riscv-openocd/src/flash/nor/nrf5.c

1546 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 Synapse Product Development *
* Andrey Smirnov <andrew.smironv@gmail.com> *
* Angus Gratton <gus@projectgus.com> *
* Erdem U. Altunyurt <spamjunkeater@gmail.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <helper/types.h>
#include <helper/time_support.h>
#include <helper/bits.h>
/* The refresh code is constant across the current spectrum of nRF5 devices */
#define WATCHDOG_REFRESH_VALUE 0x6e524635
enum {
NRF5_FLASH_BASE = 0x00000000,
};
enum nrf5_ficr_registers {
NRF51_52_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
#define NRF5_FICR_REG(offset) (NRF51_52_FICR_BASE + (offset))
NRF51_FICR_CLENR0 = NRF5_FICR_REG(0x028),
NRF51_FICR_PPFC = NRF5_FICR_REG(0x02C),
NRF51_FICR_NUMRAMBLOCK = NRF5_FICR_REG(0x034),
NRF51_FICR_SIZERAMBLOCK0 = NRF5_FICR_REG(0x038),
NRF51_FICR_SIZERAMBLOCK1 = NRF5_FICR_REG(0x03C),
NRF51_FICR_SIZERAMBLOCK2 = NRF5_FICR_REG(0x040),
NRF51_FICR_SIZERAMBLOCK3 = NRF5_FICR_REG(0x044),
};
enum nrf5_uicr_registers {
NRF51_52_UICR_BASE = 0x10001000, /* User Information
* Configuration Registers */
#define NRF5_UICR_REG(offset) (NRF51_52_UICR_BASE + (offset))
NRF51_UICR_CLENR0 = NRF5_UICR_REG(0x000),
};
enum nrf5_nvmc_registers {
NRF5_NVMC_READY = 0x400,
NRF5_NVMC_CONFIG = 0x504,
NRF5_NVMC_ERASEPAGE = 0x508,
NRF5_NVMC_ERASEALL = 0x50C,
NRF5_NVMC_ERASEUICR = 0x514,
NRF5_BPROT_BASE = 0x40000000,
};
enum nrf5_nvmc_config_bits {
NRF5_NVMC_CONFIG_REN = 0x00,
NRF5_NVMC_CONFIG_WEN = 0x01,
NRF5_NVMC_CONFIG_EEN = 0x02,
};
struct nrf52_ficr_info {
uint32_t part;
uint32_t variant;
uint32_t package;
uint32_t ram;
uint32_t flash;
};
enum nrf5_features {
NRF5_FEATURE_SERIES_51 = BIT(0),
NRF5_FEATURE_SERIES_52 = BIT(1),
NRF5_FEATURE_BPROT = BIT(2),
NRF5_FEATURE_ACL_PROT = BIT(3),
NRF5_FEATURE_SERIES_53 = BIT(4),
NRF5_FEATURE_SERIES_91 = BIT(5),
NRF5_FEATURE_ERASE_BY_FLASH_WR = BIT(6),
};
struct nrf5_device_spec {
uint16_t hwid;
const char *part;
const char *variant;
const char *build_code;
unsigned int flash_size_kb;
enum nrf5_features features;
};
/* FICR registers offsets */
struct nrf5_ficr_map {
uint32_t codepagesize;
uint32_t codesize;
uint32_t configid;
uint32_t info_part;
uint32_t info_variant;
uint32_t info_package;
uint32_t info_ram;
uint32_t info_flash;
};
/* Map of device */
struct nrf5_map {
uint32_t flash_base;
uint32_t ficr_base;
uint32_t uicr_base;
uint32_t nvmc_base;
uint32_t watchdog_refresh_addr;
};
struct nrf5_info {
unsigned int refcount;
bool chip_probed;
struct nrf5_bank {
struct nrf5_info *chip;
bool probed;
} bank[2];
struct target *target;
/* chip identification stored in nrf5_probe_chip()
* for use in nrf5_info() and nrf5_setup_bank() */
bool ficr_info_valid;
struct nrf52_ficr_info ficr_info;
const struct nrf5_device_spec *spec;
uint16_t hwid;
enum nrf5_features features;
uint32_t flash_page_size;
uint32_t flash_num_sectors;
unsigned int ram_size_kb;
const struct nrf5_map *map;
const struct nrf5_ficr_map *ficr_offsets;
};
#define NRF51_DEVICE_DEF(id, pt, var, bcode, fsize) \
{ \
.hwid = (id), \
.part = pt, \
.variant = var, \
.build_code = bcode, \
.flash_size_kb = (fsize), \
.features = NRF5_FEATURE_SERIES_51, \
}
/*
* The table maps known HWIDs to the part numbers, variant
* build code and some other info. For nRF51 rev 1 and 2 devices
* this is the only way how to get the part number and variant.
*
* All tested nRF51 rev 3 devices have FICR INFO fields
* but the fields are not documented in RM so we keep HWIDs in
* this table.
*
* nRF52 and newer devices have FICR INFO documented, the autodetection
* can rely on it and HWIDs table is not used.
*
* The known devices table below is derived from the "nRF5x series
* compatibility matrix" documents.
*
* Up to date with Matrix v2.0, plus some additional HWIDs.
*
* The additional HWIDs apply where the build code in the matrix is
* shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
* for x==0, x!=0 means different (unspecified) HWIDs.
*/
static const struct nrf5_device_spec nrf5_known_devices_table[] = {
/* nRF51822 Devices (IC rev 1). */
NRF51_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
NRF51_DEVICE_DEF(0x0026, "51822", "QFAB", "AA", 128),
NRF51_DEVICE_DEF(0x0027, "51822", "QFAB", "A0", 128),
NRF51_DEVICE_DEF(0x0020, "51822", "CEAA", "BA", 256),
NRF51_DEVICE_DEF(0x002F, "51822", "CEAA", "B0", 256),
/* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
with built-in jlink seem to use engineering samples not listed
in the nRF51 Series Compatibility Matrix V1.0. */
NRF51_DEVICE_DEF(0x0071, "51822", "QFAC", "AB", 256),
/* nRF51822 Devices (IC rev 2). */
NRF51_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0", 256),
NRF51_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0", 256),
NRF51_DEVICE_DEF(0x003C, "51822", "QFAA", "G0", 256),
NRF51_DEVICE_DEF(0x0057, "51822", "QFAA", "G2", 256),
NRF51_DEVICE_DEF(0x0058, "51822", "QFAA", "G3", 256),
NRF51_DEVICE_DEF(0x004C, "51822", "QFAB", "B0", 128),
NRF51_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0", 256),
NRF51_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0", 256),
NRF51_DEVICE_DEF(0x004D, "51822", "CEAA", "D00", 256),
/* nRF51822 Devices (IC rev 3). */
NRF51_DEVICE_DEF(0x0072, "51822", "QFAA", "H0", 256),
NRF51_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2", 256),
NRF51_DEVICE_DEF(0x007B, "51822", "QFAB", "C0", 128),
NRF51_DEVICE_DEF(0x0083, "51822", "QFAC", "A0", 256),
NRF51_DEVICE_DEF(0x0084, "51822", "QFAC", "A1", 256),
NRF51_DEVICE_DEF(0x007D, "51822", "CDAB", "A0", 128),
NRF51_DEVICE_DEF(0x0079, "51822", "CEAA", "E0", 256),
NRF51_DEVICE_DEF(0x0087, "51822", "CFAC", "A0", 256),
NRF51_DEVICE_DEF(0x008F, "51822", "QFAA", "H1", 256),
/* nRF51422 Devices (IC rev 1). */
NRF51_DEVICE_DEF(0x001E, "51422", "QFAA", "CA", 256),
NRF51_DEVICE_DEF(0x0024, "51422", "QFAA", "C0", 256),
NRF51_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A", 256),
/* nRF51422 Devices (IC rev 2). */
NRF51_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA", 256),
NRF51_DEVICE_DEF(0x002E, "51422", "QFAA", "E0", 256),
NRF51_DEVICE_DEF(0x0061, "51422", "QFAB", "A00", 128),
NRF51_DEVICE_DEF(0x0050, "51422", "CEAA", "B0", 256),
/* nRF51422 Devices (IC rev 3). */
NRF51_DEVICE_DEF(0x0073, "51422", "QFAA", "F0", 256),
NRF51_DEVICE_DEF(0x007C, "51422", "QFAB", "B0", 128),
NRF51_DEVICE_DEF(0x0085, "51422", "QFAC", "A0", 256),
NRF51_DEVICE_DEF(0x0086, "51422", "QFAC", "A1", 256),
NRF51_DEVICE_DEF(0x007E, "51422", "CDAB", "A0", 128),
NRF51_DEVICE_DEF(0x007A, "51422", "CEAA", "C0", 256),
NRF51_DEVICE_DEF(0x0088, "51422", "CFAC", "A0", 256),
/* The driver fully autodetects nRF52 series devices by FICR INFO,
* no need for nRF52xxx HWIDs in this table */
};
struct nrf5_device_package {
uint32_t package;
const char *code;
};
/* Newer devices have FICR INFO.PACKAGE.
* This table converts its value to two character code */
static const struct nrf5_device_package nrf52_packages_table[] = {
{ 0x2000, "QF" },
{ 0x2001, "CH" },
{ 0x2002, "CI" },
{ 0x2003, "QC" },
{ 0x2004, "QI/CA" }, /* differs nRF52805, 810, 811: CA, nRF52833, 840: QI */
{ 0x2005, "CK" },
{ 0x2007, "QD" },
{ 0x2008, "CJ" },
{ 0x2009, "CF" },
};
static const struct nrf5_ficr_map nrf51_52_ficr_offsets = {
.codepagesize = 0x10,
.codesize = 0x14,
/* CONFIGID is documented on nRF51 series only.
* On nRF52 is present but not documented */
.configid = 0x5c,
/* Following registers are available on nRF52 and on nRF51 since rev 3 */
.info_part = 0x100,
.info_variant = 0x104,
.info_package = 0x108,
.info_ram = 0x10c,
.info_flash = 0x110,
};
static const struct nrf5_map nrf51_52_map = {
.flash_base = NRF5_FLASH_BASE,
.ficr_base = NRF51_52_FICR_BASE,
.uicr_base = NRF51_52_UICR_BASE,
.nvmc_base = 0x4001E000,
.watchdog_refresh_addr = 0x40010600,
};
/* Third generation devices (nRF53, nRF91) */
static const struct nrf5_ficr_map nrf53_91_ficr_offsets = {
.codepagesize = 0x220,
.codesize = 0x224,
.configid = 0x200,
.info_part = 0x20c,
.info_variant = 0x210,
.info_package = 0x214,
.info_ram = 0x218,
.info_flash = 0x21c,
};
/* Since nRF9160 Product Specification v2.1 there is
* a new UICR field SIPINFO, which should be preferred.
* The original INFO fields describe just a part of the chip
* (PARTNO=9120 at nRF9161)
*/
static const struct nrf5_ficr_map nrf91new_ficr_offsets = {
.codepagesize = 0x220,
.codesize = 0x224,
.configid = 0x200,
.info_part = 0x140, /* SIPINFO.PARTNO */
.info_variant = 0x148, /* SIPINFO.VARIANT */
.info_package = 0x214,
.info_ram = 0x218,
.info_flash = 0x21c,
};
enum {
NRF53APP_91_FICR_BASE = 0x00FF0000,
NRF53APP_91_UICR_BASE = 0x00FF8000,
NRF53NET_FLASH_BASE = 0x01000000,
NRF53NET_FICR_BASE = 0x01FF0000,
NRF53NET_UICR_BASE = 0x01FF8000,
};
static const struct nrf5_map nrf53app_91_map = {
.flash_base = NRF5_FLASH_BASE,
.ficr_base = NRF53APP_91_FICR_BASE,
.uicr_base = NRF53APP_91_UICR_BASE,
.nvmc_base = 0x50039000,
.watchdog_refresh_addr = 0x50018600,
};
/* nRF53 duality:
* SoC consists of two Cortex-M33 cores:
* - application core with security extensions
* - network core
* Each core has its own RAM, flash, FICR and UICR
* The flash driver probes and handles flash and UICR of one core
* independently of those dedicated to the other core.
*/
static const struct nrf5_map nrf53net_map = {
.flash_base = NRF53NET_FLASH_BASE,
.ficr_base = NRF53NET_FICR_BASE,
.uicr_base = NRF53NET_UICR_BASE,
.nvmc_base = 0x41080000,
.watchdog_refresh_addr = 0x41080000,
};
const struct flash_driver nrf5_flash, nrf51_flash;
static bool nrf5_bank_is_probed(const struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
return nbank->probed;
}
static bool nrf5_chip_is_probed(const struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
return chip->chip_probed;
}
static bool nrf5_bank_is_uicr(const struct nrf5_bank *nbank)
{
struct nrf5_info *chip = nbank->chip;
return nbank == &chip->bank[1];
}
static int nrf5_nvmc_read_u32(struct nrf5_info *chip, uint32_t reg_offset, uint32_t *value)
{
return target_read_u32(chip->target, chip->map->nvmc_base + reg_offset, value);
}
static int nrf5_nvmc_write_u32(struct nrf5_info *chip, uint32_t reg_offset, uint32_t value)
{
return target_write_u32(chip->target, chip->map->nvmc_base + reg_offset, value);
}
static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
{
uint32_t ready;
int res;
int timeout_ms = 340;
int64_t ts_start = timeval_ms();
do {
res = nrf5_nvmc_read_u32(chip, NRF5_NVMC_READY, &ready);
if (res == ERROR_WAIT) {
/* The adapter does not handle SWD WAIT properly,
* add some delay to reduce number of error messages */
alive_sleep(10);
continue;
}
if (res != ERROR_OK) {
LOG_ERROR("Error waiting NVMC_READY: generic flash write/erase error (check protection etc...)");
return res;
}
if (ready == 0x00000001)
return ERROR_OK;
keep_alive();
} while ((timeval_ms()-ts_start) < timeout_ms);
LOG_DEBUG("Timed out waiting for NVMC_READY");
return ERROR_FLASH_BUSY;
}
static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
{
int res;
res = nrf5_nvmc_write_u32(chip,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_EEN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable erase operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Erase enable did not complete");
return res;
}
static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
{
int res;
res = nrf5_nvmc_write_u32(chip,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_WEN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable write operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Write enable did not complete");
return res;
}
static int nrf5_nvmc_read_only(struct nrf5_info *chip)
{
int res;
res = nrf5_nvmc_write_u32(chip,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_REN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to disable write/erase operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Read only enable did not complete");
return res;
}
/* nRF51 series only */
static int nrf51_protect_check_clenr0(struct flash_bank *bank)
{
int res;
uint32_t clenr0;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[FICR]");
return res;
}
if (clenr0 == 0xFFFFFFFF) {
res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[UICR]");
return res;
}
}
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected =
clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
return ERROR_OK;
}
/* nRF52 series only */
static int nrf52_protect_check_bprot(struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
static uint32_t nrf5_bprot_offsets[4] = { 0x600, 0x604, 0x610, 0x614 };
uint32_t bprot_reg = 0;
int res;
for (unsigned int i = 0; i < bank->num_sectors; i++) {
unsigned int bit = i % 32;
if (bit == 0) {
unsigned int n_reg = i / 32;
if (n_reg >= ARRAY_SIZE(nrf5_bprot_offsets))
break;
res = target_read_u32(chip->target, NRF5_BPROT_BASE + nrf5_bprot_offsets[n_reg], &bprot_reg);
if (res != ERROR_OK)
return res;
}
bank->sectors[i].is_protected = (bprot_reg & (1 << bit)) ? 1 : 0;
}
return ERROR_OK;
}
static int nrf5_protect_check(struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
/* UICR cannot be write protected so just return early */
if (nrf5_bank_is_uicr(nbank))
return ERROR_OK;
if (chip->features & NRF5_FEATURE_BPROT)
return nrf52_protect_check_bprot(bank);
if (chip->features & NRF5_FEATURE_SERIES_51)
return nrf51_protect_check_clenr0(bank);
LOG_WARNING("Flash protection of this nRF device is not supported");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
/* nRF51 series only */
static int nrf51_protect_clenr0(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
int res;
uint32_t clenr0, ppfc;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
if (first != 0) {
LOG_ERROR("Code region 0 must start at the beginning of the bank");
return ERROR_FAIL;
}
res = target_read_u32(chip->target, NRF51_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0x00) {
LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
return ERROR_FAIL;
}
res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size from UICR");
return res;
}
if (!set || clenr0 != 0xFFFFFFFF) {
LOG_ERROR("You need to perform chip erase before changing the protection settings");
return ERROR_FAIL;
}
res = nrf5_nvmc_write_enable(chip);
if (res != ERROR_OK)
goto error;
clenr0 = bank->sectors[last].offset + bank->sectors[last].size;
res = target_write_u32(chip->target, NRF51_UICR_CLENR0, clenr0);
int res2 = nrf5_wait_for_nvmc(chip);
if (res == ERROR_OK)
res = res2;
if (res == ERROR_OK)
LOG_INFO("A reset or power cycle is required for the new protection settings to take effect.");
else
LOG_ERROR("Couldn't write code region 0 size to UICR");
error:
nrf5_nvmc_read_only(chip);
return res;
}
static int nrf5_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
/* UICR cannot be write protected so just bail out early */
if (nrf5_bank_is_uicr(nbank)) {
LOG_ERROR("UICR page does not support protection");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (chip->features & NRF5_FEATURE_SERIES_51)
return nrf51_protect_clenr0(bank, set, first, last);
LOG_ERROR("Flash protection setting is not supported on this nRF5 device");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
static bool nrf5_info_variant_to_str(uint32_t variant, char *bf, bool swap)
{
uint8_t b[4];
if (swap)
h_u32_to_le(b, variant);
else
h_u32_to_be(b, variant);
if (isalnum(b[0]) && isalnum(b[1]) && isalnum(b[2]) &&
(isalnum(b[3]) || b[3] == 0)) {
memcpy(bf, b, 4);
bf[4] = 0;
return true;
}
strcpy(bf, "xxxx");
return false;
}
static const char *nrf5_decode_info_package(uint32_t package)
{
for (size_t i = 0; i < ARRAY_SIZE(nrf52_packages_table); i++) {
if (nrf52_packages_table[i].package == package)
return nrf52_packages_table[i].code;
}
return "xx";
}
static int nrf5_get_chip_type_str(const struct nrf5_info *chip, char *buf, unsigned int buf_size)
{
int res;
if (chip->spec) {
res = snprintf(buf, buf_size, "nRF%s-%s(build code: %s)",
chip->spec->part, chip->spec->variant, chip->spec->build_code);
} else if (chip->ficr_info_valid) {
char variant[5];
nrf5_info_variant_to_str(chip->ficr_info.variant, variant,
chip->features & NRF5_FEATURE_SERIES_91);
if (chip->features & (NRF5_FEATURE_SERIES_53 | NRF5_FEATURE_SERIES_91)) {
res = snprintf(buf, buf_size, "nRF%" PRIx32 "-%s",
chip->ficr_info.part, variant);
} else {
res = snprintf(buf, buf_size, "nRF%" PRIx32 "-%s%.2s(build code: %s)",
chip->ficr_info.part,
nrf5_decode_info_package(chip->ficr_info.package),
variant, &variant[2]);
}
} else {
res = snprintf(buf, buf_size, "nRF51xxx (HWID 0x%04" PRIx16 ")", chip->hwid);
}
/* safety: */
if (res <= 0 || (unsigned int)res >= buf_size) {
LOG_ERROR("BUG: buffer problem in %s", __func__);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int nrf5_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
char chip_type_str[256];
if (nrf5_get_chip_type_str(chip, chip_type_str, sizeof(chip_type_str)) != ERROR_OK)
return ERROR_FAIL;
unsigned int flash_size_kb = chip->flash_num_sectors * chip->flash_page_size / 1024;
command_print_sameline(cmd, "%s %ukB Flash, %ukB RAM",
chip_type_str, flash_size_kb, chip->ram_size_kb);
return ERROR_OK;
}
static int nrf5_read_ficr_info_part(struct nrf5_info *chip, const struct nrf5_map *map,
const struct nrf5_ficr_map *ficr_offsets)
{
struct target *target = chip->target;
uint32_t ficr_base = map->ficr_base;
int res = target_read_u32(target, ficr_base + ficr_offsets->info_part, &chip->ficr_info.part);
if (res != ERROR_OK)
LOG_DEBUG("Couldn't read FICR INFO.PART register");
return res;
}
static int nrf51_52_partno_check(struct nrf5_info *chip)
{
uint32_t series = chip->ficr_info.part & 0xfffff000;
switch (series) {
case 0x51000:
chip->features = NRF5_FEATURE_SERIES_51;
return ERROR_OK;
case 0x52000:
chip->features = NRF5_FEATURE_SERIES_52;
switch (chip->ficr_info.part) {
case 0x52805:
case 0x52810:
case 0x52811:
case 0x52832:
chip->features |= NRF5_FEATURE_BPROT;
break;
case 0x52820:
case 0x52833:
case 0x52840:
chip->features |= NRF5_FEATURE_ACL_PROT;
break;
}
return ERROR_OK;
default:
LOG_DEBUG("FICR INFO likely not implemented. Invalid PART value 0x%08"
PRIx32, chip->ficr_info.part);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
static int nrf53_91_partno_check(struct nrf5_info *chip)
{
uint32_t series = chip->ficr_info.part & 0xffffff00;
switch (series) {
case 0x5300:
chip->features = NRF5_FEATURE_SERIES_53 | NRF5_FEATURE_ERASE_BY_FLASH_WR;
return ERROR_OK;
case 0x9100:
chip->features = NRF5_FEATURE_SERIES_91 | NRF5_FEATURE_ERASE_BY_FLASH_WR;
return ERROR_OK;
default:
LOG_DEBUG("Invalid FICR INFO PART value 0x%08"
PRIx32, chip->ficr_info.part);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
static int nrf5_read_ficr_more_info(struct nrf5_info *chip)
{
int res;
struct target *target = chip->target;
const struct nrf5_ficr_map *ficr_offsets = chip->ficr_offsets;
uint32_t ficr_base = chip->map->ficr_base;
res = target_read_u32(target, ficr_base + ficr_offsets->info_variant, &chip->ficr_info.variant);
if (res != ERROR_OK)
return res;
res = target_read_u32(target, ficr_base + ficr_offsets->info_package, &chip->ficr_info.package);
if (res != ERROR_OK)
return res;
res = target_read_u32(target, ficr_base + ficr_offsets->info_ram, &chip->ficr_info.ram);
if (res != ERROR_OK)
return res;
res = target_read_u32(target, ficr_base + ficr_offsets->info_flash, &chip->ficr_info.flash);
return res;
}
/* nRF51 series only */
static int nrf51_get_ram_size(struct target *target, uint32_t *ram_size)
{
int res;
*ram_size = 0;
uint32_t numramblock;
res = target_read_u32(target, NRF51_FICR_NUMRAMBLOCK, &numramblock);
if (res != ERROR_OK) {
LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
return res;
}
if (numramblock < 1 || numramblock > 4) {
LOG_DEBUG("FICR NUMRAMBLOCK strange value %" PRIx32, numramblock);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
for (unsigned int i = 0; i < numramblock; i++) {
uint32_t sizeramblock;
res = target_read_u32(target, NRF51_FICR_SIZERAMBLOCK0 + sizeof(uint32_t)*i, &sizeramblock);
if (res != ERROR_OK) {
LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
return res;
}
if (sizeramblock < 1024 || sizeramblock > 65536)
LOG_DEBUG("FICR SIZERAMBLOCK strange value %" PRIx32, sizeramblock);
else
*ram_size += sizeramblock;
}
return res;
}
static int nrf5_probe_chip(struct flash_bank *bank)
{
int res = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
struct target *target = chip->target;
chip->spec = NULL;
chip->ficr_info_valid = false;
/* First try to detect nRF53/91 */
switch (bank->base) {
case NRF5_FLASH_BASE:
case NRF53APP_91_UICR_BASE:
res = nrf5_read_ficr_info_part(chip, &nrf53app_91_map, &nrf91new_ficr_offsets);
if (res == ERROR_OK) {
res = nrf53_91_partno_check(chip);
if (res == ERROR_OK) {
chip->map = &nrf53app_91_map;
chip->ficr_offsets = &nrf91new_ficr_offsets;
break;
}
}
res = nrf5_read_ficr_info_part(chip, &nrf53app_91_map, &nrf53_91_ficr_offsets);
if (res != ERROR_OK)
break;
res = nrf53_91_partno_check(chip);
if (res != ERROR_OK)
break;
chip->map = &nrf53app_91_map;
chip->ficr_offsets = &nrf53_91_ficr_offsets;
break;
case NRF53NET_FLASH_BASE:
case NRF53NET_UICR_BASE:
res = nrf5_read_ficr_info_part(chip, &nrf53net_map, &nrf53_91_ficr_offsets);
if (res != ERROR_OK)
break;
res = nrf53_91_partno_check(chip);
if (res != ERROR_OK)
break;
chip->map = &nrf53net_map;
chip->ficr_offsets = &nrf53_91_ficr_offsets;
break;
default:
break;
}
/* If nRF53/91 is not detected, try nRF51/52 */
if (res != ERROR_OK) {
/* Guess a nRF51 series if the device has no FICR INFO and we don't know HWID */
chip->features = NRF5_FEATURE_SERIES_51;
chip->map = &nrf51_52_map;
chip->ficr_offsets = &nrf51_52_ficr_offsets;
/* Don't bail out on error for the case that some old engineering
* sample has FICR INFO registers unreadable. We can proceed anyway. */
res = nrf5_read_ficr_info_part(chip, chip->map, chip->ficr_offsets);
if (res == ERROR_OK)
res = nrf51_52_partno_check(chip);
}
if (res == ERROR_OK) {
/* Now we know the device has FICR INFO filled by something relevant:
* Although it is not documented, the tested nRF51 rev 3 devices
* have FICR INFO.PART, RAM and FLASH of the same format as nRF52.
* VARIANT and PACKAGE coding is unknown for a nRF51 device.
* nRF52 devices have FICR INFO documented and always filled. */
res = nrf5_read_ficr_more_info(chip);
if (res == ERROR_OK) {
chip->ficr_info_valid = true;
} else if (chip->features & NRF5_FEATURE_SERIES_51) {
LOG_DEBUG("Couldn't read some of FICR INFO registers");
} else {
LOG_ERROR("Couldn't read some of FICR INFO registers");
return res;
}
}
const struct nrf5_ficr_map *ficr_offsets = chip->ficr_offsets;
uint32_t ficr_base = chip->map->ficr_base;
uint32_t configid = 0;
res = target_read_u32(target, ficr_base + ficr_offsets->configid, &configid);
if (res != ERROR_OK) {
if (chip->features & NRF5_FEATURE_SERIES_51) {
LOG_ERROR("Couldn't read FICR CONFIGID register");
return res;
}
LOG_DEBUG("Couldn't read FICR CONFIGID register, using FICR INFO");
}
/* HWID is stored in the lower two bytes of the CONFIGID register */
chip->hwid = configid & 0xFFFF;
for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
if (chip->hwid == nrf5_known_devices_table[i].hwid) {
chip->spec = &nrf5_known_devices_table[i];
chip->features = chip->spec->features;
break;
}
}
if (chip->spec && chip->ficr_info_valid) {
/* check if HWID table gives the same part as FICR INFO */
if (chip->ficr_info.part != strtoul(chip->spec->part, NULL, 16))
LOG_WARNING("HWID 0x%04" PRIx32 " mismatch: FICR INFO.PART %"
PRIx32, chip->hwid, chip->ficr_info.part);
}
if (chip->ficr_info_valid) {
chip->ram_size_kb = chip->ficr_info.ram;
} else if (chip->features & NRF5_FEATURE_SERIES_51) {
uint32_t ram_size;
nrf51_get_ram_size(target, &ram_size);
chip->ram_size_kb = ram_size / 1024;
} else {
chip->ram_size_kb = 0;
}
/* The value stored in FICR CODEPAGESIZE is the number of bytes in one page of FLASH. */
res = target_read_u32(chip->target, ficr_base + ficr_offsets->codepagesize,
&chip->flash_page_size);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code page size");
return res;
}
/* Note the register name is misleading,
* FICR CODESIZE is the number of pages in flash memory, not the number of bytes! */
res = target_read_u32(chip->target, ficr_base + ficr_offsets->codesize,
&chip->flash_num_sectors);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code memory size");
return res;
}
char chip_type_str[256];
if (nrf5_get_chip_type_str(chip, chip_type_str, sizeof(chip_type_str)) != ERROR_OK)
return ERROR_FAIL;
unsigned int flash_size_kb = chip->flash_num_sectors * chip->flash_page_size / 1024;
const bool device_is_unknown = (!chip->spec && !chip->ficr_info_valid);
LOG_INFO("%s%s %ukB Flash, %ukB RAM",
device_is_unknown ? "Unknown device: " : "",
chip_type_str,
flash_size_kb,
chip->ram_size_kb);
chip->chip_probed = true;
return ERROR_OK;
}
static int nrf5_setup_bank(struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
if (bank->base == chip->map->flash_base) {
unsigned int flash_size_kb = chip->flash_num_sectors * chip->flash_page_size / 1024;
/* Sanity check */
if (chip->spec && flash_size_kb != chip->spec->flash_size_kb)
LOG_WARNING("Chip's reported Flash capacity does not match expected one");
if (chip->ficr_info_valid && flash_size_kb != chip->ficr_info.flash)
LOG_WARNING("Chip's reported Flash capacity does not match FICR INFO.FLASH");
bank->num_sectors = chip->flash_num_sectors;
bank->size = chip->flash_num_sectors * chip->flash_page_size;
bank->sectors = alloc_block_array(0, chip->flash_page_size, bank->num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
chip->bank[0].probed = true;
} else if (bank->base == chip->map->uicr_base) {
/* UICR bank */
bank->num_sectors = 1;
bank->size = chip->flash_page_size;
bank->sectors = alloc_block_array(0, chip->flash_page_size, bank->num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
bank->sectors[0].is_protected = 0;
chip->bank[1].probed = true;
} else {
LOG_ERROR("Invalid nRF bank address " TARGET_ADDR_FMT, bank->base);
return ERROR_FLASH_BANK_INVALID;
}
return ERROR_OK;
}
static int nrf5_probe(struct flash_bank *bank)
{
/* probe always reads actual info from the device */
int res = nrf5_probe_chip(bank);
if (res != ERROR_OK)
return res;
return nrf5_setup_bank(bank);
}
static int nrf5_auto_probe(struct flash_bank *bank)
{
if (nrf5_bank_is_probed(bank))
return ERROR_OK;
if (!nrf5_chip_is_probed(bank)) {
int res = nrf5_probe_chip(bank);
if (res != ERROR_OK)
return res;
}
return nrf5_setup_bank(bank);
}
static int nrf5_erase_page(struct flash_bank *bank,
struct nrf5_info *chip,
struct flash_sector *sector)
{
int res;
LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
if (bank->base == chip->map->uicr_base) {
if (chip->features & NRF5_FEATURE_SERIES_51) {
uint32_t ppfc;
res = target_read_u32(chip->target, NRF51_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0xFF) {
/* We can't erase the UICR. Double-check to
see if it's already erased before complaining. */
default_flash_blank_check(bank);
if (sector->is_erased == 1)
return ERROR_OK;
LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
return ERROR_FAIL;
}
}
res = nrf5_nvmc_write_u32(chip, NRF5_NVMC_ERASEUICR, 0x00000001);
} else if (chip->features & NRF5_FEATURE_ERASE_BY_FLASH_WR) {
res = target_write_u32(chip->target, bank->base + sector->offset, 0xffffffff);
/* nRF9160 errata [2] NVMC: CPU code execution from RAM halted during
* flash page erase operation
* https://infocenter.nordicsemi.com/index.jsp?topic=%2Ferrata_nRF9160_Rev1%2FERR%2FnRF9160%2FRev1%2Flatest%2Fanomaly_160_2.html
* affects also erasing by debugger MEM-AP write:
*
* Write to a flash address stalls the bus for 87 ms until
* page erase finishes! This makes problems if the adapter does not
* handle SWD WAIT properly or does not wait long enough.
* Using a target algo would not help, AP gets unresponsive too.
* Neither sending AP ABORT helps, the next AP access stalls again.
* Simply wait long enough before accessing AP again...
*
* The same errata was observed in nRF9161
*/
if (chip->features & NRF5_FEATURE_SERIES_91)
alive_sleep(90);
} else {
res = nrf5_nvmc_write_u32(chip, NRF5_NVMC_ERASEPAGE, sector->offset);
}
if (res != ERROR_OK) {
/* caller logs the error */
return res;
}
res = nrf5_wait_for_nvmc(chip);
return res;
}
/* Start a low level flash write for the specified region */
static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t address, const uint8_t *buffer, uint32_t bytes)
{
struct target *target = chip->target;
uint32_t buffer_size = 8192;
struct working_area *write_algorithm;
struct working_area *source;
struct reg_param reg_params[6];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t nrf5_flash_write_code[] = {
#include "../../../contrib/loaders/flash/nrf5/nrf5.inc"
};
LOG_DEBUG("Writing buffer to flash address=0x%"PRIx32" bytes=0x%"PRIx32, address, bytes);
assert(bytes % 4 == 0);
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, falling back to slow memory writes");
for (; bytes > 0; bytes -= 4) {
retval = target_write_memory(target, address, 4, 1, buffer);
if (retval != ERROR_OK)
return retval;
retval = nrf5_wait_for_nvmc(chip);
if (retval != ERROR_OK)
return retval;
address += 4;
buffer += 4;
}
return ERROR_OK;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(nrf5_flash_write_code),
nrf5_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
if (buffer_size <= 256) {
/* free working area, write algorithm already allocated */
target_free_working_area(target, write_algorithm);
LOG_WARNING("No large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
init_reg_param(&reg_params[4], "r6", 32, PARAM_OUT); /* watchdog refresh value */
init_reg_param(&reg_params[5], "r7", 32, PARAM_OUT); /* watchdog refresh register address */
buf_set_u32(reg_params[0].value, 0, 32, bytes);
buf_set_u32(reg_params[1].value, 0, 32, source->address);
buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[3].value, 0, 32, address);
buf_set_u32(reg_params[4].value, 0, 32, WATCHDOG_REFRESH_VALUE);
buf_set_u32(reg_params[5].value, 0, 32, chip->map->watchdog_refresh_addr);
retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address, source->size,
write_algorithm->address, write_algorithm->address + sizeof(nrf5_flash_write_code) - 2,
&armv7m_info);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
return retval;
}
static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int res;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
assert(offset % 4 == 0);
assert(count % 4 == 0);
/* UICR CLENR0 based protection used on nRF51 is somewhat clumsy:
* RM reads: Code running from code region 1 will not be able to write
* to code region 0.
* Unfortunately the flash loader running from RAM can write to both
* code regions without any hint the protection is violated.
*
* Update protection state and check if any flash sector to be written
* is protected. */
if (chip->features & NRF5_FEATURE_SERIES_51) {
res = nrf51_protect_check_clenr0(bank);
if (res != ERROR_OK)
return res;
for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
struct flash_sector *bs = &bank->sectors[sector];
/* Start offset in or before this sector? */
/* End offset in or behind this sector? */
if ((offset < (bs->offset + bs->size))
&& ((offset + count - 1) >= bs->offset)
&& bs->is_protected == 1) {
LOG_ERROR("Write refused, sector %d is protected", sector);
return ERROR_FLASH_PROTECTED;
}
}
}
res = nrf5_nvmc_write_enable(chip);
if (res != ERROR_OK)
goto error;
res = nrf5_ll_flash_write(chip, bank->base + offset, buffer, count);
if (res != ERROR_OK)
goto error;
return nrf5_nvmc_read_only(chip);
error:
nrf5_nvmc_read_only(chip);
LOG_ERROR("Failed to write to nrf5 flash");
return res;
}
static int nrf5_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int res;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
/* UICR CLENR0 based protection used on nRF51 prevents erase
* absolutely silently. NVMC has no flag to indicate the protection
* was violated.
*
* Update protection state and check if any flash sector to be erased
* is protected. */
if (chip->features & NRF5_FEATURE_SERIES_51) {
res = nrf51_protect_check_clenr0(bank);
if (res != ERROR_OK)
return res;
}
res = nrf5_nvmc_erase_enable(chip);
if (res != ERROR_OK)
goto error;
/* For each sector to be erased */
for (unsigned int s = first; s <= last; s++) {
if (chip->features & NRF5_FEATURE_SERIES_51
&& bank->sectors[s].is_protected == 1) {
LOG_ERROR("Flash sector %d is protected", s);
res = ERROR_FLASH_PROTECTED;
break;
}
res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
if (res != ERROR_OK) {
LOG_ERROR("Error erasing sector %d", s);
return res;
}
}
error:
nrf5_nvmc_read_only(chip);
return res;
}
static void nrf5_free_driver_priv(struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
if (!chip)
return;
chip->refcount--;
if (chip->refcount == 0) {
free(chip);
bank->driver_priv = NULL;
}
}
static struct nrf5_info *nrf5_get_chip(struct target *target)
{
struct flash_bank *bank_iter;
/* iterate over nrf5 banks of same target */
for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
if (bank_iter->driver != &nrf5_flash && bank_iter->driver != &nrf51_flash)
continue;
if (bank_iter->target != target)
continue;
struct nrf5_bank *nbank = bank_iter->driver_priv;
if (!nbank)
continue;
if (nbank->chip)
return nbank->chip;
}
return NULL;
}
FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
{
struct nrf5_info *chip;
struct nrf5_bank *nbank = NULL;
if (bank->driver == &nrf51_flash)
LOG_WARNING("Flash driver 'nrf51' is deprecated! Use 'nrf5' instead.");
switch (bank->base) {
case NRF5_FLASH_BASE:
case NRF53NET_FLASH_BASE:
case NRF51_52_UICR_BASE:
case NRF53APP_91_UICR_BASE:
case NRF53NET_UICR_BASE:
break;
default:
LOG_ERROR("Invalid nRF bank address " TARGET_ADDR_FMT, bank->base);
return ERROR_FLASH_BANK_INVALID;
}
chip = nrf5_get_chip(bank->target);
if (!chip) {
/* Create a new chip */
chip = calloc(1, sizeof(*chip));
if (!chip)
return ERROR_FAIL;
chip->target = bank->target;
}
switch (bank->base) {
case NRF5_FLASH_BASE:
case NRF53NET_FLASH_BASE:
nbank = &chip->bank[0];
break;
case NRF51_52_UICR_BASE:
case NRF53APP_91_UICR_BASE:
case NRF53NET_UICR_BASE:
nbank = &chip->bank[1];
break;
}
assert(nbank);
chip->refcount++;
nbank->chip = chip;
nbank->probed = false;
bank->driver_priv = nbank;
bank->write_start_alignment = bank->write_end_alignment = 4;
return ERROR_OK;
}
COMMAND_HANDLER(nrf5_handle_mass_erase_command)
{
int res;
struct flash_bank *bank = NULL;
struct target *target = get_current_target(CMD_CTX);
res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
if (res != ERROR_OK)
return res;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
if (chip->features & NRF5_FEATURE_SERIES_51) {
uint32_t ppfc;
res = target_read_u32(target, NRF51_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0x00) {
LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
"mass erase command won't work.");
return ERROR_FAIL;
}
}
res = nrf5_nvmc_erase_enable(chip);
if (res != ERROR_OK)
goto error;
res = nrf5_nvmc_write_u32(chip, NRF5_NVMC_ERASEALL, 0x00000001);
if (res != ERROR_OK) {
LOG_ERROR("Mass erase failed");
goto error;
}
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Mass erase did not complete");
error:
nrf5_nvmc_read_only(chip);
if (res == ERROR_OK) {
LOG_INFO("Mass erase completed.");
if (chip->features & NRF5_FEATURE_SERIES_51)
LOG_INFO("A reset or power cycle is required if the flash was protected before.");
}
return res;
}
static const struct command_registration nrf5_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = nrf5_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase all flash contents of the chip.",
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration nrf5_command_handlers[] = {
{
.name = "nrf5",
.mode = COMMAND_ANY,
.help = "nrf5 flash command group",
.usage = "",
.chain = nrf5_exec_command_handlers,
},
{
.name = "nrf51",
.mode = COMMAND_ANY,
.help = "nrf51 flash command group",
.usage = "",
.chain = nrf5_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver nrf5_flash = {
.name = "nrf5",
.commands = nrf5_command_handlers,
.flash_bank_command = nrf5_flash_bank_command,
.info = nrf5_info,
.erase = nrf5_erase,
.protect = nrf5_protect,
.write = nrf5_write,
.read = default_flash_read,
.probe = nrf5_probe,
.auto_probe = nrf5_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = nrf5_protect_check,
.free_driver_priv = nrf5_free_driver_priv,
};
/* We need to retain the flash-driver name as well as the commands
* for backwards compatibility */
const struct flash_driver nrf51_flash = {
.name = "nrf51",
.commands = nrf5_command_handlers,
.flash_bank_command = nrf5_flash_bank_command,
.info = nrf5_info,
.erase = nrf5_erase,
.protect = nrf5_protect,
.write = nrf5_write,
.read = default_flash_read,
.probe = nrf5_probe,
.auto_probe = nrf5_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = nrf5_protect_check,
.free_driver_priv = nrf5_free_driver_priv,
};