1735 lines
52 KiB
C
1735 lines
52 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2011 by Mathias Kuester *
|
|
* kesmtp@freenet.de *
|
|
* *
|
|
* Copyright (C) 2011 sleep(5) ltd *
|
|
* tomas@sleepfive.com *
|
|
* *
|
|
* Copyright (C) 2012 by Christopher D. Kilgour *
|
|
* techie at whiterocker.com *
|
|
* *
|
|
* Copyright (C) 2013 Nemui Trinomius *
|
|
* nemuisan_kawausogasuki@live.jp *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program; if not, write to the *
|
|
* Free Software Foundation, Inc., *
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
|
|
***************************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "jtag/interface.h"
|
|
#include "imp.h"
|
|
#include <helper/binarybuffer.h>
|
|
#include <target/target_type.h>
|
|
#include <target/algorithm.h>
|
|
#include <target/armv7m.h>
|
|
#include <target/cortex_m.h>
|
|
|
|
/*
|
|
* Implementation Notes
|
|
*
|
|
* The persistent memories in the Kinetis chip families K10 through
|
|
* K70 are all manipulated with the Flash Memory Module. Some
|
|
* variants call this module the FTFE, others call it the FTFL. To
|
|
* indicate that both are considered here, we use FTFX.
|
|
*
|
|
* Within the module, according to the chip variant, the persistent
|
|
* memory is divided into what Freescale terms Program Flash, FlexNVM,
|
|
* and FlexRAM. All chip variants have Program Flash. Some chip
|
|
* variants also have FlexNVM and FlexRAM, which always appear
|
|
* together.
|
|
*
|
|
* A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
|
|
* each block to a separate bank. Each block size varies by chip and
|
|
* may be determined by the read-only SIM_FCFG1 register. The sector
|
|
* size within each bank/block varies by chip, and may be 1, 2 or 4k.
|
|
* The sector size may be different for flash and FlexNVM.
|
|
*
|
|
* The first half of the flash (1 or 2 blocks) is always Program Flash
|
|
* and always starts at address 0x00000000. The "PFLSH" flag, bit 23
|
|
* of the read-only SIM_FCFG2 register, determines whether the second
|
|
* half of the flash is also Program Flash or FlexNVM+FlexRAM. When
|
|
* PFLSH is set, the second from the first half. When PFLSH is clear,
|
|
* the second half of flash is FlexNVM and always starts at address
|
|
* 0x10000000. FlexRAM, which is also present when PFLSH is clear,
|
|
* always starts at address 0x14000000.
|
|
*
|
|
* The Flash Memory Module provides a register set where flash
|
|
* commands are loaded to perform flash operations like erase and
|
|
* program. Different commands are available depending on whether
|
|
* Program Flash or FlexNVM/FlexRAM is being manipulated. Although
|
|
* the commands used are quite consistent between flash blocks, the
|
|
* parameters they accept differ according to the flash sector size.
|
|
*
|
|
*/
|
|
|
|
/* Addressess */
|
|
#define FLEXRAM 0x14000000
|
|
#define FTFx_FSTAT 0x40020000
|
|
#define FTFx_FCNFG 0x40020001
|
|
#define FTFx_FCCOB3 0x40020004
|
|
#define FTFx_FPROT3 0x40020010
|
|
#define SIM_SDID 0x40048024
|
|
#define SIM_SOPT1 0x40047000
|
|
#define SIM_FCFG1 0x4004804c
|
|
#define SIM_FCFG2 0x40048050
|
|
#define WDOG_STCTRH 0x40052000
|
|
|
|
/* Commands */
|
|
#define FTFx_CMD_BLOCKSTAT 0x00
|
|
#define FTFx_CMD_SECTSTAT 0x01
|
|
#define FTFx_CMD_LWORDPROG 0x06
|
|
#define FTFx_CMD_SECTERASE 0x09
|
|
#define FTFx_CMD_SECTWRITE 0x0b
|
|
#define FTFx_CMD_SETFLEXRAM 0x81
|
|
#define FTFx_CMD_MASSERASE 0x44
|
|
|
|
/* The older Kinetis K series uses the following SDID layout :
|
|
* Bit 31-16 : 0
|
|
* Bit 15-12 : REVID
|
|
* Bit 11-7 : DIEID
|
|
* Bit 6-4 : FAMID
|
|
* Bit 3-0 : PINID
|
|
*
|
|
* The newer Kinetis series uses the following SDID layout :
|
|
* Bit 31-28 : FAMID
|
|
* Bit 27-24 : SUBFAMID
|
|
* Bit 23-20 : SERIESID
|
|
* Bit 19-16 : SRAMSIZE
|
|
* Bit 15-12 : REVID
|
|
* Bit 6-4 : Reserved (0)
|
|
* Bit 3-0 : PINID
|
|
*
|
|
* We assume that if bits 31-16 are 0 then it's an older
|
|
* K-series MCU.
|
|
*/
|
|
|
|
#define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
|
|
#define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
|
|
|
|
#define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
|
|
|
|
#define KINETIS_SDID_DIEID_MASK 0x00000F80
|
|
|
|
#define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
|
|
#define KINETIS_SDID_DIEID_K22FN256 0x00000A80
|
|
#define KINETIS_SDID_DIEID_K22FN512 0x00000E80
|
|
#define KINETIS_SDID_DIEID_K24FN256 0x00000700
|
|
|
|
#define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
|
|
|
|
/* We can't rely solely on the FAMID field to determine the MCU
|
|
* type since some FAMID values identify multiple MCUs with
|
|
* different flash sector sizes (K20 and K22 for instance).
|
|
* Therefore we combine it with the DIEID bits which may possibly
|
|
* break if Freescale bumps the DIEID for a particular MCU. */
|
|
#define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
|
|
#define KINETIS_K_SDID_K10_M50 0x00000000
|
|
#define KINETIS_K_SDID_K10_M72 0x00000080
|
|
#define KINETIS_K_SDID_K10_M100 0x00000100
|
|
#define KINETIS_K_SDID_K10_M120 0x00000180
|
|
#define KINETIS_K_SDID_K11 0x00000220
|
|
#define KINETIS_K_SDID_K12 0x00000200
|
|
#define KINETIS_K_SDID_K20_M50 0x00000010
|
|
#define KINETIS_K_SDID_K20_M72 0x00000090
|
|
#define KINETIS_K_SDID_K20_M100 0x00000110
|
|
#define KINETIS_K_SDID_K20_M120 0x00000190
|
|
#define KINETIS_K_SDID_K21_M50 0x00000230
|
|
#define KINETIS_K_SDID_K21_M120 0x00000330
|
|
#define KINETIS_K_SDID_K22_M50 0x00000210
|
|
#define KINETIS_K_SDID_K22_M120 0x00000310
|
|
#define KINETIS_K_SDID_K30_M72 0x000000A0
|
|
#define KINETIS_K_SDID_K30_M100 0x00000120
|
|
#define KINETIS_K_SDID_K40_M72 0x000000B0
|
|
#define KINETIS_K_SDID_K40_M100 0x00000130
|
|
#define KINETIS_K_SDID_K50_M72 0x000000E0
|
|
#define KINETIS_K_SDID_K51_M72 0x000000F0
|
|
#define KINETIS_K_SDID_K53 0x00000170
|
|
#define KINETIS_K_SDID_K60_M100 0x00000140
|
|
#define KINETIS_K_SDID_K60_M150 0x000001C0
|
|
#define KINETIS_K_SDID_K70_M150 0x000001D0
|
|
|
|
#define KINETIS_SDID_SERIESID_MASK 0x00F00000
|
|
#define KINETIS_SDID_SERIESID_K 0x00000000
|
|
#define KINETIS_SDID_SERIESID_KL 0x00100000
|
|
#define KINETIS_SDID_SERIESID_KW 0x00500000
|
|
#define KINETIS_SDID_SERIESID_KV 0x00600000
|
|
|
|
#define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
|
|
#define KINETIS_SDID_SUBFAMID_KX0 0x00000000
|
|
#define KINETIS_SDID_SUBFAMID_KX1 0x01000000
|
|
#define KINETIS_SDID_SUBFAMID_KX2 0x02000000
|
|
#define KINETIS_SDID_SUBFAMID_KX3 0x03000000
|
|
#define KINETIS_SDID_SUBFAMID_KX4 0x04000000
|
|
#define KINETIS_SDID_SUBFAMID_KX5 0x05000000
|
|
#define KINETIS_SDID_SUBFAMID_KX6 0x06000000
|
|
|
|
#define KINETIS_SDID_FAMILYID_MASK 0xF0000000
|
|
#define KINETIS_SDID_FAMILYID_K0X 0x00000000
|
|
#define KINETIS_SDID_FAMILYID_K1X 0x10000000
|
|
#define KINETIS_SDID_FAMILYID_K2X 0x20000000
|
|
#define KINETIS_SDID_FAMILYID_K3X 0x30000000
|
|
#define KINETIS_SDID_FAMILYID_K4X 0x40000000
|
|
#define KINETIS_SDID_FAMILYID_K6X 0x60000000
|
|
#define KINETIS_SDID_FAMILYID_K7X 0x70000000
|
|
|
|
struct kinetis_flash_bank {
|
|
unsigned bank_ordinal;
|
|
uint32_t sector_size;
|
|
uint32_t max_flash_prog_size;
|
|
uint32_t protection_size;
|
|
|
|
uint32_t sim_sdid;
|
|
uint32_t sim_fcfg1;
|
|
uint32_t sim_fcfg2;
|
|
|
|
enum {
|
|
FC_AUTO = 0,
|
|
FC_PFLASH,
|
|
FC_FLEX_NVM,
|
|
FC_FLEX_RAM,
|
|
} flash_class;
|
|
|
|
enum {
|
|
FS_PROGRAM_SECTOR = 1,
|
|
FS_PROGRAM_LONGWORD = 2,
|
|
FS_PROGRAM_PHRASE = 4, /* Unsupported */
|
|
} flash_support;
|
|
};
|
|
|
|
#define MDM_REG_STAT 0x00
|
|
#define MDM_REG_CTRL 0x04
|
|
#define MDM_REG_ID 0xfc
|
|
|
|
#define MDM_STAT_FMEACK (1<<0)
|
|
#define MDM_STAT_FREADY (1<<1)
|
|
#define MDM_STAT_SYSSEC (1<<2)
|
|
#define MDM_STAT_SYSRES (1<<3)
|
|
#define MDM_STAT_FMEEN (1<<5)
|
|
#define MDM_STAT_BACKDOOREN (1<<6)
|
|
#define MDM_STAT_LPEN (1<<7)
|
|
#define MDM_STAT_VLPEN (1<<8)
|
|
#define MDM_STAT_LLSMODEXIT (1<<9)
|
|
#define MDM_STAT_VLLSXMODEXIT (1<<10)
|
|
#define MDM_STAT_CORE_HALTED (1<<16)
|
|
#define MDM_STAT_CORE_SLEEPDEEP (1<<17)
|
|
#define MDM_STAT_CORESLEEPING (1<<18)
|
|
|
|
#define MEM_CTRL_FMEIP (1<<0)
|
|
#define MEM_CTRL_DBG_DIS (1<<1)
|
|
#define MEM_CTRL_DBG_REQ (1<<2)
|
|
#define MEM_CTRL_SYS_RES_REQ (1<<3)
|
|
#define MEM_CTRL_CORE_HOLD_RES (1<<4)
|
|
#define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
|
|
#define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
|
|
#define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
|
|
|
|
#define MDM_ACCESS_TIMEOUT 3000 /* iterations */
|
|
|
|
static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
|
|
{
|
|
int retval;
|
|
LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
|
|
|
|
dap_ap_select(dap, 1);
|
|
|
|
retval = dap_queue_ap_write(dap, reg, value);
|
|
if (retval != ERROR_OK) {
|
|
LOG_DEBUG("MDM: failed to queue a write request");
|
|
return retval;
|
|
}
|
|
|
|
retval = dap_run(dap);
|
|
if (retval != ERROR_OK) {
|
|
LOG_DEBUG("MDM: dap_run failed");
|
|
return retval;
|
|
}
|
|
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
|
|
{
|
|
int retval;
|
|
|
|
dap_ap_select(dap, 1);
|
|
|
|
retval = dap_queue_ap_read(dap, reg, result);
|
|
if (retval != ERROR_OK) {
|
|
LOG_DEBUG("MDM: failed to queue a read request");
|
|
return retval;
|
|
}
|
|
|
|
retval = dap_run(dap);
|
|
if (retval != ERROR_OK) {
|
|
LOG_DEBUG("MDM: dap_run failed");
|
|
return retval;
|
|
}
|
|
|
|
LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg, uint32_t mask, uint32_t value)
|
|
{
|
|
uint32_t val;
|
|
int retval;
|
|
int timeout = MDM_ACCESS_TIMEOUT;
|
|
|
|
do {
|
|
retval = kinetis_mdm_read_register(dap, reg, &val);
|
|
if (retval != ERROR_OK || (val & mask) == value)
|
|
return retval;
|
|
|
|
alive_sleep(1);
|
|
} while (timeout--);
|
|
|
|
LOG_DEBUG("MDM: polling timed out");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/*
|
|
* This function implements the procedure to mass erase the flash via
|
|
* SWD/JTAG on Kinetis K and L series of devices as it is described in
|
|
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
|
|
* and L-series MCUs" Section 4.2.1
|
|
*/
|
|
COMMAND_HANDLER(kinetis_mdm_mass_erase)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct cortex_m_common *cortex_m = target_to_cm(target);
|
|
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
|
|
|
|
if (!dap) {
|
|
LOG_ERROR("Cannot perform mass erase with a high-level adapter");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int retval;
|
|
|
|
/*
|
|
* ... Power on the processor, or if power has already been
|
|
* applied, assert the RESET pin to reset the processor. For
|
|
* devices that do not have a RESET pin, write the System
|
|
* Reset Request bit in the MDM-AP control register after
|
|
* establishing communication...
|
|
*/
|
|
|
|
/* assert SRST */
|
|
if (jtag_get_reset_config() & RESET_HAS_SRST)
|
|
adapter_assert_reset();
|
|
else
|
|
LOG_WARNING("Attempting mass erase without hardware reset. This is not reliable; "
|
|
"it's recommended you connect SRST and use ``reset_config srst_only''.");
|
|
|
|
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MEM_CTRL_SYS_RES_REQ);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/*
|
|
* ... Read the MDM-AP status register until the Flash Ready bit sets...
|
|
*/
|
|
retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT,
|
|
MDM_STAT_FREADY | MDM_STAT_SYSRES,
|
|
MDM_STAT_FREADY);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("MDM : flash ready timeout");
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* ... Write the MDM-AP control register to set the Flash Mass
|
|
* Erase in Progress bit. This will start the mass erase
|
|
* process...
|
|
*/
|
|
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL,
|
|
MEM_CTRL_SYS_RES_REQ | MEM_CTRL_FMEIP);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* As a sanity check make sure that device started mass erase procedure */
|
|
retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT,
|
|
MDM_STAT_FMEACK, MDM_STAT_FMEACK);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/*
|
|
* ... Read the MDM-AP control register until the Flash Mass
|
|
* Erase in Progress bit clears...
|
|
*/
|
|
retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL,
|
|
MEM_CTRL_FMEIP,
|
|
0);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/*
|
|
* ... Negate the RESET signal or clear the System Reset Request
|
|
* bit in the MDM-AP control register...
|
|
*/
|
|
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (jtag_get_reset_config() & RESET_HAS_SRST) {
|
|
/* halt MCU otherwise it loops in hard fault - WDOG reset cycle */
|
|
target->reset_halt = true;
|
|
target->type->assert_reset(target);
|
|
target->type->deassert_reset(target);
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static const uint32_t kinetis_known_mdm_ids[] = {
|
|
0x001C0000, /* Kinetis-K Series */
|
|
0x001C0020, /* Kinetis-L/M/V/E Series */
|
|
};
|
|
|
|
/*
|
|
* This function implements the procedure to connect to
|
|
* SWD/JTAG on Kinetis K and L series of devices as it is described in
|
|
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
|
|
* and L-series MCUs" Section 4.1.1
|
|
*/
|
|
COMMAND_HANDLER(kinetis_check_flash_security_status)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct cortex_m_common *cortex_m = target_to_cm(target);
|
|
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
|
|
|
|
if (!dap) {
|
|
LOG_WARNING("Cannot check flash security status with a high-level adapter");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
uint32_t val;
|
|
int retval;
|
|
|
|
/*
|
|
* ... The MDM-AP ID register can be read to verify that the
|
|
* connection is working correctly...
|
|
*/
|
|
retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("MDM: failed to read ID register");
|
|
goto fail;
|
|
}
|
|
|
|
bool found = false;
|
|
for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
|
|
if (val == kinetis_known_mdm_ids[i]) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
|
|
|
|
/*
|
|
* ... Read the MDM-AP status register until the Flash Ready bit sets...
|
|
*/
|
|
retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT,
|
|
MDM_STAT_FREADY,
|
|
MDM_STAT_FREADY);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("MDM: flash ready timeout");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* ... Read the System Security bit to determine if security is enabled.
|
|
* If System Security = 0, then proceed. If System Security = 1, then
|
|
* communication with the internals of the processor, including the
|
|
* flash, will not be possible without issuing a mass erase command or
|
|
* unsecuring the part through other means (backdoor key unlock)...
|
|
*/
|
|
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("MDM: failed to read MDM_REG_STAT");
|
|
goto fail;
|
|
}
|
|
|
|
if ((val & (MDM_STAT_SYSSEC | MDM_STAT_CORE_HALTED)) == MDM_STAT_SYSSEC) {
|
|
LOG_WARNING("MDM: Secured MCU state detected however it may be a false alarm");
|
|
LOG_WARNING("MDM: Halting target to detect secured state reliably");
|
|
|
|
retval = target_halt(target);
|
|
if (retval == ERROR_OK)
|
|
retval = target_wait_state(target, TARGET_HALTED, 100);
|
|
|
|
if (retval != ERROR_OK) {
|
|
LOG_WARNING("MDM: Target not halted, trying reset halt");
|
|
target->reset_halt = true;
|
|
target->type->assert_reset(target);
|
|
target->type->deassert_reset(target);
|
|
}
|
|
|
|
/* re-read status */
|
|
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("MDM: failed to read MDM_REG_STAT");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (val & MDM_STAT_SYSSEC) {
|
|
jtag_poll_set_enabled(false);
|
|
|
|
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
|
|
LOG_WARNING("**** ****");
|
|
LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
|
|
LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
|
|
LOG_WARNING("**** interface will NOT work. In order to restore its ****");
|
|
LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
|
|
LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
|
|
LOG_WARNING("**** ****");
|
|
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
|
|
} else {
|
|
LOG_INFO("MDM: Chip is unsecured. Continuing.");
|
|
jtag_poll_set_enabled(true);
|
|
}
|
|
|
|
return ERROR_OK;
|
|
|
|
fail:
|
|
LOG_ERROR("MDM: Failed to check security status of the MCU. Cannot proceed further");
|
|
jtag_poll_set_enabled(false);
|
|
return retval;
|
|
}
|
|
|
|
FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
|
|
{
|
|
struct kinetis_flash_bank *bank_info;
|
|
|
|
if (CMD_ARGC < 6)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
LOG_INFO("add flash_bank kinetis %s", bank->name);
|
|
|
|
bank_info = malloc(sizeof(struct kinetis_flash_bank));
|
|
|
|
memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
|
|
|
|
bank->driver_priv = bank_info;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* Disable the watchdog on Kinetis devices */
|
|
int kinetis_disable_wdog(struct target *target, uint32_t sim_sdid)
|
|
{
|
|
struct working_area *wdog_algorithm;
|
|
struct armv7m_algorithm armv7m_info;
|
|
uint16_t wdog;
|
|
int retval;
|
|
|
|
static const uint8_t kinetis_unlock_wdog_code[] = {
|
|
/* WDOG_UNLOCK = 0xC520 */
|
|
0x4f, 0xf4, 0x00, 0x53, /* mov.w r3, #8192 ; 0x2000 */
|
|
0xc4, 0xf2, 0x05, 0x03, /* movt r3, #16389 ; 0x4005 */
|
|
0x4c, 0xf2, 0x20, 0x52, /* movw r2, #50464 ; 0xc520 */
|
|
0xda, 0x81, /* strh r2, [r3, #14] */
|
|
|
|
/* WDOG_UNLOCK = 0xD928 */
|
|
0x4f, 0xf4, 0x00, 0x53, /* mov.w r3, #8192 ; 0x2000 */
|
|
0xc4, 0xf2, 0x05, 0x03, /* movt r3, #16389 ; 0x4005 */
|
|
0x4d, 0xf6, 0x28, 0x12, /* movw r2, #55592 ; 0xd928 */
|
|
0xda, 0x81, /* strh r2, [r3, #14] */
|
|
|
|
/* WDOG_SCR = 0x1d2 */
|
|
0x4f, 0xf4, 0x00, 0x53, /* mov.w r3, #8192 ; 0x2000 */
|
|
0xc4, 0xf2, 0x05, 0x03, /* movt r3, #16389 ; 0x4005 */
|
|
0x4f, 0xf4, 0xe9, 0x72, /* mov.w r2, #466 ; 0x1d2 */
|
|
0x1a, 0x80, /* strh r2, [r3, #0] */
|
|
|
|
/* END */
|
|
0x00, 0xBE, /* bkpt #0 */
|
|
};
|
|
|
|
/* Decide whether the connected device needs watchdog disabling.
|
|
* Disable for all Kx devices, i.e., return if it is a KLx */
|
|
|
|
if ((sim_sdid & KINETIS_SDID_SERIESID_MASK) == KINETIS_SDID_SERIESID_KL)
|
|
return ERROR_OK;
|
|
|
|
/* The connected device requires watchdog disabling. */
|
|
retval = target_read_u16(target, WDOG_STCTRH, &wdog);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if ((wdog & 0x1) == 0) {
|
|
/* watchdog already disabled */
|
|
return ERROR_OK;
|
|
}
|
|
LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%x)", wdog);
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
retval = target_alloc_working_area(target, sizeof(kinetis_unlock_wdog_code), &wdog_algorithm);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = target_write_buffer(target, wdog_algorithm->address,
|
|
sizeof(kinetis_unlock_wdog_code), (uint8_t *)kinetis_unlock_wdog_code);
|
|
if (retval != ERROR_OK) {
|
|
target_free_working_area(target, wdog_algorithm);
|
|
return retval;
|
|
}
|
|
|
|
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
|
|
armv7m_info.core_mode = ARM_MODE_THREAD;
|
|
|
|
retval = target_run_algorithm(target, 0, NULL, 0, NULL, wdog_algorithm->address,
|
|
wdog_algorithm->address + (sizeof(kinetis_unlock_wdog_code) - 2),
|
|
10000, &armv7m_info);
|
|
|
|
if (retval != ERROR_OK)
|
|
LOG_ERROR("error executing kinetis wdog unlock algorithm");
|
|
|
|
retval = target_read_u16(target, WDOG_STCTRH, &wdog);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_INFO("WDOG_STCTRLH = 0x%x", wdog);
|
|
|
|
target_free_working_area(target, wdog_algorithm);
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(kinetis_disable_wdog_handler)
|
|
{
|
|
int result;
|
|
uint32_t sim_sdid;
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
if (CMD_ARGC > 0)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
result = target_read_u32(target, SIM_SDID, &sim_sdid);
|
|
if (result != ERROR_OK) {
|
|
LOG_ERROR("Failed to read SIMSDID");
|
|
return result;
|
|
}
|
|
|
|
result = kinetis_disable_wdog(target, sim_sdid);
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Kinetis Program-LongWord Microcodes */
|
|
static const uint8_t kinetis_flash_write_code[] = {
|
|
/* Params:
|
|
* r0 - workarea buffer
|
|
* r1 - target address
|
|
* r2 - wordcount
|
|
* Clobbered:
|
|
* r4 - tmp
|
|
* r5 - tmp
|
|
* r6 - tmp
|
|
* r7 - tmp
|
|
*/
|
|
|
|
/* .L1: */
|
|
/* for(register uint32_t i=0;i<wcount;i++){ */
|
|
0x04, 0x1C, /* mov r4, r0 */
|
|
0x00, 0x23, /* mov r3, #0 */
|
|
/* .L2: */
|
|
0x0E, 0x1A, /* sub r6, r1, r0 */
|
|
0xA6, 0x19, /* add r6, r4, r6 */
|
|
0x93, 0x42, /* cmp r3, r2 */
|
|
0x16, 0xD0, /* beq .L9 */
|
|
/* .L5: */
|
|
/* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
|
|
0x0B, 0x4D, /* ldr r5, .L10 */
|
|
0x2F, 0x78, /* ldrb r7, [r5] */
|
|
0x7F, 0xB2, /* sxtb r7, r7 */
|
|
0x00, 0x2F, /* cmp r7, #0 */
|
|
0xFA, 0xDA, /* bge .L5 */
|
|
/* FTFx_FSTAT = FTFA_FSTAT_ACCERR_MASK|FTFA_FSTAT_FPVIOL_MASK|FTFA_FSTAT_RDCO */
|
|
0x70, 0x27, /* mov r7, #112 */
|
|
0x2F, 0x70, /* strb r7, [r5] */
|
|
/* FTFx_FCCOB3 = faddr; */
|
|
0x09, 0x4F, /* ldr r7, .L10+4 */
|
|
0x3E, 0x60, /* str r6, [r7] */
|
|
0x06, 0x27, /* mov r7, #6 */
|
|
/* FTFx_FCCOB0 = 0x06; */
|
|
0x08, 0x4E, /* ldr r6, .L10+8 */
|
|
0x37, 0x70, /* strb r7, [r6] */
|
|
/* FTFx_FCCOB7 = *pLW; */
|
|
0x80, 0xCC, /* ldmia r4!, {r7} */
|
|
0x08, 0x4E, /* ldr r6, .L10+12 */
|
|
0x37, 0x60, /* str r7, [r6] */
|
|
/* FTFx_FSTAT = FTFA_FSTAT_CCIF_MASK; */
|
|
0x80, 0x27, /* mov r7, #128 */
|
|
0x2F, 0x70, /* strb r7, [r5] */
|
|
/* .L4: */
|
|
/* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
|
|
0x2E, 0x78, /* ldrb r6, [r5] */
|
|
0x77, 0xB2, /* sxtb r7, r6 */
|
|
0x00, 0x2F, /* cmp r7, #0 */
|
|
0xFB, 0xDA, /* bge .L4 */
|
|
0x01, 0x33, /* add r3, r3, #1 */
|
|
0xE4, 0xE7, /* b .L2 */
|
|
/* .L9: */
|
|
0x00, 0xBE, /* bkpt #0 */
|
|
/* .L10: */
|
|
0x00, 0x00, 0x02, 0x40, /* .word 1073872896 */
|
|
0x04, 0x00, 0x02, 0x40, /* .word 1073872900 */
|
|
0x07, 0x00, 0x02, 0x40, /* .word 1073872903 */
|
|
0x08, 0x00, 0x02, 0x40, /* .word 1073872904 */
|
|
};
|
|
|
|
/* Program LongWord Block Write */
|
|
static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
|
|
uint32_t offset, uint32_t wcount)
|
|
{
|
|
struct target *target = bank->target;
|
|
uint32_t buffer_size = 2048; /* Default minimum value */
|
|
struct working_area *write_algorithm;
|
|
struct working_area *source;
|
|
uint32_t address = bank->base + offset;
|
|
struct reg_param reg_params[3];
|
|
struct armv7m_algorithm armv7m_info;
|
|
int retval = ERROR_OK;
|
|
|
|
/* Params:
|
|
* r0 - workarea buffer
|
|
* r1 - target address
|
|
* r2 - wordcount
|
|
* Clobbered:
|
|
* r4 - tmp
|
|
* r5 - tmp
|
|
* r6 - tmp
|
|
* r7 - tmp
|
|
*/
|
|
|
|
/* Increase buffer_size if needed */
|
|
if (buffer_size < (target->working_area_size/2))
|
|
buffer_size = (target->working_area_size/2);
|
|
|
|
LOG_INFO("Kinetis: FLASH Write ...");
|
|
|
|
/* check code alignment */
|
|
if (offset & 0x1) {
|
|
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
|
|
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
|
|
}
|
|
|
|
/* allocate working area with flash programming code */
|
|
if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
|
|
&write_algorithm) != ERROR_OK) {
|
|
LOG_WARNING("no working area available, can't do block memory writes");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
retval = target_write_buffer(target, write_algorithm->address,
|
|
sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* memory buffer */
|
|
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
|
|
buffer_size /= 4;
|
|
if (buffer_size <= 256) {
|
|
/* free working area, write algorithm already allocated */
|
|
target_free_working_area(target, write_algorithm);
|
|
|
|
LOG_WARNING("No large enough working area available, can't do block memory writes");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
|
|
armv7m_info.core_mode = ARM_MODE_THREAD;
|
|
|
|
init_reg_param(®_params[0], "r0", 32, PARAM_OUT); /* *pLW (*buffer) */
|
|
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* faddr */
|
|
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* number of words to program */
|
|
|
|
/* write code buffer and use Flash programming code within kinetis */
|
|
/* Set breakpoint to 0 with time-out of 1000 ms */
|
|
while (wcount > 0) {
|
|
uint32_t thisrun_count = (wcount > (buffer_size / 4)) ? (buffer_size / 4) : wcount;
|
|
|
|
retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
|
|
buf_set_u32(reg_params[0].value, 0, 32, source->address);
|
|
buf_set_u32(reg_params[1].value, 0, 32, address);
|
|
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
|
|
|
|
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
|
|
write_algorithm->address, 0, 100000, &armv7m_info);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Error executing kinetis Flash programming algorithm");
|
|
retval = ERROR_FLASH_OPERATION_FAILED;
|
|
break;
|
|
}
|
|
|
|
buffer += thisrun_count * 4;
|
|
address += thisrun_count * 4;
|
|
wcount -= thisrun_count;
|
|
}
|
|
|
|
target_free_working_area(target, source);
|
|
target_free_working_area(target, write_algorithm);
|
|
|
|
destroy_reg_param(®_params[0]);
|
|
destroy_reg_param(®_params[1]);
|
|
destroy_reg_param(®_params[2]);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
|
|
{
|
|
LOG_WARNING("kinetis_protect not supported yet");
|
|
/* FIXME: TODO */
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
return ERROR_FLASH_BANK_INVALID;
|
|
}
|
|
|
|
static int kinetis_protect_check(struct flash_bank *bank)
|
|
{
|
|
struct kinetis_flash_bank *kinfo = bank->driver_priv;
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (kinfo->flash_class == FC_PFLASH) {
|
|
int result;
|
|
uint8_t buffer[4];
|
|
uint32_t fprot, psec;
|
|
int i, b;
|
|
|
|
/* read protection register */
|
|
result = target_read_memory(bank->target, FTFx_FPROT3, 1, 4, buffer);
|
|
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
fprot = target_buffer_get_u32(bank->target, buffer);
|
|
|
|
/*
|
|
* Every bit protects 1/32 of the full flash (not necessarily
|
|
* just this bank), but we enforce the bank ordinals for
|
|
* PFlash to start at zero.
|
|
*/
|
|
b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
|
|
for (psec = 0, i = 0; i < bank->num_sectors; i++) {
|
|
if ((fprot >> b) & 1)
|
|
bank->sectors[i].is_protected = 0;
|
|
else
|
|
bank->sectors[i].is_protected = 1;
|
|
|
|
psec += bank->sectors[i].size;
|
|
|
|
if (psec >= kinfo->protection_size) {
|
|
psec = 0;
|
|
b++;
|
|
}
|
|
}
|
|
} else {
|
|
LOG_ERROR("Protection checks for FlexNVM not yet supported");
|
|
return ERROR_FLASH_BANK_INVALID;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int kinetis_ftfx_command(struct flash_bank *bank, uint8_t fcmd, uint32_t faddr,
|
|
uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
|
|
uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
|
|
uint8_t *ftfx_fstat)
|
|
{
|
|
uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
|
|
fccob7, fccob6, fccob5, fccob4,
|
|
fccobb, fccoba, fccob9, fccob8};
|
|
int result, i;
|
|
uint8_t buffer;
|
|
|
|
/* wait for done */
|
|
for (i = 0; i < 50; i++) {
|
|
result =
|
|
target_read_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
|
|
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
if (buffer & 0x80)
|
|
break;
|
|
|
|
buffer = 0x00;
|
|
}
|
|
|
|
if (buffer != 0x80) {
|
|
/* reset error flags */
|
|
buffer = 0x30;
|
|
result =
|
|
target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
}
|
|
|
|
result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, command);
|
|
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
/* start command */
|
|
buffer = 0x80;
|
|
result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
/* wait for done */
|
|
for (i = 0; i < 240; i++) { /* Need longtime for "Mass Erase" Command Nemui Changed */
|
|
result =
|
|
target_read_memory(bank->target, FTFx_FSTAT, 1, 1, ftfx_fstat);
|
|
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
if (*ftfx_fstat & 0x80)
|
|
break;
|
|
}
|
|
|
|
if ((*ftfx_fstat & 0xf0) != 0x80) {
|
|
LOG_ERROR
|
|
("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
|
|
*ftfx_fstat, command[3], command[2], command[1], command[0],
|
|
command[7], command[6], command[5], command[4],
|
|
command[11], command[10], command[9], command[8]);
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(kinetis_securing_test)
|
|
{
|
|
int result;
|
|
uint8_t ftfx_fstat;
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct flash_bank *bank = NULL;
|
|
|
|
result = get_flash_bank_by_addr(target, 0x00000000, true, &bank);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
assert(bank != NULL);
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
return kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + 0x00000400,
|
|
0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
|
|
}
|
|
|
|
static int kinetis_erase(struct flash_bank *bank, int first, int last)
|
|
{
|
|
int result, i;
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if ((first > bank->num_sectors) || (last > bank->num_sectors))
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
|
|
/*
|
|
* FIXME: TODO: use the 'Erase Flash Block' command if the
|
|
* requested erase is PFlash or NVM and encompasses the entire
|
|
* block. Should be quicker.
|
|
*/
|
|
for (i = first; i <= last; i++) {
|
|
uint8_t ftfx_fstat;
|
|
/* set command and sector address */
|
|
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + bank->sectors[i].offset,
|
|
0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
|
|
|
|
if (result != ERROR_OK) {
|
|
LOG_WARNING("erase sector %d failed", i);
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
|
|
bank->sectors[i].is_erased = 1;
|
|
}
|
|
|
|
if (first == 0) {
|
|
LOG_WARNING
|
|
("flash configuration field erased, please reset the device");
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
|
|
uint32_t offset, uint32_t count)
|
|
{
|
|
unsigned int i, result, fallback = 0;
|
|
uint8_t buf[8];
|
|
uint32_t wc;
|
|
struct kinetis_flash_bank *kinfo = bank->driver_priv;
|
|
uint8_t *new_buffer = NULL;
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (!(kinfo->flash_support & FS_PROGRAM_SECTOR)) {
|
|
/* fallback to longword write */
|
|
fallback = 1;
|
|
LOG_WARNING("This device supports Program Longword execution only.");
|
|
LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset);
|
|
|
|
} else if (kinfo->flash_class == FC_FLEX_NVM) {
|
|
uint8_t ftfx_fstat;
|
|
|
|
LOG_DEBUG("flash write into FlexNVM @%08" PRIX32, offset);
|
|
|
|
/* make flex ram available */
|
|
result = kinetis_ftfx_command(bank, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
|
|
|
|
if (result != ERROR_OK)
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
|
|
/* check if ram ready */
|
|
result = target_read_memory(bank->target, FTFx_FCNFG, 1, 1, buf);
|
|
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
if (!(buf[0] & (1 << 1))) {
|
|
/* fallback to longword write */
|
|
fallback = 1;
|
|
|
|
LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)", buf[0]);
|
|
}
|
|
} else {
|
|
LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset);
|
|
}
|
|
|
|
|
|
/* program section command */
|
|
if (fallback == 0) {
|
|
/*
|
|
* Kinetis uses different terms for the granularity of
|
|
* sector writes, e.g. "phrase" or "128 bits". We use
|
|
* the generic term "chunk". The largest possible
|
|
* Kinetis "chunk" is 16 bytes (128 bits).
|
|
*/
|
|
unsigned prog_section_chunk_bytes = kinfo->sector_size >> 8;
|
|
unsigned prog_size_bytes = kinfo->max_flash_prog_size;
|
|
for (i = 0; i < count; i += prog_size_bytes) {
|
|
uint8_t residual_buffer[16];
|
|
uint8_t ftfx_fstat;
|
|
uint32_t section_count = prog_size_bytes / prog_section_chunk_bytes;
|
|
uint32_t residual_wc = 0;
|
|
|
|
/*
|
|
* Assume the word count covers an entire
|
|
* sector.
|
|
*/
|
|
wc = prog_size_bytes / 4;
|
|
|
|
/*
|
|
* If bytes to be programmed are less than the
|
|
* full sector, then determine the number of
|
|
* full-words to program, and put together the
|
|
* residual buffer so that a full "section"
|
|
* may always be programmed.
|
|
*/
|
|
if ((count - i) < prog_size_bytes) {
|
|
/* number of bytes to program beyond full section */
|
|
unsigned residual_bc = (count-i) % prog_section_chunk_bytes;
|
|
|
|
/* number of complete words to copy directly from buffer */
|
|
wc = (count - i - residual_bc) / 4;
|
|
|
|
/* number of total sections to write, including residual */
|
|
section_count = DIV_ROUND_UP((count-i), prog_section_chunk_bytes);
|
|
|
|
/* any residual bytes delivers a whole residual section */
|
|
residual_wc = (residual_bc ? prog_section_chunk_bytes : 0)/4;
|
|
|
|
/* clear residual buffer then populate residual bytes */
|
|
(void) memset(residual_buffer, 0xff, prog_section_chunk_bytes);
|
|
(void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
|
|
}
|
|
|
|
LOG_DEBUG("write section @ %08" PRIX32 " with length %" PRIu32 " bytes",
|
|
offset + i, (uint32_t)wc*4);
|
|
|
|
/* write data to flexram as whole-words */
|
|
result = target_write_memory(bank->target, FLEXRAM, 4, wc,
|
|
buffer + i);
|
|
|
|
if (result != ERROR_OK) {
|
|
LOG_ERROR("target_write_memory failed");
|
|
return result;
|
|
}
|
|
|
|
/* write the residual words to the flexram */
|
|
if (residual_wc) {
|
|
result = target_write_memory(bank->target,
|
|
FLEXRAM+4*wc,
|
|
4, residual_wc,
|
|
residual_buffer);
|
|
|
|
if (result != ERROR_OK) {
|
|
LOG_ERROR("target_write_memory failed");
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/* execute section-write command */
|
|
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTWRITE, bank->base + offset + i,
|
|
section_count>>8, section_count, 0, 0,
|
|
0, 0, 0, 0, &ftfx_fstat);
|
|
|
|
if (result != ERROR_OK)
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
}
|
|
/* program longword command, not supported in "SF3" devices */
|
|
else if (kinfo->flash_support & FS_PROGRAM_LONGWORD) {
|
|
if (count & 0x3) {
|
|
uint32_t old_count = count;
|
|
count = (old_count | 3) + 1;
|
|
new_buffer = malloc(count);
|
|
if (new_buffer == NULL) {
|
|
LOG_ERROR("odd number of bytes to write and no memory "
|
|
"for padding buffer");
|
|
return ERROR_FAIL;
|
|
}
|
|
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
|
|
"and padding with 0xff", old_count, count);
|
|
memset(new_buffer, 0xff, count);
|
|
buffer = memcpy(new_buffer, buffer, old_count);
|
|
}
|
|
|
|
uint32_t words_remaining = count / 4;
|
|
|
|
kinetis_disable_wdog(bank->target, kinfo->sim_sdid);
|
|
|
|
/* try using a block write */
|
|
int retval = kinetis_write_block(bank, buffer, offset, words_remaining);
|
|
|
|
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
|
|
/* if block write failed (no sufficient working area),
|
|
* we use normal (slow) single word accesses */
|
|
LOG_WARNING("couldn't use block writes, falling back to single "
|
|
"memory accesses");
|
|
|
|
for (i = 0; i < count; i += 4) {
|
|
uint8_t ftfx_fstat;
|
|
|
|
LOG_DEBUG("write longword @ %08" PRIX32, (uint32_t)(offset + i));
|
|
|
|
uint8_t padding[4] = {0xff, 0xff, 0xff, 0xff};
|
|
memcpy(padding, buffer + i, MIN(4, count-i));
|
|
|
|
result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, bank->base + offset + i,
|
|
padding[3], padding[2], padding[1], padding[0],
|
|
0, 0, 0, 0, &ftfx_fstat);
|
|
|
|
if (result != ERROR_OK)
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
}
|
|
} else {
|
|
LOG_ERROR("Flash write strategy not implemented");
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int kinetis_read_part_info(struct flash_bank *bank)
|
|
{
|
|
int result, i;
|
|
uint32_t offset = 0;
|
|
uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
|
|
uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
|
|
unsigned num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, first_nvm_bank = 0,
|
|
reassign = 0, pflash_sector_size_bytes = 0, nvm_sector_size_bytes = 0;
|
|
struct target *target = bank->target;
|
|
struct kinetis_flash_bank *kinfo = bank->driver_priv;
|
|
|
|
result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
|
|
/* older K-series MCU */
|
|
uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
|
|
|
|
switch (mcu_type) {
|
|
case KINETIS_K_SDID_K10_M50:
|
|
case KINETIS_K_SDID_K20_M50:
|
|
/* 1kB sectors */
|
|
pflash_sector_size_bytes = 1<<10;
|
|
nvm_sector_size_bytes = 1<<10;
|
|
num_blocks = 2;
|
|
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
|
|
break;
|
|
case KINETIS_K_SDID_K10_M72:
|
|
case KINETIS_K_SDID_K20_M72:
|
|
case KINETIS_K_SDID_K30_M72:
|
|
case KINETIS_K_SDID_K30_M100:
|
|
case KINETIS_K_SDID_K40_M72:
|
|
case KINETIS_K_SDID_K40_M100:
|
|
case KINETIS_K_SDID_K50_M72:
|
|
/* 2kB sectors, 1kB FlexNVM sectors */
|
|
pflash_sector_size_bytes = 2<<10;
|
|
nvm_sector_size_bytes = 1<<10;
|
|
num_blocks = 2;
|
|
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
|
|
kinfo->max_flash_prog_size = 1<<10;
|
|
break;
|
|
case KINETIS_K_SDID_K10_M100:
|
|
case KINETIS_K_SDID_K20_M100:
|
|
case KINETIS_K_SDID_K11:
|
|
case KINETIS_K_SDID_K12:
|
|
case KINETIS_K_SDID_K21_M50:
|
|
case KINETIS_K_SDID_K22_M50:
|
|
case KINETIS_K_SDID_K51_M72:
|
|
case KINETIS_K_SDID_K53:
|
|
case KINETIS_K_SDID_K60_M100:
|
|
/* 2kB sectors */
|
|
pflash_sector_size_bytes = 2<<10;
|
|
nvm_sector_size_bytes = 2<<10;
|
|
num_blocks = 2;
|
|
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
|
|
break;
|
|
case KINETIS_K_SDID_K21_M120:
|
|
case KINETIS_K_SDID_K22_M120:
|
|
/* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
|
|
pflash_sector_size_bytes = 4<<10;
|
|
kinfo->max_flash_prog_size = 1<<10;
|
|
nvm_sector_size_bytes = 4<<10;
|
|
num_blocks = 2;
|
|
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
|
|
break;
|
|
case KINETIS_K_SDID_K10_M120:
|
|
case KINETIS_K_SDID_K20_M120:
|
|
case KINETIS_K_SDID_K60_M150:
|
|
case KINETIS_K_SDID_K70_M150:
|
|
/* 4kB sectors */
|
|
pflash_sector_size_bytes = 4<<10;
|
|
nvm_sector_size_bytes = 4<<10;
|
|
num_blocks = 4;
|
|
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Unsupported K-family FAMID");
|
|
}
|
|
} else {
|
|
/* Newer K-series or KL series MCU */
|
|
switch (kinfo->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
|
|
case KINETIS_SDID_SERIESID_K:
|
|
switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
|
|
case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
|
|
/* K02FN64, K02FN128: FTFA, 2kB sectors */
|
|
pflash_sector_size_bytes = 2<<10;
|
|
num_blocks = 1;
|
|
kinfo->flash_support = FS_PROGRAM_LONGWORD;
|
|
break;
|
|
|
|
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
|
|
/* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
|
|
uint32_t sopt1;
|
|
result = target_read_u32(target, SIM_SOPT1, &sopt1);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
if (((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
|
|
((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
|
|
/* MK24FN1M */
|
|
pflash_sector_size_bytes = 4<<10;
|
|
num_blocks = 2;
|
|
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
|
|
kinfo->max_flash_prog_size = 1<<10;
|
|
break;
|
|
}
|
|
if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
|
|
|| (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
|
|
|| (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
|
|
/* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
|
|
pflash_sector_size_bytes = 2<<10;
|
|
num_blocks = 2; /* 1 or 2 blocks */
|
|
kinfo->flash_support = FS_PROGRAM_LONGWORD;
|
|
break;
|
|
}
|
|
LOG_ERROR("Unsupported Kinetis K22 DIEID");
|
|
break;
|
|
}
|
|
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
|
|
pflash_sector_size_bytes = 4<<10;
|
|
if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
|
|
/* K24FN256 - smaller pflash with FTFA */
|
|
num_blocks = 1;
|
|
kinfo->flash_support = FS_PROGRAM_LONGWORD;
|
|
break;
|
|
}
|
|
/* K24FN1M without errata 7534 */
|
|
num_blocks = 2;
|
|
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
|
|
kinfo->max_flash_prog_size = 1<<10;
|
|
break;
|
|
|
|
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
|
|
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
|
|
/* K63FN1M0 */
|
|
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
|
|
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
|
|
/* K64FN1M0, K64FX512 */
|
|
pflash_sector_size_bytes = 4<<10;
|
|
nvm_sector_size_bytes = 4<<10;
|
|
kinfo->max_flash_prog_size = 1<<10;
|
|
num_blocks = 2;
|
|
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
|
|
break;
|
|
|
|
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
|
|
/* K26FN2M0 */
|
|
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
|
|
/* K66FN2M0, K66FX1M0 */
|
|
pflash_sector_size_bytes = 4<<10;
|
|
nvm_sector_size_bytes = 4<<10;
|
|
kinfo->max_flash_prog_size = 1<<10;
|
|
num_blocks = 4;
|
|
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
|
|
}
|
|
break;
|
|
case KINETIS_SDID_SERIESID_KL:
|
|
/* KL-series */
|
|
pflash_sector_size_bytes = 1<<10;
|
|
nvm_sector_size_bytes = 1<<10;
|
|
num_blocks = 1;
|
|
kinfo->flash_support = FS_PROGRAM_LONGWORD;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Unsupported K-series");
|
|
}
|
|
}
|
|
|
|
if (pflash_sector_size_bytes == 0) {
|
|
LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, kinfo->sim_sdid);
|
|
return ERROR_FLASH_OPER_UNSUPPORTED;
|
|
}
|
|
|
|
result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
|
|
|
|
LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid,
|
|
kinfo->sim_fcfg1, kinfo->sim_fcfg2);
|
|
|
|
fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
|
|
fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
|
|
fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
|
|
|
|
/* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
|
|
if (!fcfg2_pflsh) {
|
|
switch (fcfg1_nvmsize) {
|
|
case 0x03:
|
|
case 0x07:
|
|
case 0x09:
|
|
case 0x0b:
|
|
nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
|
|
break;
|
|
case 0x0f:
|
|
if (pflash_sector_size_bytes >= 4<<10)
|
|
nvm_size = 512<<10;
|
|
else
|
|
/* K20_100 */
|
|
nvm_size = 256<<10;
|
|
break;
|
|
default:
|
|
nvm_size = 0;
|
|
break;
|
|
}
|
|
|
|
switch (fcfg1_eesize) {
|
|
case 0x00:
|
|
case 0x01:
|
|
case 0x02:
|
|
case 0x03:
|
|
case 0x04:
|
|
case 0x05:
|
|
case 0x06:
|
|
case 0x07:
|
|
case 0x08:
|
|
case 0x09:
|
|
ee_size = (16 << (10 - fcfg1_eesize));
|
|
break;
|
|
default:
|
|
ee_size = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (fcfg1_pfsize) {
|
|
case 0x03:
|
|
case 0x05:
|
|
case 0x07:
|
|
case 0x09:
|
|
case 0x0b:
|
|
case 0x0d:
|
|
pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
|
|
break;
|
|
case 0x0f:
|
|
if (pflash_sector_size_bytes >= 4<<10)
|
|
pf_size = 1024<<10;
|
|
else if (fcfg2_pflsh)
|
|
pf_size = 512<<10;
|
|
else
|
|
pf_size = 256<<10;
|
|
break;
|
|
default:
|
|
pf_size = 0;
|
|
break;
|
|
}
|
|
|
|
LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d",
|
|
nvm_size, pf_size, ee_size, fcfg2_pflsh);
|
|
|
|
num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
|
|
first_nvm_bank = num_pflash_blocks;
|
|
num_nvm_blocks = num_blocks - num_pflash_blocks;
|
|
|
|
LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
|
|
num_blocks, num_pflash_blocks, num_nvm_blocks);
|
|
|
|
/*
|
|
* If the flash class is already assigned, verify the
|
|
* parameters.
|
|
*/
|
|
if (kinfo->flash_class != FC_AUTO) {
|
|
if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
|
|
LOG_WARNING("Flash ordinal/bank number mismatch");
|
|
reassign = 1;
|
|
} else {
|
|
switch (kinfo->flash_class) {
|
|
case FC_PFLASH:
|
|
if (kinfo->bank_ordinal >= first_nvm_bank) {
|
|
LOG_WARNING("Class mismatch, bank %d is not PFlash", bank->bank_number);
|
|
reassign = 1;
|
|
} else if (bank->size != (pf_size / num_pflash_blocks)) {
|
|
LOG_WARNING("PFlash size mismatch");
|
|
reassign = 1;
|
|
} else if (bank->base !=
|
|
(0x00000000 + bank->size * kinfo->bank_ordinal)) {
|
|
LOG_WARNING("PFlash address range mismatch");
|
|
reassign = 1;
|
|
} else if (kinfo->sector_size != pflash_sector_size_bytes) {
|
|
LOG_WARNING("PFlash sector size mismatch");
|
|
reassign = 1;
|
|
} else {
|
|
LOG_DEBUG("PFlash bank %d already configured okay",
|
|
kinfo->bank_ordinal);
|
|
}
|
|
break;
|
|
case FC_FLEX_NVM:
|
|
if ((kinfo->bank_ordinal >= num_blocks) ||
|
|
(kinfo->bank_ordinal < first_nvm_bank)) {
|
|
LOG_WARNING("Class mismatch, bank %d is not FlexNVM", bank->bank_number);
|
|
reassign = 1;
|
|
} else if (bank->size != (nvm_size / num_nvm_blocks)) {
|
|
LOG_WARNING("FlexNVM size mismatch");
|
|
reassign = 1;
|
|
} else if (bank->base !=
|
|
(0x10000000 + bank->size * kinfo->bank_ordinal)) {
|
|
LOG_WARNING("FlexNVM address range mismatch");
|
|
reassign = 1;
|
|
} else if (kinfo->sector_size != nvm_sector_size_bytes) {
|
|
LOG_WARNING("FlexNVM sector size mismatch");
|
|
reassign = 1;
|
|
} else {
|
|
LOG_DEBUG("FlexNVM bank %d already configured okay",
|
|
kinfo->bank_ordinal);
|
|
}
|
|
break;
|
|
case FC_FLEX_RAM:
|
|
if (kinfo->bank_ordinal != num_blocks) {
|
|
LOG_WARNING("Class mismatch, bank %d is not FlexRAM", bank->bank_number);
|
|
reassign = 1;
|
|
} else if (bank->size != ee_size) {
|
|
LOG_WARNING("FlexRAM size mismatch");
|
|
reassign = 1;
|
|
} else if (bank->base != FLEXRAM) {
|
|
LOG_WARNING("FlexRAM address mismatch");
|
|
reassign = 1;
|
|
} else if (kinfo->sector_size != nvm_sector_size_bytes) {
|
|
LOG_WARNING("FlexRAM sector size mismatch");
|
|
reassign = 1;
|
|
} else {
|
|
LOG_DEBUG("FlexRAM bank %d already configured okay", kinfo->bank_ordinal);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LOG_WARNING("Unknown or inconsistent flash class");
|
|
reassign = 1;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
LOG_INFO("Probing flash info for bank %d", bank->bank_number);
|
|
reassign = 1;
|
|
}
|
|
|
|
if (!reassign)
|
|
return ERROR_OK;
|
|
|
|
if ((unsigned)bank->bank_number < num_pflash_blocks) {
|
|
/* pflash, banks start at address zero */
|
|
kinfo->flash_class = FC_PFLASH;
|
|
bank->size = (pf_size / num_pflash_blocks);
|
|
bank->base = 0x00000000 + bank->size * bank->bank_number;
|
|
kinfo->sector_size = pflash_sector_size_bytes;
|
|
kinfo->protection_size = pf_size / 32;
|
|
} else if ((unsigned)bank->bank_number < num_blocks) {
|
|
/* nvm, banks start at address 0x10000000 */
|
|
kinfo->flash_class = FC_FLEX_NVM;
|
|
bank->size = (nvm_size / num_nvm_blocks);
|
|
bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
|
|
kinfo->sector_size = nvm_sector_size_bytes;
|
|
kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
|
|
} else if ((unsigned)bank->bank_number == num_blocks) {
|
|
LOG_ERROR("FlexRAM support not yet implemented");
|
|
return ERROR_FLASH_OPER_UNSUPPORTED;
|
|
} else {
|
|
LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
|
|
bank->bank_number, num_blocks);
|
|
return ERROR_FLASH_BANK_INVALID;
|
|
}
|
|
|
|
if (bank->sectors) {
|
|
free(bank->sectors);
|
|
bank->sectors = NULL;
|
|
}
|
|
|
|
if (kinfo->sector_size == 0) {
|
|
LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
|
|
return ERROR_FLASH_BANK_INVALID;
|
|
}
|
|
|
|
if (kinfo->flash_support & FS_PROGRAM_SECTOR
|
|
&& kinfo->max_flash_prog_size == 0) {
|
|
kinfo->max_flash_prog_size = kinfo->sector_size;
|
|
/* Program section size is equal to sector size by default */
|
|
}
|
|
|
|
bank->num_sectors = bank->size / kinfo->sector_size;
|
|
assert(bank->num_sectors > 0);
|
|
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
|
|
|
|
for (i = 0; i < bank->num_sectors; i++) {
|
|
bank->sectors[i].offset = offset;
|
|
bank->sectors[i].size = kinfo->sector_size;
|
|
offset += kinfo->sector_size;
|
|
bank->sectors[i].is_erased = -1;
|
|
bank->sectors[i].is_protected = 1;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int kinetis_probe(struct flash_bank *bank)
|
|
{
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_WARNING("Cannot communicate... target not halted.");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
return kinetis_read_part_info(bank);
|
|
}
|
|
|
|
static int kinetis_auto_probe(struct flash_bank *bank)
|
|
{
|
|
struct kinetis_flash_bank *kinfo = bank->driver_priv;
|
|
|
|
if (kinfo->sim_sdid)
|
|
return ERROR_OK;
|
|
|
|
return kinetis_probe(bank);
|
|
}
|
|
|
|
static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
|
|
{
|
|
const char *bank_class_names[] = {
|
|
"(ANY)", "PFlash", "FlexNVM", "FlexRAM"
|
|
};
|
|
|
|
struct kinetis_flash_bank *kinfo = bank->driver_priv;
|
|
|
|
(void) snprintf(buf, buf_size,
|
|
"%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
|
|
bank->driver->name, bank_class_names[kinfo->flash_class],
|
|
bank->name, bank->base);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int kinetis_blank_check(struct flash_bank *bank)
|
|
{
|
|
struct kinetis_flash_bank *kinfo = bank->driver_priv;
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (kinfo->flash_class == FC_PFLASH) {
|
|
int result;
|
|
uint8_t ftfx_fstat;
|
|
|
|
/* check if whole bank is blank */
|
|
result = kinetis_ftfx_command(bank, FTFx_CMD_BLOCKSTAT, bank->base, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
|
|
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
if (ftfx_fstat & 0x01) {
|
|
/* the whole bank is not erased, check sector-by-sector */
|
|
int i;
|
|
for (i = 0; i < bank->num_sectors; i++) {
|
|
/* normal margin */
|
|
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTSTAT, bank->base + bank->sectors[i].offset,
|
|
1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
|
|
|
|
if (result == ERROR_OK) {
|
|
bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
|
|
} else {
|
|
LOG_DEBUG("Ignoring errored PFlash sector blank-check");
|
|
bank->sectors[i].is_erased = -1;
|
|
}
|
|
}
|
|
} else {
|
|
/* the whole bank is erased, update all sectors */
|
|
int i;
|
|
for (i = 0; i < bank->num_sectors; i++)
|
|
bank->sectors[i].is_erased = 1;
|
|
}
|
|
} else {
|
|
LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static const struct command_registration kinetis_securtiy_command_handlers[] = {
|
|
{
|
|
.name = "check_security",
|
|
.mode = COMMAND_EXEC,
|
|
.help = "",
|
|
.usage = "",
|
|
.handler = kinetis_check_flash_security_status,
|
|
},
|
|
{
|
|
.name = "mass_erase",
|
|
.mode = COMMAND_EXEC,
|
|
.help = "",
|
|
.usage = "",
|
|
.handler = kinetis_mdm_mass_erase,
|
|
},
|
|
{
|
|
.name = "test_securing",
|
|
.mode = COMMAND_EXEC,
|
|
.help = "",
|
|
.usage = "",
|
|
.handler = kinetis_securing_test,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
static const struct command_registration kinetis_exec_command_handlers[] = {
|
|
{
|
|
.name = "mdm",
|
|
.mode = COMMAND_ANY,
|
|
.help = "",
|
|
.usage = "",
|
|
.chain = kinetis_securtiy_command_handlers,
|
|
},
|
|
{
|
|
.name = "disable_wdog",
|
|
.mode = COMMAND_EXEC,
|
|
.help = "Disable the watchdog timer",
|
|
.usage = "",
|
|
.handler = kinetis_disable_wdog_handler,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
static const struct command_registration kinetis_command_handler[] = {
|
|
{
|
|
.name = "kinetis",
|
|
.mode = COMMAND_ANY,
|
|
.help = "kinetis NAND flash controller commands",
|
|
.usage = "",
|
|
.chain = kinetis_exec_command_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
|
|
|
|
struct flash_driver kinetis_flash = {
|
|
.name = "kinetis",
|
|
.commands = kinetis_command_handler,
|
|
.flash_bank_command = kinetis_flash_bank_command,
|
|
.erase = kinetis_erase,
|
|
.protect = kinetis_protect,
|
|
.write = kinetis_write,
|
|
.read = default_flash_read,
|
|
.probe = kinetis_probe,
|
|
.auto_probe = kinetis_auto_probe,
|
|
.erase_check = kinetis_blank_check,
|
|
.protect_check = kinetis_protect_check,
|
|
.info = kinetis_info,
|
|
};
|