riscv-openocd/src/target/armv8.c

973 lines
27 KiB
C

/***************************************************************************
* Copyright (C) 2015 by David Ung *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/replacements.h>
#include "armv8.h"
#include "arm_disassembler.h"
#include "register.h"
#include <helper/binarybuffer.h>
#include <helper/command.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "armv8_opcodes.h"
#include "target.h"
#include "target_type.h"
static const char * const armv8_state_strings[] = {
"ARM", "Thumb", "Jazelle", "ThumbEE", "ARM64",
};
static const struct {
const char *name;
unsigned psr;
/* For user and system modes, these list indices for all registers.
* otherwise they're just indices for the shadow registers and SPSR.
*/
unsigned short n_indices;
const uint8_t *indices;
} armv8_mode_data[] = {
/* These special modes are currently only supported
* by ARMv6M and ARMv7M profiles */
{
.name = "EL0T",
.psr = ARMV8_64_EL0T,
},
{
.name = "EL1T",
.psr = ARMV8_64_EL1T,
},
{
.name = "EL1H",
.psr = ARMV8_64_EL1H,
},
{
.name = "EL2T",
.psr = ARMV8_64_EL2T,
},
{
.name = "EL2H",
.psr = ARMV8_64_EL2H,
},
{
.name = "EL3T",
.psr = ARMV8_64_EL3T,
},
{
.name = "EL3H",
.psr = ARMV8_64_EL3H,
},
};
/** Map PSR mode bits to the name of an ARM processor operating mode. */
const char *armv8_mode_name(unsigned psr_mode)
{
for (unsigned i = 0; i < ARRAY_SIZE(armv8_mode_data); i++) {
if (armv8_mode_data[i].psr == psr_mode)
return armv8_mode_data[i].name;
}
LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
return "UNRECOGNIZED";
}
int armv8_mode_to_number(enum arm_mode mode)
{
switch (mode) {
case ARM_MODE_ANY:
/* map MODE_ANY to user mode */
case ARM_MODE_USR:
return 0;
case ARM_MODE_FIQ:
return 1;
case ARM_MODE_IRQ:
return 2;
case ARM_MODE_SVC:
return 3;
case ARM_MODE_ABT:
return 4;
case ARM_MODE_UND:
return 5;
case ARM_MODE_SYS:
return 6;
case ARM_MODE_MON:
return 7;
case ARMV8_64_EL0T:
return 8;
case ARMV8_64_EL1T:
return 9;
case ARMV8_64_EL1H:
return 10;
case ARMV8_64_EL2T:
return 11;
case ARMV8_64_EL2H:
return 12;
case ARMV8_64_EL3T:
return 13;
case ARMV8_64_EL3H:
return 14;
default:
LOG_ERROR("invalid mode value encountered %d", mode);
return -1;
}
}
static int armv8_read_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode)
{
uint64_t reg_value;
int retval;
struct arm_reg *armv8_core_reg;
struct armv8_common *armv8 = target_to_armv8(target);
assert(num < (int)armv8->arm.core_cache->num_regs);
armv8_core_reg = armv8->arm.core_cache->reg_list[num].arch_info;
retval = armv8->load_core_reg_u64(target,
armv8_core_reg->num, &reg_value);
buf_set_u64(armv8->arm.core_cache->reg_list[num].value, 0, 64, reg_value);
armv8->arm.core_cache->reg_list[num].valid = 1;
armv8->arm.core_cache->reg_list[num].dirty = 0;
return retval;
}
#if 0
static int armv8_write_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode, target_addr_t value)
{
int retval;
struct arm_reg *armv8_core_reg;
struct armv8_common *armv8 = target_to_armv8(target);
assert(num < (int)armv8->arm.core_cache->num_regs);
armv8_core_reg = armv8->arm.core_cache->reg_list[num].arch_info;
retval = armv8->store_core_reg_u64(target,
armv8_core_reg->num,
value);
if (retval != ERROR_OK) {
LOG_ERROR("JTAG failure");
armv8->arm.core_cache->reg_list[num].dirty = armv8->arm.core_cache->reg_list[num].valid;
return ERROR_JTAG_DEVICE_ERROR;
}
LOG_DEBUG("write core reg %i value 0x%" PRIx64 "", num, value);
armv8->arm.core_cache->reg_list[num].valid = 1;
armv8->arm.core_cache->reg_list[num].dirty = 0;
return ERROR_OK;
}
#endif
/**
* Configures host-side ARM records to reflect the specified CPSR.
* Later, code can use arm_reg_current() to map register numbers
* according to how they are exposed by this mode.
*/
void armv8_set_cpsr(struct arm *arm, uint32_t cpsr)
{
uint32_t mode = cpsr & 0x1F;
/* NOTE: this may be called very early, before the register
* cache is set up. We can't defend against many errors, in
* particular against CPSRs that aren't valid *here* ...
*/
if (arm->cpsr) {
buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
arm->cpsr->valid = 1;
arm->cpsr->dirty = 0;
}
/* Older ARMs won't have the J bit */
enum arm_state state = 0xFF;
if (((cpsr & 0x10) >> 4) == 0) {
state = ARM_STATE_AARCH64;
} else {
if (cpsr & (1 << 5)) { /* T */
if (cpsr & (1 << 24)) { /* J */
LOG_WARNING("ThumbEE -- incomplete support");
state = ARM_STATE_THUMB_EE;
} else
state = ARM_STATE_THUMB;
} else {
if (cpsr & (1 << 24)) { /* J */
LOG_ERROR("Jazelle state handling is BROKEN!");
state = ARM_STATE_JAZELLE;
} else
state = ARM_STATE_ARM;
}
}
arm->core_state = state;
if (arm->core_state == ARM_STATE_AARCH64) {
switch (mode) {
case SYSTEM_AAR64_MODE_EL0t:
arm->core_mode = ARMV8_64_EL0T;
break;
case SYSTEM_AAR64_MODE_EL1t:
arm->core_mode = ARMV8_64_EL0T;
break;
case SYSTEM_AAR64_MODE_EL1h:
arm->core_mode = ARMV8_64_EL1H;
break;
case SYSTEM_AAR64_MODE_EL2t:
arm->core_mode = ARMV8_64_EL2T;
break;
case SYSTEM_AAR64_MODE_EL2h:
arm->core_mode = ARMV8_64_EL2H;
break;
case SYSTEM_AAR64_MODE_EL3t:
arm->core_mode = ARMV8_64_EL3T;
break;
case SYSTEM_AAR64_MODE_EL3h:
arm->core_mode = ARMV8_64_EL3H;
break;
default:
LOG_DEBUG("unknow mode 0x%x", (unsigned) (mode));
break;
}
} else {
arm->core_mode = mode;
}
LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
armv8_mode_name(arm->core_mode),
armv8_state_strings[arm->core_state]);
}
static void armv8_show_fault_registers(struct target *target)
{
/* TODO */
}
static uint8_t armv8_pa_size(uint32_t ps)
{
uint8_t ret = 0;
switch (ps) {
case 0:
ret = 32;
break;
case 1:
ret = 36;
break;
case 2:
ret = 40;
break;
case 3:
ret = 42;
break;
case 4:
ret = 44;
break;
case 5:
ret = 48;
break;
default:
LOG_INFO("Unknow physicall address size");
break;
}
return ret;
}
static int armv8_read_ttbcr(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
struct arm *arm = &armv8->arm;
uint32_t ttbcr;
uint64_t ttbcr_64;
int retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* claaer ttrr1_used and ttbr0_mask */
memset(&armv8->armv8_mmu.ttbr1_used, 0, sizeof(armv8->armv8_mmu.ttbr1_used));
memset(&armv8->armv8_mmu.ttbr0_mask, 0, sizeof(armv8->armv8_mmu.ttbr0_mask));
switch (arm->core_mode) {
case ARMV8_64_EL3H:
case ARMV8_64_EL3T:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_TCR_EL3, 0),
&ttbcr);
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL3, 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
armv8->va_size = 64 - (ttbcr & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
armv8->page_size = (ttbcr >> 14) & 3;
break;
case ARMV8_64_EL2T:
case ARMV8_64_EL2H:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_TCR_EL2, 0),
&ttbcr);
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL2, 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
armv8->va_size = 64 - (ttbcr & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
armv8->page_size = (ttbcr >> 14) & 3;
break;
case ARMV8_64_EL0T:
case ARMV8_64_EL1T:
case ARMV8_64_EL1H:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TCR_EL1, 0),
&ttbcr_64);
armv8->va_size = 64 - (ttbcr_64 & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr_64 >> 32) & 7);
armv8->page_size = (ttbcr_64 >> 14) & 3;
armv8->armv8_mmu.ttbr1_used = (((ttbcr_64 >> 16) & 0x3F) != 0) ? 1 : 0;
armv8->armv8_mmu.ttbr0_mask = 0x0000FFFFFFFFFFFF;
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL1 | (armv8->armv8_mmu.ttbr1_used), 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
break;
default:
LOG_ERROR("unknow core state");
retval = ERROR_FAIL;
break;
}
if (retval != ERROR_OK)
goto done;
#if 0
LOG_INFO("ttb1 %s ,ttb0_mask %llx",
armv8->armv8_mmu.ttbr1_used ? "used" : "not used",
armv8->armv8_mmu.ttbr0_mask);
#endif
if (armv8->armv8_mmu.ttbr1_used == 1) {
LOG_INFO("TTBR0 access above %" PRIx64,
(uint64_t)(armv8->armv8_mmu.ttbr0_mask));
armv8->armv8_mmu.os_border = armv8->armv8_mmu.ttbr0_mask;
} else {
/* fix me , default is hard coded LINUX border */
armv8->armv8_mmu.os_border = 0xc0000000;
}
done:
dpm->finish(dpm);
return retval;
}
static int armv8_4K_translate(struct target *target, target_addr_t va, target_addr_t *val)
{
LOG_ERROR("4K page Address translation need to add");
return ERROR_FAIL;
}
/* method adapted to cortex A : reused arm v4 v5 method*/
int armv8_mmu_translate_va(struct target *target, target_addr_t va, target_addr_t *val)
{
int retval = ERROR_FAIL;
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
retval = dpm->prepare(dpm);
retval += armv8_read_ttbcr(target);
if (retval != ERROR_OK)
goto done;
if (armv8->page_size == 0)
return armv8_4K_translate(target, va, val);
done:
dpm->finish(dpm);
return ERROR_FAIL;
}
/* V8 method VA TO PA */
int armv8_mmu_translate_va_pa(struct target *target, target_addr_t va,
target_addr_t *val, int meminfo)
{
return ERROR_OK;
}
static int armv8_handle_inner_cache_info_command(struct command_context *cmd_ctx,
struct armv8_cache_common *armv8_cache)
{
if (armv8_cache->ctype == -1) {
command_print(cmd_ctx, "cache not yet identified");
return ERROR_OK;
}
command_print(cmd_ctx,
"D-Cache: linelen %" PRIi32 ", associativity %" PRIi32 ", nsets %" PRIi32 ", cachesize %" PRId32 " KBytes",
armv8_cache->d_u_size.linelen,
armv8_cache->d_u_size.associativity,
armv8_cache->d_u_size.nsets,
armv8_cache->d_u_size.cachesize);
command_print(cmd_ctx,
"I-Cache: linelen %" PRIi32 ", associativity %" PRIi32 ", nsets %" PRIi32 ", cachesize %" PRId32 " KBytes",
armv8_cache->i_size.linelen,
armv8_cache->i_size.associativity,
armv8_cache->i_size.nsets,
armv8_cache->i_size.cachesize);
return ERROR_OK;
}
static int _armv8_flush_all_data(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
struct armv8_cachesize *d_u_size =
&(armv8->armv8_mmu.armv8_cache.d_u_size);
int32_t c_way, c_index = d_u_size->index;
int retval;
/* check that cache data is on at target halt */
if (!armv8->armv8_mmu.armv8_cache.d_u_cache_enabled) {
LOG_INFO("flushed not performed :cache not on at target halt");
return ERROR_OK;
}
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
do {
c_way = d_u_size->way;
do {
uint32_t value = (c_index << d_u_size->index_shift)
| (c_way << d_u_size->way_shift);
/* DCCISW */
/* LOG_INFO ("%d %d %x",c_way,c_index,value); */
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MSR_GP(SYSTEM_DCCISW, 0),
value);
if (retval != ERROR_OK)
goto done;
c_way -= 1;
} while (c_way >= 0);
c_index -= 1;
} while (c_index >= 0);
return retval;
done:
LOG_ERROR("flushed failed");
dpm->finish(dpm);
return retval;
}
static int armv8_flush_all_data(struct target *target)
{
int retval = ERROR_FAIL;
/* check that armv8_cache is correctly identify */
struct armv8_common *armv8 = target_to_armv8(target);
if (armv8->armv8_mmu.armv8_cache.ctype == -1) {
LOG_ERROR("trying to flush un-identified cache");
return retval;
}
if (target->smp) {
/* look if all the other target have been flushed in order to flush level
* 2 */
struct target_list *head;
struct target *curr;
head = target->head;
while (head != (struct target_list *)NULL) {
curr = head->target;
if (curr->state == TARGET_HALTED) {
LOG_INFO("Wait flushing data l1 on core %" PRId32, curr->coreid);
retval = _armv8_flush_all_data(curr);
}
head = head->next;
}
} else
retval = _armv8_flush_all_data(target);
return retval;
}
int armv8_handle_cache_info_command(struct command_context *cmd_ctx,
struct armv8_cache_common *armv8_cache)
{
if (armv8_cache->ctype == -1) {
command_print(cmd_ctx, "cache not yet identified");
return ERROR_OK;
}
if (armv8_cache->display_cache_info)
armv8_cache->display_cache_info(cmd_ctx, armv8_cache);
return ERROR_OK;
}
/* retrieve core id cluster id */
static int armv8_read_mpidr(struct target *target)
{
int retval = ERROR_FAIL;
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
uint32_t mpidr;
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* MRC p15,0,<Rd>,c0,c0,5; read Multiprocessor ID register*/
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_MPIDR, 0),
&mpidr);
if (retval != ERROR_OK)
goto done;
if (mpidr & 1<<31) {
armv8->multi_processor_system = (mpidr >> 30) & 1;
armv8->cluster_id = (mpidr >> 8) & 0xf;
armv8->cpu_id = mpidr & 0x3;
LOG_INFO("%s cluster %x core %x %s", target_name(target),
armv8->cluster_id,
armv8->cpu_id,
armv8->multi_processor_system == 0 ? "multi core" : "mono core");
} else
LOG_ERROR("mpdir not in multiprocessor format");
done:
dpm->finish(dpm);
return retval;
}
int armv8_identify_cache(struct target *target)
{
/* read cache descriptor */
int retval = ERROR_FAIL;
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
uint32_t cache_selected, clidr;
uint32_t cache_i_reg, cache_d_reg;
struct armv8_cache_common *cache = &(armv8->armv8_mmu.armv8_cache);
armv8_read_ttbcr(target);
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* retrieve CLIDR
* mrc p15, 1, r0, c0, c0, 1 @ read clidr */
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_CLIDR, 0),
&clidr);
if (retval != ERROR_OK)
goto done;
clidr = (clidr & 0x7000000) >> 23;
LOG_INFO("number of cache level %" PRIx32, (uint32_t)(clidr / 2));
if ((clidr / 2) > 1) {
/* FIXME not supported present in cortex A8 and later */
/* in cortex A7, A15 */
LOG_ERROR("cache l2 present :not supported");
}
/* retrieve selected cache*/
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_CSSELR, 0),
&cache_selected);
if (retval != ERROR_OK)
goto done;
/* select instruction cache
* [0] : 1 instruction cache selection , 0 data cache selection */
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MRS(SYSTEM_CSSELR, 0),
1);
if (retval != ERROR_OK)
goto done;
/* read CCSIDR
* MRC P15,1,<RT>,C0, C0,0 ;on cortex A9 read CCSIDR
* [2:0] line size 001 eight word per line
* [27:13] NumSet 0x7f 16KB, 0xff 32Kbytes, 0x1ff 64Kbytes */
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_CCSIDR, 0),
&cache_i_reg);
if (retval != ERROR_OK)
goto done;
/* select data cache*/
retval = dpm->instr_write_data_r0(dpm,
ARMV8_MRS(SYSTEM_CSSELR, 0),
0);
if (retval != ERROR_OK)
goto done;
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_CCSIDR, 0),
&cache_d_reg);
if (retval != ERROR_OK)
goto done;
/* restore selected cache */
dpm->instr_write_data_r0(dpm,
ARMV8_MRS(SYSTEM_CSSELR, 0),
cache_selected);
if (retval != ERROR_OK)
goto done;
dpm->finish(dpm);
/* put fake type */
cache->d_u_size.linelen = 16 << (cache_d_reg & 0x7);
cache->d_u_size.cachesize = (((cache_d_reg >> 13) & 0x7fff)+1)/8;
cache->d_u_size.nsets = (cache_d_reg >> 13) & 0x7fff;
cache->d_u_size.associativity = ((cache_d_reg >> 3) & 0x3ff) + 1;
/* compute info for set way operation on cache */
cache->d_u_size.index_shift = (cache_d_reg & 0x7) + 4;
cache->d_u_size.index = (cache_d_reg >> 13) & 0x7fff;
cache->d_u_size.way = ((cache_d_reg >> 3) & 0x3ff);
cache->d_u_size.way_shift = cache->d_u_size.way + 1;
{
int i = 0;
while (((cache->d_u_size.way_shift >> i) & 1) != 1)
i++;
cache->d_u_size.way_shift = 32-i;
}
#if 0
LOG_INFO("data cache index %d << %d, way %d << %d",
cache->d_u_size.index, cache->d_u_size.index_shift,
cache->d_u_size.way,
cache->d_u_size.way_shift);
LOG_INFO("data cache %d bytes %d KBytes asso %d ways",
cache->d_u_size.linelen,
cache->d_u_size.cachesize,
cache->d_u_size.associativity);
#endif
cache->i_size.linelen = 16 << (cache_i_reg & 0x7);
cache->i_size.associativity = ((cache_i_reg >> 3) & 0x3ff) + 1;
cache->i_size.nsets = (cache_i_reg >> 13) & 0x7fff;
cache->i_size.cachesize = (((cache_i_reg >> 13) & 0x7fff)+1)/8;
/* compute info for set way operation on cache */
cache->i_size.index_shift = (cache_i_reg & 0x7) + 4;
cache->i_size.index = (cache_i_reg >> 13) & 0x7fff;
cache->i_size.way = ((cache_i_reg >> 3) & 0x3ff);
cache->i_size.way_shift = cache->i_size.way + 1;
{
int i = 0;
while (((cache->i_size.way_shift >> i) & 1) != 1)
i++;
cache->i_size.way_shift = 32-i;
}
#if 0
LOG_INFO("instruction cache index %d << %d, way %d << %d",
cache->i_size.index, cache->i_size.index_shift,
cache->i_size.way, cache->i_size.way_shift);
LOG_INFO("instruction cache %d bytes %d KBytes asso %d ways",
cache->i_size.linelen,
cache->i_size.cachesize,
cache->i_size.associativity);
#endif
/* if no l2 cache initialize l1 data cache flush function function */
if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache == NULL) {
armv8->armv8_mmu.armv8_cache.display_cache_info =
armv8_handle_inner_cache_info_command;
armv8->armv8_mmu.armv8_cache.flush_all_data_cache =
armv8_flush_all_data;
}
armv8->armv8_mmu.armv8_cache.ctype = 0;
done:
dpm->finish(dpm);
armv8_read_mpidr(target);
return retval;
}
int armv8_init_arch_info(struct target *target, struct armv8_common *armv8)
{
struct arm *arm = &armv8->arm;
arm->arch_info = armv8;
target->arch_info = &armv8->arm;
/* target is useful in all function arm v4 5 compatible */
armv8->arm.target = target;
armv8->arm.common_magic = ARM_COMMON_MAGIC;
armv8->common_magic = ARMV8_COMMON_MAGIC;
arm->read_core_reg = armv8_read_core_reg;
#if 0
arm->write_core_reg = armv8_write_core_reg;
#endif
armv8->armv8_mmu.armv8_cache.l2_cache = NULL;
armv8->armv8_mmu.armv8_cache.ctype = -1;
armv8->armv8_mmu.armv8_cache.flush_all_data_cache = NULL;
armv8->armv8_mmu.armv8_cache.display_cache_info = NULL;
return ERROR_OK;
}
int armv8_aarch64_state(struct target *target)
{
struct arm *arm = target_to_arm(target);
if (arm->common_magic != ARM_COMMON_MAGIC) {
LOG_ERROR("BUG: called for a non-ARM target");
return ERROR_FAIL;
}
LOG_USER("target halted in %s state due to %s, current mode: %s\n"
"cpsr: 0x%8.8" PRIx32 " pc: 0x%" PRIx64 "%s",
armv8_state_strings[arm->core_state],
debug_reason_name(target),
armv8_mode_name(arm->core_mode),
buf_get_u32(arm->cpsr->value, 0, 32),
buf_get_u64(arm->pc->value, 0, 64),
arm->is_semihosting ? ", semihosting" : "");
return ERROR_OK;
}
int armv8_arch_state(struct target *target)
{
static const char * const state[] = {
"disabled", "enabled"
};
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
if (armv8->common_magic != ARMV8_COMMON_MAGIC) {
LOG_ERROR("BUG: called for a non-Armv8 target");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (arm->core_state == ARM_STATE_AARCH64)
armv8_aarch64_state(target);
else
arm_arch_state(target);
LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
state[armv8->armv8_mmu.mmu_enabled],
state[armv8->armv8_mmu.armv8_cache.d_u_cache_enabled],
state[armv8->armv8_mmu.armv8_cache.i_cache_enabled]);
if (arm->core_mode == ARM_MODE_ABT)
armv8_show_fault_registers(target);
if (target->debug_reason == DBG_REASON_WATCHPOINT)
LOG_USER("Watchpoint triggered at PC %#08x",
(unsigned) armv8->dpm.wp_pc);
return ERROR_OK;
}
static const struct {
unsigned id;
const char *name;
unsigned bits;
enum reg_type type;
const char *group;
const char *feature;
} armv8_regs[] = {
{ ARMV8_R0, "x0", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R1, "x1", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R2, "x2", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R3, "x3", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R4, "x4", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R5, "x5", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R6, "x6", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R7, "x7", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R8, "x8", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R9, "x9", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R10, "x10", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R11, "x11", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R12, "x12", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R13, "x13", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R14, "x14", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R15, "x15", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R16, "x16", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R17, "x17", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R18, "x18", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R19, "x19", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R20, "x20", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R21, "x21", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R22, "x22", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R23, "x23", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R24, "x24", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R25, "x25", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R26, "x26", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R27, "x27", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R28, "x28", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R29, "x29", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R30, "x30", 64, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_R31, "sp", 64, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_PC, "pc", 64, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.aarch64.core" },
{ ARMV8_xPSR, "CPSR", 32, REG_TYPE_UINT32, "general", "org.gnu.gdb.aarch64.core" },
};
#define ARMV8_NUM_REGS ARRAY_SIZE(armv8_regs)
static int armv8_get_core_reg(struct reg *reg)
{
int retval;
struct arm_reg *armv8_reg = reg->arch_info;
struct target *target = armv8_reg->target;
struct arm *arm = target_to_arm(target);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = arm->read_core_reg(target, reg, armv8_reg->num, arm->core_mode);
return retval;
}
static int armv8_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct arm_reg *armv8_reg = reg->arch_info;
struct target *target = armv8_reg->target;
struct arm *arm = target_to_arm(target);
uint64_t value = buf_get_u64(buf, 0, 64);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
if (reg == arm->cpsr) {
armv8_set_cpsr(arm, (uint32_t)value);
} else {
buf_set_u64(reg->value, 0, 64, value);
reg->valid = 1;
}
reg->dirty = 1;
return ERROR_OK;
}
static const struct reg_arch_type armv8_reg_type = {
.get = armv8_get_core_reg,
.set = armv8_set_core_reg,
};
/** Builds cache of architecturally defined registers. */
struct reg_cache *armv8_build_reg_cache(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
int num_regs = ARMV8_NUM_REGS;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
struct reg_feature *feature;
int i;
/* Build the process context cache */
cache->name = "arm v8 registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
for (i = 0; i < num_regs; i++) {
arch_info[i].num = armv8_regs[i].id;
arch_info[i].target = target;
arch_info[i].arm = arm;
reg_list[i].name = armv8_regs[i].name;
reg_list[i].size = armv8_regs[i].bits;
reg_list[i].value = calloc(1, 8);
reg_list[i].dirty = 0;
reg_list[i].valid = 0;
reg_list[i].type = &armv8_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].group = armv8_regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true; /* gdb defaults to true */
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = armv8_regs[i].feature;
reg_list[i].feature = feature;
} else
LOG_ERROR("unable to allocate feature list");
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type)
reg_list[i].reg_data_type->type = armv8_regs[i].type;
else
LOG_ERROR("unable to allocate reg type list");
}
arm->cpsr = reg_list + ARMV8_xPSR;
arm->pc = reg_list + ARMV8_PC;
arm->core_cache = cache;
return cache;
}
struct reg *armv8_reg_current(struct arm *arm, unsigned regnum)
{
struct reg *r;
if (regnum > (ARMV8_LAST_REG - 1))
return NULL;
r = arm->core_cache->reg_list + regnum;
return r;
}
const struct command_registration armv8_command_handlers[] = {
{
.chain = dap_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
int armv8_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
struct arm *arm = target_to_arm(target);
int i;
switch (reg_class) {
case REG_CLASS_GENERAL:
case REG_CLASS_ALL:
*reg_list_size = ARMV8_LAST_REG;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < ARMV8_LAST_REG; i++)
(*reg_list)[i] = armv8_reg_current(arm, i);
return ERROR_OK;
default:
LOG_ERROR("not a valid register class type in query.");
return ERROR_FAIL;
break;
}
}