981 lines
26 KiB
C
981 lines
26 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2005 by Dominic Rath <Dominic.Rath@gmx.de> *
|
|
* Copyright (C) 2007-2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
|
|
* Copyright (C) 2008 by Spencer Oliver <spen@spen-soft.co.uk> *
|
|
* Copyright (C) 2009 Zachary T Welch <zw@superlucidity.net> *
|
|
* Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
|
|
* Copyright (C) 2017-2018 Tomas Vanek <vanekt@fbl.cz> *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
***************************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
#include <flash/common.h>
|
|
#include <flash/nor/core.h>
|
|
#include <flash/nor/imp.h>
|
|
#include <target/image.h>
|
|
|
|
/**
|
|
* @file
|
|
* Upper level of NOR flash framework.
|
|
* The lower level interfaces are to drivers. These upper level ones
|
|
* primarily support access from Tcl scripts or from GDB.
|
|
*/
|
|
|
|
static struct flash_bank *flash_banks;
|
|
|
|
int flash_driver_erase(struct flash_bank *bank, int first, int last)
|
|
{
|
|
int retval;
|
|
|
|
retval = bank->driver->erase(bank, first, last);
|
|
if (retval != ERROR_OK)
|
|
LOG_ERROR("failed erasing sectors %d to %d", first, last);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int flash_driver_protect(struct flash_bank *bank, int set, int first, int last)
|
|
{
|
|
int retval;
|
|
int num_blocks;
|
|
|
|
if (bank->num_prot_blocks)
|
|
num_blocks = bank->num_prot_blocks;
|
|
else
|
|
num_blocks = bank->num_sectors;
|
|
|
|
|
|
/* callers may not supply illegal parameters ... */
|
|
if (first < 0 || first > last || last >= num_blocks) {
|
|
LOG_ERROR("illegal protection block range");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/* force "set" to 0/1 */
|
|
set = !!set;
|
|
|
|
if (bank->driver->protect == NULL) {
|
|
LOG_ERROR("Flash protection is not supported.");
|
|
return ERROR_FLASH_OPER_UNSUPPORTED;
|
|
}
|
|
|
|
/* DANGER!
|
|
*
|
|
* We must not use any cached information about protection state!!!!
|
|
*
|
|
* There are a million things that could change the protect state:
|
|
*
|
|
* the target could have reset, power cycled, been hot plugged,
|
|
* the application could have run, etc.
|
|
*
|
|
* Drivers only receive valid protection block range.
|
|
*/
|
|
retval = bank->driver->protect(bank, set, first, last);
|
|
if (retval != ERROR_OK)
|
|
LOG_ERROR("failed setting protection for blocks %d to %d", first, last);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int flash_driver_write(struct flash_bank *bank,
|
|
uint8_t *buffer, uint32_t offset, uint32_t count)
|
|
{
|
|
int retval;
|
|
|
|
retval = bank->driver->write(bank, buffer, offset, count);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR(
|
|
"error writing to flash at address " TARGET_ADDR_FMT
|
|
" at offset 0x%8.8" PRIx32,
|
|
bank->base,
|
|
offset);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int flash_driver_read(struct flash_bank *bank,
|
|
uint8_t *buffer, uint32_t offset, uint32_t count)
|
|
{
|
|
int retval;
|
|
|
|
LOG_DEBUG("call flash_driver_read()");
|
|
|
|
retval = bank->driver->read(bank, buffer, offset, count);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR(
|
|
"error reading to flash at address " TARGET_ADDR_FMT
|
|
" at offset 0x%8.8" PRIx32,
|
|
bank->base,
|
|
offset);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int default_flash_read(struct flash_bank *bank,
|
|
uint8_t *buffer, uint32_t offset, uint32_t count)
|
|
{
|
|
return target_read_buffer(bank->target, offset + bank->base, count, buffer);
|
|
}
|
|
|
|
void flash_bank_add(struct flash_bank *bank)
|
|
{
|
|
/* put flash bank in linked list */
|
|
unsigned bank_num = 0;
|
|
if (flash_banks) {
|
|
/* find last flash bank */
|
|
struct flash_bank *p = flash_banks;
|
|
while (NULL != p->next) {
|
|
bank_num += 1;
|
|
p = p->next;
|
|
}
|
|
p->next = bank;
|
|
bank_num += 1;
|
|
} else
|
|
flash_banks = bank;
|
|
|
|
bank->bank_number = bank_num;
|
|
}
|
|
|
|
struct flash_bank *flash_bank_list(void)
|
|
{
|
|
return flash_banks;
|
|
}
|
|
|
|
struct flash_bank *get_flash_bank_by_num_noprobe(int num)
|
|
{
|
|
struct flash_bank *p;
|
|
int i = 0;
|
|
|
|
for (p = flash_banks; p; p = p->next) {
|
|
if (i++ == num)
|
|
return p;
|
|
}
|
|
LOG_ERROR("flash bank %d does not exist", num);
|
|
return NULL;
|
|
}
|
|
|
|
int flash_get_bank_count(void)
|
|
{
|
|
struct flash_bank *p;
|
|
int i = 0;
|
|
for (p = flash_banks; p; p = p->next)
|
|
i++;
|
|
return i;
|
|
}
|
|
|
|
void default_flash_free_driver_priv(struct flash_bank *bank)
|
|
{
|
|
free(bank->driver_priv);
|
|
bank->driver_priv = NULL;
|
|
}
|
|
|
|
void flash_free_all_banks(void)
|
|
{
|
|
struct flash_bank *bank = flash_banks;
|
|
while (bank) {
|
|
struct flash_bank *next = bank->next;
|
|
if (bank->driver->free_driver_priv)
|
|
bank->driver->free_driver_priv(bank);
|
|
else
|
|
LOG_WARNING("Flash driver of %s does not support free_driver_priv()", bank->name);
|
|
|
|
/* For 'virtual' flash driver bank->sectors and bank->prot_blocks pointers are copied from
|
|
* master flash_bank structure. They point to memory locations allocated by master flash driver
|
|
* so master driver is responsible for releasing them.
|
|
* Avoid UB caused by double-free memory corruption if flash bank is 'virtual'. */
|
|
|
|
if (strcmp(bank->driver->name, "virtual") != 0) {
|
|
free(bank->sectors);
|
|
free(bank->prot_blocks);
|
|
}
|
|
|
|
free(bank->name);
|
|
free(bank);
|
|
bank = next;
|
|
}
|
|
flash_banks = NULL;
|
|
}
|
|
|
|
struct flash_bank *get_flash_bank_by_name_noprobe(const char *name)
|
|
{
|
|
unsigned requested = get_flash_name_index(name);
|
|
unsigned found = 0;
|
|
|
|
struct flash_bank *bank;
|
|
for (bank = flash_banks; NULL != bank; bank = bank->next) {
|
|
if (strcmp(bank->name, name) == 0)
|
|
return bank;
|
|
if (!flash_driver_name_matches(bank->driver->name, name))
|
|
continue;
|
|
if (++found < requested)
|
|
continue;
|
|
return bank;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int get_flash_bank_by_name(const char *name, struct flash_bank **bank_result)
|
|
{
|
|
struct flash_bank *bank;
|
|
int retval;
|
|
|
|
bank = get_flash_bank_by_name_noprobe(name);
|
|
if (bank != NULL) {
|
|
retval = bank->driver->auto_probe(bank);
|
|
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("auto_probe failed");
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
*bank_result = bank;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int get_flash_bank_by_num(int num, struct flash_bank **bank)
|
|
{
|
|
struct flash_bank *p = get_flash_bank_by_num_noprobe(num);
|
|
int retval;
|
|
|
|
if (p == NULL)
|
|
return ERROR_FAIL;
|
|
|
|
retval = p->driver->auto_probe(p);
|
|
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("auto_probe failed");
|
|
return retval;
|
|
}
|
|
*bank = p;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* lookup flash bank by address, bank not found is success, but
|
|
* result_bank is set to NULL. */
|
|
int get_flash_bank_by_addr(struct target *target,
|
|
target_addr_t addr,
|
|
bool check,
|
|
struct flash_bank **result_bank)
|
|
{
|
|
struct flash_bank *c;
|
|
|
|
/* cycle through bank list */
|
|
for (c = flash_banks; c; c = c->next) {
|
|
if (c->target != target)
|
|
continue;
|
|
|
|
int retval;
|
|
retval = c->driver->auto_probe(c);
|
|
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("auto_probe failed");
|
|
return retval;
|
|
}
|
|
/* check whether address belongs to this flash bank */
|
|
if ((addr >= c->base) && (addr <= c->base + (c->size - 1))) {
|
|
*result_bank = c;
|
|
return ERROR_OK;
|
|
}
|
|
}
|
|
*result_bank = NULL;
|
|
if (check) {
|
|
LOG_ERROR("No flash at address " TARGET_ADDR_FMT, addr);
|
|
return ERROR_FAIL;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int default_flash_mem_blank_check(struct flash_bank *bank)
|
|
{
|
|
struct target *target = bank->target;
|
|
const int buffer_size = 1024;
|
|
int i;
|
|
uint32_t nBytes;
|
|
int retval = ERROR_OK;
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
uint8_t *buffer = malloc(buffer_size);
|
|
|
|
for (i = 0; i < bank->num_sectors; i++) {
|
|
uint32_t j;
|
|
bank->sectors[i].is_erased = 1;
|
|
|
|
for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
|
|
uint32_t chunk;
|
|
chunk = buffer_size;
|
|
if (chunk > (bank->sectors[i].size - j))
|
|
chunk = (bank->sectors[i].size - j);
|
|
|
|
retval = target_read_memory(target,
|
|
bank->base + bank->sectors[i].offset + j,
|
|
4,
|
|
chunk/4,
|
|
buffer);
|
|
if (retval != ERROR_OK)
|
|
goto done;
|
|
|
|
for (nBytes = 0; nBytes < chunk; nBytes++) {
|
|
if (buffer[nBytes] != bank->erased_value) {
|
|
bank->sectors[i].is_erased = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
free(buffer);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int default_flash_blank_check(struct flash_bank *bank)
|
|
{
|
|
struct target *target = bank->target;
|
|
int i;
|
|
int retval;
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
struct target_memory_check_block *block_array;
|
|
block_array = malloc(bank->num_sectors * sizeof(struct target_memory_check_block));
|
|
if (block_array == NULL)
|
|
return default_flash_mem_blank_check(bank);
|
|
|
|
for (i = 0; i < bank->num_sectors; i++) {
|
|
block_array[i].address = bank->base + bank->sectors[i].offset;
|
|
block_array[i].size = bank->sectors[i].size;
|
|
block_array[i].result = UINT32_MAX; /* erase state unknown */
|
|
}
|
|
|
|
bool fast_check = true;
|
|
for (i = 0; i < bank->num_sectors; ) {
|
|
retval = target_blank_check_memory(target,
|
|
block_array + i, bank->num_sectors - i,
|
|
bank->erased_value);
|
|
if (retval < 1) {
|
|
/* Run slow fallback if the first run gives no result
|
|
* otherwise use possibly incomplete results */
|
|
if (i == 0)
|
|
fast_check = false;
|
|
break;
|
|
}
|
|
i += retval; /* add number of blocks done this round */
|
|
}
|
|
|
|
if (fast_check) {
|
|
for (i = 0; i < bank->num_sectors; i++)
|
|
bank->sectors[i].is_erased = block_array[i].result;
|
|
retval = ERROR_OK;
|
|
} else {
|
|
LOG_USER("Running slow fallback erase check - add working memory");
|
|
retval = default_flash_mem_blank_check(bank);
|
|
}
|
|
free(block_array);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Manipulate given flash region, selecting the bank according to target
|
|
* and address. Maps an address range to a set of sectors, and issues
|
|
* the callback() on that set ... e.g. to erase or unprotect its members.
|
|
*
|
|
* Parameter iterate_protect_blocks switches iteration of protect block
|
|
* instead of erase sectors. If there is no protect blocks array, sectors
|
|
* are used in iteration, so compatibility for old flash drivers is retained.
|
|
*
|
|
* The "pad_reason" parameter is a kind of boolean: when it's NULL, the
|
|
* range must fit those sectors exactly. This is clearly safe; it can't
|
|
* erase data which the caller said to leave alone, for example. If it's
|
|
* non-NULL, rather than failing, extra data in the first and/or last
|
|
* sectors will be added to the range, and that reason string is used when
|
|
* warning about those additions.
|
|
*/
|
|
static int flash_iterate_address_range_inner(struct target *target,
|
|
char *pad_reason, target_addr_t addr, uint32_t length,
|
|
bool iterate_protect_blocks,
|
|
int (*callback)(struct flash_bank *bank, int first, int last))
|
|
{
|
|
struct flash_bank *c;
|
|
struct flash_sector *block_array;
|
|
target_addr_t last_addr = addr + length - 1; /* the last address of range */
|
|
int first = -1;
|
|
int last = -1;
|
|
int i;
|
|
int num_blocks;
|
|
|
|
int retval = get_flash_bank_by_addr(target, addr, true, &c);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (c->size == 0 || c->num_sectors == 0) {
|
|
LOG_ERROR("Bank is invalid");
|
|
return ERROR_FLASH_BANK_INVALID;
|
|
}
|
|
|
|
if (length == 0) {
|
|
/* special case, erase whole bank when length is zero */
|
|
if (addr != c->base) {
|
|
LOG_ERROR("Whole bank access must start at beginning of bank.");
|
|
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
|
|
}
|
|
|
|
return callback(c, 0, c->num_sectors - 1);
|
|
}
|
|
|
|
/* check whether it all fits in this bank */
|
|
if (last_addr > c->base + c->size - 1) {
|
|
LOG_ERROR("Flash access does not fit into bank.");
|
|
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
|
|
}
|
|
|
|
if (c->prot_blocks == NULL || c->num_prot_blocks == 0) {
|
|
/* flash driver does not define protect blocks, use sectors instead */
|
|
iterate_protect_blocks = false;
|
|
}
|
|
|
|
if (iterate_protect_blocks) {
|
|
block_array = c->prot_blocks;
|
|
num_blocks = c->num_prot_blocks;
|
|
} else {
|
|
block_array = c->sectors;
|
|
num_blocks = c->num_sectors;
|
|
}
|
|
|
|
for (i = 0; i < num_blocks; i++) {
|
|
struct flash_sector *f = &block_array[i];
|
|
target_addr_t sector_addr = c->base + f->offset;
|
|
target_addr_t sector_last_addr = sector_addr + f->size - 1;
|
|
|
|
/* start only on a sector boundary */
|
|
if (first < 0) {
|
|
/* scanned past the first sector? */
|
|
if (addr < sector_addr)
|
|
break;
|
|
|
|
/* is this the first sector? */
|
|
if (addr == sector_addr)
|
|
first = i;
|
|
|
|
/* Does this need head-padding? If so, pad and warn;
|
|
* or else force an error.
|
|
*
|
|
* Such padding can make trouble, since *WE* can't
|
|
* ever know if that data was in use. The warning
|
|
* should help users sort out messes later.
|
|
*/
|
|
else if (addr <= sector_last_addr && pad_reason) {
|
|
/* FIXME say how many bytes (e.g. 80 KB) */
|
|
LOG_WARNING("Adding extra %s range, "
|
|
TARGET_ADDR_FMT " .. " TARGET_ADDR_FMT,
|
|
pad_reason,
|
|
sector_addr,
|
|
addr - 1);
|
|
first = i;
|
|
} else
|
|
continue;
|
|
}
|
|
|
|
/* is this (also?) the last sector? */
|
|
if (last_addr == sector_last_addr) {
|
|
last = i;
|
|
break;
|
|
}
|
|
|
|
/* Does this need tail-padding? If so, pad and warn;
|
|
* or else force an error.
|
|
*/
|
|
if (last_addr < sector_last_addr && pad_reason) {
|
|
/* FIXME say how many bytes (e.g. 80 KB) */
|
|
LOG_WARNING("Adding extra %s range, "
|
|
TARGET_ADDR_FMT " .. " TARGET_ADDR_FMT,
|
|
pad_reason,
|
|
last_addr + 1,
|
|
sector_last_addr);
|
|
last = i;
|
|
break;
|
|
}
|
|
|
|
/* MUST finish on a sector boundary */
|
|
if (last_addr < sector_addr)
|
|
break;
|
|
}
|
|
|
|
/* invalid start or end address? */
|
|
if (first == -1 || last == -1) {
|
|
LOG_ERROR("address range " TARGET_ADDR_FMT " .. " TARGET_ADDR_FMT
|
|
" is not sector-aligned",
|
|
addr,
|
|
last_addr);
|
|
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
|
|
}
|
|
|
|
/* The NOR driver may trim this range down, based on what
|
|
* sectors are already erased/unprotected. GDB currently
|
|
* blocks such optimizations.
|
|
*/
|
|
return callback(c, first, last);
|
|
}
|
|
|
|
/* The inner fn only handles a single bank, we could be spanning
|
|
* multiple chips.
|
|
*/
|
|
static int flash_iterate_address_range(struct target *target,
|
|
char *pad_reason, target_addr_t addr, uint32_t length,
|
|
bool iterate_protect_blocks,
|
|
int (*callback)(struct flash_bank *bank, int first, int last))
|
|
{
|
|
struct flash_bank *c;
|
|
int retval = ERROR_OK;
|
|
|
|
/* Danger! zero-length iterations means entire bank! */
|
|
do {
|
|
retval = get_flash_bank_by_addr(target, addr, true, &c);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
uint32_t cur_length = length;
|
|
/* check whether it all fits in this bank */
|
|
if (addr + length - 1 > c->base + c->size - 1) {
|
|
LOG_DEBUG("iterating over more than one flash bank.");
|
|
cur_length = c->base + c->size - addr;
|
|
}
|
|
retval = flash_iterate_address_range_inner(target,
|
|
pad_reason, addr, cur_length,
|
|
iterate_protect_blocks,
|
|
callback);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
|
|
length -= cur_length;
|
|
addr += cur_length;
|
|
} while (length > 0);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int flash_erase_address_range(struct target *target,
|
|
bool pad, target_addr_t addr, uint32_t length)
|
|
{
|
|
return flash_iterate_address_range(target, pad ? "erase" : NULL,
|
|
addr, length, false, &flash_driver_erase);
|
|
}
|
|
|
|
static int flash_driver_unprotect(struct flash_bank *bank, int first, int last)
|
|
{
|
|
return flash_driver_protect(bank, 0, first, last);
|
|
}
|
|
|
|
int flash_unlock_address_range(struct target *target, target_addr_t addr,
|
|
uint32_t length)
|
|
{
|
|
/* By default, pad to sector boundaries ... the real issue here
|
|
* is that our (only) caller *permanently* removes protection,
|
|
* and doesn't restore it.
|
|
*/
|
|
return flash_iterate_address_range(target, "unprotect",
|
|
addr, length, true, &flash_driver_unprotect);
|
|
}
|
|
|
|
static int compare_section(const void *a, const void *b)
|
|
{
|
|
struct imagesection *b1, *b2;
|
|
b1 = *((struct imagesection **)a);
|
|
b2 = *((struct imagesection **)b);
|
|
|
|
if (b1->base_address == b2->base_address)
|
|
return 0;
|
|
else if (b1->base_address > b2->base_address)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Get aligned start address of a flash write region
|
|
*/
|
|
target_addr_t flash_write_align_start(struct flash_bank *bank, target_addr_t addr)
|
|
{
|
|
if (addr < bank->base || addr >= bank->base + bank->size
|
|
|| bank->write_start_alignment <= 1)
|
|
return addr;
|
|
|
|
if (bank->write_start_alignment == FLASH_WRITE_ALIGN_SECTOR) {
|
|
uint32_t offset = addr - bank->base;
|
|
uint32_t aligned = 0;
|
|
int sect;
|
|
for (sect = 0; sect < bank->num_sectors; sect++) {
|
|
if (bank->sectors[sect].offset > offset)
|
|
break;
|
|
|
|
aligned = bank->sectors[sect].offset;
|
|
}
|
|
return bank->base + aligned;
|
|
}
|
|
|
|
return addr & ~(bank->write_start_alignment - 1);
|
|
}
|
|
|
|
/**
|
|
* Get aligned end address of a flash write region
|
|
*/
|
|
target_addr_t flash_write_align_end(struct flash_bank *bank, target_addr_t addr)
|
|
{
|
|
if (addr < bank->base || addr >= bank->base + bank->size
|
|
|| bank->write_end_alignment <= 1)
|
|
return addr;
|
|
|
|
if (bank->write_end_alignment == FLASH_WRITE_ALIGN_SECTOR) {
|
|
uint32_t offset = addr - bank->base;
|
|
uint32_t aligned = 0;
|
|
int sect;
|
|
for (sect = 0; sect < bank->num_sectors; sect++) {
|
|
aligned = bank->sectors[sect].offset + bank->sectors[sect].size - 1;
|
|
if (aligned >= offset)
|
|
break;
|
|
}
|
|
return bank->base + aligned;
|
|
}
|
|
|
|
return addr | (bank->write_end_alignment - 1);
|
|
}
|
|
|
|
/**
|
|
* Check if gap between sections is bigger than minimum required to discontinue flash write
|
|
*/
|
|
static bool flash_write_check_gap(struct flash_bank *bank,
|
|
target_addr_t addr1, target_addr_t addr2)
|
|
{
|
|
if (bank->minimal_write_gap == FLASH_WRITE_CONTINUOUS
|
|
|| addr1 < bank->base || addr1 >= bank->base + bank->size
|
|
|| addr2 < bank->base || addr2 >= bank->base + bank->size)
|
|
return false;
|
|
|
|
if (bank->minimal_write_gap == FLASH_WRITE_GAP_SECTOR) {
|
|
int sect;
|
|
uint32_t offset1 = addr1 - bank->base;
|
|
/* find the sector following the one containing addr1 */
|
|
for (sect = 0; sect < bank->num_sectors; sect++) {
|
|
if (bank->sectors[sect].offset > offset1)
|
|
break;
|
|
}
|
|
if (sect >= bank->num_sectors)
|
|
return false;
|
|
|
|
uint32_t offset2 = addr2 - bank->base;
|
|
return bank->sectors[sect].offset + bank->sectors[sect].size <= offset2;
|
|
}
|
|
|
|
target_addr_t aligned1 = flash_write_align_end(bank, addr1);
|
|
target_addr_t aligned2 = flash_write_align_start(bank, addr2);
|
|
return aligned1 + bank->minimal_write_gap < aligned2;
|
|
}
|
|
|
|
|
|
int flash_write_unlock(struct target *target, struct image *image,
|
|
uint32_t *written, int erase, bool unlock)
|
|
{
|
|
int retval = ERROR_OK;
|
|
|
|
int section;
|
|
uint32_t section_offset;
|
|
struct flash_bank *c;
|
|
int *padding;
|
|
|
|
section = 0;
|
|
section_offset = 0;
|
|
|
|
if (written)
|
|
*written = 0;
|
|
|
|
if (erase) {
|
|
/* assume all sectors need erasing - stops any problems
|
|
* when flash_write is called multiple times */
|
|
|
|
flash_set_dirty();
|
|
}
|
|
|
|
/* allocate padding array */
|
|
padding = calloc(image->num_sections, sizeof(*padding));
|
|
|
|
/* This fn requires all sections to be in ascending order of addresses,
|
|
* whereas an image can have sections out of order. */
|
|
struct imagesection **sections = malloc(sizeof(struct imagesection *) *
|
|
image->num_sections);
|
|
int i;
|
|
for (i = 0; i < image->num_sections; i++)
|
|
sections[i] = &image->sections[i];
|
|
|
|
qsort(sections, image->num_sections, sizeof(struct imagesection *),
|
|
compare_section);
|
|
|
|
/* loop until we reach end of the image */
|
|
while (section < image->num_sections) {
|
|
uint32_t buffer_idx;
|
|
uint8_t *buffer;
|
|
int section_last;
|
|
target_addr_t run_address = sections[section]->base_address + section_offset;
|
|
uint32_t run_size = sections[section]->size - section_offset;
|
|
int pad_bytes = 0;
|
|
|
|
if (sections[section]->size == 0) {
|
|
LOG_WARNING("empty section %d", section);
|
|
section++;
|
|
section_offset = 0;
|
|
continue;
|
|
}
|
|
|
|
/* find the corresponding flash bank */
|
|
retval = get_flash_bank_by_addr(target, run_address, false, &c);
|
|
if (retval != ERROR_OK)
|
|
goto done;
|
|
if (c == NULL) {
|
|
LOG_WARNING("no flash bank found for address " TARGET_ADDR_FMT, run_address);
|
|
section++; /* and skip it */
|
|
section_offset = 0;
|
|
continue;
|
|
}
|
|
|
|
/* collect consecutive sections which fall into the same bank */
|
|
section_last = section;
|
|
padding[section] = 0;
|
|
while ((run_address + run_size - 1 < c->base + c->size - 1) &&
|
|
(section_last + 1 < image->num_sections)) {
|
|
/* sections are sorted */
|
|
assert(sections[section_last + 1]->base_address >= c->base);
|
|
if (sections[section_last + 1]->base_address >= (c->base + c->size)) {
|
|
/* Done with this bank */
|
|
break;
|
|
}
|
|
|
|
/* if we have multiple sections within our image,
|
|
* flash programming could fail due to alignment issues
|
|
* attempt to rebuild a consecutive buffer for the flash loader */
|
|
target_addr_t run_next_addr = run_address + run_size;
|
|
target_addr_t next_section_base = sections[section_last + 1]->base_address;
|
|
if (next_section_base < run_next_addr) {
|
|
LOG_ERROR("Section at " TARGET_ADDR_FMT
|
|
" overlaps section ending at " TARGET_ADDR_FMT,
|
|
next_section_base, run_next_addr);
|
|
LOG_ERROR("Flash write aborted.");
|
|
retval = ERROR_FAIL;
|
|
goto done;
|
|
}
|
|
|
|
pad_bytes = next_section_base - run_next_addr;
|
|
if (pad_bytes) {
|
|
if (flash_write_check_gap(c, run_next_addr - 1, next_section_base)) {
|
|
LOG_INFO("Flash write discontinued at " TARGET_ADDR_FMT
|
|
", next section at " TARGET_ADDR_FMT,
|
|
run_next_addr, next_section_base);
|
|
break;
|
|
}
|
|
}
|
|
if (pad_bytes > 0)
|
|
LOG_INFO("Padding image section %d at " TARGET_ADDR_FMT
|
|
" with %d bytes",
|
|
section_last, run_next_addr, pad_bytes);
|
|
|
|
padding[section_last] = pad_bytes;
|
|
run_size += pad_bytes;
|
|
run_size += sections[++section_last]->size;
|
|
}
|
|
|
|
if (run_address + run_size - 1 > c->base + c->size - 1) {
|
|
/* If we have more than one flash chip back to back, then we limit
|
|
* the current write operation to the current chip.
|
|
*/
|
|
LOG_DEBUG("Truncate flash run size to the current flash chip.");
|
|
|
|
run_size = c->base + c->size - run_address;
|
|
assert(run_size > 0);
|
|
}
|
|
|
|
uint32_t padding_at_start = 0;
|
|
if (c->write_start_alignment || c->write_end_alignment) {
|
|
/* align write region according to bank requirements */
|
|
target_addr_t aligned_start = flash_write_align_start(c, run_address);
|
|
padding_at_start = run_address - aligned_start;
|
|
if (padding_at_start > 0) {
|
|
LOG_WARNING("Section start address " TARGET_ADDR_FMT
|
|
" breaks the required alignment of flash bank %s",
|
|
run_address, c->name);
|
|
LOG_WARNING("Padding %d bytes from " TARGET_ADDR_FMT,
|
|
padding_at_start, aligned_start);
|
|
|
|
run_address -= padding_at_start;
|
|
run_size += padding_at_start;
|
|
}
|
|
|
|
target_addr_t run_end = run_address + run_size - 1;
|
|
target_addr_t aligned_end = flash_write_align_end(c, run_end);
|
|
pad_bytes = aligned_end - run_end;
|
|
if (pad_bytes > 0) {
|
|
LOG_INFO("Padding image section %d at " TARGET_ADDR_FMT
|
|
" with %d bytes (bank write end alignment)",
|
|
section_last, run_end + 1, pad_bytes);
|
|
|
|
padding[section_last] += pad_bytes;
|
|
run_size += pad_bytes;
|
|
}
|
|
|
|
} else if (unlock || erase) {
|
|
/* If we're applying any sector automagic, then pad this
|
|
* (maybe-combined) segment to the end of its last sector.
|
|
*/
|
|
int sector;
|
|
uint32_t offset_start = run_address - c->base;
|
|
uint32_t offset_end = offset_start + run_size;
|
|
uint32_t end = offset_end, delta;
|
|
|
|
for (sector = 0; sector < c->num_sectors; sector++) {
|
|
end = c->sectors[sector].offset
|
|
+ c->sectors[sector].size;
|
|
if (offset_end <= end)
|
|
break;
|
|
}
|
|
|
|
delta = end - offset_end;
|
|
padding[section_last] += delta;
|
|
run_size += delta;
|
|
}
|
|
|
|
/* allocate buffer */
|
|
buffer = malloc(run_size);
|
|
if (buffer == NULL) {
|
|
LOG_ERROR("Out of memory for flash bank buffer");
|
|
retval = ERROR_FAIL;
|
|
goto done;
|
|
}
|
|
|
|
if (padding_at_start)
|
|
memset(buffer, c->default_padded_value, padding_at_start);
|
|
|
|
buffer_idx = padding_at_start;
|
|
|
|
/* read sections to the buffer */
|
|
while (buffer_idx < run_size) {
|
|
size_t size_read;
|
|
|
|
size_read = run_size - buffer_idx;
|
|
if (size_read > sections[section]->size - section_offset)
|
|
size_read = sections[section]->size - section_offset;
|
|
|
|
/* KLUDGE!
|
|
*
|
|
* #¤%#"%¤% we have to figure out the section # from the sorted
|
|
* list of pointers to sections to invoke image_read_section()...
|
|
*/
|
|
intptr_t diff = (intptr_t)sections[section] - (intptr_t)image->sections;
|
|
int t_section_num = diff / sizeof(struct imagesection);
|
|
|
|
LOG_DEBUG("image_read_section: section = %d, t_section_num = %d, "
|
|
"section_offset = %"PRIu32", buffer_idx = %"PRIu32", size_read = %zu",
|
|
section, t_section_num, section_offset,
|
|
buffer_idx, size_read);
|
|
retval = image_read_section(image, t_section_num, section_offset,
|
|
size_read, buffer + buffer_idx, &size_read);
|
|
if (retval != ERROR_OK || size_read == 0) {
|
|
free(buffer);
|
|
goto done;
|
|
}
|
|
|
|
buffer_idx += size_read;
|
|
section_offset += size_read;
|
|
|
|
/* see if we need to pad the section */
|
|
if (padding[section]) {
|
|
memset(buffer + buffer_idx, c->default_padded_value, padding[section]);
|
|
buffer_idx += padding[section];
|
|
}
|
|
|
|
if (section_offset >= sections[section]->size) {
|
|
section++;
|
|
section_offset = 0;
|
|
}
|
|
}
|
|
|
|
retval = ERROR_OK;
|
|
|
|
if (unlock)
|
|
retval = flash_unlock_address_range(target, run_address, run_size);
|
|
if (retval == ERROR_OK) {
|
|
if (erase) {
|
|
/* calculate and erase sectors */
|
|
retval = flash_erase_address_range(target,
|
|
true, run_address, run_size);
|
|
}
|
|
}
|
|
|
|
if (retval == ERROR_OK) {
|
|
/* write flash sectors */
|
|
retval = flash_driver_write(c, buffer, run_address - c->base, run_size);
|
|
}
|
|
|
|
free(buffer);
|
|
|
|
if (retval != ERROR_OK) {
|
|
/* abort operation */
|
|
goto done;
|
|
}
|
|
|
|
if (written != NULL)
|
|
*written += run_size; /* add run size to total written counter */
|
|
}
|
|
|
|
done:
|
|
free(sections);
|
|
free(padding);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int flash_write(struct target *target, struct image *image,
|
|
uint32_t *written, int erase)
|
|
{
|
|
return flash_write_unlock(target, image, written, erase, false);
|
|
}
|
|
|
|
struct flash_sector *alloc_block_array(uint32_t offset, uint32_t size, int num_blocks)
|
|
{
|
|
int i;
|
|
|
|
struct flash_sector *array = calloc(num_blocks, sizeof(struct flash_sector));
|
|
if (array == NULL)
|
|
return NULL;
|
|
|
|
for (i = 0; i < num_blocks; i++) {
|
|
array[i].offset = offset;
|
|
array[i].size = size;
|
|
array[i].is_erased = -1;
|
|
array[i].is_protected = -1;
|
|
offset += size;
|
|
}
|
|
|
|
return array;
|
|
}
|