1847 lines
50 KiB
C
1847 lines
50 KiB
C
/***************************************************************************
|
||
* Copyright (C) 2005 by Dominic Rath *
|
||
* Dominic.Rath@gmx.de *
|
||
* *
|
||
* Copyright (C) 2008 by Spencer Oliver *
|
||
* spen@spen-soft.co.uk *
|
||
* *
|
||
* Copyright (C) 2011 Øyvind Harboe *
|
||
* oyvind.harboe@zylin.com *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License for more details. *
|
||
* *
|
||
* You should have received a copy of the GNU General Public License *
|
||
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
||
***************************************************************************/
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
#include "config.h"
|
||
#endif
|
||
|
||
#include "imp.h"
|
||
#include <helper/binarybuffer.h>
|
||
#include <target/algorithm.h>
|
||
#include <target/armv7m.h>
|
||
|
||
/* Regarding performance:
|
||
*
|
||
* Short story - it might be best to leave the performance at
|
||
* current levels.
|
||
*
|
||
* You may see a jump in speed if you change to using
|
||
* 32bit words for the block programming.
|
||
*
|
||
* Its a shame you cannot use the double word as its
|
||
* even faster - but you require external VPP for that mode.
|
||
*
|
||
* Having said all that 16bit writes give us the widest vdd
|
||
* operating range, so may be worth adding a note to that effect.
|
||
*
|
||
*/
|
||
|
||
/* Danger!!!! The STM32F1x and STM32F2x series actually have
|
||
* quite different flash controllers.
|
||
*
|
||
* What's more scary is that the names of the registers and their
|
||
* addresses are the same, but the actual bits and what they do are
|
||
* can be very different.
|
||
*
|
||
* To reduce testing complexity and dangers of regressions,
|
||
* a seperate file is used for stm32fx2x.
|
||
*
|
||
* Sector sizes in kiBytes:
|
||
* 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
|
||
* 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
|
||
* 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
|
||
* 1 MiByte STM32F42x/43x part with DB1M Option set:
|
||
* 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
|
||
*
|
||
* STM32F7[2|3]
|
||
* 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
|
||
*
|
||
* STM32F7[4|5]
|
||
* 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
|
||
*
|
||
* STM32F7[6|7]
|
||
* 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
|
||
* 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
|
||
* 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
|
||
* 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
|
||
*
|
||
* Protection size is sector size.
|
||
*
|
||
* Tested with STM3220F-EVAL board.
|
||
*
|
||
* STM32F4xx series for reference.
|
||
*
|
||
* RM0090
|
||
* http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
|
||
*
|
||
* PM0059
|
||
* www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
|
||
* PROGRAMMING_MANUAL/CD00233952.pdf
|
||
*
|
||
* STM32F7xx series for reference.
|
||
*
|
||
* RM0385
|
||
* http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
|
||
*
|
||
* RM0410
|
||
* http://www.st.com/resource/en/reference_manual/dm00224583.pdf
|
||
*
|
||
* RM0430
|
||
* http://www.st.com/resource/en/reference_manual/dm00305666.pdf
|
||
*
|
||
* RM0431
|
||
* http://www.st.com/resource/en/reference_manual/dm00305990.pdf
|
||
*
|
||
* STM32F1x series - notice that this code was copy, pasted and knocked
|
||
* into a stm32f2x driver, so in case something has been converted or
|
||
* bugs haven't been fixed, here are the original manuals:
|
||
*
|
||
* RM0008 - Reference manual
|
||
*
|
||
* RM0042, the Flash programming manual for low-, medium- high-density and
|
||
* connectivity line STM32F10x devices
|
||
*
|
||
* PM0068, the Flash programming manual for XL-density STM32F10x devices.
|
||
*
|
||
*/
|
||
|
||
/* Erase time can be as high as 1000ms, 10x this and it's toast... */
|
||
#define FLASH_ERASE_TIMEOUT 10000
|
||
#define FLASH_WRITE_TIMEOUT 5
|
||
|
||
/* Mass erase time can be as high as 32 s in x8 mode. */
|
||
#define FLASH_MASS_ERASE_TIMEOUT 33000
|
||
|
||
#define FLASH_BANK_BASE 0x80000000
|
||
|
||
#define STM32F2_OTP_SIZE 512
|
||
#define STM32F2_OTP_SECTOR_SIZE 32
|
||
#define STM32F2_OTP_BANK_BASE 0x1fff7800
|
||
#define STM32F2_OTP_LOCK_BASE ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
|
||
|
||
/* see RM0410 section 3.6 "One-time programmable bytes" */
|
||
#define STM32F7_OTP_SECTOR_SIZE 64
|
||
#define STM32F7_OTP_SIZE 1024
|
||
#define STM32F7_OTP_BANK_BASE 0x1ff0f000
|
||
#define STM32F7_OTP_LOCK_BASE ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
|
||
|
||
#define STM32_FLASH_BASE 0x40023c00
|
||
#define STM32_FLASH_ACR 0x40023c00
|
||
#define STM32_FLASH_KEYR 0x40023c04
|
||
#define STM32_FLASH_OPTKEYR 0x40023c08
|
||
#define STM32_FLASH_SR 0x40023c0C
|
||
#define STM32_FLASH_CR 0x40023c10
|
||
#define STM32_FLASH_OPTCR 0x40023c14
|
||
#define STM32_FLASH_OPTCR1 0x40023c18
|
||
#define STM32_FLASH_OPTCR2 0x40023c1c
|
||
|
||
/* FLASH_CR register bits */
|
||
#define FLASH_PG (1 << 0)
|
||
#define FLASH_SER (1 << 1)
|
||
#define FLASH_MER (1 << 2) /* MER/MER1 for f76x/77x */
|
||
#define FLASH_MER1 (1 << 15) /* MER2 for f76x/77x, confusing ... */
|
||
#define FLASH_STRT (1 << 16)
|
||
#define FLASH_PSIZE_8 (0 << 8)
|
||
#define FLASH_PSIZE_16 (1 << 8)
|
||
#define FLASH_PSIZE_32 (2 << 8)
|
||
#define FLASH_PSIZE_64 (3 << 8)
|
||
/* The sector number encoding is not straight binary for dual bank flash. */
|
||
#define FLASH_SNB(a) ((a) << 3)
|
||
#define FLASH_LOCK (1 << 31)
|
||
|
||
/* FLASH_SR register bits */
|
||
#define FLASH_BSY (1 << 16)
|
||
#define FLASH_PGSERR (1 << 7) /* Programming sequence error */
|
||
#define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
|
||
#define FLASH_PGAERR (1 << 5) /* Programming alignment error */
|
||
#define FLASH_WRPERR (1 << 4) /* Write protection error */
|
||
#define FLASH_OPERR (1 << 1) /* Operation error */
|
||
|
||
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
|
||
|
||
/* STM32_FLASH_OPTCR register bits */
|
||
#define OPTCR_LOCK (1 << 0)
|
||
#define OPTCR_START (1 << 1)
|
||
#define OPTCR_NDBANK (1 << 29) /* not dual bank mode */
|
||
#define OPTCR_DB1M (1 << 30) /* 1 MiB devices dual flash bank option */
|
||
#define OPTCR_SPRMOD (1 << 31) /* switches PCROPi/nWPRi interpretation */
|
||
|
||
/* STM32_FLASH_OPTCR2 register bits */
|
||
#define OPTCR2_PCROP_RDP (1 << 31) /* erase PCROP zone when decreasing RDP */
|
||
|
||
/* register unlock keys */
|
||
#define KEY1 0x45670123
|
||
#define KEY2 0xCDEF89AB
|
||
|
||
/* option register unlock key */
|
||
#define OPTKEY1 0x08192A3B
|
||
#define OPTKEY2 0x4C5D6E7F
|
||
|
||
struct stm32x_options {
|
||
uint8_t RDP;
|
||
uint16_t user_options; /* bit 0-7 usual options, bit 8-11 extra options */
|
||
uint32_t protection;
|
||
uint32_t boot_addr;
|
||
uint32_t optcr2_pcrop;
|
||
};
|
||
|
||
struct stm32x_flash_bank {
|
||
struct stm32x_options option_bytes;
|
||
bool probed;
|
||
bool otp_unlocked;
|
||
bool has_large_mem; /* F42x/43x/469/479/7xx in dual bank mode */
|
||
bool has_extra_options; /* F42x/43x/469/479/7xx */
|
||
bool has_boot_addr; /* F7xx */
|
||
bool has_optcr2_pcrop; /* F72x/73x */
|
||
int protection_bits; /* F413/423 */
|
||
uint32_t user_bank_size;
|
||
};
|
||
|
||
static bool stm32x_is_otp(struct flash_bank *bank)
|
||
{
|
||
return bank->base == STM32F2_OTP_BANK_BASE ||
|
||
bank->base == STM32F7_OTP_BANK_BASE;
|
||
}
|
||
|
||
static bool stm32x_otp_is_f7(struct flash_bank *bank)
|
||
{
|
||
return bank->base == STM32F7_OTP_BANK_BASE;
|
||
}
|
||
|
||
static int stm32x_is_otp_unlocked(struct flash_bank *bank)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
|
||
return stm32x_info->otp_unlocked;
|
||
}
|
||
|
||
static int stm32x_otp_disable(struct flash_bank *bank)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
|
||
LOG_INFO("OTP memory bank #%d is disabled for write commands.",
|
||
bank->bank_number);
|
||
stm32x_info->otp_unlocked = false;
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_otp_enable(struct flash_bank *bank)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
|
||
if (!stm32x_info->otp_unlocked) {
|
||
LOG_INFO("OTP memory bank #%d is is enabled for write commands.",
|
||
bank->bank_number);
|
||
stm32x_info->otp_unlocked = true;
|
||
} else {
|
||
LOG_WARNING("OTP memory bank #%d is is already enabled for write commands.",
|
||
bank->bank_number);
|
||
}
|
||
return ERROR_OK;
|
||
}
|
||
|
||
/* flash bank stm32x <base> <size> 0 0 <target#>
|
||
*/
|
||
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info;
|
||
|
||
if (CMD_ARGC < 6)
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
|
||
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
|
||
bank->driver_priv = stm32x_info;
|
||
|
||
stm32x_info->probed = false;
|
||
stm32x_info->otp_unlocked = false;
|
||
stm32x_info->user_bank_size = bank->size;
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
|
||
{
|
||
return reg;
|
||
}
|
||
|
||
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
|
||
{
|
||
struct target *target = bank->target;
|
||
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
|
||
}
|
||
|
||
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
|
||
{
|
||
struct target *target = bank->target;
|
||
uint32_t status;
|
||
int retval = ERROR_OK;
|
||
|
||
/* wait for busy to clear */
|
||
for (;;) {
|
||
retval = stm32x_get_flash_status(bank, &status);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
LOG_DEBUG("status: 0x%" PRIx32 "", status);
|
||
if ((status & FLASH_BSY) == 0)
|
||
break;
|
||
if (timeout-- <= 0) {
|
||
LOG_ERROR("timed out waiting for flash");
|
||
return ERROR_FAIL;
|
||
}
|
||
alive_sleep(1);
|
||
}
|
||
|
||
|
||
if (status & FLASH_WRPERR) {
|
||
LOG_ERROR("stm32x device protected");
|
||
retval = ERROR_FAIL;
|
||
}
|
||
|
||
/* Clear but report errors */
|
||
if (status & FLASH_ERROR) {
|
||
if (retval == ERROR_OK)
|
||
retval = ERROR_FAIL;
|
||
/* If this operation fails, we ignore it and report the original
|
||
* retval
|
||
*/
|
||
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
|
||
status & FLASH_ERROR);
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
static int stm32x_unlock_reg(struct target *target)
|
||
{
|
||
uint32_t ctrl;
|
||
|
||
/* first check if not already unlocked
|
||
* otherwise writing on STM32_FLASH_KEYR will fail
|
||
*/
|
||
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
if ((ctrl & FLASH_LOCK) == 0)
|
||
return ERROR_OK;
|
||
|
||
/* unlock flash registers */
|
||
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
if (ctrl & FLASH_LOCK) {
|
||
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
|
||
return ERROR_TARGET_FAILURE;
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_unlock_option_reg(struct target *target)
|
||
{
|
||
uint32_t ctrl;
|
||
|
||
int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
if ((ctrl & OPTCR_LOCK) == 0)
|
||
return ERROR_OK;
|
||
|
||
/* unlock option registers */
|
||
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
if (ctrl & OPTCR_LOCK) {
|
||
LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
|
||
return ERROR_TARGET_FAILURE;
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_read_options(struct flash_bank *bank)
|
||
{
|
||
uint32_t optiondata;
|
||
struct stm32x_flash_bank *stm32x_info = NULL;
|
||
struct target *target = bank->target;
|
||
|
||
stm32x_info = bank->driver_priv;
|
||
|
||
/* read current option bytes */
|
||
int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* caution: F2 implements 5 bits (WDG_SW only)
|
||
* whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
|
||
stm32x_info->option_bytes.user_options = optiondata & 0xfc;
|
||
stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
|
||
stm32x_info->option_bytes.protection =
|
||
(optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
|
||
|
||
if (stm32x_info->has_extra_options) {
|
||
/* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
|
||
stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
|
||
((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
|
||
}
|
||
|
||
if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
|
||
retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* FLASH_OPTCR1 has quite diffent meanings ... */
|
||
if (stm32x_info->has_boot_addr) {
|
||
/* for F7xx it contains boot0 and boot1 */
|
||
stm32x_info->option_bytes.boot_addr = optiondata;
|
||
} else {
|
||
/* for F42x/43x/469/479 it contains 12 additional protection bits */
|
||
stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
|
||
}
|
||
}
|
||
|
||
if (stm32x_info->has_optcr2_pcrop) {
|
||
retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
stm32x_info->option_bytes.optcr2_pcrop = optiondata;
|
||
if (stm32x_info->has_optcr2_pcrop &&
|
||
(stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
|
||
LOG_INFO("PCROP Engaged");
|
||
}
|
||
} else {
|
||
stm32x_info->option_bytes.optcr2_pcrop = 0x0;
|
||
}
|
||
|
||
if (stm32x_info->option_bytes.RDP != 0xAA)
|
||
LOG_INFO("Device Security Bit Set");
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_write_options(struct flash_bank *bank)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info = NULL;
|
||
struct target *target = bank->target;
|
||
uint32_t optiondata, optiondata2;
|
||
|
||
stm32x_info = bank->driver_priv;
|
||
|
||
int retval = stm32x_unlock_option_reg(target);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* rebuild option data */
|
||
optiondata = stm32x_info->option_bytes.user_options & 0xfc;
|
||
optiondata |= stm32x_info->option_bytes.RDP << 8;
|
||
optiondata |= (stm32x_info->option_bytes.protection &
|
||
(~(0xffff << stm32x_info->protection_bits))) << 16;
|
||
|
||
if (stm32x_info->has_extra_options) {
|
||
/* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
|
||
optiondata |= (stm32x_info->option_bytes.user_options &
|
||
((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
|
||
}
|
||
|
||
if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
|
||
if (stm32x_info->has_boot_addr) {
|
||
/* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
|
||
optiondata2 = stm32x_info->option_bytes.boot_addr;
|
||
} else {
|
||
/* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
|
||
optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
|
||
}
|
||
|
||
retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
}
|
||
|
||
/* program extra pcrop register */
|
||
if (stm32x_info->has_optcr2_pcrop) {
|
||
retval = target_write_u32(target, STM32_FLASH_OPTCR2,
|
||
stm32x_info->option_bytes.optcr2_pcrop);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
}
|
||
|
||
/* program options */
|
||
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* start programming cycle */
|
||
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* wait for completion, this might trigger a security erase and take a while */
|
||
retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* relock registers */
|
||
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_otp_read_protect(struct flash_bank *bank)
|
||
{
|
||
struct target *target = bank->target;
|
||
uint32_t lock_base;
|
||
int i, retval;
|
||
uint8_t lock;
|
||
|
||
lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
|
||
: STM32F2_OTP_LOCK_BASE;
|
||
|
||
for (i = 0; i < bank->num_sectors; i++) {
|
||
retval = target_read_u8(target, lock_base + i, &lock);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
bank->sectors[i].is_protected = !lock;
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_otp_protect(struct flash_bank *bank, int first, int last)
|
||
{
|
||
struct target *target = bank->target;
|
||
uint32_t lock_base;
|
||
int i, retval;
|
||
uint8_t lock;
|
||
|
||
assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
|
||
|
||
lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
|
||
: STM32F2_OTP_LOCK_BASE;
|
||
|
||
for (i = first; first <= last; i++) {
|
||
retval = target_read_u8(target, lock_base + i, &lock);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
if (lock)
|
||
continue;
|
||
|
||
lock = 0xff;
|
||
retval = target_write_u8(target, lock_base + i, lock);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_protect_check(struct flash_bank *bank)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
struct flash_sector *prot_blocks;
|
||
int num_prot_blocks;
|
||
int retval;
|
||
|
||
/* if it's the OTP bank, look at the lock bits there */
|
||
if (stm32x_is_otp(bank))
|
||
return stm32x_otp_read_protect(bank);
|
||
|
||
/* read write protection settings */
|
||
retval = stm32x_read_options(bank);
|
||
if (retval != ERROR_OK) {
|
||
LOG_DEBUG("unable to read option bytes");
|
||
return retval;
|
||
}
|
||
|
||
if (bank->prot_blocks) {
|
||
num_prot_blocks = bank->num_prot_blocks;
|
||
prot_blocks = bank->prot_blocks;
|
||
} else {
|
||
num_prot_blocks = bank->num_sectors;
|
||
prot_blocks = bank->sectors;
|
||
}
|
||
|
||
for (int i = 0; i < num_prot_blocks; i++)
|
||
prot_blocks[i].is_protected =
|
||
~(stm32x_info->option_bytes.protection >> i) & 1;
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_erase(struct flash_bank *bank, int first, int last)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
struct target *target = bank->target;
|
||
int i;
|
||
|
||
if (stm32x_is_otp(bank)) {
|
||
LOG_ERROR("Cannot erase OTP memory");
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
|
||
|
||
if (bank->target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
int retval;
|
||
retval = stm32x_unlock_reg(target);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/*
|
||
Sector Erase
|
||
To erase a sector, follow the procedure below:
|
||
1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
|
||
FLASH_SR register
|
||
2. Set the SER bit and select the sector
|
||
you wish to erase (SNB) in the FLASH_CR register
|
||
3. Set the STRT bit in the FLASH_CR register
|
||
4. Wait for the BSY bit to be cleared
|
||
*/
|
||
|
||
for (i = first; i <= last; i++) {
|
||
unsigned int snb;
|
||
if (stm32x_info->has_large_mem && i >= 12)
|
||
snb = (i - 12) | 0x10;
|
||
else
|
||
snb = i;
|
||
|
||
retval = target_write_u32(target,
|
||
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
bank->sectors[i].is_erased = 1;
|
||
}
|
||
|
||
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
|
||
{
|
||
struct target *target = bank->target;
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
if (stm32x_is_otp(bank)) {
|
||
if (!set)
|
||
return ERROR_COMMAND_ARGUMENT_INVALID;
|
||
|
||
return stm32x_otp_protect(bank, first, last);
|
||
}
|
||
|
||
/* read protection settings */
|
||
int retval = stm32x_read_options(bank);
|
||
if (retval != ERROR_OK) {
|
||
LOG_DEBUG("unable to read option bytes");
|
||
return retval;
|
||
}
|
||
|
||
for (int i = first; i <= last; i++) {
|
||
if (set)
|
||
stm32x_info->option_bytes.protection &= ~(1 << i);
|
||
else
|
||
stm32x_info->option_bytes.protection |= (1 << i);
|
||
}
|
||
|
||
retval = stm32x_write_options(bank);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
|
||
uint32_t offset, uint32_t count)
|
||
{
|
||
struct target *target = bank->target;
|
||
uint32_t buffer_size = 16384;
|
||
struct working_area *write_algorithm;
|
||
struct working_area *source;
|
||
uint32_t address = bank->base + offset;
|
||
struct reg_param reg_params[5];
|
||
struct armv7m_algorithm armv7m_info;
|
||
int retval = ERROR_OK;
|
||
|
||
static const uint8_t stm32x_flash_write_code[] = {
|
||
#include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
|
||
};
|
||
|
||
if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
|
||
LOG_ERROR("OTP memory bank is disabled for write commands.");
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
|
||
&write_algorithm) != ERROR_OK) {
|
||
LOG_WARNING("no working area available, can't do block memory writes");
|
||
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
||
}
|
||
|
||
retval = target_write_buffer(target, write_algorithm->address,
|
||
sizeof(stm32x_flash_write_code),
|
||
stm32x_flash_write_code);
|
||
if (retval != ERROR_OK) {
|
||
target_free_working_area(target, write_algorithm);
|
||
return retval;
|
||
}
|
||
|
||
/* memory buffer */
|
||
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
|
||
buffer_size /= 2;
|
||
if (buffer_size <= 256) {
|
||
/* we already allocated the writing code, but failed to get a
|
||
* buffer, free the algorithm */
|
||
target_free_working_area(target, write_algorithm);
|
||
|
||
LOG_WARNING("no large enough working area available, can't do block memory writes");
|
||
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
||
}
|
||
}
|
||
|
||
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
|
||
armv7m_info.core_mode = ARM_MODE_THREAD;
|
||
|
||
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
|
||
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */
|
||
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */
|
||
init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
|
||
init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* flash base */
|
||
|
||
buf_set_u32(reg_params[0].value, 0, 32, source->address);
|
||
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
|
||
buf_set_u32(reg_params[2].value, 0, 32, address);
|
||
buf_set_u32(reg_params[3].value, 0, 32, count);
|
||
buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
|
||
|
||
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
|
||
0, NULL,
|
||
5, reg_params,
|
||
source->address, source->size,
|
||
write_algorithm->address, 0,
|
||
&armv7m_info);
|
||
|
||
if (retval == ERROR_FLASH_OPERATION_FAILED) {
|
||
LOG_ERROR("error executing stm32x flash write algorithm");
|
||
|
||
uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
|
||
|
||
if (error & FLASH_WRPERR)
|
||
LOG_ERROR("flash memory write protected");
|
||
|
||
if (error != 0) {
|
||
LOG_ERROR("flash write failed = %08" PRIx32, error);
|
||
/* Clear but report errors */
|
||
target_write_u32(target, STM32_FLASH_SR, error);
|
||
retval = ERROR_FAIL;
|
||
}
|
||
}
|
||
|
||
target_free_working_area(target, source);
|
||
target_free_working_area(target, write_algorithm);
|
||
|
||
destroy_reg_param(®_params[0]);
|
||
destroy_reg_param(®_params[1]);
|
||
destroy_reg_param(®_params[2]);
|
||
destroy_reg_param(®_params[3]);
|
||
destroy_reg_param(®_params[4]);
|
||
|
||
return retval;
|
||
}
|
||
|
||
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
|
||
uint32_t offset, uint32_t count)
|
||
{
|
||
struct target *target = bank->target;
|
||
uint32_t words_remaining = (count / 2);
|
||
uint32_t bytes_remaining = (count & 0x00000001);
|
||
uint32_t address = bank->base + offset;
|
||
uint32_t bytes_written = 0;
|
||
int retval;
|
||
|
||
if (bank->target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
if (offset & 0x1) {
|
||
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
|
||
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
|
||
}
|
||
|
||
retval = stm32x_unlock_reg(target);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* multiple half words (2-byte) to be programmed? */
|
||
if (words_remaining > 0) {
|
||
/* try using a block write */
|
||
retval = stm32x_write_block(bank, buffer, offset, words_remaining);
|
||
if (retval != ERROR_OK) {
|
||
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
|
||
/* if block write failed (no sufficient working area),
|
||
* we use normal (slow) single dword accesses */
|
||
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
|
||
}
|
||
} else {
|
||
buffer += words_remaining * 2;
|
||
address += words_remaining * 2;
|
||
words_remaining = 0;
|
||
}
|
||
}
|
||
|
||
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
|
||
return retval;
|
||
|
||
/*
|
||
Standard programming
|
||
The Flash memory programming sequence is as follows:
|
||
1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
|
||
FLASH_SR register.
|
||
2. Set the PG bit in the FLASH_CR register
|
||
3. Perform the data write operation(s) to the desired memory address (inside main
|
||
memory block or OTP area):
|
||
– – Half-word access in case of x16 parallelism
|
||
– Word access in case of x32 parallelism
|
||
–
|
||
4.
|
||
Byte access in case of x8 parallelism
|
||
Double word access in case of x64 parallelism
|
||
Wait for the BSY bit to be cleared
|
||
*/
|
||
while (words_remaining > 0) {
|
||
uint16_t value;
|
||
memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
|
||
|
||
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
|
||
FLASH_PG | FLASH_PSIZE_16);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = target_write_u16(target, address, value);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
bytes_written += 2;
|
||
words_remaining--;
|
||
address += 2;
|
||
}
|
||
|
||
if (bytes_remaining) {
|
||
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
|
||
FLASH_PG | FLASH_PSIZE_8);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
retval = target_write_u8(target, address, buffer[bytes_written]);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
}
|
||
|
||
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
|
||
}
|
||
|
||
static void setup_sector(struct flash_bank *bank, int i, int size)
|
||
{
|
||
assert(i < bank->num_sectors);
|
||
bank->sectors[i].offset = bank->size;
|
||
bank->sectors[i].size = size;
|
||
bank->size += bank->sectors[i].size;
|
||
LOG_DEBUG("sector %d: %dkBytes", i, size >> 10);
|
||
}
|
||
|
||
static uint16_t sector_size_in_kb(int i, uint16_t max_sector_size_in_kb)
|
||
{
|
||
assert(i >= 0);
|
||
if (i < 4)
|
||
return max_sector_size_in_kb / 8;
|
||
if (i == 4)
|
||
return max_sector_size_in_kb / 2;
|
||
return max_sector_size_in_kb;
|
||
}
|
||
|
||
static int calculate_number_of_sectors(struct flash_bank *bank,
|
||
uint16_t flash_size_in_kb,
|
||
uint16_t max_sector_size_in_kb)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
|
||
int nr_sectors;
|
||
|
||
/* Dual Bank Flash has two identically-arranged banks of sectors. */
|
||
if (stm32x_info->has_large_mem)
|
||
remaining_flash_size_in_kb /= 2;
|
||
|
||
for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
|
||
uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
|
||
if (size_in_kb > remaining_flash_size_in_kb) {
|
||
LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
|
||
stm32x_info->has_large_mem ? "Dual" : "Single",
|
||
flash_size_in_kb, remaining_flash_size_in_kb);
|
||
remaining_flash_size_in_kb = 0;
|
||
} else {
|
||
remaining_flash_size_in_kb -= size_in_kb;
|
||
}
|
||
}
|
||
|
||
return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
|
||
}
|
||
|
||
static void setup_bank(struct flash_bank *bank, int start,
|
||
uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
|
||
{
|
||
uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
|
||
int sector_index = 0;
|
||
while (remaining_flash_size_in_kb > 0) {
|
||
uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
|
||
if (size_in_kb > remaining_flash_size_in_kb) {
|
||
/* Clip last sector. Already warned in
|
||
* calculate_number_of_sectors. */
|
||
size_in_kb = remaining_flash_size_in_kb;
|
||
}
|
||
setup_sector(bank, start + sector_index, size_in_kb * 1024);
|
||
remaining_flash_size_in_kb -= size_in_kb;
|
||
sector_index++;
|
||
}
|
||
}
|
||
|
||
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
|
||
{
|
||
/* this checks for a stm32f4x errata issue where a
|
||
* stm32f2x DBGMCU_IDCODE is incorrectly returned.
|
||
* If the issue is detected target is forced to stm32f4x Rev A.
|
||
* Only effects Rev A silicon */
|
||
|
||
struct target *target = bank->target;
|
||
uint32_t cpuid;
|
||
|
||
/* read stm32 device id register */
|
||
int retval = target_read_u32(target, 0xE0042000, device_id);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
if ((*device_id & 0xfff) == 0x411) {
|
||
/* read CPUID reg to check core type */
|
||
retval = target_read_u32(target, 0xE000ED00, &cpuid);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* check for cortex_m4 */
|
||
if (((cpuid >> 4) & 0xFFF) == 0xC24) {
|
||
*device_id &= ~((0xFFFF << 16) | 0xfff);
|
||
*device_id |= (0x1000 << 16) | 0x413;
|
||
LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
|
||
}
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
static int stm32x_probe(struct flash_bank *bank)
|
||
{
|
||
struct target *target = bank->target;
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
int i, num_prot_blocks, num_sectors;
|
||
uint16_t flash_size_in_kb;
|
||
uint16_t otp_size_in_b;
|
||
uint16_t otp_sector_size;
|
||
uint32_t flash_size_reg = 0x1FFF7A22;
|
||
uint16_t max_sector_size_in_kb = 128;
|
||
uint16_t max_flash_size_in_kb;
|
||
uint32_t device_id;
|
||
uint32_t base_address = 0x08000000;
|
||
|
||
stm32x_info->probed = false;
|
||
stm32x_info->has_large_mem = false;
|
||
stm32x_info->has_boot_addr = false;
|
||
stm32x_info->has_extra_options = false;
|
||
stm32x_info->has_optcr2_pcrop = false;
|
||
stm32x_info->protection_bits = 12; /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
|
||
num_prot_blocks = 0;
|
||
|
||
if (bank->sectors) {
|
||
free(bank->sectors);
|
||
bank->num_sectors = 0;
|
||
bank->sectors = NULL;
|
||
}
|
||
|
||
if (bank->prot_blocks) {
|
||
free(bank->prot_blocks);
|
||
bank->num_prot_blocks = 0;
|
||
bank->prot_blocks = NULL;
|
||
}
|
||
|
||
/* if explicitely called out as OTP bank, short circuit probe */
|
||
if (stm32x_is_otp(bank)) {
|
||
if (stm32x_otp_is_f7(bank)) {
|
||
otp_size_in_b = STM32F7_OTP_SIZE;
|
||
otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
|
||
} else {
|
||
otp_size_in_b = STM32F2_OTP_SIZE;
|
||
otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
|
||
}
|
||
|
||
num_sectors = otp_size_in_b / otp_sector_size;
|
||
LOG_INFO("flash size = %d bytes", otp_size_in_b);
|
||
|
||
assert(num_sectors > 0);
|
||
|
||
bank->num_sectors = num_sectors;
|
||
bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
|
||
|
||
if (stm32x_otp_is_f7(bank))
|
||
bank->size = STM32F7_OTP_SIZE;
|
||
else
|
||
bank->size = STM32F2_OTP_SIZE;
|
||
|
||
for (i = 0; i < num_sectors; i++) {
|
||
bank->sectors[i].offset = i * otp_sector_size;
|
||
bank->sectors[i].size = otp_sector_size;
|
||
bank->sectors[i].is_erased = 1;
|
||
bank->sectors[i].is_protected = 0;
|
||
}
|
||
|
||
stm32x_info->probed = true;
|
||
return ERROR_OK;
|
||
}
|
||
|
||
/* read stm32 device id register */
|
||
int retval = stm32x_get_device_id(bank, &device_id);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
|
||
device_id &= 0xfff; /* only bits 0-11 are used further on */
|
||
|
||
/* set max flash size depending on family, id taken from AN2606 */
|
||
switch (device_id) {
|
||
case 0x411: /* F20x/21x */
|
||
case 0x413: /* F40x/41x */
|
||
max_flash_size_in_kb = 1024;
|
||
break;
|
||
|
||
case 0x419: /* F42x/43x */
|
||
case 0x434: /* F469/479 */
|
||
stm32x_info->has_extra_options = true;
|
||
max_flash_size_in_kb = 2048;
|
||
break;
|
||
|
||
case 0x423: /* F401xB/C */
|
||
max_flash_size_in_kb = 256;
|
||
break;
|
||
|
||
case 0x421: /* F446 */
|
||
case 0x431: /* F411 */
|
||
case 0x433: /* F401xD/E */
|
||
case 0x441: /* F412 */
|
||
max_flash_size_in_kb = 512;
|
||
break;
|
||
|
||
case 0x458: /* F410 */
|
||
max_flash_size_in_kb = 128;
|
||
break;
|
||
|
||
case 0x449: /* F74x/75x */
|
||
max_flash_size_in_kb = 1024;
|
||
max_sector_size_in_kb = 256;
|
||
flash_size_reg = 0x1FF0F442;
|
||
stm32x_info->has_extra_options = true;
|
||
stm32x_info->has_boot_addr = true;
|
||
break;
|
||
|
||
case 0x451: /* F76x/77x */
|
||
max_flash_size_in_kb = 2048;
|
||
max_sector_size_in_kb = 256;
|
||
flash_size_reg = 0x1FF0F442;
|
||
stm32x_info->has_extra_options = true;
|
||
stm32x_info->has_boot_addr = true;
|
||
break;
|
||
|
||
case 0x452: /* F72x/73x */
|
||
max_flash_size_in_kb = 512;
|
||
flash_size_reg = 0x1FF07A22; /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
|
||
stm32x_info->has_extra_options = true;
|
||
stm32x_info->has_boot_addr = true;
|
||
stm32x_info->has_optcr2_pcrop = true;
|
||
break;
|
||
|
||
case 0x463: /* F413x/423x */
|
||
max_flash_size_in_kb = 1536;
|
||
stm32x_info->has_extra_options = true;
|
||
stm32x_info->protection_bits = 15;
|
||
num_prot_blocks = 15;
|
||
break;
|
||
|
||
default:
|
||
LOG_WARNING("Cannot identify target as a STM32 family.");
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
/* get flash size from target. */
|
||
retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
|
||
|
||
/* failed reading flash size or flash size invalid (early silicon),
|
||
* default to max target family */
|
||
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
|
||
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
|
||
max_flash_size_in_kb);
|
||
flash_size_in_kb = max_flash_size_in_kb;
|
||
}
|
||
|
||
/* if the user sets the size manually then ignore the probed value
|
||
* this allows us to work around devices that have a invalid flash size register value */
|
||
if (stm32x_info->user_bank_size) {
|
||
LOG_INFO("ignoring flash probed value, using configured bank size");
|
||
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
|
||
}
|
||
|
||
LOG_INFO("flash size = %d kbytes", flash_size_in_kb);
|
||
|
||
/* did we assign flash size? */
|
||
assert(flash_size_in_kb != 0xffff);
|
||
|
||
/* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
|
||
if ((device_id == 0x419) || (device_id == 0x434)) {
|
||
uint32_t optiondata;
|
||
retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
|
||
if (retval != ERROR_OK) {
|
||
LOG_DEBUG("unable to read option bytes");
|
||
return retval;
|
||
}
|
||
if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
|
||
stm32x_info->has_large_mem = true;
|
||
LOG_INFO("Dual Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
|
||
} else {
|
||
stm32x_info->has_large_mem = false;
|
||
LOG_INFO("Single Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
|
||
}
|
||
}
|
||
|
||
/* F76x/77x devices have a dual bank option */
|
||
if (device_id == 0x451) {
|
||
uint32_t optiondata;
|
||
retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
|
||
if (retval != ERROR_OK) {
|
||
LOG_DEBUG("unable to read option bytes");
|
||
return retval;
|
||
}
|
||
if (optiondata & OPTCR_NDBANK) {
|
||
stm32x_info->has_large_mem = false;
|
||
LOG_INFO("Single Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
|
||
} else {
|
||
stm32x_info->has_large_mem = true;
|
||
max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
|
||
LOG_INFO("Dual Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
|
||
}
|
||
}
|
||
|
||
/* calculate numbers of pages */
|
||
int num_pages = calculate_number_of_sectors(
|
||
bank, flash_size_in_kb, max_sector_size_in_kb);
|
||
|
||
bank->base = base_address;
|
||
bank->num_sectors = num_pages;
|
||
bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
|
||
for (i = 0; i < num_pages; i++) {
|
||
bank->sectors[i].is_erased = -1;
|
||
bank->sectors[i].is_protected = 0;
|
||
}
|
||
bank->size = 0;
|
||
LOG_DEBUG("allocated %d sectors", num_pages);
|
||
|
||
/* F76x/77x in dual bank mode */
|
||
if ((device_id == 0x451) && stm32x_info->has_large_mem)
|
||
num_prot_blocks = num_pages >> 1;
|
||
|
||
if (num_prot_blocks) {
|
||
bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
|
||
for (i = 0; i < num_prot_blocks; i++)
|
||
bank->prot_blocks[i].is_protected = 0;
|
||
LOG_DEBUG("allocated %d prot blocks", num_prot_blocks);
|
||
}
|
||
|
||
if (stm32x_info->has_large_mem) {
|
||
/* dual-bank */
|
||
setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
|
||
setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
|
||
max_sector_size_in_kb);
|
||
|
||
/* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
|
||
if (device_id == 0x451) {
|
||
for (i = 0; i < num_prot_blocks; i++) {
|
||
bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
|
||
bank->prot_blocks[i].size = bank->sectors[i << 1].size
|
||
+ bank->sectors[(i << 1) + 1].size;
|
||
}
|
||
}
|
||
} else {
|
||
/* single-bank */
|
||
setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
|
||
|
||
/* F413/F423, sectors 14 and 15 share one common protection bit */
|
||
if (device_id == 0x463) {
|
||
for (i = 0; i < num_prot_blocks; i++) {
|
||
bank->prot_blocks[i].offset = bank->sectors[i].offset;
|
||
bank->prot_blocks[i].size = bank->sectors[i].size;
|
||
}
|
||
bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
|
||
}
|
||
}
|
||
bank->num_prot_blocks = num_prot_blocks;
|
||
assert((bank->size >> 10) == flash_size_in_kb);
|
||
|
||
stm32x_info->probed = true;
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_auto_probe(struct flash_bank *bank)
|
||
{
|
||
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
|
||
if (stm32x_info->probed)
|
||
return ERROR_OK;
|
||
return stm32x_probe(bank);
|
||
}
|
||
|
||
static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
|
||
{
|
||
uint32_t dbgmcu_idcode;
|
||
|
||
/* read stm32 device id register */
|
||
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
uint16_t device_id = dbgmcu_idcode & 0xfff;
|
||
uint16_t rev_id = dbgmcu_idcode >> 16;
|
||
const char *device_str;
|
||
const char *rev_str = NULL;
|
||
|
||
switch (device_id) {
|
||
case 0x411:
|
||
device_str = "STM32F2xx";
|
||
|
||
switch (rev_id) {
|
||
case 0x1000:
|
||
rev_str = "A";
|
||
break;
|
||
|
||
case 0x2000:
|
||
rev_str = "B";
|
||
break;
|
||
|
||
case 0x1001:
|
||
rev_str = "Z";
|
||
break;
|
||
|
||
case 0x2001:
|
||
rev_str = "Y";
|
||
break;
|
||
|
||
case 0x2003:
|
||
rev_str = "X";
|
||
break;
|
||
|
||
case 0x2007:
|
||
rev_str = "1";
|
||
break;
|
||
|
||
case 0x200F:
|
||
rev_str = "V";
|
||
break;
|
||
|
||
case 0x201F:
|
||
rev_str = "2";
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 0x413:
|
||
case 0x419:
|
||
case 0x434:
|
||
device_str = "STM32F4xx";
|
||
|
||
switch (rev_id) {
|
||
case 0x1000:
|
||
rev_str = "A";
|
||
break;
|
||
|
||
case 0x1001:
|
||
rev_str = "Z";
|
||
break;
|
||
|
||
case 0x1003:
|
||
rev_str = "Y";
|
||
break;
|
||
|
||
case 0x1007:
|
||
rev_str = "1";
|
||
break;
|
||
|
||
case 0x2001:
|
||
rev_str = "3";
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 0x421:
|
||
device_str = "STM32F446";
|
||
|
||
switch (rev_id) {
|
||
case 0x1000:
|
||
rev_str = "A";
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 0x423:
|
||
case 0x431:
|
||
case 0x433:
|
||
case 0x458:
|
||
case 0x441:
|
||
device_str = "STM32F4xx (Low Power)";
|
||
|
||
switch (rev_id) {
|
||
case 0x1000:
|
||
rev_str = "A";
|
||
break;
|
||
|
||
case 0x1001:
|
||
rev_str = "Z";
|
||
break;
|
||
|
||
case 0x2000:
|
||
rev_str = "B";
|
||
break;
|
||
|
||
case 0x3000:
|
||
rev_str = "C";
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 0x449:
|
||
device_str = "STM32F7[4|5]x";
|
||
|
||
switch (rev_id) {
|
||
case 0x1000:
|
||
rev_str = "A";
|
||
break;
|
||
|
||
case 0x1001:
|
||
rev_str = "Z";
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 0x451:
|
||
device_str = "STM32F7[6|7]x";
|
||
|
||
switch (rev_id) {
|
||
case 0x1000:
|
||
rev_str = "A";
|
||
break;
|
||
case 0x1001:
|
||
rev_str = "Z";
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 0x452:
|
||
device_str = "STM32F7[2|3]x";
|
||
|
||
switch (rev_id) {
|
||
case 0x1000:
|
||
rev_str = "A";
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case 0x463:
|
||
device_str = "STM32F4[1|2]3";
|
||
|
||
switch (rev_id) {
|
||
case 0x1000:
|
||
rev_str = "A";
|
||
break;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4/7\n");
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
if (rev_str != NULL)
|
||
snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
|
||
else
|
||
snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
COMMAND_HANDLER(stm32x_handle_lock_command)
|
||
{
|
||
struct target *target = NULL;
|
||
struct stm32x_flash_bank *stm32x_info = NULL;
|
||
|
||
if (CMD_ARGC < 1)
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
|
||
struct flash_bank *bank;
|
||
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
stm32x_info = bank->driver_priv;
|
||
target = bank->target;
|
||
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_INFO("Target not halted");
|
||
/* return ERROR_TARGET_NOT_HALTED; */
|
||
}
|
||
|
||
if (stm32x_read_options(bank) != ERROR_OK) {
|
||
command_print(CMD, "%s failed to read options", bank->driver->name);
|
||
return ERROR_OK;
|
||
}
|
||
|
||
/* set readout protection */
|
||
stm32x_info->option_bytes.RDP = 0;
|
||
|
||
if (stm32x_write_options(bank) != ERROR_OK) {
|
||
command_print(CMD, "%s failed to lock device", bank->driver->name);
|
||
return ERROR_OK;
|
||
}
|
||
|
||
command_print(CMD, "%s locked", bank->driver->name);
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
COMMAND_HANDLER(stm32x_handle_unlock_command)
|
||
{
|
||
struct target *target = NULL;
|
||
struct stm32x_flash_bank *stm32x_info = NULL;
|
||
|
||
if (CMD_ARGC < 1)
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
|
||
struct flash_bank *bank;
|
||
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
stm32x_info = bank->driver_priv;
|
||
target = bank->target;
|
||
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_INFO("Target not halted");
|
||
/* return ERROR_TARGET_NOT_HALTED; */
|
||
}
|
||
|
||
if (stm32x_read_options(bank) != ERROR_OK) {
|
||
command_print(CMD, "%s failed to read options", bank->driver->name);
|
||
return ERROR_OK;
|
||
}
|
||
|
||
/* clear readout protection and complementary option bytes
|
||
* this will also force a device unlock if set */
|
||
stm32x_info->option_bytes.RDP = 0xAA;
|
||
if (stm32x_info->has_optcr2_pcrop) {
|
||
stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
|
||
}
|
||
|
||
if (stm32x_write_options(bank) != ERROR_OK) {
|
||
command_print(CMD, "%s failed to unlock device", bank->driver->name);
|
||
return ERROR_OK;
|
||
}
|
||
|
||
command_print(CMD, "%s unlocked.\n"
|
||
"INFO: a reset or power cycle is required "
|
||
"for the new settings to take effect.", bank->driver->name);
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int stm32x_mass_erase(struct flash_bank *bank)
|
||
{
|
||
int retval;
|
||
uint32_t flash_mer;
|
||
struct target *target = bank->target;
|
||
struct stm32x_flash_bank *stm32x_info = NULL;
|
||
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
stm32x_info = bank->driver_priv;
|
||
|
||
retval = stm32x_unlock_reg(target);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
/* mass erase flash memory */
|
||
if (stm32x_info->has_large_mem)
|
||
flash_mer = FLASH_MER | FLASH_MER1;
|
||
else
|
||
flash_mer = FLASH_MER;
|
||
|
||
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
|
||
flash_mer | FLASH_STRT);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
|
||
if (retval != ERROR_OK)
|
||
return retval;
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
|
||
{
|
||
int i;
|
||
|
||
if (CMD_ARGC < 1) {
|
||
command_print(CMD, "stm32x mass_erase <bank>");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
|
||
struct flash_bank *bank;
|
||
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
retval = stm32x_mass_erase(bank);
|
||
if (retval == ERROR_OK) {
|
||
/* set all sectors as erased */
|
||
for (i = 0; i < bank->num_sectors; i++)
|
||
bank->sectors[i].is_erased = 1;
|
||
|
||
command_print(CMD, "stm32x mass erase complete");
|
||
} else {
|
||
command_print(CMD, "stm32x mass erase failed");
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
COMMAND_HANDLER(stm32f2x_handle_options_read_command)
|
||
{
|
||
int retval;
|
||
struct flash_bank *bank;
|
||
struct stm32x_flash_bank *stm32x_info = NULL;
|
||
|
||
if (CMD_ARGC != 1) {
|
||
command_print(CMD, "stm32f2x options_read <bank>");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
|
||
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
retval = stm32x_read_options(bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
stm32x_info = bank->driver_priv;
|
||
if (stm32x_info->has_extra_options) {
|
||
if (stm32x_info->has_boot_addr) {
|
||
uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
|
||
|
||
command_print(CMD, "stm32f2x user_options 0x%03X,"
|
||
" boot_add0 0x%04X, boot_add1 0x%04X",
|
||
stm32x_info->option_bytes.user_options,
|
||
boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
|
||
if (stm32x_info->has_optcr2_pcrop) {
|
||
command_print(CMD, "stm32f2x optcr2_pcrop 0x%08X",
|
||
stm32x_info->option_bytes.optcr2_pcrop);
|
||
}
|
||
} else {
|
||
command_print(CMD, "stm32f2x user_options 0x%03X",
|
||
stm32x_info->option_bytes.user_options);
|
||
}
|
||
} else {
|
||
command_print(CMD, "stm32f2x user_options 0x%02X",
|
||
stm32x_info->option_bytes.user_options);
|
||
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
COMMAND_HANDLER(stm32f2x_handle_options_write_command)
|
||
{
|
||
int retval;
|
||
struct flash_bank *bank;
|
||
struct stm32x_flash_bank *stm32x_info = NULL;
|
||
uint16_t user_options, boot_addr0, boot_addr1, options_mask;
|
||
|
||
if (CMD_ARGC < 1) {
|
||
command_print(CMD, "stm32f2x options_write <bank> ...");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
|
||
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
retval = stm32x_read_options(bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
stm32x_info = bank->driver_priv;
|
||
if (stm32x_info->has_boot_addr) {
|
||
if (CMD_ARGC != 4) {
|
||
command_print(CMD, "stm32f2x options_write <bank> <user_options>"
|
||
" <boot_addr0> <boot_addr1>");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
|
||
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
|
||
stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
|
||
} else {
|
||
if (CMD_ARGC != 2) {
|
||
command_print(CMD, "stm32f2x options_write <bank> <user_options>");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
}
|
||
|
||
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
|
||
options_mask = !stm32x_info->has_extra_options ? ~0xfc :
|
||
~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
|
||
if (user_options & options_mask) {
|
||
command_print(CMD, "stm32f2x invalid user_options");
|
||
return ERROR_COMMAND_ARGUMENT_INVALID;
|
||
}
|
||
|
||
stm32x_info->option_bytes.user_options = user_options;
|
||
|
||
if (stm32x_write_options(bank) != ERROR_OK) {
|
||
command_print(CMD, "stm32f2x failed to write options");
|
||
return ERROR_OK;
|
||
}
|
||
|
||
/* switching between single- and dual-bank modes requires re-probe */
|
||
/* ... and reprogramming of whole flash */
|
||
stm32x_info->probed = false;
|
||
|
||
command_print(CMD, "stm32f2x write options complete.\n"
|
||
"INFO: a reset or power cycle is required "
|
||
"for the new settings to take effect.");
|
||
return retval;
|
||
}
|
||
|
||
COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
|
||
{
|
||
int retval;
|
||
struct flash_bank *bank;
|
||
struct stm32x_flash_bank *stm32x_info = NULL;
|
||
uint32_t optcr2_pcrop;
|
||
|
||
if (CMD_ARGC != 2) {
|
||
command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
|
||
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
stm32x_info = bank->driver_priv;
|
||
if (!stm32x_info->has_optcr2_pcrop) {
|
||
command_print(CMD, "no optcr2 register");
|
||
return ERROR_COMMAND_ARGUMENT_INVALID;
|
||
}
|
||
|
||
command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
|
||
" with PCROPi bits STILL SET, then\nlock device and"
|
||
" finally unlock it. Clears PCROP and mass erases flash.");
|
||
|
||
retval = stm32x_read_options(bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
|
||
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
|
||
stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
|
||
|
||
if (stm32x_write_options(bank) != ERROR_OK) {
|
||
command_print(CMD, "stm32f2x failed to write options");
|
||
return ERROR_OK;
|
||
}
|
||
|
||
command_print(CMD, "stm32f2x optcr2_write complete.");
|
||
return retval;
|
||
}
|
||
|
||
COMMAND_HANDLER(stm32x_handle_otp_command)
|
||
{
|
||
if (CMD_ARGC < 2) {
|
||
command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
|
||
struct flash_bank *bank;
|
||
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
||
if (ERROR_OK != retval)
|
||
return retval;
|
||
if (stm32x_is_otp(bank)) {
|
||
if (strcmp(CMD_ARGV[1], "enable") == 0) {
|
||
stm32x_otp_enable(bank);
|
||
} else if (strcmp(CMD_ARGV[1], "disable") == 0) {
|
||
stm32x_otp_disable(bank);
|
||
} else if (strcmp(CMD_ARGV[1], "show") == 0) {
|
||
command_print(CMD,
|
||
"OTP memory bank #%d is %s for write commands.",
|
||
bank->bank_number,
|
||
stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
|
||
} else {
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
} else {
|
||
command_print(CMD, "Failed: not an OTP bank.");
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
static const struct command_registration stm32x_exec_command_handlers[] = {
|
||
{
|
||
.name = "lock",
|
||
.handler = stm32x_handle_lock_command,
|
||
.mode = COMMAND_EXEC,
|
||
.usage = "bank_id",
|
||
.help = "Lock entire flash device.",
|
||
},
|
||
{
|
||
.name = "unlock",
|
||
.handler = stm32x_handle_unlock_command,
|
||
.mode = COMMAND_EXEC,
|
||
.usage = "bank_id",
|
||
.help = "Unlock entire protected flash device.",
|
||
},
|
||
{
|
||
.name = "mass_erase",
|
||
.handler = stm32x_handle_mass_erase_command,
|
||
.mode = COMMAND_EXEC,
|
||
.usage = "bank_id",
|
||
.help = "Erase entire flash device.",
|
||
},
|
||
{
|
||
.name = "options_read",
|
||
.handler = stm32f2x_handle_options_read_command,
|
||
.mode = COMMAND_EXEC,
|
||
.usage = "bank_id",
|
||
.help = "Read and display device option bytes.",
|
||
},
|
||
{
|
||
.name = "options_write",
|
||
.handler = stm32f2x_handle_options_write_command,
|
||
.mode = COMMAND_EXEC,
|
||
.usage = "bank_id user_options [ boot_add0 boot_add1 ]",
|
||
.help = "Write option bytes",
|
||
},
|
||
{
|
||
.name = "optcr2_write",
|
||
.handler = stm32f2x_handle_optcr2_write_command,
|
||
.mode = COMMAND_EXEC,
|
||
.usage = "bank_id optcr2",
|
||
.help = "Write optcr2 word",
|
||
},
|
||
{
|
||
.name = "otp",
|
||
.handler = stm32x_handle_otp_command,
|
||
.mode = COMMAND_EXEC,
|
||
.usage = "bank_id",
|
||
.help = "OTP (One Time Programmable) memory write enable/disable.",
|
||
},
|
||
COMMAND_REGISTRATION_DONE
|
||
};
|
||
|
||
static const struct command_registration stm32x_command_handlers[] = {
|
||
{
|
||
.name = "stm32f2x",
|
||
.mode = COMMAND_ANY,
|
||
.help = "stm32f2x flash command group",
|
||
.usage = "",
|
||
.chain = stm32x_exec_command_handlers,
|
||
},
|
||
COMMAND_REGISTRATION_DONE
|
||
};
|
||
|
||
const struct flash_driver stm32f2x_flash = {
|
||
.name = "stm32f2x",
|
||
.commands = stm32x_command_handlers,
|
||
.flash_bank_command = stm32x_flash_bank_command,
|
||
.erase = stm32x_erase,
|
||
.protect = stm32x_protect,
|
||
.write = stm32x_write,
|
||
.read = default_flash_read,
|
||
.probe = stm32x_probe,
|
||
.auto_probe = stm32x_auto_probe,
|
||
.erase_check = default_flash_blank_check,
|
||
.protect_check = stm32x_protect_check,
|
||
.info = get_stm32x_info,
|
||
.free_driver_priv = default_flash_free_driver_priv,
|
||
};
|