|
||||
|
||||
// Find Steiner nodes that are at pins
|
||||
for (i=d; i<=2*d-3; i++)
|
||||
SteinerPin[i] = -1;
|
||||
for (i=0; i<d; i++) {
|
||||
next = tp->branch[i].n;
|
||||
if (tp->branch[i].x == tp->branch[next].x &&
|
||||
tp->branch[i].y == tp->branch[next].y)
|
||||
SteinerPin[next] = i; // Steiner 'next' at Pin 'i'
|
||||
}
|
||||
SteinerPin[root] = p;
|
||||
|
||||
// Find pins that are directly connected to root
|
||||
dd = 0;
|
||||
for (i=0; i<d; i++) {
|
||||
curr = tp->branch[i].n;
|
||||
if (SteinerPin[curr] == i)
|
||||
curr = tp->branch[curr].n;
|
||||
while (SteinerPin[curr] < 0)
|
||||
curr = tp->branch[curr].n;
|
||||
if (curr == root) {
|
||||
x[dd] = tp->branch[i].x;
|
||||
if (SteinerPin[tp->branch[i].n] == i && tp->branch[i].n != root)
|
||||
index[dd++] = tp->branch[i].n; // Steiner node
|
||||
else index[dd++] = i; // Pin
|
||||
}
|
||||
}
|
||||
|
||||
if (4 <= dd && dd <= D) {
|
||||
// Find Steiner nodes that are directly connected to root
|
||||
ii=dd;
|
||||
for (i=0; i<dd; i++) {
|
||||
curr = tp->branch[index[i]].n;
|
||||
while (SteinerPin[curr] < 0) {
|
||||
index[ii++] = curr;
|
||||
SteinerPin[curr] = INT_MAX;
|
||||
curr = tp->branch[curr].n;
|
||||
}
|
||||
}
|
||||
index[ii] = root;
|
||||
|
||||
for (ii=0; ii<dd; ii++) {
|
||||
ss[ii] = 0;
|
||||
for (j=0; j<ii; j++)
|
||||
if (x[j] < x[ii])
|
||||
ss[ii]++;
|
||||
for (j=ii+1; j<dd; j++)
|
||||
if (x[j] <= x[ii])
|
||||
ss[ii]++;
|
||||
xs[ss[ii]] = x[ii];
|
||||
ys[ii] = tp->branch[index[ii]].y;
|
||||
}
|
||||
|
||||
tt = flutes_LD(dd, xs, ys, ss);
|
||||
|
||||
// Find new wirelength
|
||||
tp->length += tt.length;
|
||||
for (ii=0; ii<2*dd-3; ii++) {
|
||||
i = index[ii];
|
||||
j = tp->branch[i].n;
|
||||
tp->length -= ADIFF(tp->branch[i].x, tp->branch[j].x)
|
||||
+ ADIFF(tp->branch[i].y, tp->branch[j].y);
|
||||
}
|
||||
|
||||
// Copy tt into t
|
||||
for (ii=0; ii<dd; ii++) {
|
||||
tp->branch[index[ii]].n = index[tt.branch[ii].n];
|
||||
}
|
||||
for (; ii<=2*dd-3; ii++) {
|
||||
tp->branch[index[ii]].x = tt.branch[ii].x;
|
||||
tp->branch[index[ii]].y = tt.branch[ii].y;
|
||||
tp->branch[index[ii]].n = index[tt.branch[ii].n];
|
||||
}
|
||||
free(tt.branch);
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
DTYPE wirelength(FTree t)
|
||||
{
|
||||
int i, j;
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,177 @@
|
|||
/****************************************************************************/
|
||||
/*
|
||||
Binary heap routines for use in Prim's algorithm,
|
||||
with points are numbered from 0 to n-1
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "knik/heap.h"
|
||||
#include "knik/err.h"
|
||||
|
||||
|
||||
Heap* _heap = (Heap*)NULL;
|
||||
long _max_heap_size = 0;
|
||||
long _heap_size = 0;
|
||||
|
||||
/****************************************************************************/
|
||||
/*
|
||||
*/
|
||||
|
||||
void allocate_heap( long n )
|
||||
{
|
||||
if( _max_heap_size < n )
|
||||
{
|
||||
_heap = (Heap*)realloc( (void*)_heap, (size_t)(n+1)*sizeof(Heap) );
|
||||
if( ! _heap )
|
||||
{
|
||||
err_exit( "Cannot reallocate memory in allocate_heap!" );
|
||||
}
|
||||
_max_heap_size = n;
|
||||
}
|
||||
}
|
||||
/****************************************************************************/
|
||||
/*
|
||||
*/
|
||||
|
||||
void deallocate_heap()
|
||||
{
|
||||
_max_heap_size = 0;
|
||||
if( _heap )
|
||||
{
|
||||
free( (void*)_heap );
|
||||
_heap = (Heap*)NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void heap_init( long n )
|
||||
{
|
||||
register long p;
|
||||
|
||||
allocate_heap( n );
|
||||
_heap_size = 0;
|
||||
for( p = 0; p < n; p++ )
|
||||
{
|
||||
heap_idx( p ) = 0;
|
||||
}
|
||||
|
||||
} /* END heap_init() */
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void heap_insert(
|
||||
long p,
|
||||
long key
|
||||
)
|
||||
{
|
||||
register long k; /* hole in the heap */
|
||||
register long j; /* parent of the hole */
|
||||
register long q; /* heap_elt(j) */
|
||||
|
||||
heap_key( p ) = key;
|
||||
|
||||
if( _heap_size == 0 )
|
||||
{
|
||||
_heap_size = 1;
|
||||
heap_elt( 1 ) = p;
|
||||
heap_idx( p ) = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
k = ++ _heap_size;
|
||||
j = k >> 1; /* k/2 */
|
||||
|
||||
while( (j > 0) && (heap_key(q=heap_elt(j)) > key) ) {
|
||||
|
||||
heap_elt( k ) = q;
|
||||
heap_idx( q ) = k;
|
||||
k = j;
|
||||
j = k>>1; /* k/2 */
|
||||
|
||||
}
|
||||
|
||||
/* store p in the position of the hole */
|
||||
heap_elt( k ) = p;
|
||||
heap_idx( p ) = k;
|
||||
|
||||
} /* END heap_insert() */
|
||||
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
void heap_decrease_key
|
||||
(
|
||||
long p,
|
||||
long new_key
|
||||
)
|
||||
{
|
||||
register long k; /* hole in the heap */
|
||||
register long j; /* parent of the hole */
|
||||
register long q; /* heap_elt(j) */
|
||||
|
||||
heap_key( p ) = new_key;
|
||||
k = heap_idx( p );
|
||||
j = k >> 1; /* k/2 */
|
||||
|
||||
if( (j > 0) && (heap_key(q=heap_elt(j)) > new_key) ) { /* change is needed */
|
||||
do {
|
||||
|
||||
heap_elt( k ) = q;
|
||||
heap_idx( q ) = k;
|
||||
k = j;
|
||||
j = k>>1; /* k/2 */
|
||||
|
||||
} while( (j > 0) && (heap_key(q=heap_elt(j)) > new_key) );
|
||||
|
||||
/* store p in the position of the hole */
|
||||
heap_elt( k ) = p;
|
||||
heap_idx( p ) = k;
|
||||
}
|
||||
|
||||
} /* END heap_decrease_key() */
|
||||
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
long heap_delete_min()
|
||||
{
|
||||
long min, last;
|
||||
register long k; /* hole in the heap */
|
||||
register long j; /* child of the hole */
|
||||
register long l_key; /* key of last point */
|
||||
|
||||
if( _heap_size == 0 ) /* heap is empty */
|
||||
return( -1 );
|
||||
|
||||
min = heap_elt( 1 );
|
||||
last = heap_elt( _heap_size -- );
|
||||
l_key = heap_key( last );
|
||||
|
||||
k = 1; j = 2;
|
||||
while( j <= _heap_size ) {
|
||||
|
||||
if( heap_key(heap_elt(j)) > heap_key(heap_elt(j+1)) )
|
||||
j++;
|
||||
|
||||
if( heap_key(heap_elt(j)) >= l_key)
|
||||
break; /* found a position to insert 'last' */
|
||||
|
||||
/* else, sift hole down */
|
||||
heap_elt(k) = heap_elt(j); /* Note that j <= _heap_size */
|
||||
heap_idx( heap_elt(k) ) = k;
|
||||
k = j;
|
||||
j = k << 1;
|
||||
}
|
||||
|
||||
heap_elt( k ) = last;
|
||||
heap_idx( last ) = k;
|
||||
|
||||
heap_idx( min ) = -1; /* mark the point visited */
|
||||
return( min );
|
||||
|
||||
} /* END heap_delete_min() */
|
||||
|
||||
|
||||
/****************************************************************************/
|
||||
|
|
@ -0,0 +1,16 @@
|
|||
#ifndef _DIST_H_
|
||||
#define _DIST_H_
|
||||
|
||||
#include "global.h"
|
||||
|
||||
long dist(
|
||||
Point p,
|
||||
Point q
|
||||
);
|
||||
|
||||
long dist2(
|
||||
Point* p,
|
||||
Point* q
|
||||
);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,180 @@
|
|||
#ifndef DL_H
|
||||
#define DL_H
|
||||
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
typedef struct dl_el_s {
|
||||
struct dl_el_s *prev, *next;
|
||||
} dl_el;
|
||||
|
||||
typedef struct {
|
||||
dl_el *first, *last;
|
||||
unsigned int count;
|
||||
} dl_s, *dl_t;
|
||||
|
||||
dl_t dl_alloc(void);
|
||||
void dl_delete(dl_t dl, dl_el *el);
|
||||
void dl_clear(dl_t dl);
|
||||
void dl_concat(dl_t list1, dl_t list2);
|
||||
void dl_sort(dl_t dl, size_t el_size, int(*compar)(void *, void *));
|
||||
|
||||
#define dl_length(dl) (dl)->count
|
||||
|
||||
#define dl_empty(dl) ((dl)->count <= 0)
|
||||
|
||||
#define dl_data(type, el) \
|
||||
*(type*)(((dl_el*)(el))+1)
|
||||
|
||||
#define dl_data_p(type, el) \
|
||||
((type*)(((dl_el*)(el))+1))
|
||||
|
||||
#define dl_forall(type, dl, data) \
|
||||
{ \
|
||||
dl_el *_el, *_next; \
|
||||
dl_t _curr_dl = (dl); \
|
||||
for (_el=_curr_dl->first; _el; _el=_next) { \
|
||||
_next = _el->next; \
|
||||
(data) = dl_data(type, _el);
|
||||
|
||||
#define dl_forall_p(type, dl, data_p) \
|
||||
{ \
|
||||
dl_el *_el, *_next; \
|
||||
dl_t _curr_dl = (dl); \
|
||||
for (_el=_curr_dl->first; _el; _el=_next) { \
|
||||
_next = _el->next; \
|
||||
(data_p) = dl_data_p(type, _el);
|
||||
|
||||
#define dl_current() _el
|
||||
#define dl_delete_current() dl_delete(_curr_dl, _el)
|
||||
|
||||
#define dl_endfor \
|
||||
} \
|
||||
}
|
||||
|
||||
#define dl_forall_reverse(type, dl, data) \
|
||||
{ \
|
||||
dl_el *_el, *_next; \
|
||||
dl_t _curr_dl = (dl); \
|
||||
for (_el=_curr_dl->last; _el; _el=_next) { \
|
||||
_next = _el->prev; \
|
||||
(data) = dl_data(type, _el);
|
||||
|
||||
#define dl_forall_reverse_p(type, dl, data_p) \
|
||||
{ \
|
||||
dl_el *_el, *_next; \
|
||||
dl_t _curr_dl = (dl); \
|
||||
for (_el=_curr_dl->last; _el; _el=_next) { \
|
||||
_next = _el->prev; \
|
||||
(data_p) = dl_data_p(type, _el);
|
||||
|
||||
#define dl_first(type, dl) \
|
||||
dl_data(type, (dl)->first)
|
||||
|
||||
|
||||
#define dl_first_element(dl) (dl)->first
|
||||
|
||||
|
||||
#define dl_last(type, dl) \
|
||||
dl_data(type, (dl)->last)
|
||||
|
||||
#define dl_pop_first(type, dl, data) \
|
||||
{ \
|
||||
(data) = dl_first(type, dl); \
|
||||
dl_delete((dl), (dl)->first); \
|
||||
}
|
||||
|
||||
#define dl_pop_last(type, dl, data) \
|
||||
{ (data) = dl_last(type, dl); dl_delete((dl), (dl)->last); }
|
||||
|
||||
#define dl_insert_before(type, dl, element, data) \
|
||||
{ \
|
||||
if ((element) == (dl)->first) { \
|
||||
dl_prepend(type, dl, data); \
|
||||
} else { \
|
||||
dl_el *_el = (dl_el*) malloc(sizeof(dl_el)+sizeof(type)); \
|
||||
if (!_el) { \
|
||||
printf("Out of memory!!\n"); \
|
||||
} else { \
|
||||
memcpy(_el+1, &(data), sizeof(type)); \
|
||||
_el->prev = (element)->prev; _el->next = (element); \
|
||||
(element)->prev->next = _el; (element)->prev = _el; \
|
||||
(dl)->count++; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define dl_insert_after(type, dl, element, data) \
|
||||
{ \
|
||||
if ((element) == (dl)->last) { \
|
||||
dl_append(type, dl, data); \
|
||||
} else { \
|
||||
dl_el *_el = (dl_el*) malloc(sizeof(dl_el)+sizeof(type)); \
|
||||
if (!_el) { \
|
||||
printf("Out of memory!!\n"); \
|
||||
} else { \
|
||||
memcpy(_el+1, &(data), sizeof(type)); \
|
||||
_el->next = (element)->next; _el->prev = (element); \
|
||||
(element)->next->prev = _el; (element)->next = _el; \
|
||||
(dl)->count++; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define dl_append(type, dl, data) \
|
||||
{ \
|
||||
dl_el *_el = (dl_el*) malloc(sizeof(dl_el)+sizeof(type)); \
|
||||
if (!_el) { \
|
||||
printf("Out of memory!!\n"); \
|
||||
} else { \
|
||||
memcpy(_el+1, &(data), sizeof(type)); \
|
||||
_el->next = 0; \
|
||||
if ((dl)->count <= 0) { \
|
||||
_el->prev = 0; \
|
||||
(dl)->first = (dl)->last = _el; \
|
||||
(dl)->count = 1; \
|
||||
} else { \
|
||||
_el->prev = (dl)->last; \
|
||||
(dl)->last->next = _el; \
|
||||
(dl)->last = _el; \
|
||||
(dl)->count++; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define dl_prepend(type, dl, data) \
|
||||
{ \
|
||||
dl_el *_el = (dl_el*) malloc(sizeof(dl_el)+sizeof(type)); \
|
||||
if (!_el) { \
|
||||
printf("Out of memory!!\n"); \
|
||||
} else { \
|
||||
memcpy(_el+1, &(data), sizeof(type)); \
|
||||
_el->prev = 0; \
|
||||
if ((dl)->count <= 0) { \
|
||||
_el->next = 0; \
|
||||
(dl)->first = (dl)->last = _el; \
|
||||
(dl)->count = 1; \
|
||||
} else { \
|
||||
_el->next = (dl)->first; \
|
||||
(dl)->first->prev = _el; \
|
||||
(dl)->first = _el; \
|
||||
(dl)->count++; \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define dl_free(dl) \
|
||||
{ \
|
||||
dl_clear(dl); free(dl); dl = 0; \
|
||||
}
|
||||
|
||||
#define dl_duplicate(dest, src, type) \
|
||||
{ \
|
||||
dest = dl_alloc(); \
|
||||
type _data_el; \
|
||||
dl_forall(type, src, _data_el) { \
|
||||
dl_append(type, dest, _data_el); \
|
||||
} dl_endfor; \
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,12 @@
|
|||
#ifndef _ERR_H_
|
||||
#define _ERR_H_
|
||||
|
||||
void err_msg(
|
||||
char* msg
|
||||
);
|
||||
|
||||
void err_exit(
|
||||
char* msg
|
||||
);
|
||||
|
||||
#endif
|
|
@ -1,19 +1,43 @@
|
|||
#ifndef _KNIK_FLUTE_H
|
||||
#define _KNIK_FLUTE_H
|
||||
|
||||
#define POWVFILE "POWV9.dat" // LUT for POWV (Wirelength Vector)
|
||||
#define POSTFILE "POST9.dat" // LUT for POST (Steiner FTree)
|
||||
#define MAXD 150 // max. degree of a net that can be handled
|
||||
// setting MAXD to more than 150 is not recommended
|
||||
#define D 9 // LUT is used for d <= D, D <= 9
|
||||
#define ROUTING 1 // 1 to construct routing, 0 to estimate WL only
|
||||
#define REMOVE_DUPLICATE_PIN 0 // remove dup. pin for flute_wl() & flute()
|
||||
/*****************************/
|
||||
/* User-Defined Parameters */
|
||||
/*****************************/
|
||||
#define MAXD 150 // max. degree that can be handled
|
||||
#define ACCURACY 3 // Default accuracy
|
||||
#define ROUTING 1 // 1 to construct routing, 0 to estimate WL only
|
||||
#define LOCAL_REFINEMENT 0 // Suggestion: Set to 1 if ACCURACY >= 5
|
||||
#define REMOVE_DUPLICATE_PIN 0 // Remove dup. pin for flute_wl() & flute()
|
||||
|
||||
#ifndef DTYPE // Data type for distance
|
||||
#define DTYPE int
|
||||
#endif
|
||||
|
||||
|
||||
/*****************************/
|
||||
/* User-Callable Functions */
|
||||
/*****************************/
|
||||
// void readLUT();
|
||||
// DTYPE flute_wl(int d, DTYPE x[], DTYPE y[], int acc);
|
||||
// DTYPE flutes_wl(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
||||
// FTree flute(int d, DTYPE x[], DTYPE y[], int acc);
|
||||
// FTree flutes(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
||||
// DTYPE wirelength(FTree t);
|
||||
// void printtree(FTree t);
|
||||
// void plottree(FTree t);
|
||||
|
||||
|
||||
/*************************************/
|
||||
/* Internal Parameters and Functions */
|
||||
/*************************************/
|
||||
#define POWVFILE "POWV9.dat" // LUT for POWV (Wirelength Vector)
|
||||
#define POSTFILE "POST9.dat" // LUT for POST (Steiner FTree)
|
||||
#define D 9 // LUT is used for d <= D, D <= 9
|
||||
#define TAU(A) (8+1.3*(A))
|
||||
#define D1(A) (25+120/((A)*(A))) // flute_mr is used for D1 < d <= D2
|
||||
#define D2(A) ((A)<=6 ? 500 : 75+5*(A))
|
||||
|
||||
typedef struct
|
||||
{
|
||||
DTYPE x, y; // starting point of the branch
|
||||
|
@ -27,7 +51,7 @@ struct FTree
|
|||
Branch *branch; // array of tree branches
|
||||
};
|
||||
|
||||
// Major functions
|
||||
// User-Callable Functions
|
||||
extern void readLUT();
|
||||
extern DTYPE flute_wl(int d, DTYPE x[], DTYPE y[], int acc);
|
||||
//Macro: DTYPE flutes_wl(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
||||
|
@ -37,13 +61,14 @@ extern DTYPE wirelength(FTree t);
|
|||
extern void printtree(FTree t);
|
||||
extern void plottree(FTree t);
|
||||
|
||||
|
||||
// Other useful functions
|
||||
extern void init_param();
|
||||
extern DTYPE flutes_wl_LD(int d, DTYPE xs[], DTYPE ys[], int s[]);
|
||||
extern DTYPE flutes_wl_MD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
||||
extern DTYPE flutes_wl_RDP(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
||||
extern FTree flutes_LD(int d, DTYPE xs[], DTYPE ys[], int s[]);
|
||||
extern FTree flutes_MD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
||||
extern FTree flutes_HD(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
||||
extern FTree flutes_RDP(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
||||
|
||||
#if REMOVE_DUPLICATE_PIN==1
|
||||
|
@ -55,12 +80,20 @@ extern FTree flutes_RDP(int d, DTYPE xs[], DTYPE ys[], int s[], int acc);
|
|||
#endif
|
||||
|
||||
#define flutes_wl_ALLD(d, xs, ys, s, acc) flutes_wl_LMD(d, xs, ys, s, acc)
|
||||
#define flutes_ALLD(d, xs, ys, s, acc) flutes_LMD(d, xs, ys, s, acc)
|
||||
//#define flutes_ALLD(d, xs, ys, s, acc) (d<=D ? flutes_LD(d, xs, ys, s) : (d<=D2 ? flutes_MD(d, xs, ys, s, acc) : flutes_HD(d, xs, ys, s, acc)))
|
||||
#define flutes_ALLD(d, xs, ys, s, acc) \
|
||||
(d<=D ? flutes_LD(d, xs, ys, s) \
|
||||
: (d<=D1(acc) ? flutes_MD(d, xs, ys, s, acc) \
|
||||
: flutes_HD(d, xs, ys, s, acc)))
|
||||
|
||||
#define flutes_wl_LMD(d, xs, ys, s, acc) \
|
||||
(d<=D ? flutes_wl_LD(d, xs, ys, s) : flutes_wl_MD(d, xs, ys, s, acc))
|
||||
#define flutes_LMD(d, xs, ys, s, acc) \
|
||||
(d<=D ? flutes_LD(d, xs, ys, s) : flutes_MD(d, xs, ys, s, acc))
|
||||
|
||||
#define max(x,y) ((x)>(y)?(x):(y))
|
||||
#define min(x,y) ((x)<(y)?(x):(y))
|
||||
#define abs(x) ((x)<0?(-x):(x))
|
||||
#define ADIFF(x,y) ((x)>(y)?(x-y):(y-x)) // Absolute difference
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
#ifndef _GLOBAL_H_
|
||||
#define _GLOBAL_H_
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#define TRUE 1
|
||||
#define FALSE 0
|
||||
#define MAXLONG 0x7fffffffL
|
||||
|
||||
struct point
|
||||
{
|
||||
long x, y;
|
||||
};
|
||||
|
||||
typedef struct point Point;
|
||||
|
||||
typedef long nn_array[8];
|
||||
|
||||
#endif /* _GLOBAL_H_ */
|
|
@ -0,0 +1,31 @@
|
|||
#ifndef _HEAP_H_
|
||||
#define _HEAP_H_
|
||||
|
||||
#include "global.h"
|
||||
|
||||
struct heap_info
|
||||
{
|
||||
long key;
|
||||
long idx;
|
||||
long elt;
|
||||
};
|
||||
|
||||
typedef struct heap_info Heap;
|
||||
|
||||
extern Heap* _heap;
|
||||
|
||||
#define heap_key( p ) ( _heap[p].key )
|
||||
#define heap_idx( p ) ( _heap[p].idx )
|
||||
#define heap_elt( k ) ( _heap[k].elt )
|
||||
|
||||
#define in_heap( p ) ( heap_idx(p) > 0 )
|
||||
#define never_seen( p ) ( heap_idx(p) == 0 )
|
||||
|
||||
void allocate_heap( long n );
|
||||
void deallocate_heap();
|
||||
void heap_init( long n );
|
||||
void heap_insert( long p, long key );
|
||||
void heap_decrease_key( long p, long new_key );
|
||||
long heap_delete_min();
|
||||
|
||||
#endif /* _HEAP_H_ */
|
|
@ -0,0 +1,11 @@
|
|||
#ifndef _MST2_H_
|
||||
#define _MST2_H_
|
||||
|
||||
#include "global.h"
|
||||
|
||||
void mst2_package_init( long n );
|
||||
void mst2_package_done();
|
||||
void mst2( long n, Point* pt, long* parent );
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
#include "global.h"
|
||||
|
||||
void allocate_nn_arrays( long n );
|
||||
void deallocate_nn_arrays();
|
||||
|
||||
void brute_force_nearest_neighbors
|
||||
(
|
||||
long n,
|
||||
Point* pt,
|
||||
nn_array* nn
|
||||
);
|
||||
|
||||
void dq_nearest_neighbors
|
||||
(
|
||||
long n,
|
||||
Point* pt,
|
||||
nn_array* nn
|
||||
);
|
||||
|
|
@ -0,0 +1,92 @@
|
|||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "knik/global.h"
|
||||
#include "knik/neighbors.h"
|
||||
#include "knik/dist.h"
|
||||
#include "knik/heap.h"
|
||||
#include "knik/err.h"
|
||||
|
||||
|
||||
|
||||
void mst2_package_init( long n )
|
||||
{
|
||||
allocate_heap( n );
|
||||
allocate_nn_arrays( n );
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
/*
|
||||
*/
|
||||
|
||||
void mst2_package_done()
|
||||
{
|
||||
deallocate_heap();
|
||||
deallocate_nn_arrays();
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
/*
|
||||
*/
|
||||
|
||||
void mst2
|
||||
(
|
||||
long n,
|
||||
Point* pt,
|
||||
long* parent
|
||||
)
|
||||
{
|
||||
long i, k, nn1;
|
||||
long d;
|
||||
long oct;
|
||||
long root = 0;
|
||||
extern nn_array* nn;
|
||||
|
||||
// brute_force_nearest_neighbors( n, pt, nn );
|
||||
dq_nearest_neighbors( n, pt, nn );
|
||||
|
||||
/*
|
||||
Binary heap implementation of Prim's algorithm.
|
||||
Runs in O(n*log(n)) time since at most 8n edges are considered
|
||||
*/
|
||||
|
||||
heap_init( n );
|
||||
heap_insert( root, 0 );
|
||||
parent[root] = root;
|
||||
|
||||
for( k = 0; k < n; k++ ) /* n points to be extracted from heap */
|
||||
{
|
||||
i = heap_delete_min();
|
||||
|
||||
if (i<0) break;
|
||||
#ifdef DEBUG
|
||||
assert( i >= 0 );
|
||||
#endif
|
||||
|
||||
/*
|
||||
pt[i] entered the tree, update heap keys for its neighbors
|
||||
*/
|
||||
for( oct = 0; oct < 8; oct++ )
|
||||
{
|
||||
nn1 = nn[i][oct];
|
||||
if( nn1 >= 0 )
|
||||
{
|
||||
d = dist( pt[i], pt[nn1] );
|
||||
if( in_heap(nn1) && (d < heap_key(nn1)) )
|
||||
{
|
||||
heap_decrease_key( nn1, d );
|
||||
parent[nn1] = i;
|
||||
}
|
||||
else if( never_seen(nn1) )
|
||||
{
|
||||
heap_insert( nn1, d );
|
||||
parent[nn1] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
/****************************************************************************/
|
||||
|
|
@ -0,0 +1,527 @@
|
|||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include "knik/global.h"
|
||||
#include "knik/err.h"
|
||||
#include "knik/dist.h"
|
||||
|
||||
long octant
|
||||
(
|
||||
Point from,
|
||||
Point to
|
||||
);
|
||||
|
||||
static Point* _pt;
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
For efficiency purposes auxiliary arrays are allocated as globals
|
||||
*/
|
||||
|
||||
long max_arrays_size = 0;
|
||||
nn_array* nn = (nn_array*)NULL;
|
||||
Point* sheared = (Point*)NULL;
|
||||
long* sorted = (long*)NULL;
|
||||
long* aux = (long*)NULL;
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
resize the auxiliary arrays to fit the specified number of points
|
||||
*/
|
||||
|
||||
void allocate_nn_arrays( long n )
|
||||
{
|
||||
if( max_arrays_size < n )
|
||||
{
|
||||
nn = (nn_array*)realloc( (void*)nn, (size_t)n*sizeof(nn_array) );
|
||||
sheared = (Point*)realloc( (void*)sheared, (size_t)n*sizeof(Point) );
|
||||
sorted = (long*)realloc( (void*)sorted, (size_t)n*sizeof(long) );
|
||||
aux = (long*)realloc( (void*)aux, (size_t)n*sizeof(long) );
|
||||
if( !nn || !sheared || !sorted || !aux )
|
||||
{
|
||||
err_exit( "Cannot allocate memory in allocate_nn_arrays!" );
|
||||
}
|
||||
max_arrays_size = n;
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
free memory used by auxiliary arrays
|
||||
*/
|
||||
|
||||
void deallocate_nn_arrays()
|
||||
{
|
||||
max_arrays_size = 0;
|
||||
if( nn )
|
||||
{
|
||||
free( (void*)nn );
|
||||
nn = (nn_array*)NULL;
|
||||
}
|
||||
if( sheared )
|
||||
{
|
||||
free( (void*)sheared );
|
||||
sheared = (Point*)NULL;
|
||||
}
|
||||
if( sorted )
|
||||
{
|
||||
free( (void*)sorted );
|
||||
sorted = (long*)NULL;
|
||||
}
|
||||
if( aux )
|
||||
{
|
||||
free( (void*)aux );
|
||||
aux = (long*)NULL;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
comparison function for use in quicksort
|
||||
*/
|
||||
|
||||
static int compare_x
|
||||
(
|
||||
const void* i,
|
||||
const void* j
|
||||
)
|
||||
{
|
||||
/*
|
||||
points with the same x must appear in increasing order of y
|
||||
*/
|
||||
if( sheared[*((long*)i)].x == sheared[*((long*)j)].x)
|
||||
{
|
||||
return sheared[*((long*)i)].y - sheared[*((long*)j)].y;
|
||||
}
|
||||
else
|
||||
{
|
||||
return sheared[*((long*)i)].x - sheared[*((long*)j)].x;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
Combine step of the Guibas-Stolfi divide-and-conquer NE nearest neighbor
|
||||
algorithm. For efficiency purposes SW nearest neighbors are computed
|
||||
at the same time.
|
||||
*/
|
||||
|
||||
void ne_sw_combine
|
||||
(
|
||||
long left,
|
||||
long mid,
|
||||
long right,
|
||||
Point* pt,
|
||||
long* sorted,
|
||||
long* aux,
|
||||
long oct,
|
||||
nn_array* nn
|
||||
)
|
||||
{
|
||||
long i, j, k, y2;
|
||||
long i1;
|
||||
long i2;
|
||||
long best_i2; /* index of current best nearest-neighbor */
|
||||
long best_dist; /* distance to best nearest-neighbor */
|
||||
long d;
|
||||
|
||||
#ifdef DEBUG
|
||||
assert( right > mid );
|
||||
assert( mid > left );
|
||||
#endif
|
||||
|
||||
/*
|
||||
update north-east nearest neighbors accross the mid-line
|
||||
*/
|
||||
|
||||
i1 = left;
|
||||
i2 = mid; y2 = pt[ sorted[i2] ].y;
|
||||
|
||||
while( (i1 < mid) && (pt[ sorted[i1] ].y >= y2) )
|
||||
{
|
||||
i1++;
|
||||
}
|
||||
|
||||
if( i1 < mid )
|
||||
{
|
||||
best_i2 = i2;
|
||||
best_dist = dist2( pt + sorted[i1], pt + sorted[best_i2] );
|
||||
i2++;
|
||||
|
||||
while( (i1 < mid) && (i2 < right) )
|
||||
{
|
||||
if( pt[ sorted[i1] ].y < pt[ sorted[i2] ].y )
|
||||
{
|
||||
d = dist2( pt + sorted[i1], pt + sorted[i2] );
|
||||
if( d < best_dist )
|
||||
{
|
||||
best_i2 = i2;
|
||||
best_dist = d;
|
||||
}
|
||||
i2++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( (nn[ sorted[i1] ][oct] == -1) ||
|
||||
( best_dist < dist2( pt + sorted[i1], pt + nn[ sorted[i1] ][oct]) )
|
||||
)
|
||||
{
|
||||
nn[ sorted[i1] ][oct] = sorted[best_i2];
|
||||
}
|
||||
i1++;
|
||||
if( i1 < mid )
|
||||
{
|
||||
best_dist = dist2( pt + sorted[i1], pt + sorted[best_i2] );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
while( i1 < mid )
|
||||
{
|
||||
if( (nn[ sorted[i1] ][oct] == -1) ||
|
||||
( dist2( pt + sorted[i1], pt + sorted[best_i2] ) <
|
||||
dist2( pt + sorted[i1], pt + nn[ sorted[i1] ][oct]) )
|
||||
)
|
||||
{
|
||||
nn[ sorted[i1] ][oct] = sorted[best_i2];
|
||||
}
|
||||
i1++;
|
||||
}
|
||||
}
|
||||
/*
|
||||
repeat for south-west nearest neighbors
|
||||
*/
|
||||
|
||||
oct = (oct + 4) % 8;
|
||||
|
||||
i1 = right - 1;
|
||||
i2 = mid - 1; y2 = pt[ sorted[i2] ].y;
|
||||
|
||||
while( (i1 >= mid) && (pt[ sorted[i1] ].y <= y2) )
|
||||
{
|
||||
i1--;
|
||||
}
|
||||
|
||||
if( i1 >= mid )
|
||||
{
|
||||
best_i2 = i2;
|
||||
best_dist = dist2( pt + sorted[i1], pt + sorted[best_i2] );
|
||||
i2--;
|
||||
|
||||
while( (i1 >= mid) && (i2 >= left) )
|
||||
{
|
||||
if( pt[ sorted[i1] ].y > pt[ sorted[i2] ].y )
|
||||
{
|
||||
d = dist2( pt + sorted[i1], pt + sorted[i2] );
|
||||
if( d < best_dist )
|
||||
{
|
||||
best_i2 = i2;
|
||||
best_dist = d;
|
||||
}
|
||||
i2--;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( (nn[ sorted[i1] ][oct] == -1) ||
|
||||
( best_dist < dist2( pt + sorted[i1], pt + nn[ sorted[i1] ][oct]) )
|
||||
)
|
||||
{
|
||||
nn[ sorted[i1] ][oct] = sorted[best_i2];
|
||||
}
|
||||
i1--;
|
||||
if( i1 >= mid )
|
||||
{
|
||||
best_dist = dist2( pt + sorted[i1], pt + sorted[best_i2] );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
while( i1 >= mid )
|
||||
{
|
||||
if( (nn[ sorted[i1] ][oct] == -1) ||
|
||||
( dist2( pt + sorted[i1], pt + sorted[best_i2] ) <
|
||||
dist2( pt + sorted[i1], pt + nn[ sorted[i1] ][oct]) )
|
||||
)
|
||||
{
|
||||
nn[ sorted[i1] ][oct] = sorted[best_i2];
|
||||
}
|
||||
i1--;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
merge sorted[left..mid-1] with sorted[mid..right-1] by y-coordinate
|
||||
*/
|
||||
|
||||
i = left; /* first unprocessed element in left list */
|
||||
j = mid; /* first unprocessed element in right list */
|
||||
k = left; /* first free available slot in output list */
|
||||
|
||||
while( (i < mid) && (j < right) )
|
||||
{
|
||||
if( pt[ sorted[i] ].y >= pt[ sorted[j] ].y )
|
||||
{
|
||||
aux[k++] = sorted[i++];
|
||||
}
|
||||
else
|
||||
{
|
||||
aux[k++] = sorted[j++];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
copy leftovers
|
||||
*/
|
||||
while( i < mid ) { aux[k++] = sorted[i++]; }
|
||||
while( j < right ) { aux[k++] = sorted[j++]; }
|
||||
|
||||
/*
|
||||
now copy sorted points from 'aux' to 'sorted'
|
||||
*/
|
||||
|
||||
for( i = left; i < right; i++ ) { sorted[i] = aux[i]; }
|
||||
|
||||
#if 0
|
||||
memcpy( (void*)(sorted+left), /* destination */
|
||||
(void*)(aux+left), /* source */
|
||||
(size_t)(right-left)*sizeof(long) /* number of bytes */
|
||||
);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
compute north-east and south-west nearest neighbors for points indexed
|
||||
by {sorted[left],...,sorted[right-1]}
|
||||
*/
|
||||
|
||||
void ne_sw_nearest_neighbors
|
||||
(
|
||||
long left,
|
||||
long right,
|
||||
Point* pt,
|
||||
long* sorted,
|
||||
long* aux,
|
||||
long oct,
|
||||
nn_array* nn
|
||||
)
|
||||
{
|
||||
long mid;
|
||||
|
||||
#ifdef DEBUG
|
||||
assert( right > left );
|
||||
#endif
|
||||
|
||||
if( right == left + 1 )
|
||||
{
|
||||
nn[ sorted[left] ][oct] = nn[ sorted[left]][(oct+4) % 8] = -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
mid = (left + right) / 2;
|
||||
ne_sw_nearest_neighbors( left, mid, pt, sorted, aux, oct, nn );
|
||||
ne_sw_nearest_neighbors( mid, right, pt, sorted, aux, oct, nn );
|
||||
ne_sw_combine( left, mid, right, pt, sorted, aux, oct, nn );
|
||||
}
|
||||
}
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
Guibas-Stolfi algorithm for computing nearest NE neighbors
|
||||
*/
|
||||
|
||||
void dq_nearest_neighbors
|
||||
(
|
||||
long n,
|
||||
Point* pt,
|
||||
nn_array* nn
|
||||
)
|
||||
{
|
||||
long i, oct;
|
||||
void check_nn( long, Point*, nn_array* );
|
||||
|
||||
long shear[4][4] = {
|
||||
{1, -1, 0, 2},
|
||||
{2, 0, -1, 1},
|
||||
{1, 1, -2, 0},
|
||||
{0, 2, -1, -1}
|
||||
};
|
||||
|
||||
|
||||
|
||||
_pt = pt;
|
||||
|
||||
for( oct = 0; oct < 4; oct++ )
|
||||
{
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
sheared[i].x = shear[oct][0]*pt[i].x + shear[oct][1]*pt[i].y;
|
||||
sheared[i].y = shear[oct][2]*pt[i].x + shear[oct][3]*pt[i].y;
|
||||
sorted[i] = i;
|
||||
}
|
||||
|
||||
qsort( sorted, n, sizeof(long), compare_x );
|
||||
ne_sw_nearest_neighbors( 0, n, sheared, sorted, aux, oct, nn );
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
check_nn( n, pt, nn );
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
/***************************************************************************/
|
||||
/***************************************************************************/
|
||||
/*
|
||||
Brute-force nearest-neighbor computation for debugging purposes
|
||||
*/
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
Half-open octants are numbered from 0 to 7 in anti-clockwise order
|
||||
starting from ( dx >= dy > 0 ).
|
||||
*/
|
||||
|
||||
#define sgn(x) ( x>0 ? 1 : (x < 0 ? -1 : 0) )
|
||||
|
||||
long octant
|
||||
(
|
||||
Point from,
|
||||
Point to
|
||||
)
|
||||
{
|
||||
long dx = to.x - from.x;
|
||||
long dy = to.y - from.y;
|
||||
long sgn1 = sgn(dx)*sgn(dy);
|
||||
long sgn2 = sgn(dx+dy)*sgn(dx-dy);
|
||||
long oct = 0x0;
|
||||
|
||||
|
||||
if( (dy < 0) || ((dy==0) && (dx>0)) ) oct += 4;
|
||||
if( (sgn1 < 0) || (dy==0) ) oct += 2;
|
||||
if( (sgn1*sgn2 < 0) || (dy==0) || (dx==0) ) oct += 1;
|
||||
|
||||
return oct;
|
||||
}
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
O(n^2) algorithm for computing all nearest neighbors
|
||||
*/
|
||||
|
||||
void brute_force_nearest_neighbors
|
||||
(
|
||||
long n,
|
||||
Point* pt,
|
||||
nn_array* nn
|
||||
)
|
||||
{
|
||||
long i, j, oct;
|
||||
long d;
|
||||
|
||||
/*
|
||||
compute nearest neighbors by inspecting all pairs of points
|
||||
*/
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
for( oct = 0; oct < 8; oct++ )
|
||||
{
|
||||
nn[i][oct] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
for( j = i+1; j < n; j++ )
|
||||
{
|
||||
d = dist(pt[i], pt[j]);
|
||||
|
||||
oct = octant( pt[i], pt[j] );
|
||||
if( ( nn[i][oct] == -1 ) ||
|
||||
( d < dist(pt[i], pt[ nn[i][oct] ]) )
|
||||
)
|
||||
{
|
||||
nn[i][oct] = j;
|
||||
}
|
||||
|
||||
oct = (oct + 4) % 8;
|
||||
if( ( nn[j][oct] == -1 ) ||
|
||||
( d < dist(pt[j], pt[ nn[j][oct] ]) )
|
||||
)
|
||||
{
|
||||
nn[j][oct] = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/***************************************************************************/
|
||||
/*
|
||||
compare nearest neighbors against those computed by brute force
|
||||
*/
|
||||
|
||||
void check_nn
|
||||
(
|
||||
long n,
|
||||
Point* pt,
|
||||
nn_array* nn
|
||||
)
|
||||
{
|
||||
long i, j, oct;
|
||||
nn_array* nn1;
|
||||
|
||||
nn1 = (nn_array*)calloc( (size_t)n, (size_t)sizeof(nn_array) );
|
||||
brute_force_nearest_neighbors( n, pt, nn1 );
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
for( oct = 0; oct < 8; oct++ )
|
||||
{
|
||||
if( nn[i][oct] == -1 )
|
||||
{
|
||||
assert( nn1[i][oct] == -1 );
|
||||
}
|
||||
else
|
||||
{
|
||||
assert( nn1[i][oct] != -1 );
|
||||
|
||||
if( octant(pt[i], pt[ nn[i][oct] ]) != oct )
|
||||
{
|
||||
printf( "WRONG OCTANT!\noct=%ld\n", oct );
|
||||
printf( "i=%ld, x=%ld, y=%ld\n", i, pt[i].x, pt[i].y );
|
||||
j = nn[i][oct];
|
||||
printf( "nn=%ld, x=%ld, y=%ld, dist = %ld\n", j, pt[j].x, pt[j].y,
|
||||
dist(pt[i], pt[j ]) );
|
||||
}
|
||||
// assert( octant(pt[i], pt[ nn[i][oct] ]) == oct );
|
||||
|
||||
assert( octant(pt[i], pt[ nn1[i][oct] ]) == oct );
|
||||
|
||||
if( dist(pt[i], pt[ nn[i][oct] ]) !=
|
||||
dist(pt[i], pt[ nn1[i][oct] ]) )
|
||||
{
|
||||
printf( "NNs DON'T MATCH!\noct=%ld\n", oct );
|
||||
printf( "i=%ld, x=%ld, y=%ld\n", i, pt[i].x, pt[i].y );
|
||||
j = nn[i][oct];
|
||||
printf( "nn=%ld, x=%ld, y=%ld, dist = %ld\n", j, pt[j].x, pt[j].y,
|
||||
dist(pt[i], pt[j ]) );
|
||||
j = nn1[i][oct];
|
||||
printf( "nn1=%ld, x=%ld, y=%ld, dist = %ld\n", j, pt[j].x, pt[j].y,
|
||||
dist(pt[i], pt[ j ]) );
|
||||
}
|
||||
// assert( dist(pt[i], pt[ nn[i][oct] ]) ==
|
||||
// dist(pt[i], pt[ nn1[i][oct] ]) );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free( nn1 );
|
||||
}
|
||||
|
||||
/***************************************************************************/
|
||||
/***************************************************************************/
|
||||
|
Loading…
Reference in New Issue