riscv-openocd/src/target/riscv/riscv.c

1901 lines
53 KiB
C

#include <assert.h>
#include <stdlib.h>
#include <time.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target.h"
#include "target_type.h"
#include "log.h"
#include "jtag/jtag.h"
#include "opcodes.h"
#include "register.h"
#include "breakpoints.h"
/**
* Since almost everything can be accomplish by scanning the dbus register, all
* functions here assume dbus is already selected. The exception are functions
* called directly by OpenOCD, which can't assume anything about what's
* currently in IR. They should set IR to dbus explicitly.
*/
#define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1)))
#define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask)))
#define DIM(x) (sizeof(x)/sizeof(*x))
#define CSR_TDRSELECT 0x7a0
#define CSR_TDRDATA1 0x7a1
#define CSR_TDRDATA2 0x7a2
#define CSR_TDRDATA3 0x7a3
#define CSR_BPCONTROL_X (1<<0)
#define CSR_BPCONTROL_W (1<<1)
#define CSR_BPCONTROL_R (1<<2)
#define CSR_BPCONTROL_U (1<<3)
#define CSR_BPCONTROL_S (1<<4)
#define CSR_BPCONTROL_H (1<<5)
#define CSR_BPCONTROL_M (1<<6)
#define CSR_BPCONTROL_BPMATCH (0xf<<7)
#define CSR_BPCONTROL_BPACTION (0xff<<11)
#define DEBUG_ROM_START 0x800
#define DEBUG_ROM_RESUME (DEBUG_ROM_START + 4)
#define DEBUG_ROM_EXCEPTION (DEBUG_ROM_START + 8)
#define DEBUG_RAM_START 0x400
#define SETHALTNOT 0x10c
/*** JTAG registers. ***/
#define DTMINFO 0x10
#define DTMINFO_ADDRBITS (0xf<<4)
#define DTMINFO_VERSION (0xf)
#define DBUS 0x11
#define DBUS_OP_START 0
#define DBUS_OP_SIZE 2
typedef enum {
DBUS_OP_NOP = 0,
DBUS_OP_READ = 1,
DBUS_OP_WRITE = 2,
DBUS_OP_CONDITIONAL_WRITE = 3
} dbus_op_t;
typedef enum {
DBUS_STATUS_SUCCESS = 0,
DBUS_STATUS_NO_WRITE = 1,
DBUS_STATUS_FAILED = 2,
DBUS_STATUS_BUSY = 3
} dbus_status_t;
#define DBUS_DATA_START 2
#define DBUS_DATA_SIZE 34
#define DBUS_ADDRESS_START 36
typedef enum {
RE_OK,
RE_FAIL,
RE_AGAIN
} riscv_error_t;
/*** Debug Bus registers. ***/
#define DMCONTROL 0x10
#define DMCONTROL_INTERRUPT (((uint64_t)1)<<33)
#define DMCONTROL_HALTNOT (((uint64_t)1)<<32)
#define DMCONTROL_BUSERROR (7<<19)
#define DMCONTROL_SERIAL (3<<16)
#define DMCONTROL_AUTOINCREMENT (1<<15)
#define DMCONTROL_ACCESS (7<<12)
#define DMCONTROL_HARTID (0x3ff<<2)
#define DMCONTROL_NDRESET (1<<1)
#define DMCONTROL_FULLRESET 1
#define DMINFO 0x11
#define DMINFO_ABUSSIZE (0x7f<<25)
#define DMINFO_SERIALCOUNT (0xf<<21)
#define DMINFO_ACCESS128 (1<<20)
#define DMINFO_ACCESS64 (1<<19)
#define DMINFO_ACCESS32 (1<<18)
#define DMINFO_ACCESS16 (1<<17)
#define DMINFO_ACCESS8 (1<<16)
#define DMINFO_DRAMSIZE (0x3f<<10)
#define DMINFO_AUTHENTICATED (1<<5)
#define DMINFO_AUTHBUSY (1<<4)
#define DMINFO_AUTHTYPE (3<<2)
#define DMINFO_VERSION 3
/*** Info about the core being debugged. ***/
#define DBUS_ADDRESS_UNKNOWN 0xffff
// gdb's register list is defined in riscv_gdb_reg_names gdb/riscv-tdep.c in
// its source tree. We must interpret the numbers the same here.
enum {
REG_XPR0 = 0,
REG_XPR31 = 31,
REG_PC = 32,
REG_FPR0 = 33,
REG_FPR31 = 64,
REG_CSR0 = 65,
REG_CSR4095 = 4160,
REG_PRIV = 4161,
REG_COUNT
};
#define MAX_HWBPS 16
#define DRAM_CACHE_SIZE 16
struct memory_cache_line {
uint32_t data;
bool valid;
bool dirty;
};
typedef struct {
/* Number of address bits in the dbus register. */
uint8_t addrbits;
/* Width of a GPR (and many other things) in bits. */
uint8_t xlen;
/* Number of words in Debug RAM. */
unsigned int dramsize;
uint32_t dcsr;
uint32_t dpc;
struct memory_cache_line dram_cache[DRAM_CACHE_SIZE];
struct reg *reg_list;
/* Single buffer that contains all register names, instead of calling
* malloc for each register. Needs to be freed when reg_list is freed. */
char *reg_names;
/* Single buffer that contains all register values. */
void *reg_values;
// For each physical hwbp, contains ~0 if the hwbp is available, or the
// unique_id of the breakpoint that is using it.
uint32_t hwbp_unique_id[MAX_HWBPS];
// This value is incremented every time a dbus access comes back as "busy".
// It's used to determine how many run-test/idle cycles to feed the target
// in between accesses.
unsigned int dbus_busy_delay;
// This value is incremented every time we read the debug interrupt as
// high. It's used to add extra run-test/idle cycles after setting debug
// interrupt high, so ideally we never have to perform a whole extra scan
// before the interrupt is cleared.
unsigned int interrupt_high_delay;
// This cache is write-through, and always valid when the target is halted.
uint32_t gpr_cache[32];
} riscv_info_t;
typedef struct {
bool haltnot;
bool interrupt;
} bits_t;
/*** Necessary prototypes. ***/
static int riscv_poll(struct target *target);
/*** Utility functions. ***/
static uint8_t ir_dtminfo[1] = {DTMINFO};
static struct scan_field select_dtminfo = {
.in_value = NULL,
.out_value = ir_dtminfo
};
static uint8_t ir_dbus[1] = {DBUS};
static struct scan_field select_dbus = {
.in_value = NULL,
.out_value = ir_dbus
};
static uint8_t ir_debug[1] = {0x5};
static struct scan_field select_debug = {
.in_value = NULL,
.out_value = ir_debug
};
#define DEBUG_LENGTH 264
static uint16_t dram_address(unsigned int index)
{
if (index < 0x10)
return index;
else
return 0x40 + index - 0x10;
}
static void increase_dbus_busy_delay(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
info->dbus_busy_delay++;
LOG_INFO("Increment dbus_busy_delay to %d", info->dbus_busy_delay);
}
static void increase_interrupt_high_delay(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
info->interrupt_high_delay++;
LOG_INFO("Increment interrupt_high_delay to %d", info->interrupt_high_delay);
}
static void add_dbus_scan(struct target *target, struct scan_field *field,
uint8_t *out_value, uint8_t *in_value, dbus_op_t op, uint16_t address,
uint64_t data)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
LOG_DEBUG("op=%d address=0x%02x data=0x%09" PRIx64, op, address, data);
field->num_bits = info->addrbits + DBUS_OP_SIZE + DBUS_DATA_SIZE;
field->in_value = in_value;
field->out_value = out_value;
buf_set_u64(out_value, DBUS_OP_START, DBUS_OP_SIZE, op);
buf_set_u64(out_value, DBUS_DATA_START, DBUS_DATA_SIZE, data);
buf_set_u64(out_value, DBUS_ADDRESS_START, info->addrbits, address);
jtag_add_dr_scan(target->tap, 1, field, TAP_IDLE);
// TODO: 1 should come from the dtminfo register
int idle_count = 1 + info->dbus_busy_delay;
if (data & DMCONTROL_INTERRUPT) {
idle_count += info->interrupt_high_delay;
}
jtag_add_runtest(idle_count, TAP_IDLE);
}
static dbus_status_t dbus_scan(struct target *target, uint16_t *address_in,
uint64_t *data_in, dbus_op_t op, uint16_t address_out, uint64_t data_out)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
uint8_t in[8] = {0};
uint8_t out[8];
struct scan_field field = {
.num_bits = info->addrbits + DBUS_OP_SIZE + DBUS_DATA_SIZE,
.out_value = out,
.in_value = in
};
assert(info->addrbits != 0);
buf_set_u64(out, DBUS_OP_START, DBUS_OP_SIZE, op);
buf_set_u64(out, DBUS_DATA_START, DBUS_DATA_SIZE, data_out);
buf_set_u64(out, DBUS_ADDRESS_START, info->addrbits, address_out);
/* Assume dbus is already selected. */
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
jtag_add_runtest(1, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("dbus_scan failed jtag scan");
return retval;
}
if (data_in) {
*data_in = buf_get_u64(in, DBUS_DATA_START, DBUS_DATA_SIZE);
}
if (address_in) {
*address_in = buf_get_u32(in, DBUS_ADDRESS_START, info->addrbits);
}
static const char *op_string[] = {"nop", "r", "w", "cw"};
static const char *status_string[] = {"+", "nw", "F", "b"};
/*
LOG_DEBUG("vvv $display(\"hardware: dbus scan %db %s %01x:%08x @%02x -> %s %01x:%08x @%02x\");",
field.num_bits,
op_string[buf_get_u32(out, 0, 2)],
buf_get_u32(out, 34, 2), buf_get_u32(out, 2, 32),
buf_get_u32(out, 36, info->addrbits),
status_string[buf_get_u32(in, 0, 2)],
buf_get_u32(in, 34, 2), buf_get_u32(in, 2, 32),
buf_get_u32(in, 36, info->addrbits));
*/
LOG_DEBUG("dbus scan %db %s %01x:%08x @%02x -> %s %01x:%08x @%02x",
field.num_bits,
op_string[buf_get_u32(out, 0, 2)],
buf_get_u32(out, 34, 2), buf_get_u32(out, 2, 32),
buf_get_u32(out, 36, info->addrbits),
status_string[buf_get_u32(in, 0, 2)],
buf_get_u32(in, 34, 2), buf_get_u32(in, 2, 32),
buf_get_u32(in, 36, info->addrbits));
//debug_scan(target);
return buf_get_u32(in, DBUS_OP_START, DBUS_OP_SIZE);
}
static uint64_t dbus_read(struct target *target, uint16_t address)
{
uint64_t value;
dbus_status_t status;
uint16_t address_in;
do {
do {
status = dbus_scan(target, &address_in, &value, DBUS_OP_READ, address, 0);
} while (status == DBUS_STATUS_BUSY);
} while (address_in != address);
return value;
}
static void dbus_write(struct target *target, uint16_t address, uint64_t value)
{
dbus_status_t status = DBUS_STATUS_BUSY;
while (status == DBUS_STATUS_BUSY) {
status = dbus_scan(target, NULL, NULL, DBUS_OP_WRITE, address, value);
}
if (status != DBUS_STATUS_SUCCESS) {
LOG_ERROR("dbus_write failed write 0x%" PRIx64 " to 0x%x; status=%d\n",
value, address, status);
}
}
static uint32_t dtminfo_read(struct target *target)
{
struct scan_field field;
uint8_t in[4];
jtag_add_ir_scan(target->tap, &select_dtminfo, TAP_IDLE);
field.num_bits = 32;
field.out_value = NULL;
field.in_value = in;
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("dtminfo_read failed jtag scan");
return retval;
}
/* Always return to dbus. */
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
return buf_get_u32(field.in_value, 0, 32);
}
static uint32_t dram_read32(struct target *target, unsigned int index)
{
uint16_t address = dram_address(index);
uint32_t value = dbus_read(target, address);
return value;
}
static void dram_write32(struct target *target, unsigned int index, uint32_t value,
bool set_interrupt)
{
uint64_t dbus_value = DMCONTROL_HALTNOT | value;
if (set_interrupt)
dbus_value |= DMCONTROL_INTERRUPT;
dbus_write(target, dram_address(index), dbus_value);
}
/** Read the haltnot and interrupt bits. */
static bits_t read_bits(struct target *target)
{
uint64_t value;
dbus_status_t status;
uint16_t address_in;
do {
do {
status = dbus_scan(target, &address_in, &value, DBUS_OP_READ, 0, 0);
} while (status == DBUS_STATUS_BUSY);
} while (address_in > 0x10 && address_in != DMCONTROL);
bits_t result = {
.haltnot = get_field(value, DMCONTROL_HALTNOT),
.interrupt = get_field(value, DMCONTROL_INTERRUPT)
};
return result;
}
static int wait_for_debugint_clear(struct target *target, bool ignore_first)
{
time_t start = time(NULL);
if (ignore_first) {
// Throw away the results of the first read, since they'll contain the
// result of the read that happened just before debugint was set.
// (Assuming the last scan before calling this function was one that
// sets debugint.)
read_bits(target);
}
while (1) {
bits_t bits = read_bits(target);
if (!bits.interrupt) {
return ERROR_OK;
}
if (time(NULL) - start > 2) {
LOG_ERROR("Timed out waiting for debug int to clear.");
return ERROR_FAIL;
}
}
}
static int dram_check32(struct target *target, unsigned int index,
uint32_t expected)
{
uint16_t address = dram_address(index);
uint32_t actual = dbus_read(target, address);
if (expected != actual) {
LOG_ERROR("Wrote 0x%x to Debug RAM at %d, but read back 0x%x",
expected, index, actual);
return ERROR_FAIL;
}
return ERROR_OK;
}
static void cache_set(struct target *target, unsigned int index, uint32_t data)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (info->dram_cache[index].valid &&
info->dram_cache[index].data == data) {
// This is already preset on the target.
LOG_DEBUG("Cache hit at 0x%x for data 0x%x", index, data);
return;
}
info->dram_cache[index].data = data;
info->dram_cache[index].valid = true;
info->dram_cache[index].dirty = true;
}
static void cache_set_jump(struct target *target, unsigned int index)
{
cache_set(target, index,
jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*index))));
}
static void dump_debug_ram(struct target *target)
{
for (unsigned int i = 0; i < 16; i++) {
uint32_t value = dram_read32(target, i);
LOG_ERROR("Debug RAM 0x%x: 0x%08x", i, value);
}
}
/* Call this if the code you just ran writes to debug RAM entries 0 through 3. */
static void cache_invalidate(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
for (unsigned int i = 0; i < DRAM_CACHE_SIZE; i++) {
info->dram_cache[i].valid = false;
info->dram_cache[i].dirty = false;
}
}
/* Called by cache_write() after the program has run. Also call this if you're
* running programs without calling cache_write(). */
static void cache_clean(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
for (unsigned int i = 0; i < DRAM_CACHE_SIZE; i++) {
if (i >= 4) {
info->dram_cache[i].valid = false;
} else {
info->dram_cache[i].dirty = false;
}
}
}
static int cache_check(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
int error = 0;
for (unsigned int i = 0; i < DRAM_CACHE_SIZE; i++) {
if (info->dram_cache[i].valid && !info->dram_cache[i].dirty) {
if (dram_check32(target, i, info->dram_cache[i].data) != ERROR_OK) {
error++;
}
}
}
if (error) {
dump_debug_ram(target);
return ERROR_FAIL;
}
return ERROR_OK;
}
/** Write cache to the target, and optionally run the program. */
static int cache_write(struct target *target, unsigned int address, bool run)
{
LOG_DEBUG("enter");
riscv_info_t *info = (riscv_info_t *) target->arch_info;
uint8_t in[(DRAM_CACHE_SIZE + 2) * 8] = {0};
uint8_t out[(DRAM_CACHE_SIZE + 2) * 8];
struct scan_field field[DRAM_CACHE_SIZE + 2];
unsigned int last = DRAM_CACHE_SIZE;
for (unsigned int i = 0; i < DRAM_CACHE_SIZE; i++) {
if (info->dram_cache[i].dirty) {
assert(i < info->dramsize);
last = i;
}
}
unsigned int scan = 0;
if (last == DRAM_CACHE_SIZE) {
// Nothing needs to be written to RAM.
dbus_write(target, DMCONTROL, DMCONTROL_HALTNOT | DMCONTROL_INTERRUPT);
} else {
for (unsigned int i = 0; i < DRAM_CACHE_SIZE; i++) {
if (info->dram_cache[i].dirty) {
uint64_t data = DMCONTROL_HALTNOT | info->dram_cache[i].data;
if (i == last && run) {
data |= DMCONTROL_INTERRUPT;
}
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_WRITE, i, data);
scan++;
}
}
}
// Throw away the results of the first read, since it'll contain the result
// of the read that happened just before debugint was set.
add_dbus_scan(target, &field[scan], out + 8*scan, NULL, DBUS_OP_READ,
address, DMCONTROL_HALTNOT);
scan++;
// This scan contains the results of the read the caller requested, as well
// as an interrupt bit worth looking at.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan, DBUS_OP_READ,
address, DMCONTROL_HALTNOT);
scan++;
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG execute failed.");
return retval;
}
int errors = 0;
for (unsigned int i = 0; i < scan; i++) {
dbus_status_t status = buf_get_u32(in + 8*i, DBUS_OP_START, DBUS_OP_SIZE);
switch (status) {
case DBUS_STATUS_SUCCESS:
break;
case DBUS_STATUS_NO_WRITE:
LOG_ERROR("Got no-write response to unconditional write. Hardware error?");
return ERROR_FAIL;
case DBUS_STATUS_FAILED:
LOG_ERROR("Debug RAM write failed. Hardware error?");
return ERROR_FAIL;
case DBUS_STATUS_BUSY:
errors++;
break;
}
LOG_DEBUG("read scan=%d result=%d data=%09" PRIx64 " address=%02x",
i,
buf_get_u32(in + 8*i, DBUS_OP_START, DBUS_OP_SIZE),
buf_get_u64(in + 8*i, DBUS_DATA_START, DBUS_DATA_SIZE),
buf_get_u32(in + 8*i, DBUS_ADDRESS_START, info->addrbits));
}
if (errors) {
increase_dbus_busy_delay(target);
// Try again, using the slow careful code.
for (unsigned int i = 0; i < DRAM_CACHE_SIZE; i++) {
if (i == last && run) {
dram_write32(target, last, info->dram_cache[last].data, true);
} else {
dram_write32(target, i, info->dram_cache[i].data, false);
}
info->dram_cache[i].dirty = false;
}
cache_clean(target);
if (wait_for_debugint_clear(target, true) != ERROR_OK) {
LOG_ERROR("Debug interrupt didn't clear.");
dump_debug_ram(target);
return ERROR_FAIL;
}
} else {
cache_clean(target);
int interrupt = buf_get_u32(in + 8*(scan-1), DBUS_DATA_START + 33, 1);
if (interrupt) {
increase_interrupt_high_delay(target);
// Slow path wait for it to clear.
if (wait_for_debugint_clear(target, false) != ERROR_OK) {
LOG_ERROR("Debug interrupt didn't clear.");
dump_debug_ram(target);
return ERROR_FAIL;
}
} else {
// We read a useful value in that last scan.
unsigned int read_addr = buf_get_u32(in + 8*(scan-1), DBUS_ADDRESS_START, info->addrbits);
if (read_addr != address) {
LOG_INFO("Got data from 0x%x but expected it from 0x%x",
read_addr, address);
}
info->dram_cache[read_addr].data =
buf_get_u64(in + 8*(scan-1), DBUS_DATA_START, DBUS_DATA_SIZE);
info->dram_cache[read_addr].valid = true;
}
}
LOG_DEBUG("exit");
return ERROR_OK;
}
uint32_t cache_get32(struct target *target, unsigned int address)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (!info->dram_cache[address].valid) {
info->dram_cache[address].data = dram_read32(target, address);
info->dram_cache[address].valid = true;
}
return info->dram_cache[address].data;
}
/* Write instruction that jumps from the specified word in Debug RAM to resume
* in Debug ROM. */
static void dram_write_jump(struct target *target, unsigned int index, bool set_interrupt)
{
dram_write32(target, index,
jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*index))),
set_interrupt);
}
static int wait_for_state(struct target *target, enum target_state state)
{
time_t start = time(NULL);
while (1) {
int result = riscv_poll(target);
if (result != ERROR_OK) {
return result;
}
if (target->state == state) {
return ERROR_OK;
}
if (time(NULL) - start > 2) {
LOG_ERROR("Timed out waiting for state %d.", state);
return ERROR_FAIL;
}
}
}
static int read_csr(struct target *target, uint32_t *value, uint32_t csr)
{
cache_set(target, 0, csrr(S0, csr));
cache_set(target, 1, sw(S0, ZERO, DEBUG_RAM_START + 16));
cache_set_jump(target, 2);
if (cache_write(target, 4, true) != ERROR_OK) {
return ERROR_FAIL;
}
*value = cache_get32(target, 4);
return ERROR_OK;
}
static int write_csr(struct target *target, uint32_t csr, uint32_t value)
{
cache_set(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
cache_set(target, 1, csrw(S0, csr));
cache_set_jump(target, 2);
cache_set(target, 4, value);
if (cache_write(target, 4, true) != ERROR_OK) {
return ERROR_FAIL;
}
return ERROR_OK;
}
static int write_gpr(struct target *target, unsigned int gpr, uint32_t value)
{
cache_set(target, 0, lw(gpr, ZERO, DEBUG_RAM_START + 16));
cache_set_jump(target, 1);
cache_set(target, 4, value);
if (cache_write(target, 4, true) != ERROR_OK) {
return ERROR_FAIL;
}
return ERROR_OK;
}
static int resume(struct target *target, int current, uint32_t address,
int handle_breakpoints, int debug_execution, bool step)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (!current) {
if (info->xlen > 32) {
LOG_WARNING("Asked to resume at 32-bit PC on %d-bit target.",
info->xlen);
}
LOG_ERROR("TODO: current is false");
return ERROR_FAIL;
}
if (handle_breakpoints) {
LOG_ERROR("TODO: handle_breakpoints is true");
return ERROR_FAIL;
}
if (debug_execution) {
LOG_ERROR("TODO: debug_execution is true");
return ERROR_FAIL;
}
// TODO: check if dpc is dirty (which also is true if an exception was hit
// at any time)
cache_set(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
cache_set(target, 1, csrw(S0, CSR_DPC));
cache_set_jump(target, 2);
cache_set(target, 4, info->dpc);
if (cache_write(target, 4, true) != ERROR_OK) {
return ERROR_FAIL;
}
info->dcsr |= DCSR_EBREAKM | DCSR_EBREAKH | DCSR_EBREAKS | DCSR_EBREAKU;
info->dcsr &= ~DCSR_HALT;
if (step) {
info->dcsr |= DCSR_STEP;
} else {
info->dcsr &= ~DCSR_STEP;
}
dram_write32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16), false);
dram_write32(target, 1, csrw(S0, CSR_DCSR), false);
dram_write32(target, 2, fence_i(), false);
dram_write_jump(target, 3, false);
// Write DCSR value, set interrupt and clear haltnot.
uint64_t dbus_value = DMCONTROL_INTERRUPT | info->dcsr;
dbus_write(target, dram_address(4), dbus_value);
cache_invalidate(target);
if (wait_for_debugint_clear(target, true) != ERROR_OK) {
LOG_ERROR("Debug interrupt didn't clear.");
return ERROR_FAIL;
}
target->state = TARGET_RUNNING;
for (unsigned int i = 0; i < 32; i++) {
info->gpr_cache[i] = 0xbadbad;
}
return ERROR_OK;
}
/** Update register sizes based on xlen. */
static void update_reg_list(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (info->reg_values) {
free(info->reg_values);
}
info->reg_values = malloc(REG_COUNT * info->xlen / 4);
for (unsigned int i = 0; i < REG_COUNT; i++) {
struct reg *r = &info->reg_list[i];
r->value = info->reg_values + i * info->xlen / 4;
if (r->dirty) {
LOG_ERROR("Register %d was dirty. Its value is lost.", i);
}
if (i == REG_PRIV) {
r->size = 8;
} else {
r->size = info->xlen;
}
r->valid = false;
}
}
/*** OpenOCD target functions. ***/
static int register_get(struct reg *reg)
{
struct target *target = (struct target *) reg->arch_info;
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (reg->number <= REG_XPR31) {
buf_set_u64(reg->value, 0, info->xlen, info->gpr_cache[reg->number]);
LOG_DEBUG("%s=0x%x", reg->name, info->gpr_cache[reg->number]);
return ERROR_OK;
} else if (reg->number == REG_PC) {
buf_set_u32(reg->value, 0, 32, info->dpc);
LOG_DEBUG("%s=0x%x (cached)", reg->name, info->dpc);
return ERROR_OK;
} else if (reg->number >= REG_FPR0 && reg->number <= REG_FPR31) {
cache_set(target, 0, fsw(reg->number - REG_FPR0, 0, DEBUG_RAM_START + 16));
cache_set_jump(target, 1);
} else if (reg->number >= REG_CSR0 && reg->number <= REG_CSR4095) {
cache_set(target, 0, csrr(S0, reg->number - REG_CSR0));
cache_set(target, 1, sw(S0, ZERO, DEBUG_RAM_START + 16));
cache_set_jump(target, 2);
} else if (reg->number == REG_PRIV) {
buf_set_u64(reg->value, 0, 8, get_field(info->dcsr, DCSR_PRV));
LOG_DEBUG("%s=%d (cached)", reg->name, get_field(info->dcsr, DCSR_PRV));
return ERROR_OK;
} else {
LOG_ERROR("Don't know how to read register %d (%s)", reg->number, reg->name);
return ERROR_FAIL;
}
if (cache_write(target, 4, true) != ERROR_OK) {
return ERROR_FAIL;
}
uint32_t value = cache_get32(target, 4);
if (reg->number < 32 && info->gpr_cache[reg->number] != value) {
LOG_ERROR("cached value for %s is 0x%x but just read 0x%x",
reg->name, info->gpr_cache[reg->number], value);
assert(info->gpr_cache[reg->number] == value);
}
uint32_t exception = cache_get32(target, info->dramsize-1);
if (exception) {
LOG_ERROR("Got exception 0x%x when reading register %d", exception,
reg->number);
return ERROR_FAIL;
}
LOG_DEBUG("%s=0x%x", reg->name, value);
buf_set_u32(reg->value, 0, 32, value);
return ERROR_OK;
}
static int register_write(struct target *target, unsigned int number,
uint32_t value)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (number == S0) {
cache_set(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
cache_set(target, 1, csrw(S0, CSR_DSCRATCH));
cache_set_jump(target, 2);
} else if (number == S1) {
cache_set(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
cache_set(target, 1, sw(S0, ZERO, DEBUG_RAM_START + 4 * info->dramsize - 4));
cache_set_jump(target, 2);
} else if (number <= REG_XPR31) {
cache_set(target, 0, lw(number - REG_XPR0, ZERO, DEBUG_RAM_START + 16));
cache_set_jump(target, 1);
} else if (number == REG_PC) {
info->dpc = value;
return ERROR_OK;
} else if (number >= REG_FPR0 && number <= REG_FPR31) {
cache_set(target, 0, flw(number - REG_FPR0, 0, DEBUG_RAM_START + 16));
cache_set_jump(target, 1);
} else if (number >= REG_CSR0 && number <= REG_CSR4095) {
cache_set(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
cache_set(target, 1, csrw(S0, number - REG_CSR0));
cache_set_jump(target, 2);
} else if (number == REG_PRIV) {
info->dcsr = set_field(info->dcsr, DCSR_PRV, value);
return ERROR_OK;
} else {
LOG_ERROR("Don't know how to read register %d", number);
return ERROR_FAIL;
}
cache_set(target, 4, value);
if (cache_write(target, 4, true) != ERROR_OK) {
return ERROR_FAIL;
}
return ERROR_OK;
}
static int register_set(struct reg *reg, uint8_t *buf)
{
struct target *target = (struct target *) reg->arch_info;
riscv_info_t *info = (riscv_info_t *) target->arch_info;
uint32_t value = buf_get_u32(buf, 0, 32);
LOG_DEBUG("write 0x%x to %s", value, reg->name);
if (reg->number <= REG_XPR31) {
info->gpr_cache[reg->number] = value;
}
return register_write(target, reg->number, value);
}
static struct reg_arch_type riscv_reg_arch_type = {
.get = register_get,
.set = register_set
};
static int riscv_init_target(struct command_context *cmd_ctx,
struct target *target)
{
LOG_DEBUG("riscv_init_target()");
target->arch_info = calloc(1, sizeof(riscv_info_t));
if (!target->arch_info)
return ERROR_FAIL;
riscv_info_t *info = (riscv_info_t *) target->arch_info;
select_dtminfo.num_bits = target->tap->ir_length;
select_dbus.num_bits = target->tap->ir_length;
select_debug.num_bits = target->tap->ir_length;
const unsigned int max_reg_name_len = 12;
info->reg_list = calloc(REG_COUNT, sizeof(struct reg));
info->reg_names = calloc(1, REG_COUNT * max_reg_name_len);
char *reg_name = info->reg_names;
info->reg_values = NULL;
for (unsigned int i = 0; i < REG_COUNT; i++) {
struct reg *r = &info->reg_list[i];
r->number = i;
r->caller_save = true;
r->dirty = false;
r->valid = false;
r->exist = true;
r->type = &riscv_reg_arch_type;
r->arch_info = target;
if (i <= REG_XPR31) {
sprintf(reg_name, "x%d", i);
} else if (i == REG_PC) {
sprintf(reg_name, "pc");
} else if (i >= REG_FPR0 && i <= REG_FPR31) {
sprintf(reg_name, "f%d", i - REG_FPR0);
} else if (i >= REG_CSR0 && i <= REG_CSR4095) {
sprintf(reg_name, "csr%d", i - REG_CSR0);
} else if (i == REG_PRIV) {
sprintf(reg_name, "priv");
}
if (reg_name[0]) {
r->name = reg_name;
}
reg_name += strlen(reg_name) + 1;
assert(reg_name < info->reg_names + REG_COUNT * max_reg_name_len);
}
update_reg_list(target);
memset(info->hwbp_unique_id, 0xff, sizeof(info->hwbp_unique_id));
return ERROR_OK;
}
static void riscv_deinit_target(struct target *target)
{
LOG_DEBUG("riscv_deinit_target()");
riscv_info_t *info = (riscv_info_t *) target->arch_info;
free(info);
target->arch_info = NULL;
}
static int riscv_halt(struct target *target)
{
LOG_DEBUG("riscv_halt()");
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
cache_set(target, 0, csrsi(CSR_DCSR, DCSR_HALT));
cache_set(target, 1, csrr(S0, CSR_MHARTID));
cache_set(target, 2, sw(S0, ZERO, SETHALTNOT));
cache_set_jump(target, 3);
if (cache_write(target, 4, true) != ERROR_OK) {
LOG_ERROR("cache_write() failed.");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int riscv_step(struct target *target, int current, uint32_t address,
int handle_breakpoints)
{
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
return resume(target, current, address, handle_breakpoints, 0, true);
}
static int riscv_examine(struct target *target)
{
LOG_DEBUG("riscv_examine()");
if (target_was_examined(target)) {
return ERROR_OK;
}
// Don't need to select dbus, since the first thing we do is read dtminfo.
uint32_t dtminfo = dtminfo_read(target);
LOG_DEBUG("dtminfo=0x%x", dtminfo);
LOG_DEBUG(" addrbits=%d", get_field(dtminfo, DTMINFO_ADDRBITS));
LOG_DEBUG(" version=%d", get_field(dtminfo, DTMINFO_VERSION));
// TODO: Add support for the idle field, once it's implemented in the FPGA
// image.
if (dtminfo == 0) {
LOG_ERROR("dtminfo is 0. Check JTAG connectivity/board power.");
return ERROR_FAIL;
}
if (get_field(dtminfo, DTMINFO_VERSION) != 0) {
LOG_ERROR("Unsupported DTM version %d. (dtminfo=0x%x)",
get_field(dtminfo, DTMINFO_VERSION), dtminfo);
return ERROR_FAIL;
}
riscv_info_t *info = (riscv_info_t *) target->arch_info;
info->addrbits = get_field(dtminfo, DTMINFO_ADDRBITS);
uint32_t dminfo = dbus_read(target, DMINFO);
LOG_DEBUG("dminfo: 0x%08x", dminfo);
LOG_DEBUG(" abussize=0x%x", get_field(dminfo, DMINFO_ABUSSIZE));
LOG_DEBUG(" serialcount=0x%x", get_field(dminfo, DMINFO_SERIALCOUNT));
LOG_DEBUG(" access128=%d", get_field(dminfo, DMINFO_ACCESS128));
LOG_DEBUG(" access64=%d", get_field(dminfo, DMINFO_ACCESS64));
LOG_DEBUG(" access32=%d", get_field(dminfo, DMINFO_ACCESS32));
LOG_DEBUG(" access16=%d", get_field(dminfo, DMINFO_ACCESS16));
LOG_DEBUG(" access8=%d", get_field(dminfo, DMINFO_ACCESS8));
LOG_DEBUG(" dramsize=0x%x", get_field(dminfo, DMINFO_DRAMSIZE));
LOG_DEBUG(" authenticated=0x%x", get_field(dminfo, DMINFO_AUTHENTICATED));
LOG_DEBUG(" authbusy=0x%x", get_field(dminfo, DMINFO_AUTHBUSY));
LOG_DEBUG(" authtype=0x%x", get_field(dminfo, DMINFO_AUTHTYPE));
LOG_DEBUG(" version=0x%x", get_field(dminfo, DMINFO_VERSION));
if (get_field(dminfo, DMINFO_VERSION) != 1) {
LOG_ERROR("OpenOCD only supports Debug Module version 1, not %d "
"(dminfo=0x%x)", get_field(dminfo, DMINFO_VERSION), dminfo);
return ERROR_FAIL;
}
info->dramsize = get_field(dminfo, DMINFO_DRAMSIZE) + 1;
if (get_field(dminfo, DMINFO_AUTHTYPE) != 0) {
LOG_ERROR("Authentication required by RISC-V core but not "
"supported by OpenOCD. dminfo=0x%x", dminfo);
return ERROR_FAIL;
}
// Figure out XLEN.
cache_set(target, 0, xori(S1, ZERO, -1));
// 0xffffffff 0xffffffff:ffffffff 0xffffffff:ffffffff:ffffffff:ffffffff
cache_set(target, 1, srli(S1, S1, 31));
// 0x00000001 0x00000001:ffffffff 0x00000001:ffffffff:ffffffff:ffffffff
cache_set(target, 2, sw(S1, ZERO, DEBUG_RAM_START));
cache_set(target, 3, srli(S1, S1, 31));
// 0x00000000 0x00000000:00000003 0x00000000:00000003:ffffffff:ffffffff
cache_set(target, 4, sw(S1, ZERO, DEBUG_RAM_START + 4));
cache_set_jump(target, 5);
cache_write(target, 0, false);
// Check that we can actually read/write dram.
if (cache_check(target) != ERROR_OK) {
return ERROR_FAIL;
}
cache_write(target, 0, true);
cache_invalidate(target);
uint32_t word0 = cache_get32(target, 0);
uint32_t word1 = cache_get32(target, 1);
if (word0 == 1 && word1 == 0) {
info->xlen = 32;
} else if (word0 == 0xffffffff && word1 == 3) {
info->xlen = 64;
} else if (word0 == 0xffffffff && word1 == 0xffffffff) {
info->xlen = 128;
} else {
uint32_t exception = cache_get32(target, info->dramsize-1);
LOG_ERROR("Failed to discover xlen; word0=0x%x, word1=0x%x, exception=0x%x",
word0, word1, exception);
dump_debug_ram(target);
return ERROR_FAIL;
}
LOG_DEBUG("Discovered XLEN is %d", info->xlen);
// Update register list to match discovered XLEN.
update_reg_list(target);
target_set_examined(target);
//write_constants(target);
//light_leds(target);
//dram_test(target);
//test_s1(target);
return ERROR_OK;
}
static riscv_error_t handle_halt_routine(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
const unsigned int max_scan = 256;
uint8_t *in = malloc(max_scan * 8);
uint8_t *out = malloc(max_scan * 8);
struct scan_field *field = calloc(max_scan, sizeof(struct scan_field));
unsigned int scan = 0;
// Read all GPRs as fast as we can, because gdb is going to ask for them
// anyway. Reading them one at a time is much slower.
// TODO
// Write the jump back to address 1.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_WRITE, 1, DMCONTROL_HALTNOT |
jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*1))));
scan++;
for (int reg = 1; reg < 32; reg++) {
if (reg == S0 || reg == S1) {
continue;
}
// Write store instruction.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_WRITE, 0, DMCONTROL_INTERRUPT | DMCONTROL_HALTNOT |
sw(reg, ZERO, DEBUG_RAM_START + 16));
scan++;
// Read value.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_READ, 4, DMCONTROL_HALTNOT);
scan++;
assert(scan < max_scan);
}
// Write store of s0 at index 1.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_WRITE, 1, DMCONTROL_HALTNOT |
sw(S0, ZERO, DEBUG_RAM_START + 16));
scan++;
// Write jump at index 2.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_WRITE, 2, DMCONTROL_HALTNOT |
jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*2))));
cache_set(target, 0, csrr(S0, CSR_DSCRATCH));
scan++;
// Read S1 from debug RAM
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_WRITE, 0, DMCONTROL_INTERRUPT | DMCONTROL_HALTNOT |
lw(S0, ZERO, DEBUG_RAM_START + 4 * info->dramsize - 4));
scan++;
// Read value.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_READ, 4, DMCONTROL_HALTNOT);
scan++;
// Read S0 from dscratch
unsigned int csr[] = {CSR_DSCRATCH, CSR_DPC, CSR_DCSR};
for (unsigned int i = 0; i < DIM(csr); i++) {
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_WRITE, 0, DMCONTROL_INTERRUPT | DMCONTROL_HALTNOT |
csrr(S0, csr[i]));
scan++;
// Read value.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_READ, 4, DMCONTROL_HALTNOT);
scan++;
assert(scan < max_scan);
}
// Final read to get the last value out.
add_dbus_scan(target, &field[scan], out + 8*scan, in + 8*scan,
DBUS_OP_READ, 4, DMCONTROL_HALTNOT);
scan++;
assert(scan < max_scan);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG execute failed: %d", retval);
goto error;
}
unsigned int dbus_busy = 0;
unsigned int interrupt_set = 0;
unsigned result = 0;
info->gpr_cache[0] = 0;
// The first scan result is the result from something old we don't care
// about.
for (unsigned int i = 1; i < scan && dbus_busy == 0; i++) {
dbus_status_t status = buf_get_u32(in + 8*i, DBUS_OP_START, DBUS_OP_SIZE);
uint64_t data = buf_get_u64(in + 8*i, DBUS_DATA_START, DBUS_DATA_SIZE);
uint32_t address = buf_get_u32(in + 8*i, DBUS_ADDRESS_START, info->addrbits);
LOG_DEBUG("read scan=%d result=%d data=%09" PRIx64 " address=%02x",
i, status, data, address);
switch (status) {
case DBUS_STATUS_SUCCESS:
break;
case DBUS_STATUS_NO_WRITE:
LOG_ERROR("Got no-write response without conditional write. Hardware error?");
goto error;
case DBUS_STATUS_FAILED:
LOG_ERROR("Debug access failed. Hardware error?");
goto error;
case DBUS_STATUS_BUSY:
dbus_busy++;
break;
}
if (data & DMCONTROL_INTERRUPT) {
interrupt_set++;
break;
}
if (address == 4) {
switch (result) {
case 0: info->gpr_cache[1] = data; break;
case 1: info->gpr_cache[2] = data; break;
case 2: info->gpr_cache[3] = data; break;
case 3: info->gpr_cache[4] = data; break;
case 4: info->gpr_cache[5] = data; break;
case 5: info->gpr_cache[6] = data; break;
case 6: info->gpr_cache[7] = data; break;
// S0
// S1
case 7: info->gpr_cache[10] = data; break;
case 8: info->gpr_cache[11] = data; break;
case 9: info->gpr_cache[12] = data; break;
case 10: info->gpr_cache[13] = data; break;
case 11: info->gpr_cache[14] = data; break;
case 12: info->gpr_cache[15] = data; break;
case 13: info->gpr_cache[16] = data; break;
case 14: info->gpr_cache[17] = data; break;
case 15: info->gpr_cache[18] = data; break;
case 16: info->gpr_cache[19] = data; break;
case 17: info->gpr_cache[20] = data; break;
case 18: info->gpr_cache[21] = data; break;
case 19: info->gpr_cache[22] = data; break;
case 20: info->gpr_cache[23] = data; break;
case 21: info->gpr_cache[24] = data; break;
case 22: info->gpr_cache[25] = data; break;
case 23: info->gpr_cache[26] = data; break;
case 24: info->gpr_cache[27] = data; break;
case 25: info->gpr_cache[28] = data; break;
case 26: info->gpr_cache[29] = data; break;
case 27: info->gpr_cache[30] = data; break;
case 28: info->gpr_cache[31] = data; break;
case 29: info->gpr_cache[S1] = data; break;
case 30: info->gpr_cache[S0] = data; break;
case 31: info->dpc = data; break;
case 32: info->dcsr = data; break;
default:
assert(0);
}
result++;
}
}
free(in);
free(out);
free(field);
cache_invalidate(target);
if (dbus_busy) {
increase_dbus_busy_delay(target);
return RE_AGAIN;
}
if (interrupt_set) {
increase_interrupt_high_delay(target);
return RE_AGAIN;
}
return RE_OK;
error:
free(in);
free(out);
free(field);
return RE_FAIL;
}
static int handle_halt(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
target->state = TARGET_HALTED;
riscv_error_t re;
do {
re = handle_halt_routine(target);
} while (re == RE_AGAIN);
if (re != RE_OK) {
LOG_ERROR("handle_halt_routine failed");
return ERROR_FAIL;
}
int cause = get_field(info->dcsr, DCSR_CAUSE);
LOG_DEBUG("halt cause is %d; dcsr=0x%x", cause, info->dcsr);
switch (cause) {
case DCSR_CAUSE_SWBP:
case DCSR_CAUSE_HWBP:
target->debug_reason = DBG_REASON_BREAKPOINT;
break;
case DCSR_CAUSE_DEBUGINT:
target->debug_reason = DBG_REASON_DBGRQ;
break;
case DCSR_CAUSE_STEP:
target->debug_reason = DBG_REASON_SINGLESTEP;
break;
case DCSR_CAUSE_HALT:
default:
LOG_ERROR("Invalid halt cause %d in DCSR (0x%x)",
cause, info->dcsr);
}
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
LOG_DEBUG("halted at 0x%x", info->dpc);
return ERROR_OK;
}
static int riscv_poll(struct target *target)
{
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
bits_t bits = read_bits(target);
if (bits.haltnot && bits.interrupt) {
target->state = TARGET_DEBUG_RUNNING;
LOG_DEBUG("debug running");
} else if (bits.haltnot && !bits.interrupt) {
if (target->state != TARGET_HALTED) {
return handle_halt(target);
}
} else if (!bits.haltnot && bits.interrupt) {
// Target is halting. There is no state for that, so don't change anything.
LOG_DEBUG("halting");
} else if (!bits.haltnot && !bits.interrupt) {
target->state = TARGET_RUNNING;
LOG_DEBUG("running");
}
return ERROR_OK;
}
static int riscv_resume(struct target *target, int current, uint32_t address,
int handle_breakpoints, int debug_execution)
{
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
return resume(target, current, address, handle_breakpoints,
debug_execution, false);
}
static int riscv_assert_reset(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
// TODO: Maybe what I implemented here is more like soft_reset_halt()?
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
// The only assumption we can make is that the TAP was reset.
if (wait_for_debugint_clear(target, true) != ERROR_OK) {
LOG_ERROR("Debug interrupt didn't clear.");
return ERROR_FAIL;
}
// Not sure what we should do when there are multiple cores.
// Here just reset the single hart we're talking to.
info->dcsr |= DCSR_EBREAKM | DCSR_EBREAKH | DCSR_EBREAKS |
DCSR_EBREAKU | DCSR_HALT;
if (target->reset_halt) {
info->dcsr |= DCSR_NDRESET;
} else {
info->dcsr |= DCSR_FULLRESET;
}
dram_write32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16), false);
dram_write32(target, 1, csrw(S0, CSR_DCSR), false);
// We shouldn't actually need the jump because a reset should happen.
dram_write_jump(target, 2, false);
dram_write32(target, 4, info->dcsr, true);
cache_invalidate(target);
target->state = TARGET_RESET;
return ERROR_OK;
}
static int riscv_deassert_reset(struct target *target)
{
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
if (target->reset_halt) {
return wait_for_state(target, TARGET_HALTED);
} else {
return wait_for_state(target, TARGET_RUNNING);
}
}
static int riscv_read_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
cache_set(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
switch (size) {
case 1:
cache_set(target, 1, lb(S1, S0, 0));
cache_set(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16));
break;
case 2:
cache_set(target, 1, lh(S1, S0, 0));
cache_set(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16));
break;
case 4:
cache_set(target, 1, lw(S1, S0, 0));
cache_set(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16));
break;
default:
LOG_ERROR("Unsupported size: %d", size);
return ERROR_FAIL;
}
cache_set_jump(target, 3);
cache_write(target, 4, false);
riscv_info_t *info = (riscv_info_t *) target->arch_info;
const int max_batch_size = 256;
uint8_t *in = malloc(max_batch_size * 8);
uint8_t *out = malloc(max_batch_size * 8);
struct scan_field *field = calloc(max_batch_size, sizeof(struct scan_field));
uint32_t result_value = 0x777;
uint32_t i = 0;
while (i < count + 3) {
unsigned int batch_size = MIN(count + 3 - i, max_batch_size);
for (unsigned int j = 0; j < batch_size; j++) {
if (i + j == count) {
// Just insert a read so we can scan out the last value.
add_dbus_scan(target, &field[j], out + 8*j, in + 8*j,
DBUS_OP_READ, 4, DMCONTROL_HALTNOT);
} else if (i + j >= count + 1) {
// And check for errors.
add_dbus_scan(target, &field[j], out + 8*j, in + 8*j,
DBUS_OP_READ, info->dramsize-1, DMCONTROL_HALTNOT);
} else {
// Write the next address and set interrupt.
uint32_t offset = size * (i + j);
add_dbus_scan(target, &field[j], out + 8*j, in + 8*j,
DBUS_OP_WRITE, 4,
DMCONTROL_HALTNOT | DMCONTROL_INTERRUPT | (address + offset));
}
}
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG execute failed: %d", retval);
goto error;
}
int dbus_busy = 0;
for (unsigned int j = 0; j < batch_size; j++) {
dbus_status_t status = buf_get_u32(in + 8*j, DBUS_OP_START, DBUS_OP_SIZE);
switch (status) {
case DBUS_STATUS_SUCCESS:
break;
case DBUS_STATUS_NO_WRITE:
LOG_ERROR("Got no-write status without conditional write.");
goto error;
case DBUS_STATUS_FAILED:
LOG_ERROR("Debug RAM write failed. Hardware error?");
goto error;
case DBUS_STATUS_BUSY:
dbus_busy++;
break;
}
uint64_t data = buf_get_u64(in + 8*j, DBUS_DATA_START, DBUS_DATA_SIZE);
if (i + j == count + 2) {
result_value = data;
} else if (i + j > 1) {
uint32_t offset = size * (i + j - 2);
switch (size) {
case 1:
buffer[offset] = data;
break;
case 2:
buffer[offset] = data;
buffer[offset+1] = data >> 8;
break;
case 4:
buffer[offset] = data;
buffer[offset+1] = data >> 8;
buffer[offset+2] = data >> 16;
buffer[offset+3] = data >> 24;
break;
}
}
LOG_DEBUG("j=%d status=%d data=%09" PRIx64, j, status, data);
}
if (dbus_busy) {
increase_dbus_busy_delay(target);
wait_for_debugint_clear(target, false);
// Retry.
LOG_INFO("Retrying memory read starting from 0x%x with more delays", address + size * i);
} else {
i += batch_size;
}
}
if (result_value != 0) {
LOG_ERROR("Core got an exception (0x%x) while reading from 0x%x",
result_value, address + size * (count-1));
if (count > 1) {
LOG_ERROR("(It may have failed between 0x%x and 0x%x as well, but we "
"didn't check then.)",
address, address + size * (count-2) + size - 1);
}
goto error;
}
free(in);
free(out);
free(field);
cache_clean(target);
return ERROR_OK;
error:
free(in);
free(out);
free(field);
cache_clean(target);
return ERROR_FAIL;
}
static int setup_write_memory(struct target *target, uint32_t size)
{
switch (size) {
case 1:
cache_set(target, 0, lb(S0, ZERO, DEBUG_RAM_START + 16));
cache_set(target, 1, sb(S0, T0, 0));
break;
case 2:
cache_set(target, 0, lh(S0, ZERO, DEBUG_RAM_START + 16));
cache_set(target, 1, sh(S0, T0, 0));
break;
case 4:
cache_set(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
cache_set(target, 1, sw(S0, T0, 0));
break;
default:
LOG_ERROR("Unsupported size: %d", size);
return ERROR_FAIL;
}
cache_set(target, 2, addi(T0, T0, size));
cache_set_jump(target, 3);
cache_write(target, 4, false);
return ERROR_OK;
}
static int riscv_write_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
// Set up the address.
cache_set(target, 0, sw(T0, ZERO, DEBUG_RAM_START + 20));
cache_set(target, 1, lw(T0, ZERO, DEBUG_RAM_START + 16));
cache_set_jump(target, 2);
cache_set(target, 4, address);
if (cache_write(target, 5, true) != ERROR_OK) {
return ERROR_FAIL;
}
uint32_t t0 = cache_get32(target, 5);
if (setup_write_memory(target, size) != ERROR_OK) {
return ERROR_FAIL;
}
const int max_batch_size = 256;
uint8_t *in = malloc(max_batch_size * 8);
uint8_t *out = malloc(max_batch_size * 8);
struct scan_field *field = calloc(max_batch_size, sizeof(struct scan_field));
uint32_t result_value = 0x777;
uint32_t i = 0;
while (i < count + 2) {
unsigned int batch_size = MIN(count + 2 - i, max_batch_size);
for (unsigned int j = 0; j < batch_size; j++) {
if (i + j >= count) {
// Check for an exception.
add_dbus_scan(target, &field[j], out + 8*j, in + 8*j,
DBUS_OP_READ, info->dramsize-1, DMCONTROL_HALTNOT | 0);
} else {
// Write the next value and set interrupt.
uint32_t value;
uint32_t offset = size * (i + j);
switch (size) {
case 1:
value = buffer[offset];
break;
case 2:
value = buffer[offset] |
(buffer[offset+1] << 8);
break;
case 4:
value = buffer[offset] |
((uint32_t) buffer[offset+1] << 8) |
((uint32_t) buffer[offset+2] << 16) |
((uint32_t) buffer[offset+3] << 24);
break;
default:
goto error;
}
add_dbus_scan(target, &field[j], out + 8*j, in + 8*j,
DBUS_OP_CONDITIONAL_WRITE, 4, DMCONTROL_HALTNOT | DMCONTROL_INTERRUPT | value);
}
}
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG execute failed: %d", retval);
goto error;
}
int dbus_busy = 0;
int execute_busy = 0;
for (unsigned int j = 0; j < batch_size; j++) {
dbus_status_t status = buf_get_u32(in + 8*j, DBUS_OP_START,
DBUS_OP_SIZE);
switch (status) {
case DBUS_STATUS_SUCCESS:
break;
case DBUS_STATUS_NO_WRITE:
execute_busy++;
break;
case DBUS_STATUS_FAILED:
LOG_ERROR("Debug RAM write failed. Hardware error?");
goto error;
case DBUS_STATUS_BUSY:
dbus_busy++;
break;
}
uint64_t data = buf_get_u64(in + 8*j, DBUS_DATA_START, DBUS_DATA_SIZE);
if (i + j == count + 1) {
result_value = data;
}
LOG_DEBUG("j=%d status=%d data=%09" PRIx64, j, status, data);
}
if (dbus_busy) {
increase_dbus_busy_delay(target);
}
if (execute_busy) {
increase_interrupt_high_delay(target);
}
if (dbus_busy || execute_busy) {
wait_for_debugint_clear(target, false);
// Retry.
// Set t0 back to what it should have been at the beginning of this
// batch.
LOG_INFO("Retrying memory write starting from 0x%x with more delays", address + size * i);
cache_clean(target);
if (write_gpr(target, T0, address + size * i) != ERROR_OK) {
goto error;
}
if (setup_write_memory(target, size) != ERROR_OK) {
goto error;
}
} else {
i += batch_size;
}
}
if (result_value != 0) {
LOG_ERROR("Core got an exception (0x%x) while writing to 0x%x",
result_value, address + size * (count-1));
if (count > 1) {
LOG_ERROR("(It may have failed between 0x%x and 0x%x as well, but we "
"didn't check then.)",
address, address + size * (count-2) + size - 1);
}
goto error;
}
free(in);
free(out);
free(field);
cache_clean(target);
return register_write(target, T0, t0);
error:
free(in);
free(out);
free(field);
cache_clean(target);
return ERROR_FAIL;
}
static int riscv_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
LOG_DEBUG("reg_class=%d", reg_class);
switch (reg_class) {
case REG_CLASS_GENERAL:
*reg_list_size = 32;
break;
case REG_CLASS_ALL:
*reg_list_size = REG_COUNT;
break;
default:
LOG_ERROR("Unsupported reg_class: %d", reg_class);
return ERROR_FAIL;
}
*reg_list = calloc(*reg_list_size, sizeof(struct reg *));
if (!*reg_list) {
return ERROR_FAIL;
}
for (int i = 0; i < *reg_list_size; i++) {
(*reg_list)[i] = &info->reg_list[i];
}
return ERROR_OK;
}
int riscv_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (breakpoint->type == BKPT_SOFT) {
if (target_read_memory(target, breakpoint->address, breakpoint->length, 1,
breakpoint->orig_instr) != ERROR_OK) {
LOG_ERROR("Failed to read original instruction at 0x%x",
breakpoint->address);
return ERROR_FAIL;
}
int retval;
if (breakpoint->length == 4) {
retval = target_write_u32(target, breakpoint->address, ebreak());
} else {
retval = target_write_u16(target, breakpoint->address, ebreak_c());
}
if (retval != ERROR_OK) {
LOG_ERROR("Failed to write %d-byte breakpoint instruction at 0x%x",
breakpoint->length, breakpoint->address);
return ERROR_FAIL;
}
} else if (breakpoint->type == BKPT_HARD) {
int i;
uint32_t tdrdata1;
uint32_t tdrselect, tdrselect_rb;
for (i = 0; i < MAX_HWBPS; i++) {
if (info->hwbp_unique_id[i] == ~0U) {
// TODO 0x80000000 is a hack until the core supports proper
// debug hwbps.
tdrselect = 0x80000000 | i;
write_csr(target, CSR_TDRSELECT, tdrselect);
read_csr(target, &tdrselect_rb, CSR_TDRSELECT);
if (tdrselect_rb != tdrselect) {
// We've run out of breakpoints.
LOG_ERROR("Couldn't find an available hardware breakpoint. "
"(0x%x != 0x%x)", tdrselect, tdrselect_rb);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
read_csr(target, &tdrdata1, CSR_TDRDATA1);
if ((tdrdata1 >> (info->xlen - 4)) == 1) {
break;
}
}
}
if (i >= MAX_HWBPS) {
LOG_ERROR("Couldn't find an available hardware breakpoint.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
LOG_DEBUG("Start using resource %d for bp %d", i, breakpoint->unique_id);
tdrdata1 |= CSR_BPCONTROL_X;
tdrdata1 |= CSR_BPCONTROL_U;
tdrdata1 |= CSR_BPCONTROL_S;
tdrdata1 |= CSR_BPCONTROL_H;
tdrdata1 |= CSR_BPCONTROL_M;
write_csr(target, CSR_TDRDATA1, tdrdata1);
write_csr(target, CSR_TDRDATA2, breakpoint->address);
uint32_t tdrdata1_rb;
read_csr(target, &tdrdata1_rb, CSR_TDRDATA1);
LOG_DEBUG("tdrdata1=0x%x", tdrdata1_rb);
if (!(tdrdata1_rb & CSR_BPCONTROL_X)) {
LOG_ERROR("Breakpoint %d doesn't support execute", i);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
info->hwbp_unique_id[i] = breakpoint->unique_id;
} else {
LOG_INFO("OpenOCD only supports hardware and software breakpoints.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
breakpoint->set = true;
return ERROR_OK;
}
static int riscv_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (breakpoint->type == BKPT_SOFT) {
if (target_write_memory(target, breakpoint->address, breakpoint->length, 1,
breakpoint->orig_instr) != ERROR_OK) {
LOG_ERROR("Failed to restore instruction for %d-byte breakpoint at 0x%x",
breakpoint->length, breakpoint->address);
return ERROR_FAIL;
}
} else if (breakpoint->type == BKPT_HARD) {
int i;
for (i = 0; i < MAX_HWBPS; i++) {
if (info->hwbp_unique_id[i] == breakpoint->unique_id) {
break;
}
}
if (i >= MAX_HWBPS) {
LOG_ERROR("Couldn't find the hardware resources used by hardware breakpoint.");
return ERROR_FAIL;
}
LOG_DEBUG("Stop using resource %d for bp %d", i, breakpoint->unique_id);
write_csr(target, CSR_TDRSELECT, 0x80000000 | i);
write_csr(target, CSR_TDRDATA1, 0);
info->hwbp_unique_id[i] = ~0U;
} else {
LOG_INFO("OpenOCD only supports hardware and software breakpoints.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
breakpoint->set = false;
return ERROR_OK;
}
int riscv_arch_state(struct target *target)
{
return ERROR_OK;
}
struct target_type riscv_target =
{
.name = "riscv",
.init_target = riscv_init_target,
.deinit_target = riscv_deinit_target,
.examine = riscv_examine,
/* poll current target status */
.poll = riscv_poll,
.halt = riscv_halt,
.resume = riscv_resume,
.step = riscv_step,
.assert_reset = riscv_assert_reset,
.deassert_reset = riscv_deassert_reset,
.read_memory = riscv_read_memory,
.write_memory = riscv_write_memory,
.get_gdb_reg_list = riscv_get_gdb_reg_list,
.add_breakpoint = riscv_add_breakpoint,
.remove_breakpoint = riscv_remove_breakpoint,
.arch_state = riscv_arch_state,
};