1400 lines
41 KiB
C
1400 lines
41 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2015 by Uwe Bonnes *
|
|
* bon@elektron.ikp.physik.tu-darmstadt.de *
|
|
* *
|
|
* Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics *
|
|
* tarek.bouchkati@gmail.com *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
***************************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "imp.h"
|
|
#include <helper/binarybuffer.h>
|
|
#include <target/algorithm.h>
|
|
#include <target/armv7m.h>
|
|
#include "bits.h"
|
|
#include "stm32l4x.h"
|
|
|
|
/* STM32L4xxx series for reference.
|
|
*
|
|
* RM0351 (STM32L4x5/STM32L4x6)
|
|
* http://www.st.com/resource/en/reference_manual/dm00083560.pdf
|
|
*
|
|
* RM0394 (STM32L43x/44x/45x/46x)
|
|
* http://www.st.com/resource/en/reference_manual/dm00151940.pdf
|
|
*
|
|
* RM0432 (STM32L4R/4Sxx)
|
|
* http://www.st.com/resource/en/reference_manual/dm00310109.pdf
|
|
*
|
|
* STM32L476RG Datasheet (for erase timing)
|
|
* http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
|
|
*
|
|
* The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
|
|
* an option byte is available to map all sectors to the first bank.
|
|
* Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
|
|
* handlers do!
|
|
*
|
|
* RM0394 devices have a single bank only.
|
|
*
|
|
* RM0432 devices have single and dual bank operating modes.
|
|
* - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
|
|
* - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
|
|
* Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
|
|
*
|
|
* Bank mode is controlled by two different bits in option bytes register.
|
|
* - for STM32L4R/Sxx
|
|
* In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
|
|
* In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
|
|
* - for STM32L4P5/Q5x
|
|
* In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
|
|
* In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
|
|
*
|
|
*/
|
|
|
|
/* STM32WBxxx series for reference.
|
|
*
|
|
* RM0434 (STM32WB55)
|
|
* http://www.st.com/resource/en/reference_manual/dm00318631.pdf
|
|
*
|
|
* RM0471 (STM32WB50)
|
|
* http://www.st.com/resource/en/reference_manual/dm00622834.pdf
|
|
*/
|
|
|
|
/* STM32WLxxx series for reference.
|
|
*
|
|
* RM0461 (STM32WLEx)
|
|
* http://www.st.com/resource/en/reference_manual/dm00530369.pdf
|
|
*/
|
|
|
|
/*
|
|
* STM32G0xxx series for reference.
|
|
*
|
|
* RM0444 (STM32G0x1)
|
|
* http://www.st.com/resource/en/reference_manual/dm00371828.pdf
|
|
*
|
|
* RM0454 (STM32G0x0)
|
|
* http://www.st.com/resource/en/reference_manual/dm00463896.pdf
|
|
*/
|
|
|
|
/*
|
|
* STM32G4xxx series for reference.
|
|
*
|
|
* RM0440 (STM32G43x/44x/47x/48x)
|
|
* http://www.st.com/resource/en/reference_manual/dm00355726.pdf
|
|
*
|
|
* Cat. 2 devices have single bank only, page size is 2kByte.
|
|
*
|
|
* Cat. 3 devices have single and dual bank operating modes,
|
|
* Page size is 2kByte (dual mode) or 4kByte (single mode).
|
|
*
|
|
* Bank mode is controlled by bit 22 (DBANK) in option bytes register.
|
|
* Both banks are treated as a single OpenOCD bank.
|
|
*/
|
|
|
|
/* Erase time can be as high as 25ms, 10x this and assume it's toast... */
|
|
|
|
#define FLASH_ERASE_TIMEOUT 250
|
|
|
|
struct stm32l4_rev {
|
|
const uint16_t rev;
|
|
const char *str;
|
|
};
|
|
|
|
struct stm32l4_part_info {
|
|
uint16_t id;
|
|
const char *device_str;
|
|
const struct stm32l4_rev *revs;
|
|
const size_t num_revs;
|
|
const uint16_t max_flash_size_kb;
|
|
const bool has_dual_bank;
|
|
const uint32_t flash_regs_base;
|
|
const uint32_t fsize_addr;
|
|
};
|
|
|
|
struct stm32l4_flash_bank {
|
|
bool probed;
|
|
uint32_t idcode;
|
|
int bank1_sectors;
|
|
bool dual_bank_mode;
|
|
int hole_sectors;
|
|
uint32_t user_bank_size;
|
|
uint32_t wrpxxr_mask;
|
|
const struct stm32l4_part_info *part_info;
|
|
};
|
|
|
|
/* human readable list of families this drivers supports */
|
|
static const char *device_families = "STM32L4/L4+/WB/WL/G4/G0";
|
|
|
|
static const struct stm32l4_rev stm32_415_revs[] = {
|
|
{ 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_435_revs[] = {
|
|
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_460_revs[] = {
|
|
{ 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_461_revs[] = {
|
|
{ 0x1000, "A" }, { 0x2000, "B" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_462_revs[] = {
|
|
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_464_revs[] = {
|
|
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_466_revs[] = {
|
|
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_468_revs[] = {
|
|
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_469_revs[] = {
|
|
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_470_revs[] = {
|
|
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_471_revs[] = {
|
|
{ 0x1001, "Z" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_495_revs[] = {
|
|
{ 0x2001, "2.1" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_496_revs[] = {
|
|
{ 0x1000, "A" },
|
|
};
|
|
|
|
static const struct stm32l4_rev stm32_497_revs[] = {
|
|
{ 0x1000, "1.0" },
|
|
};
|
|
|
|
static const struct stm32l4_part_info stm32l4_parts[] = {
|
|
{
|
|
.id = 0x415,
|
|
.revs = stm32_415_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_415_revs),
|
|
.device_str = "STM32L47/L48xx",
|
|
.max_flash_size_kb = 1024,
|
|
.has_dual_bank = true,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x435,
|
|
.revs = stm32_435_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_435_revs),
|
|
.device_str = "STM32L43/L44xx",
|
|
.max_flash_size_kb = 256,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x460,
|
|
.revs = stm32_460_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_460_revs),
|
|
.device_str = "STM32G07/G08xx",
|
|
.max_flash_size_kb = 128,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x461,
|
|
.revs = stm32_461_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_461_revs),
|
|
.device_str = "STM32L49/L4Axx",
|
|
.max_flash_size_kb = 1024,
|
|
.has_dual_bank = true,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x462,
|
|
.revs = stm32_462_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_462_revs),
|
|
.device_str = "STM32L45/L46xx",
|
|
.max_flash_size_kb = 512,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x464,
|
|
.revs = stm32_464_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_464_revs),
|
|
.device_str = "STM32L41/L42xx",
|
|
.max_flash_size_kb = 128,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x466,
|
|
.revs = stm32_466_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_466_revs),
|
|
.device_str = "STM32G03/G04xx",
|
|
.max_flash_size_kb = 64,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x468,
|
|
.revs = stm32_468_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_468_revs),
|
|
.device_str = "STM32G43/G44xx",
|
|
.max_flash_size_kb = 128,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x469,
|
|
.revs = stm32_469_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_469_revs),
|
|
.device_str = "STM32G47/G48xx",
|
|
.max_flash_size_kb = 512,
|
|
.has_dual_bank = true,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x470,
|
|
.revs = stm32_470_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_470_revs),
|
|
.device_str = "STM32L4R/L4Sxx",
|
|
.max_flash_size_kb = 2048,
|
|
.has_dual_bank = true,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x471,
|
|
.revs = stm32_471_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_471_revs),
|
|
.device_str = "STM32L4P5/L4Q5x",
|
|
.max_flash_size_kb = 1024,
|
|
.has_dual_bank = true,
|
|
.flash_regs_base = 0x40022000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x495,
|
|
.revs = stm32_495_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_495_revs),
|
|
.device_str = "STM32WB5x",
|
|
.max_flash_size_kb = 1024,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x58004000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x496,
|
|
.revs = stm32_496_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_496_revs),
|
|
.device_str = "STM32WB3x",
|
|
.max_flash_size_kb = 512,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x58004000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
{
|
|
.id = 0x497,
|
|
.revs = stm32_497_revs,
|
|
.num_revs = ARRAY_SIZE(stm32_497_revs),
|
|
.device_str = "STM32WLEx",
|
|
.max_flash_size_kb = 256,
|
|
.has_dual_bank = false,
|
|
.flash_regs_base = 0x58004000,
|
|
.fsize_addr = 0x1FFF75E0,
|
|
},
|
|
};
|
|
|
|
/* flash bank stm32l4x <base> <size> 0 0 <target#> */
|
|
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
|
|
{
|
|
struct stm32l4_flash_bank *stm32l4_info;
|
|
|
|
if (CMD_ARGC < 6)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
|
|
if (!stm32l4_info)
|
|
return ERROR_FAIL; /* Checkme: What better error to use?*/
|
|
bank->driver_priv = stm32l4_info;
|
|
|
|
/* The flash write must be aligned to a double word (8-bytes) boundary.
|
|
* Ask the flash infrastructure to ensure required alignment */
|
|
bank->write_start_alignment = bank->write_end_alignment = 8;
|
|
|
|
stm32l4_info->probed = false;
|
|
stm32l4_info->user_bank_size = bank->size;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
|
|
{
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
return stm32l4_info->part_info->flash_regs_base + reg_offset;
|
|
}
|
|
|
|
static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
|
|
{
|
|
return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
|
|
}
|
|
|
|
static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
|
|
{
|
|
return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
|
|
}
|
|
|
|
static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
|
|
{
|
|
uint32_t status;
|
|
int retval = ERROR_OK;
|
|
|
|
/* wait for busy to clear */
|
|
for (;;) {
|
|
retval = stm32l4_read_flash_reg(bank, STM32_FLASH_SR, &status);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_DEBUG("status: 0x%" PRIx32 "", status);
|
|
if ((status & FLASH_BSY) == 0)
|
|
break;
|
|
if (timeout-- <= 0) {
|
|
LOG_ERROR("timed out waiting for flash");
|
|
return ERROR_FAIL;
|
|
}
|
|
alive_sleep(1);
|
|
}
|
|
|
|
|
|
if (status & FLASH_WRPERR) {
|
|
LOG_ERROR("stm32x device protected");
|
|
retval = ERROR_FAIL;
|
|
}
|
|
|
|
/* Clear but report errors */
|
|
if (status & FLASH_ERROR) {
|
|
if (retval == ERROR_OK)
|
|
retval = ERROR_FAIL;
|
|
/* If this operation fails, we ignore it and report the original
|
|
* retval
|
|
*/
|
|
stm32l4_write_flash_reg(bank, STM32_FLASH_SR, status & FLASH_ERROR);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int stm32l4_unlock_reg(struct flash_bank *bank)
|
|
{
|
|
uint32_t ctrl;
|
|
|
|
/* first check if not already unlocked
|
|
* otherwise writing on STM32_FLASH_KEYR will fail
|
|
*/
|
|
int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if ((ctrl & FLASH_LOCK) == 0)
|
|
return ERROR_OK;
|
|
|
|
/* unlock flash registers */
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY1);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY2);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (ctrl & FLASH_LOCK) {
|
|
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
|
|
return ERROR_TARGET_FAILURE;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int stm32l4_unlock_option_reg(struct flash_bank *bank)
|
|
{
|
|
uint32_t ctrl;
|
|
|
|
int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if ((ctrl & FLASH_OPTLOCK) == 0)
|
|
return ERROR_OK;
|
|
|
|
/* unlock option registers */
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY1);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY2);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (ctrl & FLASH_OPTLOCK) {
|
|
LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
|
|
return ERROR_TARGET_FAILURE;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
|
|
uint32_t value, uint32_t mask)
|
|
{
|
|
uint32_t optiondata;
|
|
int retval, retval2;
|
|
|
|
retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = stm32l4_unlock_reg(bank);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
retval = stm32l4_unlock_option_reg(bank);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
optiondata = (optiondata & ~mask) | (value & mask);
|
|
|
|
retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OPTSTRT);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
|
|
|
|
err_lock:
|
|
retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK | FLASH_OPTLOCK);
|
|
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return retval2;
|
|
}
|
|
|
|
static int stm32l4_protect_check(struct flash_bank *bank)
|
|
{
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
|
|
uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
|
|
stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1AR, &wrp1ar);
|
|
stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1BR, &wrp1br);
|
|
if (stm32l4_info->part_info->has_dual_bank) {
|
|
stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar);
|
|
stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br);
|
|
} else {
|
|
/* prevent unintialized errors */
|
|
wrp2ar = 0;
|
|
wrp2br = 0;
|
|
}
|
|
|
|
const uint8_t wrp1a_start = wrp1ar & stm32l4_info->wrpxxr_mask;
|
|
const uint8_t wrp1a_end = (wrp1ar >> 16) & stm32l4_info->wrpxxr_mask;
|
|
const uint8_t wrp1b_start = wrp1br & stm32l4_info->wrpxxr_mask;
|
|
const uint8_t wrp1b_end = (wrp1br >> 16) & stm32l4_info->wrpxxr_mask;
|
|
const uint8_t wrp2a_start = wrp2ar & stm32l4_info->wrpxxr_mask;
|
|
const uint8_t wrp2a_end = (wrp2ar >> 16) & stm32l4_info->wrpxxr_mask;
|
|
const uint8_t wrp2b_start = wrp2br & stm32l4_info->wrpxxr_mask;
|
|
const uint8_t wrp2b_end = (wrp2br >> 16) & stm32l4_info->wrpxxr_mask;
|
|
|
|
for (int i = 0; i < bank->num_sectors; i++) {
|
|
if (i < stm32l4_info->bank1_sectors) {
|
|
if (((i >= wrp1a_start) &&
|
|
(i <= wrp1a_end)) ||
|
|
((i >= wrp1b_start) &&
|
|
(i <= wrp1b_end)))
|
|
bank->sectors[i].is_protected = 1;
|
|
else
|
|
bank->sectors[i].is_protected = 0;
|
|
} else {
|
|
assert(stm32l4_info->part_info->has_dual_bank == true);
|
|
uint8_t snb;
|
|
snb = i - stm32l4_info->bank1_sectors;
|
|
if (((snb >= wrp2a_start) &&
|
|
(snb <= wrp2a_end)) ||
|
|
((snb >= wrp2b_start) &&
|
|
(snb <= wrp2b_end)))
|
|
bank->sectors[i].is_protected = 1;
|
|
else
|
|
bank->sectors[i].is_protected = 0;
|
|
}
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int stm32l4_erase(struct flash_bank *bank, int first, int last)
|
|
{
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
int i;
|
|
int retval, retval2;
|
|
|
|
assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
retval = stm32l4_unlock_reg(bank);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
/*
|
|
Sector Erase
|
|
To erase a sector, follow the procedure below:
|
|
1. Check that no Flash memory operation is ongoing by
|
|
checking the BSY bit in the FLASH_SR register
|
|
2. Set the PER bit and select the page and bank
|
|
you wish to erase in the FLASH_CR register
|
|
3. Set the STRT bit in the FLASH_CR register
|
|
4. Wait for the BSY bit to be cleared
|
|
*/
|
|
|
|
for (i = first; i <= last; i++) {
|
|
uint32_t erase_flags;
|
|
erase_flags = FLASH_PER | FLASH_STRT;
|
|
|
|
if (i >= stm32l4_info->bank1_sectors) {
|
|
uint8_t snb;
|
|
snb = i - stm32l4_info->bank1_sectors;
|
|
erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
|
|
} else
|
|
erase_flags |= i << FLASH_PAGE_SHIFT;
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, erase_flags);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
|
|
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
|
|
bank->sectors[i].is_erased = 1;
|
|
}
|
|
|
|
err_lock:
|
|
retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
|
|
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return retval2;
|
|
}
|
|
|
|
static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last)
|
|
{
|
|
struct target *target = bank->target;
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
int ret = ERROR_OK;
|
|
/* Bank 2 */
|
|
uint32_t reg_value = 0xFF; /* Default to bank un-protected */
|
|
if (last >= stm32l4_info->bank1_sectors) {
|
|
if (set == 1) {
|
|
uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00;
|
|
reg_value = ((last & 0xFF) << 16) | begin;
|
|
}
|
|
|
|
ret = stm32l4_write_option(bank, STM32_FLASH_WRP2AR, reg_value, 0xffffffff);
|
|
}
|
|
/* Bank 1 */
|
|
reg_value = 0xFF; /* Default to bank un-protected */
|
|
if (first < stm32l4_info->bank1_sectors) {
|
|
if (set == 1) {
|
|
uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last;
|
|
reg_value = (end << 16) | (first & 0xFF);
|
|
}
|
|
|
|
ret = stm32l4_write_option(bank, STM32_FLASH_WRP1AR, reg_value, 0xffffffff);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Count is in double-words */
|
|
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
|
|
uint32_t offset, uint32_t count)
|
|
{
|
|
struct target *target = bank->target;
|
|
uint32_t buffer_size;
|
|
struct working_area *write_algorithm;
|
|
struct working_area *source;
|
|
uint32_t address = bank->base + offset;
|
|
struct reg_param reg_params[6];
|
|
struct armv7m_algorithm armv7m_info;
|
|
int retval = ERROR_OK;
|
|
|
|
static const uint8_t stm32l4_flash_write_code[] = {
|
|
#include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
|
|
};
|
|
|
|
if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
|
|
&write_algorithm) != ERROR_OK) {
|
|
LOG_WARNING("no working area available, can't do block memory writes");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
retval = target_write_buffer(target, write_algorithm->address,
|
|
sizeof(stm32l4_flash_write_code),
|
|
stm32l4_flash_write_code);
|
|
if (retval != ERROR_OK) {
|
|
target_free_working_area(target, write_algorithm);
|
|
return retval;
|
|
}
|
|
|
|
/* memory buffer, size *must* be multiple of dword plus one dword for rp and one for wp */
|
|
buffer_size = target_get_working_area_avail(target) & ~(2 * sizeof(uint32_t) - 1);
|
|
if (buffer_size < 256) {
|
|
LOG_WARNING("large enough working area not available, can't do block memory writes");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
} else if (buffer_size > 16384) {
|
|
/* probably won't benefit from more than 16k ... */
|
|
buffer_size = 16384;
|
|
}
|
|
|
|
if (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
|
|
LOG_ERROR("allocating working area failed");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
|
|
armv7m_info.core_mode = ARM_MODE_THREAD;
|
|
|
|
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
|
|
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */
|
|
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */
|
|
init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count (double word-64bit) */
|
|
init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* flash status register */
|
|
init_reg_param(®_params[5], "r5", 32, PARAM_OUT); /* flash control register */
|
|
|
|
buf_set_u32(reg_params[0].value, 0, 32, source->address);
|
|
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
|
|
buf_set_u32(reg_params[2].value, 0, 32, address);
|
|
buf_set_u32(reg_params[3].value, 0, 32, count);
|
|
buf_set_u32(reg_params[4].value, 0, 32, stm32l4_get_flash_reg(bank, STM32_FLASH_SR));
|
|
buf_set_u32(reg_params[5].value, 0, 32, stm32l4_get_flash_reg(bank, STM32_FLASH_CR));
|
|
|
|
retval = target_run_flash_async_algorithm(target, buffer, count, 8,
|
|
0, NULL,
|
|
ARRAY_SIZE(reg_params), reg_params,
|
|
source->address, source->size,
|
|
write_algorithm->address, 0,
|
|
&armv7m_info);
|
|
|
|
if (retval == ERROR_FLASH_OPERATION_FAILED) {
|
|
LOG_ERROR("error executing stm32l4 flash write algorithm");
|
|
|
|
uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
|
|
|
|
if (error & FLASH_WRPERR)
|
|
LOG_ERROR("flash memory write protected");
|
|
|
|
if (error != 0) {
|
|
LOG_ERROR("flash write failed = %08" PRIx32, error);
|
|
/* Clear but report errors */
|
|
stm32l4_write_flash_reg(bank, STM32_FLASH_SR, error);
|
|
retval = ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
target_free_working_area(target, source);
|
|
target_free_working_area(target, write_algorithm);
|
|
|
|
destroy_reg_param(®_params[0]);
|
|
destroy_reg_param(®_params[1]);
|
|
destroy_reg_param(®_params[2]);
|
|
destroy_reg_param(®_params[3]);
|
|
destroy_reg_param(®_params[4]);
|
|
destroy_reg_param(®_params[5]);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
|
|
uint32_t offset, uint32_t count)
|
|
{
|
|
int retval = ERROR_OK, retval2;
|
|
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
/* The flash write must be aligned to a double word (8-bytes) boundary.
|
|
* The flash infrastructure ensures it, do just a security check */
|
|
assert(offset % 8 == 0);
|
|
assert(count % 8 == 0);
|
|
|
|
/* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
|
|
* data to be written does not go into a gap:
|
|
* suppose buffer is fully contained in bank from sector 0 to sector
|
|
* num->sectors - 1 and sectors are ordered according to offset
|
|
*/
|
|
struct flash_sector *head = &bank->sectors[0];
|
|
struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
|
|
|
|
while ((head < tail) && (offset >= (head + 1)->offset)) {
|
|
/* buffer does not intersect head nor gap behind head */
|
|
head++;
|
|
}
|
|
|
|
while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
|
|
/* buffer does not intersect tail nor gap before tail */
|
|
--tail;
|
|
}
|
|
|
|
LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
|
|
offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
|
|
|
|
/* Now check that there is no gap from head to tail, this should work
|
|
* even for multiple or non-symmetric gaps
|
|
*/
|
|
while (head < tail) {
|
|
if (head->offset + head->size != (head + 1)->offset) {
|
|
LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
|
|
bank->base + head->offset + head->size,
|
|
bank->base + (head + 1)->offset - 1);
|
|
retval = ERROR_FLASH_DST_OUT_OF_BANK;
|
|
}
|
|
head++;
|
|
}
|
|
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = stm32l4_unlock_reg(bank);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
retval = stm32l4_write_block(bank, buffer, offset, count / 8);
|
|
|
|
err_lock:
|
|
retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
|
|
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("block write failed");
|
|
return retval;
|
|
}
|
|
return retval2;
|
|
}
|
|
|
|
static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
|
|
{
|
|
int retval;
|
|
|
|
/* try stm32l4/l4+/wb/g4 id register first, then stm32g0 id register */
|
|
retval = target_read_u32(bank->target, DBGMCU_IDCODE_L4_G4, id);
|
|
if ((retval != ERROR_OK) || ((*id & 0xfff) == 0) || ((*id & 0xfff) == 0xfff)) {
|
|
retval = target_read_u32(bank->target, DBGMCU_IDCODE_G0, id);
|
|
if ((retval != ERROR_OK) || ((*id & 0xfff) == 0) || ((*id & 0xfff) == 0xfff)) {
|
|
LOG_ERROR("can't get device id");
|
|
return (retval == ERROR_OK) ? ERROR_FAIL : retval;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int stm32l4_probe(struct flash_bank *bank)
|
|
{
|
|
struct target *target = bank->target;
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
const struct stm32l4_part_info *part_info;
|
|
uint16_t flash_size_kb = 0xffff;
|
|
uint32_t device_id;
|
|
uint32_t options;
|
|
|
|
stm32l4_info->probed = false;
|
|
|
|
/* read stm32 device id registers */
|
|
int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
device_id = stm32l4_info->idcode & 0xFFF;
|
|
|
|
for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
|
|
if (device_id == stm32l4_parts[n].id)
|
|
stm32l4_info->part_info = &stm32l4_parts[n];
|
|
}
|
|
|
|
if (!stm32l4_info->part_info) {
|
|
LOG_WARNING("Cannot identify target as an %s family device.", device_families);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
part_info = stm32l4_info->part_info;
|
|
|
|
char device_info[1024];
|
|
retval = bank->driver->info(bank, device_info, sizeof(device_info));
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info);
|
|
|
|
/* get flash size from target. */
|
|
retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
|
|
|
|
/* failed reading flash size or flash size invalid (early silicon),
|
|
* default to max target family */
|
|
if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
|
|
|| flash_size_kb > part_info->max_flash_size_kb) {
|
|
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
|
|
part_info->max_flash_size_kb);
|
|
flash_size_kb = part_info->max_flash_size_kb;
|
|
}
|
|
|
|
/* if the user sets the size manually then ignore the probed value
|
|
* this allows us to work around devices that have a invalid flash size register value */
|
|
if (stm32l4_info->user_bank_size) {
|
|
LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
|
|
flash_size_kb = stm32l4_info->user_bank_size / 1024;
|
|
}
|
|
|
|
LOG_INFO("flash size = %dkbytes", flash_size_kb);
|
|
|
|
/* did we assign a flash size? */
|
|
assert((flash_size_kb != 0xffff) && flash_size_kb);
|
|
|
|
/* read flash option register */
|
|
retval = stm32l4_read_flash_reg(bank, STM32_FLASH_OPTR, &options);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
stm32l4_info->bank1_sectors = 0;
|
|
stm32l4_info->hole_sectors = 0;
|
|
|
|
int num_pages = 0;
|
|
int page_size_kb = 0;
|
|
|
|
stm32l4_info->dual_bank_mode = false;
|
|
|
|
switch (device_id) {
|
|
case 0x415: /* STM32L47/L48xx */
|
|
case 0x461: /* STM32L49/L4Axx */
|
|
/* if flash size is max (1M) the device is always dual bank
|
|
* 0x415: has variants with 512K
|
|
* 0x461: has variants with 512 and 256
|
|
* for these variants:
|
|
* if DUAL_BANK = 0 -> single bank
|
|
* else -> dual bank without gap
|
|
* note: the page size is invariant
|
|
*/
|
|
page_size_kb = 2;
|
|
num_pages = flash_size_kb / page_size_kb;
|
|
stm32l4_info->bank1_sectors = num_pages;
|
|
|
|
/* check DUAL_BANK bit[21] if the flash is less than 1M */
|
|
if (flash_size_kb == 1024 || (options & BIT(21))) {
|
|
stm32l4_info->dual_bank_mode = true;
|
|
stm32l4_info->bank1_sectors = num_pages / 2;
|
|
}
|
|
break;
|
|
case 0x435: /* STM32L43/L44xx */
|
|
case 0x460: /* STM32G07/G08xx */
|
|
case 0x462: /* STM32L45/L46xx */
|
|
case 0x464: /* STM32L41/L42xx */
|
|
case 0x466: /* STM32G03/G04xx */
|
|
case 0x468: /* STM32G43/G44xx */
|
|
case 0x497: /* STM32WLEx */
|
|
/* single bank flash */
|
|
page_size_kb = 2;
|
|
num_pages = flash_size_kb / page_size_kb;
|
|
stm32l4_info->bank1_sectors = num_pages;
|
|
break;
|
|
case 0x469: /* STM32G47/G48xx */
|
|
/* STM32G47/8 can be single/dual bank:
|
|
* if DUAL_BANK = 0 -> single bank
|
|
* else -> dual bank WITH gap
|
|
*/
|
|
page_size_kb = 4;
|
|
num_pages = flash_size_kb / page_size_kb;
|
|
stm32l4_info->bank1_sectors = num_pages;
|
|
if (options & BIT(22)) {
|
|
stm32l4_info->dual_bank_mode = true;
|
|
page_size_kb = 2;
|
|
num_pages = flash_size_kb / page_size_kb;
|
|
stm32l4_info->bank1_sectors = num_pages / 2;
|
|
|
|
/* for devices with trimmed flash, there is a gap between both banks */
|
|
stm32l4_info->hole_sectors =
|
|
(part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
|
|
}
|
|
break;
|
|
case 0x470: /* STM32L4R/L4Sxx */
|
|
case 0x471: /* STM32L4P5/L4Q5x */
|
|
/* STM32L4R/S can be single/dual bank:
|
|
* if size = 2M check DBANK bit(22)
|
|
* if size = 1M check DB1M bit(21)
|
|
* STM32L4P/Q can be single/dual bank
|
|
* if size = 1M check DBANK bit(22)
|
|
* if size = 512K check DB512K bit(21)
|
|
*/
|
|
page_size_kb = 8;
|
|
num_pages = flash_size_kb / page_size_kb;
|
|
stm32l4_info->bank1_sectors = num_pages;
|
|
const bool use_dbank_bit = flash_size_kb == part_info->max_flash_size_kb;
|
|
if ((use_dbank_bit && (options & BIT(22))) ||
|
|
(!use_dbank_bit && (options & BIT(21)))) {
|
|
stm32l4_info->dual_bank_mode = true;
|
|
page_size_kb = 4;
|
|
num_pages = flash_size_kb / page_size_kb;
|
|
stm32l4_info->bank1_sectors = num_pages / 2;
|
|
}
|
|
break;
|
|
case 0x495: /* STM32WB5x */
|
|
case 0x496: /* STM32WB3x */
|
|
/* single bank flash */
|
|
page_size_kb = 4;
|
|
num_pages = flash_size_kb / page_size_kb;
|
|
stm32l4_info->bank1_sectors = num_pages;
|
|
break;
|
|
default:
|
|
LOG_ERROR("unsupported device");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
|
|
|
|
const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
|
|
|
|
if (gap_size_kb != 0) {
|
|
LOG_INFO("gap detected from 0x%08" PRIx32 " to 0x%08" PRIx32,
|
|
STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
|
|
* page_size_kb * 1024,
|
|
STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
|
|
* page_size_kb + gap_size_kb) * 1024 - 1);
|
|
}
|
|
|
|
/* number of significant bits in WRPxxR differs per device,
|
|
* always right adjusted, on some devices non-implemented
|
|
* bits read as '0', on others as '1' ...
|
|
* notably G4 Cat. 2 implement only 6 bits, contradicting the RM
|
|
*/
|
|
|
|
/* use *max_flash_size* instead of actual size as the trimmed versions
|
|
* certainly use the same number of bits
|
|
* max_flash_size is always power of two, so max_pages too
|
|
*/
|
|
uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
|
|
assert((max_pages & (max_pages - 1)) == 0);
|
|
|
|
/* in dual bank mode number of pages is doubled, but extra bit is bank selection */
|
|
stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
|
|
assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
|
|
LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
|
|
|
|
if (bank->sectors) {
|
|
free(bank->sectors);
|
|
bank->sectors = NULL;
|
|
}
|
|
|
|
bank->size = (flash_size_kb + gap_size_kb) * 1024;
|
|
bank->base = STM32_FLASH_BANK_BASE;
|
|
bank->num_sectors = num_pages;
|
|
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
|
|
if (bank->sectors == NULL) {
|
|
LOG_ERROR("failed to allocate bank sectors");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
for (int i = 0; i < bank->num_sectors; i++) {
|
|
bank->sectors[i].offset = i * page_size_kb * 1024;
|
|
/* in dual bank configuration, if there is a gap between banks
|
|
* we fix up the sector offset to consider this gap */
|
|
if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
|
|
bank->sectors[i].offset += gap_size_kb * 1024;
|
|
bank->sectors[i].size = page_size_kb * 1024;
|
|
bank->sectors[i].is_erased = -1;
|
|
bank->sectors[i].is_protected = 1;
|
|
}
|
|
|
|
stm32l4_info->probed = true;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int stm32l4_auto_probe(struct flash_bank *bank)
|
|
{
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
if (stm32l4_info->probed)
|
|
return ERROR_OK;
|
|
|
|
return stm32l4_probe(bank);
|
|
}
|
|
|
|
static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
|
|
{
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
|
|
|
|
if (part_info) {
|
|
const char *rev_str = NULL;
|
|
uint16_t rev_id = stm32l4_info->idcode >> 16;
|
|
for (unsigned int i = 0; i < part_info->num_revs; i++) {
|
|
if (rev_id == part_info->revs[i].rev) {
|
|
rev_str = part_info->revs[i].str;
|
|
|
|
if (rev_str != NULL) {
|
|
snprintf(buf, buf_size, "%s - Rev: %s%s",
|
|
part_info->device_str, rev_str, stm32l4_info->probed ?
|
|
(stm32l4_info->dual_bank_mode ? " dual-bank" : " single-bank") : "");
|
|
return ERROR_OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)%s",
|
|
part_info->device_str, rev_id, stm32l4_info->probed ?
|
|
(stm32l4_info->dual_bank_mode ? " dual-bank" : " single-bank") : "");
|
|
return ERROR_OK;
|
|
} else {
|
|
snprintf(buf, buf_size, "Cannot identify target as an %s device", device_families);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int stm32l4_mass_erase(struct flash_bank *bank)
|
|
{
|
|
int retval, retval2;
|
|
struct target *target = bank->target;
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
|
|
uint32_t action = FLASH_MER1;
|
|
|
|
if (stm32l4_info->part_info->has_dual_bank)
|
|
action |= FLASH_MER2;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
retval = stm32l4_unlock_reg(bank);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
/* mass erase flash memory */
|
|
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action | FLASH_STRT);
|
|
if (retval != ERROR_OK)
|
|
goto err_lock;
|
|
|
|
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
|
|
|
|
err_lock:
|
|
retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
|
|
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return retval2;
|
|
}
|
|
|
|
COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
|
|
{
|
|
if (CMD_ARGC < 1) {
|
|
command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
struct flash_bank *bank;
|
|
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
retval = stm32l4_mass_erase(bank);
|
|
if (retval == ERROR_OK) {
|
|
/* set all sectors as erased */
|
|
for (int i = 0; i < bank->num_sectors; i++)
|
|
bank->sectors[i].is_erased = 1;
|
|
|
|
command_print(CMD, "stm32l4x mass erase complete");
|
|
} else {
|
|
command_print(CMD, "stm32l4x mass erase failed");
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(stm32l4_handle_option_read_command)
|
|
{
|
|
if (CMD_ARGC < 2) {
|
|
command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
struct flash_bank *bank;
|
|
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
uint32_t reg_offset, reg_addr;
|
|
uint32_t value = 0;
|
|
|
|
reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
|
|
reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
|
|
|
|
retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(stm32l4_handle_option_write_command)
|
|
{
|
|
if (CMD_ARGC < 3) {
|
|
command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
struct flash_bank *bank;
|
|
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
uint32_t reg_offset;
|
|
uint32_t value = 0;
|
|
uint32_t mask = 0xFFFFFFFF;
|
|
|
|
reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
|
|
value = strtoul(CMD_ARGV[2], NULL, 16);
|
|
if (CMD_ARGC > 3)
|
|
mask = strtoul(CMD_ARGV[3], NULL, 16);
|
|
|
|
command_print(CMD, "%s Option written.\n"
|
|
"INFO: a reset or power cycle is required "
|
|
"for the new settings to take effect.", bank->driver->name);
|
|
|
|
retval = stm32l4_write_option(bank, reg_offset, value, mask);
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(stm32l4_handle_option_load_command)
|
|
{
|
|
if (CMD_ARGC < 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
struct flash_bank *bank;
|
|
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
retval = stm32l4_unlock_reg(bank);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
retval = stm32l4_unlock_option_reg(bank);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
/* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
|
|
* but the RMs explicitly do *NOT* list this as power-on reset cause, and:
|
|
* "Note: If the read protection is set while the debugger is still
|
|
* connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
|
|
*/
|
|
retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBL_LAUNCH);
|
|
|
|
command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
|
|
|
|
/* Need to re-probe after change */
|
|
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
|
|
stm32l4_info->probed = false;
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(stm32l4_handle_lock_command)
|
|
{
|
|
struct target *target = NULL;
|
|
|
|
if (CMD_ARGC < 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
struct flash_bank *bank;
|
|
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
target = bank->target;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
/* set readout protection level 1 by erasing the RDP option byte */
|
|
if (stm32l4_write_option(bank, STM32_FLASH_OPTR, 0, 0x000000FF) != ERROR_OK) {
|
|
command_print(CMD, "%s failed to lock device", bank->driver->name);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(stm32l4_handle_unlock_command)
|
|
{
|
|
struct target *target = NULL;
|
|
|
|
if (CMD_ARGC < 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
struct flash_bank *bank;
|
|
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
target = bank->target;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (stm32l4_write_option(bank, STM32_FLASH_OPTR, RDP_LEVEL_0, 0x000000FF) != ERROR_OK) {
|
|
command_print(CMD, "%s failed to unlock device", bank->driver->name);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static const struct command_registration stm32l4_exec_command_handlers[] = {
|
|
{
|
|
.name = "lock",
|
|
.handler = stm32l4_handle_lock_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "bank_id",
|
|
.help = "Lock entire flash device.",
|
|
},
|
|
{
|
|
.name = "unlock",
|
|
.handler = stm32l4_handle_unlock_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "bank_id",
|
|
.help = "Unlock entire protected flash device.",
|
|
},
|
|
{
|
|
.name = "mass_erase",
|
|
.handler = stm32l4_handle_mass_erase_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "bank_id",
|
|
.help = "Erase entire flash device.",
|
|
},
|
|
{
|
|
.name = "option_read",
|
|
.handler = stm32l4_handle_option_read_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "bank_id reg_offset",
|
|
.help = "Read & Display device option bytes.",
|
|
},
|
|
{
|
|
.name = "option_write",
|
|
.handler = stm32l4_handle_option_write_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "bank_id reg_offset value mask",
|
|
.help = "Write device option bit fields with provided value.",
|
|
},
|
|
{
|
|
.name = "option_load",
|
|
.handler = stm32l4_handle_option_load_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "bank_id",
|
|
.help = "Force re-load of device options (will cause device reset).",
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
static const struct command_registration stm32l4_command_handlers[] = {
|
|
{
|
|
.name = "stm32l4x",
|
|
.mode = COMMAND_ANY,
|
|
.help = "stm32l4x flash command group",
|
|
.usage = "",
|
|
.chain = stm32l4_exec_command_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
const struct flash_driver stm32l4x_flash = {
|
|
.name = "stm32l4x",
|
|
.commands = stm32l4_command_handlers,
|
|
.flash_bank_command = stm32l4_flash_bank_command,
|
|
.erase = stm32l4_erase,
|
|
.protect = stm32l4_protect,
|
|
.write = stm32l4_write,
|
|
.read = default_flash_read,
|
|
.probe = stm32l4_probe,
|
|
.auto_probe = stm32l4_auto_probe,
|
|
.erase_check = default_flash_blank_check,
|
|
.protect_check = stm32l4_protect_check,
|
|
.info = get_stm32l4_info,
|
|
.free_driver_priv = default_flash_free_driver_priv,
|
|
};
|