riscv-openocd/README

133 lines
5.1 KiB
Plaintext

OpenOCD
Free and Open On-Chip Debugging, In-System Programming
and Boundary-Scan Testing
Copyright (c) 2004-2007 Dominic Rath
The debugger uses an IEEE 1149-1 compliant JTAG TAP bus master to access on-chip
debug functionality available on ARM7 and ARM9 based microcontrollers /
system-on-chip solutions.
User interaction is realized through a telnet command line interface and a gdb
(The GNU Debugger) remote protocol server.
1. JTAG hardware
Currently, OpenOCD supports the following JTAG interfaces:
- Parallel port wigglers. These devices connect to a PC's parallel port,
providing direct access to the JTAG lines. The OpenOCD contains descriptions
of a few Wiggler layouts, including the original 'Wiggler' design. Other
layouts (i.e. mapping of parallel port pins to JTAG lines) can be added easily.
Typical Wiggler speeds are around 12kByte/s code download to an ARM7's RAM.
The list of supported parallel port devices includes:
* Macraigor Wiggler JTAG cable
* Gateworks GW16012 JTAG programmer
* Xilinx DLC5 JTAG parallel cable III
* Ka-Ro TRITON starterkit II JTAG cable
* Lattice parallel port JTAG cable
* ST FlashLINK programming cable
- The Amontec JTAG Accelerator. This is a configuration for Amontec's Chameleon
dongle, a parallel port interface based on a Xilinx CoolRunner CPLD. It uses
the IEEE1284 EPP parallel port specification, providing many times the
performance achievable with wiggler-style devices. Additional information is
available on www.amontec.com.
Typical JTAG Accelerator speeds are around 120-160kByte/s to an ARM7's RAM.
- FTDI FT2232 based USB devices. The FT2232 (but not FT232 or FT245) features a
multi-protocol synchronous serial engine (MPSSE) that can be used to run the
serial JTAG protocol. There are several implemenations of FT2232 based devices:
* USBJTAG: http://www.fh-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html
The USBJTAG was designed by Prof. Hubert Hoegl to provide a high-speed USB
interface for use with the OpenOCD. Schematics are available at the USBJTAG
website, and a homebrew device can easily be built using the FTDI evaluation
module DLP2232M.
* OOCD-Link: http://www.joernonline.de/dw/doku.php?id=en:projects:oocdlink
Similar to the USBJTAG, this design comes with free schematics, too.
* Amontec JTAGkey: www.amontec.com
The Amontec JTAGkey offers support for a wide variety of target voltages from
1.4V to 5V. It also allows the JTAG lines and reset signals to be tri-stated,
allowing easy interfacing with a wide variety of targets.
* Amontec JTAGkey-Tiny: www.amontec.com
The Amontec JTAGkey offers support for a wide variety of target voltages from
2.8V to 5V. It also allows the reset signals to be tri-stated, allowing easy
interfacing with a wide variety of targets.
* Olimex ARM-USB-OCD: www.olimex.com
The Olimex ARM-USB-OCD offers support for a wide vriety of target voltages from
2.0V to 5V. It also allows targets to be powered from the ARM-USB-OCD and
features and additional RS232 UART.
* eVerve Signalyzer: www.signalyzer.com
The Signalyzer offers support for a wide variety of target voltages from 1.2V to
5.5V. A second connector provides access to a TTL level UART.
* TinCanTools 'Flyswatter' USB JTAG programmer.
* Turtelizer 2: http://www.ethernut.de/en/hardware/turtelizer/index.html
Another USB JTAG programmer, with freely available schematics. It supports
target voltages from 1.65V to 5.5V.
* Hitex STR9-comSTICK: http://www.ehitex.de/p_info.php?products_id=292
A STR912FW44x microcontroller "board" with USB and JTAG functionality.
* Luminary Micro development board evb_lm3s811 JTAG interface.
* ASIX PRESTO: http://www.asix-tools.com/prg_presto.htm
The ASIX PRESTO is a USB JTAG programmer for a wide range of components, e.g.
microcontrollers, serial EEPROM and Flash memory chips, CPLDs and others.
* usbprog: http://www.embedded-projects.net/index.php?page_id=165
The usbprog is a freely programmable USB adapter, which can (among other
things) use a firmware which turns it into a JTAG programmer/debugger.
All FT2232 based devices may be accessed using either FTDI's proprietary FTD2XX
library (www.ftdichip.com) or using an open-source replacement from
http://www.intra2net.com/de/produkte/opensource/ftdi/index.php, also included
with many Linux distributions.
2. Supported cores
This version of openocd supports the following ARM7/9 cores:
- ARM7TDMI(-s)
- ARM9TDMI
- ARM920t
- ARM922t
- ARM926ej-s
- ARM966e
- Cortex-M3
Support for Intel XScale CPUs is also included:
- PXA25x
- PXA27x
- IXP42x
And support for the Marvell Feroceon CPU core as found in the
Orion SOC family is included as well.
3. Host platforms
OpenOCD was originally developed on x86-Linux, but has since then been ported
to run on Windows/Cygwin, native Windows with MinGW, FreeBSD, IA64-Linux,
AMD64-Linux, Alpha-Linux, ARM-Linux, and PowerPC OS-X.
4. Documentation
Documentation for the OpenOCD is hosted in the Berlios OpenFacts Wiki at
http://openfacts.berlios.de/index-en.phtml?title=Open_On-Chip_Debugger.
5. Licensing
OpenOCD is licensed under the terms of the GNU General Public License, see the
file COPYING for details.