riscv-openocd/contrib/loaders/flash/fespi/riscv_fespi.c

324 lines
8.7 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include "../../../../src/flash/nor/spi.h"
/* Register offsets */
#define FESPI_REG_SCKDIV 0x00
#define FESPI_REG_SCKMODE 0x04
#define FESPI_REG_CSID 0x10
#define FESPI_REG_CSDEF 0x14
#define FESPI_REG_CSMODE 0x18
#define FESPI_REG_DCSSCK 0x28
#define FESPI_REG_DSCKCS 0x2a
#define FESPI_REG_DINTERCS 0x2c
#define FESPI_REG_DINTERXFR 0x2e
#define FESPI_REG_FMT 0x40
#define FESPI_REG_TXFIFO 0x48
#define FESPI_REG_RXFIFO 0x4c
#define FESPI_REG_TXCTRL 0x50
#define FESPI_REG_RXCTRL 0x54
#define FESPI_REG_FCTRL 0x60
#define FESPI_REG_FFMT 0x64
#define FESPI_REG_IE 0x70
#define FESPI_REG_IP 0x74
/* Fields */
#define FESPI_SCK_POL 0x1
#define FESPI_SCK_PHA 0x2
#define FESPI_FMT_PROTO(x) ((x) & 0x3)
#define FESPI_FMT_ENDIAN(x) (((x) & 0x1) << 2)
#define FESPI_FMT_DIR(x) (((x) & 0x1) << 3)
#define FESPI_FMT_LEN(x) (((x) & 0xf) << 16)
/* TXCTRL register */
#define FESPI_TXWM(x) ((x) & 0xffff)
/* RXCTRL register */
#define FESPI_RXWM(x) ((x) & 0xffff)
#define FESPI_IP_TXWM 0x1
#define FESPI_IP_RXWM 0x2
#define FESPI_FCTRL_EN 0x1
#define FESPI_INSN_CMD_EN 0x1
#define FESPI_INSN_ADDR_LEN(x) (((x) & 0x7) << 1)
#define FESPI_INSN_PAD_CNT(x) (((x) & 0xf) << 4)
#define FESPI_INSN_CMD_PROTO(x) (((x) & 0x3) << 8)
#define FESPI_INSN_ADDR_PROTO(x) (((x) & 0x3) << 10)
#define FESPI_INSN_DATA_PROTO(x) (((x) & 0x3) << 12)
#define FESPI_INSN_CMD_CODE(x) (((x) & 0xff) << 16)
#define FESPI_INSN_PAD_CODE(x) (((x) & 0xff) << 24)
/* Values */
#define FESPI_CSMODE_AUTO 0
#define FESPI_CSMODE_HOLD 2
#define FESPI_CSMODE_OFF 3
#define FESPI_DIR_RX 0
#define FESPI_DIR_TX 1
#define FESPI_PROTO_S 0
#define FESPI_PROTO_D 1
#define FESPI_PROTO_Q 2
#define FESPI_ENDIAN_MSB 0
#define FESPI_ENDIAN_LSB 1
/* Timeouts we use, in number of status checks. */
#define TIMEOUT 1000
/* #define DEBUG to make the return error codes provide enough information to
* reconstruct the stack from where the error occurred. This is not enabled
* usually to reduce the program size. */
#ifdef DEBUG
#define ERROR_STACK(x) (x)
#define ERROR_FESPI_TXWM_WAIT 0x10
#define ERROR_FESPI_TX 0x100
#define ERROR_FESPI_RX 0x1000
#define ERROR_FESPI_WIP 0x50000
#else
#define ERROR_STACK(x) 0
#define ERROR_FESPI_TXWM_WAIT 1
#define ERROR_FESPI_TX 1
#define ERROR_FESPI_RX 1
#define ERROR_FESPI_WIP 1
#endif
#define ERROR_OK 0
static int fespi_txwm_wait(volatile uint32_t *ctrl_base);
static void fespi_disable_hw_mode(volatile uint32_t *ctrl_base);
static void fespi_enable_hw_mode(volatile uint32_t *ctrl_base);
static int fespi_wip(volatile uint32_t *ctrl_base);
static int fespi_write_buffer(volatile uint32_t *ctrl_base,
const uint8_t *buffer, unsigned int offset, unsigned int len,
uint32_t flash_info);
/* Can set bits 3:0 in result. */
/* flash_info contains:
* bits 7:0 -- pprog_cmd
* bit 8 -- 0 means send 3 bytes after pprog_cmd, 1 means send 4 bytes
* after pprog_cmd
*/
int flash_fespi(volatile uint32_t *ctrl_base, uint32_t page_size,
const uint8_t *buffer, unsigned int offset, uint32_t count,
uint32_t flash_info)
{
int result;
result = fespi_txwm_wait(ctrl_base);
if (result != ERROR_OK)
return result | ERROR_STACK(0x1);
/* Disable Hardware accesses*/
fespi_disable_hw_mode(ctrl_base);
/* poll WIP */
result = fespi_wip(ctrl_base);
if (result != ERROR_OK) {
result |= ERROR_STACK(0x2);
goto err;
}
/* Assume page_size is a power of two so we don't need the modulus code. */
uint32_t page_offset = offset & (page_size - 1);
/* central part, aligned words */
while (count > 0) {
uint32_t cur_count;
/* clip block at page boundary */
if (page_offset + count > page_size)
cur_count = page_size - page_offset;
else
cur_count = count;
result = fespi_write_buffer(ctrl_base, buffer, offset, cur_count, flash_info);
if (result != ERROR_OK) {
result |= ERROR_STACK(0x3);
goto err;
}
page_offset = 0;
buffer += cur_count;
offset += cur_count;
count -= cur_count;
}
err:
/* Switch to HW mode before return to prompt */
fespi_enable_hw_mode(ctrl_base);
return result;
}
static uint32_t fespi_read_reg(volatile uint32_t *ctrl_base, unsigned int address)
{
return ctrl_base[address / 4];
}
static void fespi_write_reg(volatile uint32_t *ctrl_base, unsigned int address, uint32_t value)
{
ctrl_base[address / 4] = value;
}
static void fespi_disable_hw_mode(volatile uint32_t *ctrl_base)
{
uint32_t fctrl = fespi_read_reg(ctrl_base, FESPI_REG_FCTRL);
fespi_write_reg(ctrl_base, FESPI_REG_FCTRL, fctrl & ~FESPI_FCTRL_EN);
}
static void fespi_enable_hw_mode(volatile uint32_t *ctrl_base)
{
uint32_t fctrl = fespi_read_reg(ctrl_base, FESPI_REG_FCTRL);
fespi_write_reg(ctrl_base, FESPI_REG_FCTRL, fctrl | FESPI_FCTRL_EN);
}
/* Can set bits 7:4 in result. */
static int fespi_txwm_wait(volatile uint32_t *ctrl_base)
{
unsigned int timeout = TIMEOUT;
while (timeout--) {
uint32_t ip = fespi_read_reg(ctrl_base, FESPI_REG_IP);
if (ip & FESPI_IP_TXWM)
return ERROR_OK;
}
return ERROR_FESPI_TXWM_WAIT;
}
static void fespi_set_dir(volatile uint32_t *ctrl_base, bool dir)
{
uint32_t fmt = fespi_read_reg(ctrl_base, FESPI_REG_FMT);
fespi_write_reg(ctrl_base, FESPI_REG_FMT,
(fmt & ~(FESPI_FMT_DIR(0xFFFFFFFF))) | FESPI_FMT_DIR(dir));
}
/* Can set bits 11:8 in result. */
static int fespi_tx(volatile uint32_t *ctrl_base, uint8_t in)
{
unsigned int timeout = TIMEOUT;
while (timeout--) {
uint32_t txfifo = fespi_read_reg(ctrl_base, FESPI_REG_TXFIFO);
if (!(txfifo >> 31)) {
fespi_write_reg(ctrl_base, FESPI_REG_TXFIFO, in);
return ERROR_OK;
}
}
return ERROR_FESPI_TX;
}
/* Can set bits 15:12 in result. */
static int fespi_rx(volatile uint32_t *ctrl_base, uint8_t *out)
{
unsigned int timeout = TIMEOUT;
while (timeout--) {
uint32_t value = fespi_read_reg(ctrl_base, FESPI_REG_RXFIFO);
if (!(value >> 31)) {
if (out)
*out = value & 0xff;
return ERROR_OK;
}
}
return ERROR_FESPI_RX;
}
/* Can set bits 19:16 in result. */
static int fespi_wip(volatile uint32_t *ctrl_base)
{
fespi_set_dir(ctrl_base, FESPI_DIR_RX);
fespi_write_reg(ctrl_base, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);
int result = fespi_tx(ctrl_base, SPIFLASH_READ_STATUS);
if (result != ERROR_OK)
return result | ERROR_STACK(0x10000);
result = fespi_rx(ctrl_base, NULL);
if (result != ERROR_OK)
return result | ERROR_STACK(0x20000);
unsigned int timeout = TIMEOUT;
while (timeout--) {
result = fespi_tx(ctrl_base, 0);
if (result != ERROR_OK)
return result | ERROR_STACK(0x30000);
uint8_t rx;
result = fespi_rx(ctrl_base, &rx);
if (result != ERROR_OK)
return result | ERROR_STACK(0x40000);
if ((rx & SPIFLASH_BSY_BIT) == 0) {
fespi_write_reg(ctrl_base, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);
fespi_set_dir(ctrl_base, FESPI_DIR_TX);
return ERROR_OK;
}
}
return ERROR_FESPI_WIP;
}
/* Can set bits 23:20 in result. */
static int fespi_write_buffer(volatile uint32_t *ctrl_base,
const uint8_t *buffer, unsigned int offset, unsigned int len,
uint32_t flash_info)
{
int result = fespi_tx(ctrl_base, SPIFLASH_WRITE_ENABLE);
if (result != ERROR_OK)
return result | ERROR_STACK(0x100000);
result = fespi_txwm_wait(ctrl_base);
if (result != ERROR_OK)
return result | ERROR_STACK(0x200000);
fespi_write_reg(ctrl_base, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);
result = fespi_tx(ctrl_base, flash_info & 0xff);
if (result != ERROR_OK)
return result | ERROR_STACK(0x300000);
if (flash_info & 0x100) {
result = fespi_tx(ctrl_base, offset >> 24);
if (result != ERROR_OK)
return result | ERROR_STACK(0x400000);
}
result = fespi_tx(ctrl_base, offset >> 16);
if (result != ERROR_OK)
return result | ERROR_STACK(0x400000);
result = fespi_tx(ctrl_base, offset >> 8);
if (result != ERROR_OK)
return result | ERROR_STACK(0x500000);
result = fespi_tx(ctrl_base, offset);
if (result != ERROR_OK)
return result | ERROR_STACK(0x600000);
for (unsigned int i = 0; i < len; i++) {
result = fespi_tx(ctrl_base, buffer[i]);
if (result != ERROR_OK)
return result | ERROR_STACK(0x700000);
}
result = fespi_txwm_wait(ctrl_base);
if (result != ERROR_OK)
return result | ERROR_STACK(0x800000);
fespi_write_reg(ctrl_base, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);
result = fespi_wip(ctrl_base);
if (result != ERROR_OK)
return result | ERROR_STACK(0x900000);
return ERROR_OK;
}