6218 lines
162 KiB
C
6218 lines
162 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2005 by Dominic Rath *
|
|
* Dominic.Rath@gmx.de *
|
|
* *
|
|
* Copyright (C) 2007-2010 Øyvind Harboe *
|
|
* oyvind.harboe@zylin.com *
|
|
* *
|
|
* Copyright (C) 2008, Duane Ellis *
|
|
* openocd@duaneeellis.com *
|
|
* *
|
|
* Copyright (C) 2008 by Spencer Oliver *
|
|
* spen@spen-soft.co.uk *
|
|
* *
|
|
* Copyright (C) 2008 by Rick Altherr *
|
|
* kc8apf@kc8apf.net> *
|
|
* *
|
|
* Copyright (C) 2011 by Broadcom Corporation *
|
|
* Evan Hunter - ehunter@broadcom.com *
|
|
* *
|
|
* Copyright (C) ST-Ericsson SA 2011 *
|
|
* michel.jaouen@stericsson.com : smp minimum support *
|
|
* *
|
|
* Copyright (C) 2011 Andreas Fritiofson *
|
|
* andreas.fritiofson@gmail.com *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
***************************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <helper/time_support.h>
|
|
#include <jtag/jtag.h>
|
|
#include <flash/nor/core.h>
|
|
|
|
#include "target.h"
|
|
#include "target_type.h"
|
|
#include "target_request.h"
|
|
#include "breakpoints.h"
|
|
#include "register.h"
|
|
#include "trace.h"
|
|
#include "image.h"
|
|
#include "rtos/rtos.h"
|
|
#include "transport/transport.h"
|
|
|
|
/* default halt wait timeout (ms) */
|
|
#define DEFAULT_HALT_TIMEOUT 5000
|
|
|
|
static int target_read_buffer_default(struct target *target, uint32_t address,
|
|
uint32_t count, uint8_t *buffer);
|
|
static int target_write_buffer_default(struct target *target, uint32_t address,
|
|
uint32_t count, const uint8_t *buffer);
|
|
static int target_array2mem(Jim_Interp *interp, struct target *target,
|
|
int argc, Jim_Obj * const *argv);
|
|
static int target_mem2array(Jim_Interp *interp, struct target *target,
|
|
int argc, Jim_Obj * const *argv);
|
|
static int target_register_user_commands(struct command_context *cmd_ctx);
|
|
static int target_get_gdb_fileio_info_default(struct target *target,
|
|
struct gdb_fileio_info *fileio_info);
|
|
static int target_gdb_fileio_end_default(struct target *target, int retcode,
|
|
int fileio_errno, bool ctrl_c);
|
|
static int target_profiling_default(struct target *target, uint32_t *samples,
|
|
uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
|
|
|
|
/* targets */
|
|
extern struct target_type arm7tdmi_target;
|
|
extern struct target_type arm720t_target;
|
|
extern struct target_type arm9tdmi_target;
|
|
extern struct target_type arm920t_target;
|
|
extern struct target_type arm966e_target;
|
|
extern struct target_type arm946e_target;
|
|
extern struct target_type arm926ejs_target;
|
|
extern struct target_type fa526_target;
|
|
extern struct target_type feroceon_target;
|
|
extern struct target_type dragonite_target;
|
|
extern struct target_type xscale_target;
|
|
extern struct target_type cortexm_target;
|
|
extern struct target_type cortexa_target;
|
|
extern struct target_type cortexr4_target;
|
|
extern struct target_type arm11_target;
|
|
extern struct target_type ls1_sap_target;
|
|
extern struct target_type mips_m4k_target;
|
|
extern struct target_type avr_target;
|
|
extern struct target_type dsp563xx_target;
|
|
extern struct target_type dsp5680xx_target;
|
|
extern struct target_type testee_target;
|
|
extern struct target_type avr32_ap7k_target;
|
|
extern struct target_type hla_target;
|
|
extern struct target_type nds32_v2_target;
|
|
extern struct target_type nds32_v3_target;
|
|
extern struct target_type nds32_v3m_target;
|
|
extern struct target_type or1k_target;
|
|
extern struct target_type quark_x10xx_target;
|
|
extern struct target_type quark_d20xx_target;
|
|
|
|
static struct target_type *target_types[] = {
|
|
&arm7tdmi_target,
|
|
&arm9tdmi_target,
|
|
&arm920t_target,
|
|
&arm720t_target,
|
|
&arm966e_target,
|
|
&arm946e_target,
|
|
&arm926ejs_target,
|
|
&fa526_target,
|
|
&feroceon_target,
|
|
&dragonite_target,
|
|
&xscale_target,
|
|
&cortexm_target,
|
|
&cortexa_target,
|
|
&cortexr4_target,
|
|
&arm11_target,
|
|
&ls1_sap_target,
|
|
&mips_m4k_target,
|
|
&avr_target,
|
|
&dsp563xx_target,
|
|
&dsp5680xx_target,
|
|
&testee_target,
|
|
&avr32_ap7k_target,
|
|
&hla_target,
|
|
&nds32_v2_target,
|
|
&nds32_v3_target,
|
|
&nds32_v3m_target,
|
|
&or1k_target,
|
|
&quark_x10xx_target,
|
|
&quark_d20xx_target,
|
|
NULL,
|
|
};
|
|
|
|
struct target *all_targets;
|
|
static struct target_event_callback *target_event_callbacks;
|
|
static struct target_timer_callback *target_timer_callbacks;
|
|
LIST_HEAD(target_reset_callback_list);
|
|
LIST_HEAD(target_trace_callback_list);
|
|
static const int polling_interval = 100;
|
|
|
|
static const Jim_Nvp nvp_assert[] = {
|
|
{ .name = "assert", NVP_ASSERT },
|
|
{ .name = "deassert", NVP_DEASSERT },
|
|
{ .name = "T", NVP_ASSERT },
|
|
{ .name = "F", NVP_DEASSERT },
|
|
{ .name = "t", NVP_ASSERT },
|
|
{ .name = "f", NVP_DEASSERT },
|
|
{ .name = NULL, .value = -1 }
|
|
};
|
|
|
|
static const Jim_Nvp nvp_error_target[] = {
|
|
{ .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
|
|
{ .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
|
|
{ .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
|
|
{ .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
|
|
{ .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
|
|
{ .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
|
|
{ .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
|
|
{ .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
|
|
{ .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
|
|
{ .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
|
|
{ .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
|
|
{ .value = -1, .name = NULL }
|
|
};
|
|
|
|
static const char *target_strerror_safe(int err)
|
|
{
|
|
const Jim_Nvp *n;
|
|
|
|
n = Jim_Nvp_value2name_simple(nvp_error_target, err);
|
|
if (n->name == NULL)
|
|
return "unknown";
|
|
else
|
|
return n->name;
|
|
}
|
|
|
|
static const Jim_Nvp nvp_target_event[] = {
|
|
|
|
{ .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
|
|
{ .value = TARGET_EVENT_HALTED, .name = "halted" },
|
|
{ .value = TARGET_EVENT_RESUMED, .name = "resumed" },
|
|
{ .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
|
|
{ .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
|
|
|
|
{ .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
|
|
{ .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
|
|
|
|
{ .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
|
|
{ .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
|
|
{ .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
|
|
{ .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
|
|
{ .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
|
|
{ .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
|
|
{ .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
|
|
{ .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
|
|
{ .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
|
|
{ .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
|
|
{ .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
|
|
{ .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
|
|
|
|
{ .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
|
|
{ .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
|
|
|
|
{ .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
|
|
{ .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
|
|
|
|
{ .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
|
|
{ .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
|
|
|
|
{ .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
|
|
{ .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
|
|
|
|
{ .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
|
|
{ .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
|
|
|
|
{ .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
|
|
|
|
{ .name = NULL, .value = -1 }
|
|
};
|
|
|
|
static const Jim_Nvp nvp_target_state[] = {
|
|
{ .name = "unknown", .value = TARGET_UNKNOWN },
|
|
{ .name = "running", .value = TARGET_RUNNING },
|
|
{ .name = "halted", .value = TARGET_HALTED },
|
|
{ .name = "reset", .value = TARGET_RESET },
|
|
{ .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
|
|
{ .name = NULL, .value = -1 },
|
|
};
|
|
|
|
static const Jim_Nvp nvp_target_debug_reason[] = {
|
|
{ .name = "debug-request" , .value = DBG_REASON_DBGRQ },
|
|
{ .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
|
|
{ .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
|
|
{ .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
|
|
{ .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
|
|
{ .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
|
|
{ .name = "program-exit" , .value = DBG_REASON_EXIT },
|
|
{ .name = "undefined" , .value = DBG_REASON_UNDEFINED },
|
|
{ .name = NULL, .value = -1 },
|
|
};
|
|
|
|
static const Jim_Nvp nvp_target_endian[] = {
|
|
{ .name = "big", .value = TARGET_BIG_ENDIAN },
|
|
{ .name = "little", .value = TARGET_LITTLE_ENDIAN },
|
|
{ .name = "be", .value = TARGET_BIG_ENDIAN },
|
|
{ .name = "le", .value = TARGET_LITTLE_ENDIAN },
|
|
{ .name = NULL, .value = -1 },
|
|
};
|
|
|
|
static const Jim_Nvp nvp_reset_modes[] = {
|
|
{ .name = "unknown", .value = RESET_UNKNOWN },
|
|
{ .name = "run" , .value = RESET_RUN },
|
|
{ .name = "halt" , .value = RESET_HALT },
|
|
{ .name = "init" , .value = RESET_INIT },
|
|
{ .name = NULL , .value = -1 },
|
|
};
|
|
|
|
const char *debug_reason_name(struct target *t)
|
|
{
|
|
const char *cp;
|
|
|
|
cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
|
|
t->debug_reason)->name;
|
|
if (!cp) {
|
|
LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
|
|
cp = "(*BUG*unknown*BUG*)";
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
const char *target_state_name(struct target *t)
|
|
{
|
|
const char *cp;
|
|
cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
|
|
if (!cp) {
|
|
LOG_ERROR("Invalid target state: %d", (int)(t->state));
|
|
cp = "(*BUG*unknown*BUG*)";
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
const char *target_event_name(enum target_event event)
|
|
{
|
|
const char *cp;
|
|
cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
|
|
if (!cp) {
|
|
LOG_ERROR("Invalid target event: %d", (int)(event));
|
|
cp = "(*BUG*unknown*BUG*)";
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
const char *target_reset_mode_name(enum target_reset_mode reset_mode)
|
|
{
|
|
const char *cp;
|
|
cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
|
|
if (!cp) {
|
|
LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
|
|
cp = "(*BUG*unknown*BUG*)";
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
/* determine the number of the new target */
|
|
static int new_target_number(void)
|
|
{
|
|
struct target *t;
|
|
int x;
|
|
|
|
/* number is 0 based */
|
|
x = -1;
|
|
t = all_targets;
|
|
while (t) {
|
|
if (x < t->target_number)
|
|
x = t->target_number;
|
|
t = t->next;
|
|
}
|
|
return x + 1;
|
|
}
|
|
|
|
/* read a uint64_t from a buffer in target memory endianness */
|
|
uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
|
|
{
|
|
if (target->endianness == TARGET_LITTLE_ENDIAN)
|
|
return le_to_h_u64(buffer);
|
|
else
|
|
return be_to_h_u64(buffer);
|
|
}
|
|
|
|
/* read a uint32_t from a buffer in target memory endianness */
|
|
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
|
|
{
|
|
if (target->endianness == TARGET_LITTLE_ENDIAN)
|
|
return le_to_h_u32(buffer);
|
|
else
|
|
return be_to_h_u32(buffer);
|
|
}
|
|
|
|
/* read a uint24_t from a buffer in target memory endianness */
|
|
uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
|
|
{
|
|
if (target->endianness == TARGET_LITTLE_ENDIAN)
|
|
return le_to_h_u24(buffer);
|
|
else
|
|
return be_to_h_u24(buffer);
|
|
}
|
|
|
|
/* read a uint16_t from a buffer in target memory endianness */
|
|
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
|
|
{
|
|
if (target->endianness == TARGET_LITTLE_ENDIAN)
|
|
return le_to_h_u16(buffer);
|
|
else
|
|
return be_to_h_u16(buffer);
|
|
}
|
|
|
|
/* read a uint8_t from a buffer in target memory endianness */
|
|
static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
|
|
{
|
|
return *buffer & 0x0ff;
|
|
}
|
|
|
|
/* write a uint64_t to a buffer in target memory endianness */
|
|
void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
|
|
{
|
|
if (target->endianness == TARGET_LITTLE_ENDIAN)
|
|
h_u64_to_le(buffer, value);
|
|
else
|
|
h_u64_to_be(buffer, value);
|
|
}
|
|
|
|
/* write a uint32_t to a buffer in target memory endianness */
|
|
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
|
|
{
|
|
if (target->endianness == TARGET_LITTLE_ENDIAN)
|
|
h_u32_to_le(buffer, value);
|
|
else
|
|
h_u32_to_be(buffer, value);
|
|
}
|
|
|
|
/* write a uint24_t to a buffer in target memory endianness */
|
|
void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
|
|
{
|
|
if (target->endianness == TARGET_LITTLE_ENDIAN)
|
|
h_u24_to_le(buffer, value);
|
|
else
|
|
h_u24_to_be(buffer, value);
|
|
}
|
|
|
|
/* write a uint16_t to a buffer in target memory endianness */
|
|
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
|
|
{
|
|
if (target->endianness == TARGET_LITTLE_ENDIAN)
|
|
h_u16_to_le(buffer, value);
|
|
else
|
|
h_u16_to_be(buffer, value);
|
|
}
|
|
|
|
/* write a uint8_t to a buffer in target memory endianness */
|
|
static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
|
|
{
|
|
*buffer = value;
|
|
}
|
|
|
|
/* write a uint64_t array to a buffer in target memory endianness */
|
|
void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
|
|
{
|
|
uint32_t i;
|
|
for (i = 0; i < count; i++)
|
|
dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
|
|
}
|
|
|
|
/* write a uint32_t array to a buffer in target memory endianness */
|
|
void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
|
|
{
|
|
uint32_t i;
|
|
for (i = 0; i < count; i++)
|
|
dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
|
|
}
|
|
|
|
/* write a uint16_t array to a buffer in target memory endianness */
|
|
void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
|
|
{
|
|
uint32_t i;
|
|
for (i = 0; i < count; i++)
|
|
dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
|
|
}
|
|
|
|
/* write a uint64_t array to a buffer in target memory endianness */
|
|
void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
|
|
{
|
|
uint32_t i;
|
|
for (i = 0; i < count; i++)
|
|
target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
|
|
}
|
|
|
|
/* write a uint32_t array to a buffer in target memory endianness */
|
|
void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
|
|
{
|
|
uint32_t i;
|
|
for (i = 0; i < count; i++)
|
|
target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
|
|
}
|
|
|
|
/* write a uint16_t array to a buffer in target memory endianness */
|
|
void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
|
|
{
|
|
uint32_t i;
|
|
for (i = 0; i < count; i++)
|
|
target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
|
|
}
|
|
|
|
/* return a pointer to a configured target; id is name or number */
|
|
struct target *get_target(const char *id)
|
|
{
|
|
struct target *target;
|
|
|
|
/* try as tcltarget name */
|
|
for (target = all_targets; target; target = target->next) {
|
|
if (target_name(target) == NULL)
|
|
continue;
|
|
if (strcmp(id, target_name(target)) == 0)
|
|
return target;
|
|
}
|
|
|
|
/* It's OK to remove this fallback sometime after August 2010 or so */
|
|
|
|
/* no match, try as number */
|
|
unsigned num;
|
|
if (parse_uint(id, &num) != ERROR_OK)
|
|
return NULL;
|
|
|
|
for (target = all_targets; target; target = target->next) {
|
|
if (target->target_number == (int)num) {
|
|
LOG_WARNING("use '%s' as target identifier, not '%u'",
|
|
target_name(target), num);
|
|
return target;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* returns a pointer to the n-th configured target */
|
|
struct target *get_target_by_num(int num)
|
|
{
|
|
struct target *target = all_targets;
|
|
|
|
while (target) {
|
|
if (target->target_number == num)
|
|
return target;
|
|
target = target->next;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct target *get_current_target(struct command_context *cmd_ctx)
|
|
{
|
|
struct target *target = get_target_by_num(cmd_ctx->current_target);
|
|
|
|
if (target == NULL) {
|
|
LOG_ERROR("BUG: current_target out of bounds");
|
|
exit(-1);
|
|
}
|
|
|
|
return target;
|
|
}
|
|
|
|
int target_poll(struct target *target)
|
|
{
|
|
int retval;
|
|
|
|
/* We can't poll until after examine */
|
|
if (!target_was_examined(target)) {
|
|
/* Fail silently lest we pollute the log */
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
retval = target->type->poll(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (target->halt_issued) {
|
|
if (target->state == TARGET_HALTED)
|
|
target->halt_issued = false;
|
|
else {
|
|
int64_t t = timeval_ms() - target->halt_issued_time;
|
|
if (t > DEFAULT_HALT_TIMEOUT) {
|
|
target->halt_issued = false;
|
|
LOG_INFO("Halt timed out, wake up GDB.");
|
|
target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_halt(struct target *target)
|
|
{
|
|
int retval;
|
|
/* We can't poll until after examine */
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
retval = target->type->halt(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
target->halt_issued = true;
|
|
target->halt_issued_time = timeval_ms();
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Make the target (re)start executing using its saved execution
|
|
* context (possibly with some modifications).
|
|
*
|
|
* @param target Which target should start executing.
|
|
* @param current True to use the target's saved program counter instead
|
|
* of the address parameter
|
|
* @param address Optionally used as the program counter.
|
|
* @param handle_breakpoints True iff breakpoints at the resumption PC
|
|
* should be skipped. (For example, maybe execution was stopped by
|
|
* such a breakpoint, in which case it would be counterprodutive to
|
|
* let it re-trigger.
|
|
* @param debug_execution False if all working areas allocated by OpenOCD
|
|
* should be released and/or restored to their original contents.
|
|
* (This would for example be true to run some downloaded "helper"
|
|
* algorithm code, which resides in one such working buffer and uses
|
|
* another for data storage.)
|
|
*
|
|
* @todo Resolve the ambiguity about what the "debug_execution" flag
|
|
* signifies. For example, Target implementations don't agree on how
|
|
* it relates to invalidation of the register cache, or to whether
|
|
* breakpoints and watchpoints should be enabled. (It would seem wrong
|
|
* to enable breakpoints when running downloaded "helper" algorithms
|
|
* (debug_execution true), since the breakpoints would be set to match
|
|
* target firmware being debugged, not the helper algorithm.... and
|
|
* enabling them could cause such helpers to malfunction (for example,
|
|
* by overwriting data with a breakpoint instruction. On the other
|
|
* hand the infrastructure for running such helpers might use this
|
|
* procedure but rely on hardware breakpoint to detect termination.)
|
|
*/
|
|
int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
|
|
{
|
|
int retval;
|
|
|
|
/* We can't poll until after examine */
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
|
|
|
|
/* note that resume *must* be asynchronous. The CPU can halt before
|
|
* we poll. The CPU can even halt at the current PC as a result of
|
|
* a software breakpoint being inserted by (a bug?) the application.
|
|
*/
|
|
retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
|
|
{
|
|
char buf[100];
|
|
int retval;
|
|
Jim_Nvp *n;
|
|
n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
|
|
if (n->name == NULL) {
|
|
LOG_ERROR("invalid reset mode");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
struct target *target;
|
|
for (target = all_targets; target; target = target->next)
|
|
target_call_reset_callbacks(target, reset_mode);
|
|
|
|
/* disable polling during reset to make reset event scripts
|
|
* more predictable, i.e. dr/irscan & pathmove in events will
|
|
* not have JTAG operations injected into the middle of a sequence.
|
|
*/
|
|
bool save_poll = jtag_poll_get_enabled();
|
|
|
|
jtag_poll_set_enabled(false);
|
|
|
|
sprintf(buf, "ocd_process_reset %s", n->name);
|
|
retval = Jim_Eval(cmd_ctx->interp, buf);
|
|
|
|
jtag_poll_set_enabled(save_poll);
|
|
|
|
if (retval != JIM_OK) {
|
|
Jim_MakeErrorMessage(cmd_ctx->interp);
|
|
command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/* We want any events to be processed before the prompt */
|
|
retval = target_call_timer_callbacks_now();
|
|
|
|
for (target = all_targets; target; target = target->next) {
|
|
target->type->check_reset(target);
|
|
target->running_alg = false;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int identity_virt2phys(struct target *target,
|
|
uint32_t virtual, uint32_t *physical)
|
|
{
|
|
*physical = virtual;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int no_mmu(struct target *target, int *enabled)
|
|
{
|
|
*enabled = 0;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int default_examine(struct target *target)
|
|
{
|
|
target_set_examined(target);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* no check by default */
|
|
static int default_check_reset(struct target *target)
|
|
{
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_examine_one(struct target *target)
|
|
{
|
|
target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
|
|
|
|
int retval = target->type->examine(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int jtag_enable_callback(enum jtag_event event, void *priv)
|
|
{
|
|
struct target *target = priv;
|
|
|
|
if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
|
|
return ERROR_OK;
|
|
|
|
jtag_unregister_event_callback(jtag_enable_callback, target);
|
|
|
|
return target_examine_one(target);
|
|
}
|
|
|
|
/* Targets that correctly implement init + examine, i.e.
|
|
* no communication with target during init:
|
|
*
|
|
* XScale
|
|
*/
|
|
int target_examine(void)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct target *target;
|
|
|
|
for (target = all_targets; target; target = target->next) {
|
|
/* defer examination, but don't skip it */
|
|
if (!target->tap->enabled) {
|
|
jtag_register_event_callback(jtag_enable_callback,
|
|
target);
|
|
continue;
|
|
}
|
|
|
|
retval = target_examine_one(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
const char *target_type_name(struct target *target)
|
|
{
|
|
return target->type->name;
|
|
}
|
|
|
|
static int target_soft_reset_halt(struct target *target)
|
|
{
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
if (!target->type->soft_reset_halt) {
|
|
LOG_ERROR("Target %s does not support soft_reset_halt",
|
|
target_name(target));
|
|
return ERROR_FAIL;
|
|
}
|
|
return target->type->soft_reset_halt(target);
|
|
}
|
|
|
|
/**
|
|
* Downloads a target-specific native code algorithm to the target,
|
|
* and executes it. * Note that some targets may need to set up, enable,
|
|
* and tear down a breakpoint (hard or * soft) to detect algorithm
|
|
* termination, while others may support lower overhead schemes where
|
|
* soft breakpoints embedded in the algorithm automatically terminate the
|
|
* algorithm.
|
|
*
|
|
* @param target used to run the algorithm
|
|
* @param arch_info target-specific description of the algorithm.
|
|
*/
|
|
int target_run_algorithm(struct target *target,
|
|
int num_mem_params, struct mem_param *mem_params,
|
|
int num_reg_params, struct reg_param *reg_param,
|
|
uint32_t entry_point, uint32_t exit_point,
|
|
int timeout_ms, void *arch_info)
|
|
{
|
|
int retval = ERROR_FAIL;
|
|
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
goto done;
|
|
}
|
|
if (!target->type->run_algorithm) {
|
|
LOG_ERROR("Target type '%s' does not support %s",
|
|
target_type_name(target), __func__);
|
|
goto done;
|
|
}
|
|
|
|
target->running_alg = true;
|
|
retval = target->type->run_algorithm(target,
|
|
num_mem_params, mem_params,
|
|
num_reg_params, reg_param,
|
|
entry_point, exit_point, timeout_ms, arch_info);
|
|
target->running_alg = false;
|
|
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Downloads a target-specific native code algorithm to the target,
|
|
* executes and leaves it running.
|
|
*
|
|
* @param target used to run the algorithm
|
|
* @param arch_info target-specific description of the algorithm.
|
|
*/
|
|
int target_start_algorithm(struct target *target,
|
|
int num_mem_params, struct mem_param *mem_params,
|
|
int num_reg_params, struct reg_param *reg_params,
|
|
uint32_t entry_point, uint32_t exit_point,
|
|
void *arch_info)
|
|
{
|
|
int retval = ERROR_FAIL;
|
|
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
goto done;
|
|
}
|
|
if (!target->type->start_algorithm) {
|
|
LOG_ERROR("Target type '%s' does not support %s",
|
|
target_type_name(target), __func__);
|
|
goto done;
|
|
}
|
|
if (target->running_alg) {
|
|
LOG_ERROR("Target is already running an algorithm");
|
|
goto done;
|
|
}
|
|
|
|
target->running_alg = true;
|
|
retval = target->type->start_algorithm(target,
|
|
num_mem_params, mem_params,
|
|
num_reg_params, reg_params,
|
|
entry_point, exit_point, arch_info);
|
|
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Waits for an algorithm started with target_start_algorithm() to complete.
|
|
*
|
|
* @param target used to run the algorithm
|
|
* @param arch_info target-specific description of the algorithm.
|
|
*/
|
|
int target_wait_algorithm(struct target *target,
|
|
int num_mem_params, struct mem_param *mem_params,
|
|
int num_reg_params, struct reg_param *reg_params,
|
|
uint32_t exit_point, int timeout_ms,
|
|
void *arch_info)
|
|
{
|
|
int retval = ERROR_FAIL;
|
|
|
|
if (!target->type->wait_algorithm) {
|
|
LOG_ERROR("Target type '%s' does not support %s",
|
|
target_type_name(target), __func__);
|
|
goto done;
|
|
}
|
|
if (!target->running_alg) {
|
|
LOG_ERROR("Target is not running an algorithm");
|
|
goto done;
|
|
}
|
|
|
|
retval = target->type->wait_algorithm(target,
|
|
num_mem_params, mem_params,
|
|
num_reg_params, reg_params,
|
|
exit_point, timeout_ms, arch_info);
|
|
if (retval != ERROR_TARGET_TIMEOUT)
|
|
target->running_alg = false;
|
|
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Executes a target-specific native code algorithm in the target.
|
|
* It differs from target_run_algorithm in that the algorithm is asynchronous.
|
|
* Because of this it requires an compliant algorithm:
|
|
* see contrib/loaders/flash/stm32f1x.S for example.
|
|
*
|
|
* @param target used to run the algorithm
|
|
*/
|
|
|
|
int target_run_flash_async_algorithm(struct target *target,
|
|
const uint8_t *buffer, uint32_t count, int block_size,
|
|
int num_mem_params, struct mem_param *mem_params,
|
|
int num_reg_params, struct reg_param *reg_params,
|
|
uint32_t buffer_start, uint32_t buffer_size,
|
|
uint32_t entry_point, uint32_t exit_point, void *arch_info)
|
|
{
|
|
int retval;
|
|
int timeout = 0;
|
|
|
|
const uint8_t *buffer_orig = buffer;
|
|
|
|
/* Set up working area. First word is write pointer, second word is read pointer,
|
|
* rest is fifo data area. */
|
|
uint32_t wp_addr = buffer_start;
|
|
uint32_t rp_addr = buffer_start + 4;
|
|
uint32_t fifo_start_addr = buffer_start + 8;
|
|
uint32_t fifo_end_addr = buffer_start + buffer_size;
|
|
|
|
uint32_t wp = fifo_start_addr;
|
|
uint32_t rp = fifo_start_addr;
|
|
|
|
/* validate block_size is 2^n */
|
|
assert(!block_size || !(block_size & (block_size - 1)));
|
|
|
|
retval = target_write_u32(target, wp_addr, wp);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = target_write_u32(target, rp_addr, rp);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Start up algorithm on target and let it idle while writing the first chunk */
|
|
retval = target_start_algorithm(target, num_mem_params, mem_params,
|
|
num_reg_params, reg_params,
|
|
entry_point,
|
|
exit_point,
|
|
arch_info);
|
|
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("error starting target flash write algorithm");
|
|
return retval;
|
|
}
|
|
|
|
while (count > 0) {
|
|
|
|
retval = target_read_u32(target, rp_addr, &rp);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("failed to get read pointer");
|
|
break;
|
|
}
|
|
|
|
LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
|
|
(size_t) (buffer - buffer_orig), count, wp, rp);
|
|
|
|
if (rp == 0) {
|
|
LOG_ERROR("flash write algorithm aborted by target");
|
|
retval = ERROR_FLASH_OPERATION_FAILED;
|
|
break;
|
|
}
|
|
|
|
if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
|
|
LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
|
|
break;
|
|
}
|
|
|
|
/* Count the number of bytes available in the fifo without
|
|
* crossing the wrap around. Make sure to not fill it completely,
|
|
* because that would make wp == rp and that's the empty condition. */
|
|
uint32_t thisrun_bytes;
|
|
if (rp > wp)
|
|
thisrun_bytes = rp - wp - block_size;
|
|
else if (rp > fifo_start_addr)
|
|
thisrun_bytes = fifo_end_addr - wp;
|
|
else
|
|
thisrun_bytes = fifo_end_addr - wp - block_size;
|
|
|
|
if (thisrun_bytes == 0) {
|
|
/* Throttle polling a bit if transfer is (much) faster than flash
|
|
* programming. The exact delay shouldn't matter as long as it's
|
|
* less than buffer size / flash speed. This is very unlikely to
|
|
* run when using high latency connections such as USB. */
|
|
alive_sleep(10);
|
|
|
|
/* to stop an infinite loop on some targets check and increment a timeout
|
|
* this issue was observed on a stellaris using the new ICDI interface */
|
|
if (timeout++ >= 500) {
|
|
LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* reset our timeout */
|
|
timeout = 0;
|
|
|
|
/* Limit to the amount of data we actually want to write */
|
|
if (thisrun_bytes > count * block_size)
|
|
thisrun_bytes = count * block_size;
|
|
|
|
/* Write data to fifo */
|
|
retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
|
|
/* Update counters and wrap write pointer */
|
|
buffer += thisrun_bytes;
|
|
count -= thisrun_bytes / block_size;
|
|
wp += thisrun_bytes;
|
|
if (wp >= fifo_end_addr)
|
|
wp = fifo_start_addr;
|
|
|
|
/* Store updated write pointer to target */
|
|
retval = target_write_u32(target, wp_addr, wp);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
}
|
|
|
|
if (retval != ERROR_OK) {
|
|
/* abort flash write algorithm on target */
|
|
target_write_u32(target, wp_addr, 0);
|
|
}
|
|
|
|
int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
|
|
num_reg_params, reg_params,
|
|
exit_point,
|
|
10000,
|
|
arch_info);
|
|
|
|
if (retval2 != ERROR_OK) {
|
|
LOG_ERROR("error waiting for target flash write algorithm");
|
|
retval = retval2;
|
|
}
|
|
|
|
if (retval == ERROR_OK) {
|
|
/* check if algorithm set rp = 0 after fifo writer loop finished */
|
|
retval = target_read_u32(target, rp_addr, &rp);
|
|
if (retval == ERROR_OK && rp == 0) {
|
|
LOG_ERROR("flash write algorithm aborted by target");
|
|
retval = ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_read_memory(struct target *target,
|
|
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
|
|
{
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
if (!target->type->read_memory) {
|
|
LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
|
|
return ERROR_FAIL;
|
|
}
|
|
return target->type->read_memory(target, address, size, count, buffer);
|
|
}
|
|
|
|
int target_read_phys_memory(struct target *target,
|
|
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
|
|
{
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
if (!target->type->read_phys_memory) {
|
|
LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
|
|
return ERROR_FAIL;
|
|
}
|
|
return target->type->read_phys_memory(target, address, size, count, buffer);
|
|
}
|
|
|
|
int target_write_memory(struct target *target,
|
|
uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
|
|
{
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
if (!target->type->write_memory) {
|
|
LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
|
|
return ERROR_FAIL;
|
|
}
|
|
return target->type->write_memory(target, address, size, count, buffer);
|
|
}
|
|
|
|
int target_write_phys_memory(struct target *target,
|
|
uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
|
|
{
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
if (!target->type->write_phys_memory) {
|
|
LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
|
|
return ERROR_FAIL;
|
|
}
|
|
return target->type->write_phys_memory(target, address, size, count, buffer);
|
|
}
|
|
|
|
int target_add_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
|
|
LOG_WARNING("target %s is not halted", target_name(target));
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
return target->type->add_breakpoint(target, breakpoint);
|
|
}
|
|
|
|
int target_add_context_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target %s is not halted", target_name(target));
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
return target->type->add_context_breakpoint(target, breakpoint);
|
|
}
|
|
|
|
int target_add_hybrid_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target %s is not halted", target_name(target));
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
return target->type->add_hybrid_breakpoint(target, breakpoint);
|
|
}
|
|
|
|
int target_remove_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
return target->type->remove_breakpoint(target, breakpoint);
|
|
}
|
|
|
|
int target_add_watchpoint(struct target *target,
|
|
struct watchpoint *watchpoint)
|
|
{
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target %s is not halted", target_name(target));
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
return target->type->add_watchpoint(target, watchpoint);
|
|
}
|
|
int target_remove_watchpoint(struct target *target,
|
|
struct watchpoint *watchpoint)
|
|
{
|
|
return target->type->remove_watchpoint(target, watchpoint);
|
|
}
|
|
int target_hit_watchpoint(struct target *target,
|
|
struct watchpoint **hit_watchpoint)
|
|
{
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target %s is not halted", target->cmd_name);
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (target->type->hit_watchpoint == NULL) {
|
|
/* For backward compatible, if hit_watchpoint is not implemented,
|
|
* return ERROR_FAIL such that gdb_server will not take the nonsense
|
|
* information. */
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return target->type->hit_watchpoint(target, hit_watchpoint);
|
|
}
|
|
|
|
int target_get_gdb_reg_list(struct target *target,
|
|
struct reg **reg_list[], int *reg_list_size,
|
|
enum target_register_class reg_class)
|
|
{
|
|
return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
|
|
}
|
|
int target_step(struct target *target,
|
|
int current, uint32_t address, int handle_breakpoints)
|
|
{
|
|
return target->type->step(target, current, address, handle_breakpoints);
|
|
}
|
|
|
|
int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
|
|
{
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target %s is not halted", target->cmd_name);
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
return target->type->get_gdb_fileio_info(target, fileio_info);
|
|
}
|
|
|
|
int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
|
|
{
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target %s is not halted", target->cmd_name);
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
|
|
}
|
|
|
|
int target_profiling(struct target *target, uint32_t *samples,
|
|
uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
|
|
{
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target %s is not halted", target->cmd_name);
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
return target->type->profiling(target, samples, max_num_samples,
|
|
num_samples, seconds);
|
|
}
|
|
|
|
/**
|
|
* Reset the @c examined flag for the given target.
|
|
* Pure paranoia -- targets are zeroed on allocation.
|
|
*/
|
|
static void target_reset_examined(struct target *target)
|
|
{
|
|
target->examined = false;
|
|
}
|
|
|
|
static int handle_target(void *priv);
|
|
|
|
static int target_init_one(struct command_context *cmd_ctx,
|
|
struct target *target)
|
|
{
|
|
target_reset_examined(target);
|
|
|
|
struct target_type *type = target->type;
|
|
if (type->examine == NULL)
|
|
type->examine = default_examine;
|
|
|
|
if (type->check_reset == NULL)
|
|
type->check_reset = default_check_reset;
|
|
|
|
assert(type->init_target != NULL);
|
|
|
|
int retval = type->init_target(cmd_ctx, target);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("target '%s' init failed", target_name(target));
|
|
return retval;
|
|
}
|
|
|
|
/* Sanity-check MMU support ... stub in what we must, to help
|
|
* implement it in stages, but warn if we need to do so.
|
|
*/
|
|
if (type->mmu) {
|
|
if (type->virt2phys == NULL) {
|
|
LOG_ERROR("type '%s' is missing virt2phys", type->name);
|
|
type->virt2phys = identity_virt2phys;
|
|
}
|
|
} else {
|
|
/* Make sure no-MMU targets all behave the same: make no
|
|
* distinction between physical and virtual addresses, and
|
|
* ensure that virt2phys() is always an identity mapping.
|
|
*/
|
|
if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
|
|
LOG_WARNING("type '%s' has bad MMU hooks", type->name);
|
|
|
|
type->mmu = no_mmu;
|
|
type->write_phys_memory = type->write_memory;
|
|
type->read_phys_memory = type->read_memory;
|
|
type->virt2phys = identity_virt2phys;
|
|
}
|
|
|
|
if (target->type->read_buffer == NULL)
|
|
target->type->read_buffer = target_read_buffer_default;
|
|
|
|
if (target->type->write_buffer == NULL)
|
|
target->type->write_buffer = target_write_buffer_default;
|
|
|
|
if (target->type->get_gdb_fileio_info == NULL)
|
|
target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
|
|
|
|
if (target->type->gdb_fileio_end == NULL)
|
|
target->type->gdb_fileio_end = target_gdb_fileio_end_default;
|
|
|
|
if (target->type->profiling == NULL)
|
|
target->type->profiling = target_profiling_default;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int target_init(struct command_context *cmd_ctx)
|
|
{
|
|
struct target *target;
|
|
int retval;
|
|
|
|
for (target = all_targets; target; target = target->next) {
|
|
retval = target_init_one(cmd_ctx, target);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
}
|
|
|
|
if (!all_targets)
|
|
return ERROR_OK;
|
|
|
|
retval = target_register_user_commands(cmd_ctx);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
retval = target_register_timer_callback(&handle_target,
|
|
polling_interval, 1, cmd_ctx->interp);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_target_init_command)
|
|
{
|
|
int retval;
|
|
|
|
if (CMD_ARGC != 0)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
static bool target_initialized;
|
|
if (target_initialized) {
|
|
LOG_INFO("'target init' has already been called");
|
|
return ERROR_OK;
|
|
}
|
|
target_initialized = true;
|
|
|
|
retval = command_run_line(CMD_CTX, "init_targets");
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
retval = command_run_line(CMD_CTX, "init_target_events");
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
retval = command_run_line(CMD_CTX, "init_board");
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
LOG_DEBUG("Initializing targets...");
|
|
return target_init(CMD_CTX);
|
|
}
|
|
|
|
int target_register_event_callback(int (*callback)(struct target *target,
|
|
enum target_event event, void *priv), void *priv)
|
|
{
|
|
struct target_event_callback **callbacks_p = &target_event_callbacks;
|
|
|
|
if (callback == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
if (*callbacks_p) {
|
|
while ((*callbacks_p)->next)
|
|
callbacks_p = &((*callbacks_p)->next);
|
|
callbacks_p = &((*callbacks_p)->next);
|
|
}
|
|
|
|
(*callbacks_p) = malloc(sizeof(struct target_event_callback));
|
|
(*callbacks_p)->callback = callback;
|
|
(*callbacks_p)->priv = priv;
|
|
(*callbacks_p)->next = NULL;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_register_reset_callback(int (*callback)(struct target *target,
|
|
enum target_reset_mode reset_mode, void *priv), void *priv)
|
|
{
|
|
struct target_reset_callback *entry;
|
|
|
|
if (callback == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
entry = malloc(sizeof(struct target_reset_callback));
|
|
if (entry == NULL) {
|
|
LOG_ERROR("error allocating buffer for reset callback entry");
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
entry->callback = callback;
|
|
entry->priv = priv;
|
|
list_add(&entry->list, &target_reset_callback_list);
|
|
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_register_trace_callback(int (*callback)(struct target *target,
|
|
size_t len, uint8_t *data, void *priv), void *priv)
|
|
{
|
|
struct target_trace_callback *entry;
|
|
|
|
if (callback == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
entry = malloc(sizeof(struct target_trace_callback));
|
|
if (entry == NULL) {
|
|
LOG_ERROR("error allocating buffer for trace callback entry");
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
entry->callback = callback;
|
|
entry->priv = priv;
|
|
list_add(&entry->list, &target_trace_callback_list);
|
|
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
|
|
{
|
|
struct target_timer_callback **callbacks_p = &target_timer_callbacks;
|
|
struct timeval now;
|
|
|
|
if (callback == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
if (*callbacks_p) {
|
|
while ((*callbacks_p)->next)
|
|
callbacks_p = &((*callbacks_p)->next);
|
|
callbacks_p = &((*callbacks_p)->next);
|
|
}
|
|
|
|
(*callbacks_p) = malloc(sizeof(struct target_timer_callback));
|
|
(*callbacks_p)->callback = callback;
|
|
(*callbacks_p)->periodic = periodic;
|
|
(*callbacks_p)->time_ms = time_ms;
|
|
(*callbacks_p)->removed = false;
|
|
|
|
gettimeofday(&now, NULL);
|
|
(*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
|
|
time_ms -= (time_ms % 1000);
|
|
(*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
|
|
if ((*callbacks_p)->when.tv_usec > 1000000) {
|
|
(*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
|
|
(*callbacks_p)->when.tv_sec += 1;
|
|
}
|
|
|
|
(*callbacks_p)->priv = priv;
|
|
(*callbacks_p)->next = NULL;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_unregister_event_callback(int (*callback)(struct target *target,
|
|
enum target_event event, void *priv), void *priv)
|
|
{
|
|
struct target_event_callback **p = &target_event_callbacks;
|
|
struct target_event_callback *c = target_event_callbacks;
|
|
|
|
if (callback == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
while (c) {
|
|
struct target_event_callback *next = c->next;
|
|
if ((c->callback == callback) && (c->priv == priv)) {
|
|
*p = next;
|
|
free(c);
|
|
return ERROR_OK;
|
|
} else
|
|
p = &(c->next);
|
|
c = next;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_unregister_reset_callback(int (*callback)(struct target *target,
|
|
enum target_reset_mode reset_mode, void *priv), void *priv)
|
|
{
|
|
struct target_reset_callback *entry;
|
|
|
|
if (callback == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
list_for_each_entry(entry, &target_reset_callback_list, list) {
|
|
if (entry->callback == callback && entry->priv == priv) {
|
|
list_del(&entry->list);
|
|
free(entry);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_unregister_trace_callback(int (*callback)(struct target *target,
|
|
size_t len, uint8_t *data, void *priv), void *priv)
|
|
{
|
|
struct target_trace_callback *entry;
|
|
|
|
if (callback == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
list_for_each_entry(entry, &target_trace_callback_list, list) {
|
|
if (entry->callback == callback && entry->priv == priv) {
|
|
list_del(&entry->list);
|
|
free(entry);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
|
|
{
|
|
if (callback == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
for (struct target_timer_callback *c = target_timer_callbacks;
|
|
c; c = c->next) {
|
|
if ((c->callback == callback) && (c->priv == priv)) {
|
|
c->removed = true;
|
|
return ERROR_OK;
|
|
}
|
|
}
|
|
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int target_call_event_callbacks(struct target *target, enum target_event event)
|
|
{
|
|
struct target_event_callback *callback = target_event_callbacks;
|
|
struct target_event_callback *next_callback;
|
|
|
|
if (event == TARGET_EVENT_HALTED) {
|
|
/* execute early halted first */
|
|
target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
|
|
}
|
|
|
|
LOG_DEBUG("target event %i (%s)", event,
|
|
Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
|
|
|
|
target_handle_event(target, event);
|
|
|
|
while (callback) {
|
|
next_callback = callback->next;
|
|
callback->callback(target, event, callback->priv);
|
|
callback = next_callback;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
|
|
{
|
|
struct target_reset_callback *callback;
|
|
|
|
LOG_DEBUG("target reset %i (%s)", reset_mode,
|
|
Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
|
|
|
|
list_for_each_entry(callback, &target_reset_callback_list, list)
|
|
callback->callback(target, reset_mode, callback->priv);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
|
|
{
|
|
struct target_trace_callback *callback;
|
|
|
|
list_for_each_entry(callback, &target_trace_callback_list, list)
|
|
callback->callback(target, len, data, callback->priv);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int target_timer_callback_periodic_restart(
|
|
struct target_timer_callback *cb, struct timeval *now)
|
|
{
|
|
int time_ms = cb->time_ms;
|
|
cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
|
|
time_ms -= (time_ms % 1000);
|
|
cb->when.tv_sec = now->tv_sec + time_ms / 1000;
|
|
if (cb->when.tv_usec > 1000000) {
|
|
cb->when.tv_usec = cb->when.tv_usec - 1000000;
|
|
cb->when.tv_sec += 1;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int target_call_timer_callback(struct target_timer_callback *cb,
|
|
struct timeval *now)
|
|
{
|
|
cb->callback(cb->priv);
|
|
|
|
if (cb->periodic)
|
|
return target_timer_callback_periodic_restart(cb, now);
|
|
|
|
return target_unregister_timer_callback(cb->callback, cb->priv);
|
|
}
|
|
|
|
static int target_call_timer_callbacks_check_time(int checktime)
|
|
{
|
|
static bool callback_processing;
|
|
|
|
/* Do not allow nesting */
|
|
if (callback_processing)
|
|
return ERROR_OK;
|
|
|
|
callback_processing = true;
|
|
|
|
keep_alive();
|
|
|
|
struct timeval now;
|
|
gettimeofday(&now, NULL);
|
|
|
|
/* Store an address of the place containing a pointer to the
|
|
* next item; initially, that's a standalone "root of the
|
|
* list" variable. */
|
|
struct target_timer_callback **callback = &target_timer_callbacks;
|
|
while (*callback) {
|
|
if ((*callback)->removed) {
|
|
struct target_timer_callback *p = *callback;
|
|
*callback = (*callback)->next;
|
|
free(p);
|
|
continue;
|
|
}
|
|
|
|
bool call_it = (*callback)->callback &&
|
|
((!checktime && (*callback)->periodic) ||
|
|
now.tv_sec > (*callback)->when.tv_sec ||
|
|
(now.tv_sec == (*callback)->when.tv_sec &&
|
|
now.tv_usec >= (*callback)->when.tv_usec));
|
|
|
|
if (call_it)
|
|
target_call_timer_callback(*callback, &now);
|
|
|
|
callback = &(*callback)->next;
|
|
}
|
|
|
|
callback_processing = false;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_call_timer_callbacks(void)
|
|
{
|
|
return target_call_timer_callbacks_check_time(1);
|
|
}
|
|
|
|
/* invoke periodic callbacks immediately */
|
|
int target_call_timer_callbacks_now(void)
|
|
{
|
|
return target_call_timer_callbacks_check_time(0);
|
|
}
|
|
|
|
/* Prints the working area layout for debug purposes */
|
|
static void print_wa_layout(struct target *target)
|
|
{
|
|
struct working_area *c = target->working_areas;
|
|
|
|
while (c) {
|
|
LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
|
|
c->backup ? 'b' : ' ', c->free ? ' ' : '*',
|
|
c->address, c->address + c->size - 1, c->size);
|
|
c = c->next;
|
|
}
|
|
}
|
|
|
|
/* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
|
|
static void target_split_working_area(struct working_area *area, uint32_t size)
|
|
{
|
|
assert(area->free); /* Shouldn't split an allocated area */
|
|
assert(size <= area->size); /* Caller should guarantee this */
|
|
|
|
/* Split only if not already the right size */
|
|
if (size < area->size) {
|
|
struct working_area *new_wa = malloc(sizeof(*new_wa));
|
|
|
|
if (new_wa == NULL)
|
|
return;
|
|
|
|
new_wa->next = area->next;
|
|
new_wa->size = area->size - size;
|
|
new_wa->address = area->address + size;
|
|
new_wa->backup = NULL;
|
|
new_wa->user = NULL;
|
|
new_wa->free = true;
|
|
|
|
area->next = new_wa;
|
|
area->size = size;
|
|
|
|
/* If backup memory was allocated to this area, it has the wrong size
|
|
* now so free it and it will be reallocated if/when needed */
|
|
if (area->backup) {
|
|
free(area->backup);
|
|
area->backup = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Merge all adjacent free areas into one */
|
|
static void target_merge_working_areas(struct target *target)
|
|
{
|
|
struct working_area *c = target->working_areas;
|
|
|
|
while (c && c->next) {
|
|
assert(c->next->address == c->address + c->size); /* This is an invariant */
|
|
|
|
/* Find two adjacent free areas */
|
|
if (c->free && c->next->free) {
|
|
/* Merge the last into the first */
|
|
c->size += c->next->size;
|
|
|
|
/* Remove the last */
|
|
struct working_area *to_be_freed = c->next;
|
|
c->next = c->next->next;
|
|
if (to_be_freed->backup)
|
|
free(to_be_freed->backup);
|
|
free(to_be_freed);
|
|
|
|
/* If backup memory was allocated to the remaining area, it's has
|
|
* the wrong size now */
|
|
if (c->backup) {
|
|
free(c->backup);
|
|
c->backup = NULL;
|
|
}
|
|
} else {
|
|
c = c->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
|
|
{
|
|
/* Reevaluate working area address based on MMU state*/
|
|
if (target->working_areas == NULL) {
|
|
int retval;
|
|
int enabled;
|
|
|
|
retval = target->type->mmu(target, &enabled);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (!enabled) {
|
|
if (target->working_area_phys_spec) {
|
|
LOG_DEBUG("MMU disabled, using physical "
|
|
"address for working memory 0x%08"PRIx32,
|
|
target->working_area_phys);
|
|
target->working_area = target->working_area_phys;
|
|
} else {
|
|
LOG_ERROR("No working memory available. "
|
|
"Specify -work-area-phys to target.");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
} else {
|
|
if (target->working_area_virt_spec) {
|
|
LOG_DEBUG("MMU enabled, using virtual "
|
|
"address for working memory 0x%08"PRIx32,
|
|
target->working_area_virt);
|
|
target->working_area = target->working_area_virt;
|
|
} else {
|
|
LOG_ERROR("No working memory available. "
|
|
"Specify -work-area-virt to target.");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
/* Set up initial working area on first call */
|
|
struct working_area *new_wa = malloc(sizeof(*new_wa));
|
|
if (new_wa) {
|
|
new_wa->next = NULL;
|
|
new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
|
|
new_wa->address = target->working_area;
|
|
new_wa->backup = NULL;
|
|
new_wa->user = NULL;
|
|
new_wa->free = true;
|
|
}
|
|
|
|
target->working_areas = new_wa;
|
|
}
|
|
|
|
/* only allocate multiples of 4 byte */
|
|
if (size % 4)
|
|
size = (size + 3) & (~3UL);
|
|
|
|
struct working_area *c = target->working_areas;
|
|
|
|
/* Find the first large enough working area */
|
|
while (c) {
|
|
if (c->free && c->size >= size)
|
|
break;
|
|
c = c->next;
|
|
}
|
|
|
|
if (c == NULL)
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
/* Split the working area into the requested size */
|
|
target_split_working_area(c, size);
|
|
|
|
LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
|
|
|
|
if (target->backup_working_area) {
|
|
if (c->backup == NULL) {
|
|
c->backup = malloc(c->size);
|
|
if (c->backup == NULL)
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
/* mark as used, and return the new (reused) area */
|
|
c->free = false;
|
|
*area = c;
|
|
|
|
/* user pointer */
|
|
c->user = area;
|
|
|
|
print_wa_layout(target);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
|
|
{
|
|
int retval;
|
|
|
|
retval = target_alloc_working_area_try(target, size, area);
|
|
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
|
|
LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
|
|
return retval;
|
|
|
|
}
|
|
|
|
static int target_restore_working_area(struct target *target, struct working_area *area)
|
|
{
|
|
int retval = ERROR_OK;
|
|
|
|
if (target->backup_working_area && area->backup != NULL) {
|
|
retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
|
|
if (retval != ERROR_OK)
|
|
LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
|
|
area->size, area->address);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Restore the area's backup memory, if any, and return the area to the allocation pool */
|
|
static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
|
|
{
|
|
int retval = ERROR_OK;
|
|
|
|
if (area->free)
|
|
return retval;
|
|
|
|
if (restore) {
|
|
retval = target_restore_working_area(target, area);
|
|
/* REVISIT: Perhaps the area should be freed even if restoring fails. */
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
area->free = true;
|
|
|
|
LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
|
|
area->size, area->address);
|
|
|
|
/* mark user pointer invalid */
|
|
/* TODO: Is this really safe? It points to some previous caller's memory.
|
|
* How could we know that the area pointer is still in that place and not
|
|
* some other vital data? What's the purpose of this, anyway? */
|
|
*area->user = NULL;
|
|
area->user = NULL;
|
|
|
|
target_merge_working_areas(target);
|
|
|
|
print_wa_layout(target);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_free_working_area(struct target *target, struct working_area *area)
|
|
{
|
|
return target_free_working_area_restore(target, area, 1);
|
|
}
|
|
|
|
void target_quit(void)
|
|
{
|
|
struct target_event_callback *pe = target_event_callbacks;
|
|
while (pe) {
|
|
struct target_event_callback *t = pe->next;
|
|
free(pe);
|
|
pe = t;
|
|
}
|
|
target_event_callbacks = NULL;
|
|
|
|
struct target_timer_callback *pt = target_timer_callbacks;
|
|
while (pt) {
|
|
struct target_timer_callback *t = pt->next;
|
|
free(pt);
|
|
pt = t;
|
|
}
|
|
target_timer_callbacks = NULL;
|
|
|
|
for (struct target *target = all_targets;
|
|
target; target = target->next) {
|
|
if (target->type->deinit_target)
|
|
target->type->deinit_target(target);
|
|
}
|
|
}
|
|
|
|
/* free resources and restore memory, if restoring memory fails,
|
|
* free up resources anyway
|
|
*/
|
|
static void target_free_all_working_areas_restore(struct target *target, int restore)
|
|
{
|
|
struct working_area *c = target->working_areas;
|
|
|
|
LOG_DEBUG("freeing all working areas");
|
|
|
|
/* Loop through all areas, restoring the allocated ones and marking them as free */
|
|
while (c) {
|
|
if (!c->free) {
|
|
if (restore)
|
|
target_restore_working_area(target, c);
|
|
c->free = true;
|
|
*c->user = NULL; /* Same as above */
|
|
c->user = NULL;
|
|
}
|
|
c = c->next;
|
|
}
|
|
|
|
/* Run a merge pass to combine all areas into one */
|
|
target_merge_working_areas(target);
|
|
|
|
print_wa_layout(target);
|
|
}
|
|
|
|
void target_free_all_working_areas(struct target *target)
|
|
{
|
|
target_free_all_working_areas_restore(target, 1);
|
|
}
|
|
|
|
/* Find the largest number of bytes that can be allocated */
|
|
uint32_t target_get_working_area_avail(struct target *target)
|
|
{
|
|
struct working_area *c = target->working_areas;
|
|
uint32_t max_size = 0;
|
|
|
|
if (c == NULL)
|
|
return target->working_area_size;
|
|
|
|
while (c) {
|
|
if (c->free && max_size < c->size)
|
|
max_size = c->size;
|
|
|
|
c = c->next;
|
|
}
|
|
|
|
return max_size;
|
|
}
|
|
|
|
int target_arch_state(struct target *target)
|
|
{
|
|
int retval;
|
|
if (target == NULL) {
|
|
LOG_USER("No target has been configured");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
LOG_USER("%s: target state: %s", target_name(target),
|
|
target_state_name(target));
|
|
|
|
if (target->state != TARGET_HALTED)
|
|
return ERROR_OK;
|
|
|
|
retval = target->type->arch_state(target);
|
|
return retval;
|
|
}
|
|
|
|
static int target_get_gdb_fileio_info_default(struct target *target,
|
|
struct gdb_fileio_info *fileio_info)
|
|
{
|
|
/* If target does not support semi-hosting function, target
|
|
has no need to provide .get_gdb_fileio_info callback.
|
|
It just return ERROR_FAIL and gdb_server will return "Txx"
|
|
as target halted every time. */
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
static int target_gdb_fileio_end_default(struct target *target,
|
|
int retcode, int fileio_errno, bool ctrl_c)
|
|
{
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int target_profiling_default(struct target *target, uint32_t *samples,
|
|
uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
|
|
{
|
|
struct timeval timeout, now;
|
|
|
|
gettimeofday(&timeout, NULL);
|
|
timeval_add_time(&timeout, seconds, 0);
|
|
|
|
LOG_INFO("Starting profiling. Halting and resuming the"
|
|
" target as often as we can...");
|
|
|
|
uint32_t sample_count = 0;
|
|
/* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
|
|
struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
|
|
|
|
int retval = ERROR_OK;
|
|
for (;;) {
|
|
target_poll(target);
|
|
if (target->state == TARGET_HALTED) {
|
|
uint32_t t = buf_get_u32(reg->value, 0, 32);
|
|
samples[sample_count++] = t;
|
|
/* current pc, addr = 0, do not handle breakpoints, not debugging */
|
|
retval = target_resume(target, 1, 0, 0, 0);
|
|
target_poll(target);
|
|
alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
|
|
} else if (target->state == TARGET_RUNNING) {
|
|
/* We want to quickly sample the PC. */
|
|
retval = target_halt(target);
|
|
} else {
|
|
LOG_INFO("Target not halted or running");
|
|
retval = ERROR_OK;
|
|
break;
|
|
}
|
|
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
|
|
gettimeofday(&now, NULL);
|
|
if ((sample_count >= max_num_samples) ||
|
|
((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
|
|
LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
|
|
break;
|
|
}
|
|
}
|
|
|
|
*num_samples = sample_count;
|
|
return retval;
|
|
}
|
|
|
|
/* Single aligned words are guaranteed to use 16 or 32 bit access
|
|
* mode respectively, otherwise data is handled as quickly as
|
|
* possible
|
|
*/
|
|
int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
|
|
{
|
|
LOG_DEBUG("writing buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
|
|
size, address);
|
|
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (size == 0)
|
|
return ERROR_OK;
|
|
|
|
if ((address + size - 1) < address) {
|
|
/* GDB can request this when e.g. PC is 0xfffffffc */
|
|
LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
|
|
address,
|
|
size);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return target->type->write_buffer(target, address, size, buffer);
|
|
}
|
|
|
|
static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
|
|
{
|
|
uint32_t size;
|
|
|
|
/* Align up to maximum 4 bytes. The loop condition makes sure the next pass
|
|
* will have something to do with the size we leave to it. */
|
|
for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
|
|
if (address & size) {
|
|
int retval = target_write_memory(target, address, size, 1, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
address += size;
|
|
count -= size;
|
|
buffer += size;
|
|
}
|
|
}
|
|
|
|
/* Write the data with as large access size as possible. */
|
|
for (; size > 0; size /= 2) {
|
|
uint32_t aligned = count - count % size;
|
|
if (aligned > 0) {
|
|
int retval = target_write_memory(target, address, size, aligned / size, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
address += aligned;
|
|
count -= aligned;
|
|
buffer += aligned;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* Single aligned words are guaranteed to use 16 or 32 bit access
|
|
* mode respectively, otherwise data is handled as quickly as
|
|
* possible
|
|
*/
|
|
int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
|
|
{
|
|
LOG_DEBUG("reading buffer of %" PRIi32 " byte at 0x%8.8" PRIx32,
|
|
size, address);
|
|
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (size == 0)
|
|
return ERROR_OK;
|
|
|
|
if ((address + size - 1) < address) {
|
|
/* GDB can request this when e.g. PC is 0xfffffffc */
|
|
LOG_ERROR("address + size wrapped (0x%08" PRIx32 ", 0x%08" PRIx32 ")",
|
|
address,
|
|
size);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return target->type->read_buffer(target, address, size, buffer);
|
|
}
|
|
|
|
static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
|
|
{
|
|
uint32_t size;
|
|
|
|
/* Align up to maximum 4 bytes. The loop condition makes sure the next pass
|
|
* will have something to do with the size we leave to it. */
|
|
for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
|
|
if (address & size) {
|
|
int retval = target_read_memory(target, address, size, 1, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
address += size;
|
|
count -= size;
|
|
buffer += size;
|
|
}
|
|
}
|
|
|
|
/* Read the data with as large access size as possible. */
|
|
for (; size > 0; size /= 2) {
|
|
uint32_t aligned = count - count % size;
|
|
if (aligned > 0) {
|
|
int retval = target_read_memory(target, address, size, aligned / size, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
address += aligned;
|
|
count -= aligned;
|
|
buffer += aligned;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
|
|
{
|
|
uint8_t *buffer;
|
|
int retval;
|
|
uint32_t i;
|
|
uint32_t checksum = 0;
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
retval = target->type->checksum_memory(target, address, size, &checksum);
|
|
if (retval != ERROR_OK) {
|
|
buffer = malloc(size);
|
|
if (buffer == NULL) {
|
|
LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
retval = target_read_buffer(target, address, size, buffer);
|
|
if (retval != ERROR_OK) {
|
|
free(buffer);
|
|
return retval;
|
|
}
|
|
|
|
/* convert to target endianness */
|
|
for (i = 0; i < (size/sizeof(uint32_t)); i++) {
|
|
uint32_t target_data;
|
|
target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
|
|
target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
|
|
}
|
|
|
|
retval = image_calculate_checksum(buffer, size, &checksum);
|
|
free(buffer);
|
|
}
|
|
|
|
*crc = checksum;
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank,
|
|
uint8_t erased_value)
|
|
{
|
|
int retval;
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (target->type->blank_check_memory == 0)
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
|
|
{
|
|
uint8_t value_buf[8];
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int retval = target_read_memory(target, address, 8, 1, value_buf);
|
|
|
|
if (retval == ERROR_OK) {
|
|
*value = target_buffer_get_u64(target, value_buf);
|
|
LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
|
|
address,
|
|
*value);
|
|
} else {
|
|
*value = 0x0;
|
|
LOG_DEBUG("address: 0x%" PRIx64 " failed",
|
|
address);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
|
|
{
|
|
uint8_t value_buf[4];
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int retval = target_read_memory(target, address, 4, 1, value_buf);
|
|
|
|
if (retval == ERROR_OK) {
|
|
*value = target_buffer_get_u32(target, value_buf);
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
|
|
address,
|
|
*value);
|
|
} else {
|
|
*value = 0x0;
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
|
|
address);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
|
|
{
|
|
uint8_t value_buf[2];
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int retval = target_read_memory(target, address, 2, 1, value_buf);
|
|
|
|
if (retval == ERROR_OK) {
|
|
*value = target_buffer_get_u16(target, value_buf);
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4" PRIx16,
|
|
address,
|
|
*value);
|
|
} else {
|
|
*value = 0x0;
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
|
|
address);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
|
|
{
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int retval = target_read_memory(target, address, 1, 1, value);
|
|
|
|
if (retval == ERROR_OK) {
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
|
|
address,
|
|
*value);
|
|
} else {
|
|
*value = 0x0;
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
|
|
address);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_write_u64(struct target *target, uint64_t address, uint64_t value)
|
|
{
|
|
int retval;
|
|
uint8_t value_buf[8];
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
|
|
address,
|
|
value);
|
|
|
|
target_buffer_set_u64(target, value_buf, value);
|
|
retval = target_write_memory(target, address, 8, 1, value_buf);
|
|
if (retval != ERROR_OK)
|
|
LOG_DEBUG("failed: %i", retval);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_write_u32(struct target *target, uint32_t address, uint32_t value)
|
|
{
|
|
int retval;
|
|
uint8_t value_buf[4];
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
|
|
address,
|
|
value);
|
|
|
|
target_buffer_set_u32(target, value_buf, value);
|
|
retval = target_write_memory(target, address, 4, 1, value_buf);
|
|
if (retval != ERROR_OK)
|
|
LOG_DEBUG("failed: %i", retval);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_write_u16(struct target *target, uint32_t address, uint16_t value)
|
|
{
|
|
int retval;
|
|
uint8_t value_buf[2];
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx16,
|
|
address,
|
|
value);
|
|
|
|
target_buffer_set_u16(target, value_buf, value);
|
|
retval = target_write_memory(target, address, 2, 1, value_buf);
|
|
if (retval != ERROR_OK)
|
|
LOG_DEBUG("failed: %i", retval);
|
|
|
|
return retval;
|
|
}
|
|
|
|
int target_write_u8(struct target *target, uint32_t address, uint8_t value)
|
|
{
|
|
int retval;
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("Target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2" PRIx8,
|
|
address, value);
|
|
|
|
retval = target_write_memory(target, address, 1, 1, &value);
|
|
if (retval != ERROR_OK)
|
|
LOG_DEBUG("failed: %i", retval);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int find_target(struct command_context *cmd_ctx, const char *name)
|
|
{
|
|
struct target *target = get_target(name);
|
|
if (target == NULL) {
|
|
LOG_ERROR("Target: %s is unknown, try one of:\n", name);
|
|
return ERROR_FAIL;
|
|
}
|
|
if (!target->tap->enabled) {
|
|
LOG_USER("Target: TAP %s is disabled, "
|
|
"can't be the current target\n",
|
|
target->tap->dotted_name);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
cmd_ctx->current_target = target->target_number;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
|
|
COMMAND_HANDLER(handle_targets_command)
|
|
{
|
|
int retval = ERROR_OK;
|
|
if (CMD_ARGC == 1) {
|
|
retval = find_target(CMD_CTX, CMD_ARGV[0]);
|
|
if (retval == ERROR_OK) {
|
|
/* we're done! */
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
struct target *target = all_targets;
|
|
command_print(CMD_CTX, " TargetName Type Endian TapName State ");
|
|
command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
|
|
while (target) {
|
|
const char *state;
|
|
char marker = ' ';
|
|
|
|
if (target->tap->enabled)
|
|
state = target_state_name(target);
|
|
else
|
|
state = "tap-disabled";
|
|
|
|
if (CMD_CTX->current_target == target->target_number)
|
|
marker = '*';
|
|
|
|
/* keep columns lined up to match the headers above */
|
|
command_print(CMD_CTX,
|
|
"%2d%c %-18s %-10s %-6s %-18s %s",
|
|
target->target_number,
|
|
marker,
|
|
target_name(target),
|
|
target_type_name(target),
|
|
Jim_Nvp_value2name_simple(nvp_target_endian,
|
|
target->endianness)->name,
|
|
target->tap->dotted_name,
|
|
state);
|
|
target = target->next;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
|
|
|
|
static int powerDropout;
|
|
static int srstAsserted;
|
|
|
|
static int runPowerRestore;
|
|
static int runPowerDropout;
|
|
static int runSrstAsserted;
|
|
static int runSrstDeasserted;
|
|
|
|
static int sense_handler(void)
|
|
{
|
|
static int prevSrstAsserted;
|
|
static int prevPowerdropout;
|
|
|
|
int retval = jtag_power_dropout(&powerDropout);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
int powerRestored;
|
|
powerRestored = prevPowerdropout && !powerDropout;
|
|
if (powerRestored)
|
|
runPowerRestore = 1;
|
|
|
|
int64_t current = timeval_ms();
|
|
static int64_t lastPower;
|
|
bool waitMore = lastPower + 2000 > current;
|
|
if (powerDropout && !waitMore) {
|
|
runPowerDropout = 1;
|
|
lastPower = current;
|
|
}
|
|
|
|
retval = jtag_srst_asserted(&srstAsserted);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
int srstDeasserted;
|
|
srstDeasserted = prevSrstAsserted && !srstAsserted;
|
|
|
|
static int64_t lastSrst;
|
|
waitMore = lastSrst + 2000 > current;
|
|
if (srstDeasserted && !waitMore) {
|
|
runSrstDeasserted = 1;
|
|
lastSrst = current;
|
|
}
|
|
|
|
if (!prevSrstAsserted && srstAsserted)
|
|
runSrstAsserted = 1;
|
|
|
|
prevSrstAsserted = srstAsserted;
|
|
prevPowerdropout = powerDropout;
|
|
|
|
if (srstDeasserted || powerRestored) {
|
|
/* Other than logging the event we can't do anything here.
|
|
* Issuing a reset is a particularly bad idea as we might
|
|
* be inside a reset already.
|
|
*/
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* process target state changes */
|
|
static int handle_target(void *priv)
|
|
{
|
|
Jim_Interp *interp = (Jim_Interp *)priv;
|
|
int retval = ERROR_OK;
|
|
|
|
if (!is_jtag_poll_safe()) {
|
|
/* polling is disabled currently */
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* we do not want to recurse here... */
|
|
static int recursive;
|
|
if (!recursive) {
|
|
recursive = 1;
|
|
sense_handler();
|
|
/* danger! running these procedures can trigger srst assertions and power dropouts.
|
|
* We need to avoid an infinite loop/recursion here and we do that by
|
|
* clearing the flags after running these events.
|
|
*/
|
|
int did_something = 0;
|
|
if (runSrstAsserted) {
|
|
LOG_INFO("srst asserted detected, running srst_asserted proc.");
|
|
Jim_Eval(interp, "srst_asserted");
|
|
did_something = 1;
|
|
}
|
|
if (runSrstDeasserted) {
|
|
Jim_Eval(interp, "srst_deasserted");
|
|
did_something = 1;
|
|
}
|
|
if (runPowerDropout) {
|
|
LOG_INFO("Power dropout detected, running power_dropout proc.");
|
|
Jim_Eval(interp, "power_dropout");
|
|
did_something = 1;
|
|
}
|
|
if (runPowerRestore) {
|
|
Jim_Eval(interp, "power_restore");
|
|
did_something = 1;
|
|
}
|
|
|
|
if (did_something) {
|
|
/* clear detect flags */
|
|
sense_handler();
|
|
}
|
|
|
|
/* clear action flags */
|
|
|
|
runSrstAsserted = 0;
|
|
runSrstDeasserted = 0;
|
|
runPowerRestore = 0;
|
|
runPowerDropout = 0;
|
|
|
|
recursive = 0;
|
|
}
|
|
|
|
/* Poll targets for state changes unless that's globally disabled.
|
|
* Skip targets that are currently disabled.
|
|
*/
|
|
for (struct target *target = all_targets;
|
|
is_jtag_poll_safe() && target;
|
|
target = target->next) {
|
|
|
|
if (!target_was_examined(target))
|
|
continue;
|
|
|
|
if (!target->tap->enabled)
|
|
continue;
|
|
|
|
if (target->backoff.times > target->backoff.count) {
|
|
/* do not poll this time as we failed previously */
|
|
target->backoff.count++;
|
|
continue;
|
|
}
|
|
target->backoff.count = 0;
|
|
|
|
/* only poll target if we've got power and srst isn't asserted */
|
|
if (!powerDropout && !srstAsserted) {
|
|
/* polling may fail silently until the target has been examined */
|
|
retval = target_poll(target);
|
|
if (retval != ERROR_OK) {
|
|
/* 100ms polling interval. Increase interval between polling up to 5000ms */
|
|
if (target->backoff.times * polling_interval < 5000) {
|
|
target->backoff.times *= 2;
|
|
target->backoff.times++;
|
|
}
|
|
|
|
/* Tell GDB to halt the debugger. This allows the user to
|
|
* run monitor commands to handle the situation.
|
|
*/
|
|
target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
|
|
}
|
|
if (target->backoff.times > 0) {
|
|
LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
|
|
target_reset_examined(target);
|
|
retval = target_examine_one(target);
|
|
/* Target examination could have failed due to unstable connection,
|
|
* but we set the examined flag anyway to repoll it later */
|
|
if (retval != ERROR_OK) {
|
|
target->examined = true;
|
|
LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
|
|
target->backoff.times * polling_interval);
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
/* Since we succeeded, we reset backoff count */
|
|
target->backoff.times = 0;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_reg_command)
|
|
{
|
|
struct target *target;
|
|
struct reg *reg = NULL;
|
|
unsigned count = 0;
|
|
char *value;
|
|
|
|
LOG_DEBUG("-");
|
|
|
|
target = get_current_target(CMD_CTX);
|
|
|
|
/* list all available registers for the current target */
|
|
if (CMD_ARGC == 0) {
|
|
struct reg_cache *cache = target->reg_cache;
|
|
|
|
count = 0;
|
|
while (cache) {
|
|
unsigned i;
|
|
|
|
command_print(CMD_CTX, "===== %s", cache->name);
|
|
|
|
for (i = 0, reg = cache->reg_list;
|
|
i < cache->num_regs;
|
|
i++, reg++, count++) {
|
|
/* only print cached values if they are valid */
|
|
if (reg->valid) {
|
|
value = buf_to_str(reg->value,
|
|
reg->size, 16);
|
|
command_print(CMD_CTX,
|
|
"(%i) %s (/%" PRIu32 "): 0x%s%s",
|
|
count, reg->name,
|
|
reg->size, value,
|
|
reg->dirty
|
|
? " (dirty)"
|
|
: "");
|
|
free(value);
|
|
} else {
|
|
command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
|
|
count, reg->name,
|
|
reg->size) ;
|
|
}
|
|
}
|
|
cache = cache->next;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* access a single register by its ordinal number */
|
|
if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
|
|
unsigned num;
|
|
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
|
|
|
|
struct reg_cache *cache = target->reg_cache;
|
|
count = 0;
|
|
while (cache) {
|
|
unsigned i;
|
|
for (i = 0; i < cache->num_regs; i++) {
|
|
if (count++ == num) {
|
|
reg = &cache->reg_list[i];
|
|
break;
|
|
}
|
|
}
|
|
if (reg)
|
|
break;
|
|
cache = cache->next;
|
|
}
|
|
|
|
if (!reg) {
|
|
command_print(CMD_CTX, "%i is out of bounds, the current target "
|
|
"has only %i registers (0 - %i)", num, count, count - 1);
|
|
return ERROR_OK;
|
|
}
|
|
} else {
|
|
/* access a single register by its name */
|
|
reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
|
|
|
|
if (!reg) {
|
|
command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
|
|
return ERROR_OK;
|
|
}
|
|
}
|
|
|
|
assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
|
|
|
|
/* display a register */
|
|
if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
|
|
&& (CMD_ARGV[1][0] <= '9')))) {
|
|
if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
|
|
reg->valid = 0;
|
|
|
|
if (reg->valid == 0)
|
|
reg->type->get(reg);
|
|
value = buf_to_str(reg->value, reg->size, 16);
|
|
command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
|
|
free(value);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* set register value */
|
|
if (CMD_ARGC == 2) {
|
|
uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
|
|
if (buf == NULL)
|
|
return ERROR_FAIL;
|
|
str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
|
|
|
|
reg->type->set(reg, buf);
|
|
|
|
value = buf_to_str(reg->value, reg->size, 16);
|
|
command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
|
|
free(value);
|
|
|
|
free(buf);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_poll_command)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
if (CMD_ARGC == 0) {
|
|
command_print(CMD_CTX, "background polling: %s",
|
|
jtag_poll_get_enabled() ? "on" : "off");
|
|
command_print(CMD_CTX, "TAP: %s (%s)",
|
|
target->tap->dotted_name,
|
|
target->tap->enabled ? "enabled" : "disabled");
|
|
if (!target->tap->enabled)
|
|
return ERROR_OK;
|
|
retval = target_poll(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = target_arch_state(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
} else if (CMD_ARGC == 1) {
|
|
bool enable;
|
|
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
|
|
jtag_poll_set_enabled(enable);
|
|
} else
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_wait_halt_command)
|
|
{
|
|
if (CMD_ARGC > 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
unsigned ms = DEFAULT_HALT_TIMEOUT;
|
|
if (1 == CMD_ARGC) {
|
|
int retval = parse_uint(CMD_ARGV[0], &ms);
|
|
if (ERROR_OK != retval)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
return target_wait_state(target, TARGET_HALTED, ms);
|
|
}
|
|
|
|
/* wait for target state to change. The trick here is to have a low
|
|
* latency for short waits and not to suck up all the CPU time
|
|
* on longer waits.
|
|
*
|
|
* After 500ms, keep_alive() is invoked
|
|
*/
|
|
int target_wait_state(struct target *target, enum target_state state, int ms)
|
|
{
|
|
int retval;
|
|
int64_t then = 0, cur;
|
|
bool once = true;
|
|
|
|
for (;;) {
|
|
retval = target_poll(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
if (target->state == state)
|
|
break;
|
|
cur = timeval_ms();
|
|
if (once) {
|
|
once = false;
|
|
then = timeval_ms();
|
|
LOG_DEBUG("waiting for target %s...",
|
|
Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
|
|
}
|
|
|
|
if (cur-then > 500)
|
|
keep_alive();
|
|
|
|
if ((cur-then) > ms) {
|
|
LOG_ERROR("timed out while waiting for target %s",
|
|
Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_halt_command)
|
|
{
|
|
LOG_DEBUG("-");
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
int retval = target_halt(target);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
if (CMD_ARGC == 1) {
|
|
unsigned wait_local;
|
|
retval = parse_uint(CMD_ARGV[0], &wait_local);
|
|
if (ERROR_OK != retval)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
if (!wait_local)
|
|
return ERROR_OK;
|
|
}
|
|
|
|
return CALL_COMMAND_HANDLER(handle_wait_halt_command);
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_soft_reset_halt_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
LOG_USER("requesting target halt and executing a soft reset");
|
|
|
|
target_soft_reset_halt(target);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_reset_command)
|
|
{
|
|
if (CMD_ARGC > 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
enum target_reset_mode reset_mode = RESET_RUN;
|
|
if (CMD_ARGC == 1) {
|
|
const Jim_Nvp *n;
|
|
n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
|
|
if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
reset_mode = n->value;
|
|
}
|
|
|
|
/* reset *all* targets */
|
|
return target_process_reset(CMD_CTX, reset_mode);
|
|
}
|
|
|
|
|
|
COMMAND_HANDLER(handle_resume_command)
|
|
{
|
|
int current = 1;
|
|
if (CMD_ARGC > 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
/* with no CMD_ARGV, resume from current pc, addr = 0,
|
|
* with one arguments, addr = CMD_ARGV[0],
|
|
* handle breakpoints, not debugging */
|
|
uint32_t addr = 0;
|
|
if (CMD_ARGC == 1) {
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
|
|
current = 0;
|
|
}
|
|
|
|
return target_resume(target, current, addr, 1, 0);
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_step_command)
|
|
{
|
|
if (CMD_ARGC > 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
LOG_DEBUG("-");
|
|
|
|
/* with no CMD_ARGV, step from current pc, addr = 0,
|
|
* with one argument addr = CMD_ARGV[0],
|
|
* handle breakpoints, debugging */
|
|
uint32_t addr = 0;
|
|
int current_pc = 1;
|
|
if (CMD_ARGC == 1) {
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
|
|
current_pc = 0;
|
|
}
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
return target->type->step(target, current_pc, addr, 1);
|
|
}
|
|
|
|
static void handle_md_output(struct command_context *cmd_ctx,
|
|
struct target *target, uint32_t address, unsigned size,
|
|
unsigned count, const uint8_t *buffer)
|
|
{
|
|
const unsigned line_bytecnt = 32;
|
|
unsigned line_modulo = line_bytecnt / size;
|
|
|
|
char output[line_bytecnt * 4 + 1];
|
|
unsigned output_len = 0;
|
|
|
|
const char *value_fmt;
|
|
switch (size) {
|
|
case 4:
|
|
value_fmt = "%8.8x ";
|
|
break;
|
|
case 2:
|
|
value_fmt = "%4.4x ";
|
|
break;
|
|
case 1:
|
|
value_fmt = "%2.2x ";
|
|
break;
|
|
default:
|
|
/* "can't happen", caller checked */
|
|
LOG_ERROR("invalid memory read size: %u", size);
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0; i < count; i++) {
|
|
if (i % line_modulo == 0) {
|
|
output_len += snprintf(output + output_len,
|
|
sizeof(output) - output_len,
|
|
"0x%8.8x: ",
|
|
(unsigned)(address + (i*size)));
|
|
}
|
|
|
|
uint32_t value = 0;
|
|
const uint8_t *value_ptr = buffer + i * size;
|
|
switch (size) {
|
|
case 4:
|
|
value = target_buffer_get_u32(target, value_ptr);
|
|
break;
|
|
case 2:
|
|
value = target_buffer_get_u16(target, value_ptr);
|
|
break;
|
|
case 1:
|
|
value = *value_ptr;
|
|
}
|
|
output_len += snprintf(output + output_len,
|
|
sizeof(output) - output_len,
|
|
value_fmt, value);
|
|
|
|
if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
|
|
command_print(cmd_ctx, "%s", output);
|
|
output_len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_md_command)
|
|
{
|
|
if (CMD_ARGC < 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
unsigned size = 0;
|
|
switch (CMD_NAME[2]) {
|
|
case 'w':
|
|
size = 4;
|
|
break;
|
|
case 'h':
|
|
size = 2;
|
|
break;
|
|
case 'b':
|
|
size = 1;
|
|
break;
|
|
default:
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
|
|
int (*fn)(struct target *target,
|
|
uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
|
|
if (physical) {
|
|
CMD_ARGC--;
|
|
CMD_ARGV++;
|
|
fn = target_read_phys_memory;
|
|
} else
|
|
fn = target_read_memory;
|
|
if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
uint32_t address;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
|
|
|
|
unsigned count = 1;
|
|
if (CMD_ARGC == 2)
|
|
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
|
|
|
|
uint8_t *buffer = calloc(count, size);
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
int retval = fn(target, address, size, count, buffer);
|
|
if (ERROR_OK == retval)
|
|
handle_md_output(CMD_CTX, target, address, size, count, buffer);
|
|
|
|
free(buffer);
|
|
|
|
return retval;
|
|
}
|
|
|
|
typedef int (*target_write_fn)(struct target *target,
|
|
uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
|
|
|
|
static int target_fill_mem(struct target *target,
|
|
uint32_t address,
|
|
target_write_fn fn,
|
|
unsigned data_size,
|
|
/* value */
|
|
uint32_t b,
|
|
/* count */
|
|
unsigned c)
|
|
{
|
|
/* We have to write in reasonably large chunks to be able
|
|
* to fill large memory areas with any sane speed */
|
|
const unsigned chunk_size = 16384;
|
|
uint8_t *target_buf = malloc(chunk_size * data_size);
|
|
if (target_buf == NULL) {
|
|
LOG_ERROR("Out of memory");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
for (unsigned i = 0; i < chunk_size; i++) {
|
|
switch (data_size) {
|
|
case 4:
|
|
target_buffer_set_u32(target, target_buf + i * data_size, b);
|
|
break;
|
|
case 2:
|
|
target_buffer_set_u16(target, target_buf + i * data_size, b);
|
|
break;
|
|
case 1:
|
|
target_buffer_set_u8(target, target_buf + i * data_size, b);
|
|
break;
|
|
default:
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
int retval = ERROR_OK;
|
|
|
|
for (unsigned x = 0; x < c; x += chunk_size) {
|
|
unsigned current;
|
|
current = c - x;
|
|
if (current > chunk_size)
|
|
current = chunk_size;
|
|
retval = fn(target, address + x * data_size, data_size, current, target_buf);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
/* avoid GDB timeouts */
|
|
keep_alive();
|
|
}
|
|
free(target_buf);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
COMMAND_HANDLER(handle_mw_command)
|
|
{
|
|
if (CMD_ARGC < 2)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
|
|
target_write_fn fn;
|
|
if (physical) {
|
|
CMD_ARGC--;
|
|
CMD_ARGV++;
|
|
fn = target_write_phys_memory;
|
|
} else
|
|
fn = target_write_memory;
|
|
if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
uint32_t address;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
|
|
|
|
uint32_t value;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
|
|
|
|
unsigned count = 1;
|
|
if (CMD_ARGC == 3)
|
|
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
unsigned wordsize;
|
|
switch (CMD_NAME[2]) {
|
|
case 'w':
|
|
wordsize = 4;
|
|
break;
|
|
case 'h':
|
|
wordsize = 2;
|
|
break;
|
|
case 'b':
|
|
wordsize = 1;
|
|
break;
|
|
default:
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
return target_fill_mem(target, address, fn, wordsize, value, count);
|
|
}
|
|
|
|
static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
|
|
uint32_t *min_address, uint32_t *max_address)
|
|
{
|
|
if (CMD_ARGC < 1 || CMD_ARGC > 5)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
/* a base address isn't always necessary,
|
|
* default to 0x0 (i.e. don't relocate) */
|
|
if (CMD_ARGC >= 2) {
|
|
uint32_t addr;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
|
|
image->base_address = addr;
|
|
image->base_address_set = 1;
|
|
} else
|
|
image->base_address_set = 0;
|
|
|
|
image->start_address_set = 0;
|
|
|
|
if (CMD_ARGC >= 4)
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
|
|
if (CMD_ARGC == 5) {
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
|
|
/* use size (given) to find max (required) */
|
|
*max_address += *min_address;
|
|
}
|
|
|
|
if (*min_address > *max_address)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_load_image_command)
|
|
{
|
|
uint8_t *buffer;
|
|
size_t buf_cnt;
|
|
uint32_t image_size;
|
|
uint32_t min_address = 0;
|
|
uint32_t max_address = 0xffffffff;
|
|
int i;
|
|
struct image image;
|
|
|
|
int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
|
|
&image, &min_address, &max_address);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
struct duration bench;
|
|
duration_start(&bench);
|
|
|
|
if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
|
|
return ERROR_FAIL;
|
|
|
|
image_size = 0x0;
|
|
retval = ERROR_OK;
|
|
for (i = 0; i < image.num_sections; i++) {
|
|
buffer = malloc(image.sections[i].size);
|
|
if (buffer == NULL) {
|
|
command_print(CMD_CTX,
|
|
"error allocating buffer for section (%d bytes)",
|
|
(int)(image.sections[i].size));
|
|
retval = ERROR_FAIL;
|
|
break;
|
|
}
|
|
|
|
retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
|
|
if (retval != ERROR_OK) {
|
|
free(buffer);
|
|
break;
|
|
}
|
|
|
|
uint32_t offset = 0;
|
|
uint32_t length = buf_cnt;
|
|
|
|
/* DANGER!!! beware of unsigned comparision here!!! */
|
|
|
|
if ((image.sections[i].base_address + buf_cnt >= min_address) &&
|
|
(image.sections[i].base_address < max_address)) {
|
|
|
|
if (image.sections[i].base_address < min_address) {
|
|
/* clip addresses below */
|
|
offset += min_address-image.sections[i].base_address;
|
|
length -= offset;
|
|
}
|
|
|
|
if (image.sections[i].base_address + buf_cnt > max_address)
|
|
length -= (image.sections[i].base_address + buf_cnt)-max_address;
|
|
|
|
retval = target_write_buffer(target,
|
|
image.sections[i].base_address + offset, length, buffer + offset);
|
|
if (retval != ERROR_OK) {
|
|
free(buffer);
|
|
break;
|
|
}
|
|
image_size += length;
|
|
command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
|
|
(unsigned int)length,
|
|
image.sections[i].base_address + offset);
|
|
}
|
|
|
|
free(buffer);
|
|
}
|
|
|
|
if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
|
|
command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
|
|
"in %fs (%0.3f KiB/s)", image_size,
|
|
duration_elapsed(&bench), duration_kbps(&bench, image_size));
|
|
}
|
|
|
|
image_close(&image);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_dump_image_command)
|
|
{
|
|
struct fileio *fileio;
|
|
uint8_t *buffer;
|
|
int retval, retvaltemp;
|
|
uint32_t address, size;
|
|
struct duration bench;
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
if (CMD_ARGC != 3)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
|
|
|
|
uint32_t buf_size = (size > 4096) ? 4096 : size;
|
|
buffer = malloc(buf_size);
|
|
if (!buffer)
|
|
return ERROR_FAIL;
|
|
|
|
retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
|
|
if (retval != ERROR_OK) {
|
|
free(buffer);
|
|
return retval;
|
|
}
|
|
|
|
duration_start(&bench);
|
|
|
|
while (size > 0) {
|
|
size_t size_written;
|
|
uint32_t this_run_size = (size > buf_size) ? buf_size : size;
|
|
retval = target_read_buffer(target, address, this_run_size, buffer);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
|
|
retval = fileio_write(fileio, this_run_size, buffer, &size_written);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
|
|
size -= this_run_size;
|
|
address += this_run_size;
|
|
}
|
|
|
|
free(buffer);
|
|
|
|
if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
|
|
size_t filesize;
|
|
retval = fileio_size(fileio, &filesize);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
command_print(CMD_CTX,
|
|
"dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
|
|
duration_elapsed(&bench), duration_kbps(&bench, filesize));
|
|
}
|
|
|
|
retvaltemp = fileio_close(fileio);
|
|
if (retvaltemp != ERROR_OK)
|
|
return retvaltemp;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
|
|
{
|
|
uint8_t *buffer;
|
|
size_t buf_cnt;
|
|
uint32_t image_size;
|
|
int i;
|
|
int retval;
|
|
uint32_t checksum = 0;
|
|
uint32_t mem_checksum = 0;
|
|
|
|
struct image image;
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
if (CMD_ARGC < 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
if (!target) {
|
|
LOG_ERROR("no target selected");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
struct duration bench;
|
|
duration_start(&bench);
|
|
|
|
if (CMD_ARGC >= 2) {
|
|
uint32_t addr;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
|
|
image.base_address = addr;
|
|
image.base_address_set = 1;
|
|
} else {
|
|
image.base_address_set = 0;
|
|
image.base_address = 0x0;
|
|
}
|
|
|
|
image.start_address_set = 0;
|
|
|
|
retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
image_size = 0x0;
|
|
int diffs = 0;
|
|
retval = ERROR_OK;
|
|
for (i = 0; i < image.num_sections; i++) {
|
|
buffer = malloc(image.sections[i].size);
|
|
if (buffer == NULL) {
|
|
command_print(CMD_CTX,
|
|
"error allocating buffer for section (%d bytes)",
|
|
(int)(image.sections[i].size));
|
|
break;
|
|
}
|
|
retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
|
|
if (retval != ERROR_OK) {
|
|
free(buffer);
|
|
break;
|
|
}
|
|
|
|
if (verify) {
|
|
/* calculate checksum of image */
|
|
retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
|
|
if (retval != ERROR_OK) {
|
|
free(buffer);
|
|
break;
|
|
}
|
|
|
|
retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
|
|
if (retval != ERROR_OK) {
|
|
free(buffer);
|
|
break;
|
|
}
|
|
|
|
if (checksum != mem_checksum) {
|
|
/* failed crc checksum, fall back to a binary compare */
|
|
uint8_t *data;
|
|
|
|
if (diffs == 0)
|
|
LOG_ERROR("checksum mismatch - attempting binary compare");
|
|
|
|
data = malloc(buf_cnt);
|
|
|
|
/* Can we use 32bit word accesses? */
|
|
int size = 1;
|
|
int count = buf_cnt;
|
|
if ((count % 4) == 0) {
|
|
size *= 4;
|
|
count /= 4;
|
|
}
|
|
retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
|
|
if (retval == ERROR_OK) {
|
|
uint32_t t;
|
|
for (t = 0; t < buf_cnt; t++) {
|
|
if (data[t] != buffer[t]) {
|
|
command_print(CMD_CTX,
|
|
"diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
|
|
diffs,
|
|
(unsigned)(t + image.sections[i].base_address),
|
|
data[t],
|
|
buffer[t]);
|
|
if (diffs++ >= 127) {
|
|
command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
|
|
free(data);
|
|
free(buffer);
|
|
goto done;
|
|
}
|
|
}
|
|
keep_alive();
|
|
}
|
|
}
|
|
free(data);
|
|
}
|
|
} else {
|
|
command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
|
|
image.sections[i].base_address,
|
|
buf_cnt);
|
|
}
|
|
|
|
free(buffer);
|
|
image_size += buf_cnt;
|
|
}
|
|
if (diffs > 0)
|
|
command_print(CMD_CTX, "No more differences found.");
|
|
done:
|
|
if (diffs > 0)
|
|
retval = ERROR_FAIL;
|
|
if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
|
|
command_print(CMD_CTX, "verified %" PRIu32 " bytes "
|
|
"in %fs (%0.3f KiB/s)", image_size,
|
|
duration_elapsed(&bench), duration_kbps(&bench, image_size));
|
|
}
|
|
|
|
image_close(&image);
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_verify_image_command)
|
|
{
|
|
return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_test_image_command)
|
|
{
|
|
return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
|
|
}
|
|
|
|
static int handle_bp_command_list(struct command_context *cmd_ctx)
|
|
{
|
|
struct target *target = get_current_target(cmd_ctx);
|
|
struct breakpoint *breakpoint = target->breakpoints;
|
|
while (breakpoint) {
|
|
if (breakpoint->type == BKPT_SOFT) {
|
|
char *buf = buf_to_str(breakpoint->orig_instr,
|
|
breakpoint->length, 16);
|
|
command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
|
|
breakpoint->address,
|
|
breakpoint->length,
|
|
breakpoint->set, buf);
|
|
free(buf);
|
|
} else {
|
|
if ((breakpoint->address == 0) && (breakpoint->asid != 0))
|
|
command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
|
|
breakpoint->asid,
|
|
breakpoint->length, breakpoint->set);
|
|
else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
|
|
command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
|
|
breakpoint->address,
|
|
breakpoint->length, breakpoint->set);
|
|
command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
|
|
breakpoint->asid);
|
|
} else
|
|
command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
|
|
breakpoint->address,
|
|
breakpoint->length, breakpoint->set);
|
|
}
|
|
|
|
breakpoint = breakpoint->next;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int handle_bp_command_set(struct command_context *cmd_ctx,
|
|
uint32_t addr, uint32_t asid, uint32_t length, int hw)
|
|
{
|
|
struct target *target = get_current_target(cmd_ctx);
|
|
int retval;
|
|
|
|
if (asid == 0) {
|
|
retval = breakpoint_add(target, addr, length, hw);
|
|
if (ERROR_OK == retval)
|
|
command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
|
|
else {
|
|
LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
|
|
return retval;
|
|
}
|
|
} else if (addr == 0) {
|
|
if (target->type->add_context_breakpoint == NULL) {
|
|
LOG_WARNING("Context breakpoint not available");
|
|
return ERROR_OK;
|
|
}
|
|
retval = context_breakpoint_add(target, asid, length, hw);
|
|
if (ERROR_OK == retval)
|
|
command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
|
|
else {
|
|
LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
|
|
return retval;
|
|
}
|
|
} else {
|
|
if (target->type->add_hybrid_breakpoint == NULL) {
|
|
LOG_WARNING("Hybrid breakpoint not available");
|
|
return ERROR_OK;
|
|
}
|
|
retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
|
|
if (ERROR_OK == retval)
|
|
command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
|
|
else {
|
|
LOG_ERROR("Failure setting breakpoint, the same address is already used");
|
|
return retval;
|
|
}
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_bp_command)
|
|
{
|
|
uint32_t addr;
|
|
uint32_t asid;
|
|
uint32_t length;
|
|
int hw = BKPT_SOFT;
|
|
|
|
switch (CMD_ARGC) {
|
|
case 0:
|
|
return handle_bp_command_list(CMD_CTX);
|
|
|
|
case 2:
|
|
asid = 0;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
|
|
return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
|
|
|
|
case 3:
|
|
if (strcmp(CMD_ARGV[2], "hw") == 0) {
|
|
hw = BKPT_HARD;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
|
|
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
|
|
|
|
asid = 0;
|
|
return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
|
|
} else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
|
|
hw = BKPT_HARD;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
|
|
addr = 0;
|
|
return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
|
|
}
|
|
|
|
case 4:
|
|
hw = BKPT_HARD;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
|
|
return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
|
|
|
|
default:
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_rbp_command)
|
|
{
|
|
if (CMD_ARGC != 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
uint32_t addr;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
breakpoint_remove(target, addr);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_wp_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
if (CMD_ARGC == 0) {
|
|
struct watchpoint *watchpoint = target->watchpoints;
|
|
|
|
while (watchpoint) {
|
|
command_print(CMD_CTX, "address: 0x%8.8" PRIx32
|
|
", len: 0x%8.8" PRIx32
|
|
", r/w/a: %i, value: 0x%8.8" PRIx32
|
|
", mask: 0x%8.8" PRIx32,
|
|
watchpoint->address,
|
|
watchpoint->length,
|
|
(int)watchpoint->rw,
|
|
watchpoint->value,
|
|
watchpoint->mask);
|
|
watchpoint = watchpoint->next;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
enum watchpoint_rw type = WPT_ACCESS;
|
|
uint32_t addr = 0;
|
|
uint32_t length = 0;
|
|
uint32_t data_value = 0x0;
|
|
uint32_t data_mask = 0xffffffff;
|
|
|
|
switch (CMD_ARGC) {
|
|
case 5:
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
|
|
/* fall through */
|
|
case 4:
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
|
|
/* fall through */
|
|
case 3:
|
|
switch (CMD_ARGV[2][0]) {
|
|
case 'r':
|
|
type = WPT_READ;
|
|
break;
|
|
case 'w':
|
|
type = WPT_WRITE;
|
|
break;
|
|
case 'a':
|
|
type = WPT_ACCESS;
|
|
break;
|
|
default:
|
|
LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
/* fall through */
|
|
case 2:
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
|
|
break;
|
|
|
|
default:
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
int retval = watchpoint_add(target, addr, length, type,
|
|
data_value, data_mask);
|
|
if (ERROR_OK != retval)
|
|
LOG_ERROR("Failure setting watchpoints");
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_rwp_command)
|
|
{
|
|
if (CMD_ARGC != 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
uint32_t addr;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
watchpoint_remove(target, addr);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Translate a virtual address to a physical address.
|
|
*
|
|
* The low-level target implementation must have logged a detailed error
|
|
* which is forwarded to telnet/GDB session.
|
|
*/
|
|
COMMAND_HANDLER(handle_virt2phys_command)
|
|
{
|
|
if (CMD_ARGC != 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
uint32_t va;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
|
|
uint32_t pa;
|
|
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
int retval = target->type->virt2phys(target, va, &pa);
|
|
if (retval == ERROR_OK)
|
|
command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void writeData(FILE *f, const void *data, size_t len)
|
|
{
|
|
size_t written = fwrite(data, 1, len, f);
|
|
if (written != len)
|
|
LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
|
|
}
|
|
|
|
static void writeLong(FILE *f, int l, struct target *target)
|
|
{
|
|
uint8_t val[4];
|
|
|
|
target_buffer_set_u32(target, val, l);
|
|
writeData(f, val, 4);
|
|
}
|
|
|
|
static void writeString(FILE *f, char *s)
|
|
{
|
|
writeData(f, s, strlen(s));
|
|
}
|
|
|
|
typedef unsigned char UNIT[2]; /* unit of profiling */
|
|
|
|
/* Dump a gmon.out histogram file. */
|
|
static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
|
|
uint32_t start_address, uint32_t end_address, struct target *target)
|
|
{
|
|
uint32_t i;
|
|
FILE *f = fopen(filename, "w");
|
|
if (f == NULL)
|
|
return;
|
|
writeString(f, "gmon");
|
|
writeLong(f, 0x00000001, target); /* Version */
|
|
writeLong(f, 0, target); /* padding */
|
|
writeLong(f, 0, target); /* padding */
|
|
writeLong(f, 0, target); /* padding */
|
|
|
|
uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
|
|
writeData(f, &zero, 1);
|
|
|
|
/* figure out bucket size */
|
|
uint32_t min;
|
|
uint32_t max;
|
|
if (with_range) {
|
|
min = start_address;
|
|
max = end_address;
|
|
} else {
|
|
min = samples[0];
|
|
max = samples[0];
|
|
for (i = 0; i < sampleNum; i++) {
|
|
if (min > samples[i])
|
|
min = samples[i];
|
|
if (max < samples[i])
|
|
max = samples[i];
|
|
}
|
|
|
|
/* max should be (largest sample + 1)
|
|
* Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
|
|
max++;
|
|
}
|
|
|
|
int addressSpace = max - min;
|
|
assert(addressSpace >= 2);
|
|
|
|
/* FIXME: What is the reasonable number of buckets?
|
|
* The profiling result will be more accurate if there are enough buckets. */
|
|
static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
|
|
uint32_t numBuckets = addressSpace / sizeof(UNIT);
|
|
if (numBuckets > maxBuckets)
|
|
numBuckets = maxBuckets;
|
|
int *buckets = malloc(sizeof(int) * numBuckets);
|
|
if (buckets == NULL) {
|
|
fclose(f);
|
|
return;
|
|
}
|
|
memset(buckets, 0, sizeof(int) * numBuckets);
|
|
for (i = 0; i < sampleNum; i++) {
|
|
uint32_t address = samples[i];
|
|
|
|
if ((address < min) || (max <= address))
|
|
continue;
|
|
|
|
long long a = address - min;
|
|
long long b = numBuckets;
|
|
long long c = addressSpace;
|
|
int index_t = (a * b) / c; /* danger!!!! int32 overflows */
|
|
buckets[index_t]++;
|
|
}
|
|
|
|
/* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
|
|
writeLong(f, min, target); /* low_pc */
|
|
writeLong(f, max, target); /* high_pc */
|
|
writeLong(f, numBuckets, target); /* # of buckets */
|
|
writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
|
|
writeString(f, "seconds");
|
|
for (i = 0; i < (15-strlen("seconds")); i++)
|
|
writeData(f, &zero, 1);
|
|
writeString(f, "s");
|
|
|
|
/*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
|
|
|
|
char *data = malloc(2 * numBuckets);
|
|
if (data != NULL) {
|
|
for (i = 0; i < numBuckets; i++) {
|
|
int val;
|
|
val = buckets[i];
|
|
if (val > 65535)
|
|
val = 65535;
|
|
data[i * 2] = val&0xff;
|
|
data[i * 2 + 1] = (val >> 8) & 0xff;
|
|
}
|
|
free(buckets);
|
|
writeData(f, data, numBuckets * 2);
|
|
free(data);
|
|
} else
|
|
free(buckets);
|
|
|
|
fclose(f);
|
|
}
|
|
|
|
/* profiling samples the CPU PC as quickly as OpenOCD is able,
|
|
* which will be used as a random sampling of PC */
|
|
COMMAND_HANDLER(handle_profile_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
|
|
uint32_t offset;
|
|
uint32_t num_of_samples;
|
|
int retval = ERROR_OK;
|
|
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
|
|
|
|
uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
|
|
if (samples == NULL) {
|
|
LOG_ERROR("No memory to store samples.");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/**
|
|
* Some cores let us sample the PC without the
|
|
* annoying halt/resume step; for example, ARMv7 PCSR.
|
|
* Provide a way to use that more efficient mechanism.
|
|
*/
|
|
retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
|
|
&num_of_samples, offset);
|
|
if (retval != ERROR_OK) {
|
|
free(samples);
|
|
return retval;
|
|
}
|
|
|
|
assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
|
|
|
|
retval = target_poll(target);
|
|
if (retval != ERROR_OK) {
|
|
free(samples);
|
|
return retval;
|
|
}
|
|
if (target->state == TARGET_RUNNING) {
|
|
retval = target_halt(target);
|
|
if (retval != ERROR_OK) {
|
|
free(samples);
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
retval = target_poll(target);
|
|
if (retval != ERROR_OK) {
|
|
free(samples);
|
|
return retval;
|
|
}
|
|
|
|
uint32_t start_address = 0;
|
|
uint32_t end_address = 0;
|
|
bool with_range = false;
|
|
if (CMD_ARGC == 4) {
|
|
with_range = true;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
|
|
}
|
|
|
|
write_gmon(samples, num_of_samples, CMD_ARGV[1],
|
|
with_range, start_address, end_address, target);
|
|
command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
|
|
|
|
free(samples);
|
|
return retval;
|
|
}
|
|
|
|
static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
|
|
{
|
|
char *namebuf;
|
|
Jim_Obj *nameObjPtr, *valObjPtr;
|
|
int result;
|
|
|
|
namebuf = alloc_printf("%s(%d)", varname, idx);
|
|
if (!namebuf)
|
|
return JIM_ERR;
|
|
|
|
nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
|
|
valObjPtr = Jim_NewIntObj(interp, val);
|
|
if (!nameObjPtr || !valObjPtr) {
|
|
free(namebuf);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
Jim_IncrRefCount(nameObjPtr);
|
|
Jim_IncrRefCount(valObjPtr);
|
|
result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
|
|
Jim_DecrRefCount(interp, nameObjPtr);
|
|
Jim_DecrRefCount(interp, valObjPtr);
|
|
free(namebuf);
|
|
/* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
|
|
return result;
|
|
}
|
|
|
|
static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
struct command_context *context;
|
|
struct target *target;
|
|
|
|
context = current_command_context(interp);
|
|
assert(context != NULL);
|
|
|
|
target = get_current_target(context);
|
|
if (target == NULL) {
|
|
LOG_ERROR("mem2array: no current target");
|
|
return JIM_ERR;
|
|
}
|
|
|
|
return target_mem2array(interp, target, argc - 1, argv + 1);
|
|
}
|
|
|
|
static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
|
|
{
|
|
long l;
|
|
uint32_t width;
|
|
int len;
|
|
uint32_t addr;
|
|
uint32_t count;
|
|
uint32_t v;
|
|
const char *varname;
|
|
const char *phys;
|
|
bool is_phys;
|
|
int n, e, retval;
|
|
uint32_t i;
|
|
|
|
/* argv[1] = name of array to receive the data
|
|
* argv[2] = desired width
|
|
* argv[3] = memory address
|
|
* argv[4] = count of times to read
|
|
*/
|
|
if (argc < 4 || argc > 5) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
|
|
return JIM_ERR;
|
|
}
|
|
varname = Jim_GetString(argv[0], &len);
|
|
/* given "foo" get space for worse case "foo(%d)" .. add 20 */
|
|
|
|
e = Jim_GetLong(interp, argv[1], &l);
|
|
width = l;
|
|
if (e != JIM_OK)
|
|
return e;
|
|
|
|
e = Jim_GetLong(interp, argv[2], &l);
|
|
addr = l;
|
|
if (e != JIM_OK)
|
|
return e;
|
|
e = Jim_GetLong(interp, argv[3], &l);
|
|
len = l;
|
|
if (e != JIM_OK)
|
|
return e;
|
|
is_phys = false;
|
|
if (argc > 4) {
|
|
phys = Jim_GetString(argv[4], &n);
|
|
if (!strncmp(phys, "phys", n))
|
|
is_phys = true;
|
|
else
|
|
return JIM_ERR;
|
|
}
|
|
switch (width) {
|
|
case 8:
|
|
width = 1;
|
|
break;
|
|
case 16:
|
|
width = 2;
|
|
break;
|
|
case 32:
|
|
width = 4;
|
|
break;
|
|
default:
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
|
|
return JIM_ERR;
|
|
}
|
|
if (len == 0) {
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
|
|
return JIM_ERR;
|
|
}
|
|
if ((addr + (len * width)) < addr) {
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
|
|
return JIM_ERR;
|
|
}
|
|
/* absurd transfer size? */
|
|
if (len > 65536) {
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
if ((width == 1) ||
|
|
((width == 2) && ((addr & 1) == 0)) ||
|
|
((width == 4) && ((addr & 3) == 0))) {
|
|
/* all is well */
|
|
} else {
|
|
char buf[100];
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
|
|
addr,
|
|
width);
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
/* Transfer loop */
|
|
|
|
/* index counter */
|
|
n = 0;
|
|
|
|
size_t buffersize = 4096;
|
|
uint8_t *buffer = malloc(buffersize);
|
|
if (buffer == NULL)
|
|
return JIM_ERR;
|
|
|
|
/* assume ok */
|
|
e = JIM_OK;
|
|
while (len) {
|
|
/* Slurp... in buffer size chunks */
|
|
|
|
count = len; /* in objects.. */
|
|
if (count > (buffersize / width))
|
|
count = (buffersize / width);
|
|
|
|
if (is_phys)
|
|
retval = target_read_phys_memory(target, addr, width, count, buffer);
|
|
else
|
|
retval = target_read_memory(target, addr, width, count, buffer);
|
|
if (retval != ERROR_OK) {
|
|
/* BOO !*/
|
|
LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
|
|
addr,
|
|
width,
|
|
count);
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
|
|
e = JIM_ERR;
|
|
break;
|
|
} else {
|
|
v = 0; /* shut up gcc */
|
|
for (i = 0; i < count ; i++, n++) {
|
|
switch (width) {
|
|
case 4:
|
|
v = target_buffer_get_u32(target, &buffer[i*width]);
|
|
break;
|
|
case 2:
|
|
v = target_buffer_get_u16(target, &buffer[i*width]);
|
|
break;
|
|
case 1:
|
|
v = buffer[i] & 0x0ff;
|
|
break;
|
|
}
|
|
new_int_array_element(interp, varname, n, v);
|
|
}
|
|
len -= count;
|
|
addr += count * width;
|
|
}
|
|
}
|
|
|
|
free(buffer);
|
|
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
|
|
return e;
|
|
}
|
|
|
|
static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
|
|
{
|
|
char *namebuf;
|
|
Jim_Obj *nameObjPtr, *valObjPtr;
|
|
int result;
|
|
long l;
|
|
|
|
namebuf = alloc_printf("%s(%d)", varname, idx);
|
|
if (!namebuf)
|
|
return JIM_ERR;
|
|
|
|
nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
|
|
if (!nameObjPtr) {
|
|
free(namebuf);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
Jim_IncrRefCount(nameObjPtr);
|
|
valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
|
|
Jim_DecrRefCount(interp, nameObjPtr);
|
|
free(namebuf);
|
|
if (valObjPtr == NULL)
|
|
return JIM_ERR;
|
|
|
|
result = Jim_GetLong(interp, valObjPtr, &l);
|
|
/* printf("%s(%d) => 0%08x\n", varname, idx, val); */
|
|
*val = l;
|
|
return result;
|
|
}
|
|
|
|
static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
struct command_context *context;
|
|
struct target *target;
|
|
|
|
context = current_command_context(interp);
|
|
assert(context != NULL);
|
|
|
|
target = get_current_target(context);
|
|
if (target == NULL) {
|
|
LOG_ERROR("array2mem: no current target");
|
|
return JIM_ERR;
|
|
}
|
|
|
|
return target_array2mem(interp, target, argc-1, argv + 1);
|
|
}
|
|
|
|
static int target_array2mem(Jim_Interp *interp, struct target *target,
|
|
int argc, Jim_Obj *const *argv)
|
|
{
|
|
long l;
|
|
uint32_t width;
|
|
int len;
|
|
uint32_t addr;
|
|
uint32_t count;
|
|
uint32_t v;
|
|
const char *varname;
|
|
const char *phys;
|
|
bool is_phys;
|
|
int n, e, retval;
|
|
uint32_t i;
|
|
|
|
/* argv[1] = name of array to get the data
|
|
* argv[2] = desired width
|
|
* argv[3] = memory address
|
|
* argv[4] = count to write
|
|
*/
|
|
if (argc < 4 || argc > 5) {
|
|
Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
|
|
return JIM_ERR;
|
|
}
|
|
varname = Jim_GetString(argv[0], &len);
|
|
/* given "foo" get space for worse case "foo(%d)" .. add 20 */
|
|
|
|
e = Jim_GetLong(interp, argv[1], &l);
|
|
width = l;
|
|
if (e != JIM_OK)
|
|
return e;
|
|
|
|
e = Jim_GetLong(interp, argv[2], &l);
|
|
addr = l;
|
|
if (e != JIM_OK)
|
|
return e;
|
|
e = Jim_GetLong(interp, argv[3], &l);
|
|
len = l;
|
|
if (e != JIM_OK)
|
|
return e;
|
|
is_phys = false;
|
|
if (argc > 4) {
|
|
phys = Jim_GetString(argv[4], &n);
|
|
if (!strncmp(phys, "phys", n))
|
|
is_phys = true;
|
|
else
|
|
return JIM_ERR;
|
|
}
|
|
switch (width) {
|
|
case 8:
|
|
width = 1;
|
|
break;
|
|
case 16:
|
|
width = 2;
|
|
break;
|
|
case 32:
|
|
width = 4;
|
|
break;
|
|
default:
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp),
|
|
"Invalid width param, must be 8/16/32", NULL);
|
|
return JIM_ERR;
|
|
}
|
|
if (len == 0) {
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp),
|
|
"array2mem: zero width read?", NULL);
|
|
return JIM_ERR;
|
|
}
|
|
if ((addr + (len * width)) < addr) {
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp),
|
|
"array2mem: addr + len - wraps to zero?", NULL);
|
|
return JIM_ERR;
|
|
}
|
|
/* absurd transfer size? */
|
|
if (len > 65536) {
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp),
|
|
"array2mem: absurd > 64K item request", NULL);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
if ((width == 1) ||
|
|
((width == 2) && ((addr & 1) == 0)) ||
|
|
((width == 4) && ((addr & 3) == 0))) {
|
|
/* all is well */
|
|
} else {
|
|
char buf[100];
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
|
|
addr,
|
|
width);
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
/* Transfer loop */
|
|
|
|
/* index counter */
|
|
n = 0;
|
|
/* assume ok */
|
|
e = JIM_OK;
|
|
|
|
size_t buffersize = 4096;
|
|
uint8_t *buffer = malloc(buffersize);
|
|
if (buffer == NULL)
|
|
return JIM_ERR;
|
|
|
|
while (len) {
|
|
/* Slurp... in buffer size chunks */
|
|
|
|
count = len; /* in objects.. */
|
|
if (count > (buffersize / width))
|
|
count = (buffersize / width);
|
|
|
|
v = 0; /* shut up gcc */
|
|
for (i = 0; i < count; i++, n++) {
|
|
get_int_array_element(interp, varname, n, &v);
|
|
switch (width) {
|
|
case 4:
|
|
target_buffer_set_u32(target, &buffer[i * width], v);
|
|
break;
|
|
case 2:
|
|
target_buffer_set_u16(target, &buffer[i * width], v);
|
|
break;
|
|
case 1:
|
|
buffer[i] = v & 0x0ff;
|
|
break;
|
|
}
|
|
}
|
|
len -= count;
|
|
|
|
if (is_phys)
|
|
retval = target_write_phys_memory(target, addr, width, count, buffer);
|
|
else
|
|
retval = target_write_memory(target, addr, width, count, buffer);
|
|
if (retval != ERROR_OK) {
|
|
/* BOO !*/
|
|
LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
|
|
addr,
|
|
width,
|
|
count);
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
|
|
e = JIM_ERR;
|
|
break;
|
|
}
|
|
addr += count * width;
|
|
}
|
|
|
|
free(buffer);
|
|
|
|
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
|
|
|
|
return e;
|
|
}
|
|
|
|
/* FIX? should we propagate errors here rather than printing them
|
|
* and continuing?
|
|
*/
|
|
void target_handle_event(struct target *target, enum target_event e)
|
|
{
|
|
struct target_event_action *teap;
|
|
|
|
for (teap = target->event_action; teap != NULL; teap = teap->next) {
|
|
if (teap->event == e) {
|
|
LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
|
|
target->target_number,
|
|
target_name(target),
|
|
target_type_name(target),
|
|
e,
|
|
Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
|
|
Jim_GetString(teap->body, NULL));
|
|
if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
|
|
Jim_MakeErrorMessage(teap->interp);
|
|
command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns true only if the target has a handler for the specified event.
|
|
*/
|
|
bool target_has_event_action(struct target *target, enum target_event event)
|
|
{
|
|
struct target_event_action *teap;
|
|
|
|
for (teap = target->event_action; teap != NULL; teap = teap->next) {
|
|
if (teap->event == event)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
enum target_cfg_param {
|
|
TCFG_TYPE,
|
|
TCFG_EVENT,
|
|
TCFG_WORK_AREA_VIRT,
|
|
TCFG_WORK_AREA_PHYS,
|
|
TCFG_WORK_AREA_SIZE,
|
|
TCFG_WORK_AREA_BACKUP,
|
|
TCFG_ENDIAN,
|
|
TCFG_COREID,
|
|
TCFG_CHAIN_POSITION,
|
|
TCFG_DBGBASE,
|
|
TCFG_RTOS,
|
|
};
|
|
|
|
static Jim_Nvp nvp_config_opts[] = {
|
|
{ .name = "-type", .value = TCFG_TYPE },
|
|
{ .name = "-event", .value = TCFG_EVENT },
|
|
{ .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
|
|
{ .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
|
|
{ .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
|
|
{ .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
|
|
{ .name = "-endian" , .value = TCFG_ENDIAN },
|
|
{ .name = "-coreid", .value = TCFG_COREID },
|
|
{ .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
|
|
{ .name = "-dbgbase", .value = TCFG_DBGBASE },
|
|
{ .name = "-rtos", .value = TCFG_RTOS },
|
|
{ .name = NULL, .value = -1 }
|
|
};
|
|
|
|
static int target_configure(Jim_GetOptInfo *goi, struct target *target)
|
|
{
|
|
Jim_Nvp *n;
|
|
Jim_Obj *o;
|
|
jim_wide w;
|
|
int e;
|
|
|
|
/* parse config or cget options ... */
|
|
while (goi->argc > 0) {
|
|
Jim_SetEmptyResult(goi->interp);
|
|
/* Jim_GetOpt_Debug(goi); */
|
|
|
|
if (target->type->target_jim_configure) {
|
|
/* target defines a configure function */
|
|
/* target gets first dibs on parameters */
|
|
e = (*(target->type->target_jim_configure))(target, goi);
|
|
if (e == JIM_OK) {
|
|
/* more? */
|
|
continue;
|
|
}
|
|
if (e == JIM_ERR) {
|
|
/* An error */
|
|
return e;
|
|
}
|
|
/* otherwise we 'continue' below */
|
|
}
|
|
e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
|
|
if (e != JIM_OK) {
|
|
Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
|
|
return e;
|
|
}
|
|
switch (n->value) {
|
|
case TCFG_TYPE:
|
|
/* not setable */
|
|
if (goi->isconfigure) {
|
|
Jim_SetResultFormatted(goi->interp,
|
|
"not settable: %s", n->name);
|
|
return JIM_ERR;
|
|
} else {
|
|
no_params:
|
|
if (goi->argc != 0) {
|
|
Jim_WrongNumArgs(goi->interp,
|
|
goi->argc, goi->argv,
|
|
"NO PARAMS");
|
|
return JIM_ERR;
|
|
}
|
|
}
|
|
Jim_SetResultString(goi->interp,
|
|
target_type_name(target), -1);
|
|
/* loop for more */
|
|
break;
|
|
case TCFG_EVENT:
|
|
if (goi->argc == 0) {
|
|
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
|
|
return JIM_ERR;
|
|
}
|
|
|
|
e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
|
|
if (e != JIM_OK) {
|
|
Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
|
|
return e;
|
|
}
|
|
|
|
if (goi->isconfigure) {
|
|
if (goi->argc != 1) {
|
|
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
|
|
return JIM_ERR;
|
|
}
|
|
} else {
|
|
if (goi->argc != 0) {
|
|
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
|
|
return JIM_ERR;
|
|
}
|
|
}
|
|
|
|
{
|
|
struct target_event_action *teap;
|
|
|
|
teap = target->event_action;
|
|
/* replace existing? */
|
|
while (teap) {
|
|
if (teap->event == (enum target_event)n->value)
|
|
break;
|
|
teap = teap->next;
|
|
}
|
|
|
|
if (goi->isconfigure) {
|
|
bool replace = true;
|
|
if (teap == NULL) {
|
|
/* create new */
|
|
teap = calloc(1, sizeof(*teap));
|
|
replace = false;
|
|
}
|
|
teap->event = n->value;
|
|
teap->interp = goi->interp;
|
|
Jim_GetOpt_Obj(goi, &o);
|
|
if (teap->body)
|
|
Jim_DecrRefCount(teap->interp, teap->body);
|
|
teap->body = Jim_DuplicateObj(goi->interp, o);
|
|
/*
|
|
* FIXME:
|
|
* Tcl/TK - "tk events" have a nice feature.
|
|
* See the "BIND" command.
|
|
* We should support that here.
|
|
* You can specify %X and %Y in the event code.
|
|
* The idea is: %T - target name.
|
|
* The idea is: %N - target number
|
|
* The idea is: %E - event name.
|
|
*/
|
|
Jim_IncrRefCount(teap->body);
|
|
|
|
if (!replace) {
|
|
/* add to head of event list */
|
|
teap->next = target->event_action;
|
|
target->event_action = teap;
|
|
}
|
|
Jim_SetEmptyResult(goi->interp);
|
|
} else {
|
|
/* get */
|
|
if (teap == NULL)
|
|
Jim_SetEmptyResult(goi->interp);
|
|
else
|
|
Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
|
|
}
|
|
}
|
|
/* loop for more */
|
|
break;
|
|
|
|
case TCFG_WORK_AREA_VIRT:
|
|
if (goi->isconfigure) {
|
|
target_free_all_working_areas(target);
|
|
e = Jim_GetOpt_Wide(goi, &w);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
target->working_area_virt = w;
|
|
target->working_area_virt_spec = true;
|
|
} else {
|
|
if (goi->argc != 0)
|
|
goto no_params;
|
|
}
|
|
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
|
|
/* loop for more */
|
|
break;
|
|
|
|
case TCFG_WORK_AREA_PHYS:
|
|
if (goi->isconfigure) {
|
|
target_free_all_working_areas(target);
|
|
e = Jim_GetOpt_Wide(goi, &w);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
target->working_area_phys = w;
|
|
target->working_area_phys_spec = true;
|
|
} else {
|
|
if (goi->argc != 0)
|
|
goto no_params;
|
|
}
|
|
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
|
|
/* loop for more */
|
|
break;
|
|
|
|
case TCFG_WORK_AREA_SIZE:
|
|
if (goi->isconfigure) {
|
|
target_free_all_working_areas(target);
|
|
e = Jim_GetOpt_Wide(goi, &w);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
target->working_area_size = w;
|
|
} else {
|
|
if (goi->argc != 0)
|
|
goto no_params;
|
|
}
|
|
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
|
|
/* loop for more */
|
|
break;
|
|
|
|
case TCFG_WORK_AREA_BACKUP:
|
|
if (goi->isconfigure) {
|
|
target_free_all_working_areas(target);
|
|
e = Jim_GetOpt_Wide(goi, &w);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
/* make this exactly 1 or 0 */
|
|
target->backup_working_area = (!!w);
|
|
} else {
|
|
if (goi->argc != 0)
|
|
goto no_params;
|
|
}
|
|
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
|
|
/* loop for more e*/
|
|
break;
|
|
|
|
|
|
case TCFG_ENDIAN:
|
|
if (goi->isconfigure) {
|
|
e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
|
|
if (e != JIM_OK) {
|
|
Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
|
|
return e;
|
|
}
|
|
target->endianness = n->value;
|
|
} else {
|
|
if (goi->argc != 0)
|
|
goto no_params;
|
|
}
|
|
n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
|
|
if (n->name == NULL) {
|
|
target->endianness = TARGET_LITTLE_ENDIAN;
|
|
n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
|
|
}
|
|
Jim_SetResultString(goi->interp, n->name, -1);
|
|
/* loop for more */
|
|
break;
|
|
|
|
case TCFG_COREID:
|
|
if (goi->isconfigure) {
|
|
e = Jim_GetOpt_Wide(goi, &w);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
target->coreid = (int32_t)w;
|
|
} else {
|
|
if (goi->argc != 0)
|
|
goto no_params;
|
|
}
|
|
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
|
|
/* loop for more */
|
|
break;
|
|
|
|
case TCFG_CHAIN_POSITION:
|
|
if (goi->isconfigure) {
|
|
Jim_Obj *o_t;
|
|
struct jtag_tap *tap;
|
|
target_free_all_working_areas(target);
|
|
e = Jim_GetOpt_Obj(goi, &o_t);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
tap = jtag_tap_by_jim_obj(goi->interp, o_t);
|
|
if (tap == NULL)
|
|
return JIM_ERR;
|
|
/* make this exactly 1 or 0 */
|
|
target->tap = tap;
|
|
} else {
|
|
if (goi->argc != 0)
|
|
goto no_params;
|
|
}
|
|
Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
|
|
/* loop for more e*/
|
|
break;
|
|
case TCFG_DBGBASE:
|
|
if (goi->isconfigure) {
|
|
e = Jim_GetOpt_Wide(goi, &w);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
target->dbgbase = (uint32_t)w;
|
|
target->dbgbase_set = true;
|
|
} else {
|
|
if (goi->argc != 0)
|
|
goto no_params;
|
|
}
|
|
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
|
|
/* loop for more */
|
|
break;
|
|
|
|
case TCFG_RTOS:
|
|
/* RTOS */
|
|
{
|
|
int result = rtos_create(goi, target);
|
|
if (result != JIM_OK)
|
|
return result;
|
|
}
|
|
/* loop for more */
|
|
break;
|
|
}
|
|
} /* while (goi->argc) */
|
|
|
|
|
|
/* done - we return */
|
|
return JIM_OK;
|
|
}
|
|
|
|
static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
|
|
{
|
|
Jim_GetOptInfo goi;
|
|
|
|
Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
|
|
goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
|
|
int need_args = 1 + goi.isconfigure;
|
|
if (goi.argc < need_args) {
|
|
Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
|
|
goi.isconfigure
|
|
? "missing: -option VALUE ..."
|
|
: "missing: -option ...");
|
|
return JIM_ERR;
|
|
}
|
|
struct target *target = Jim_CmdPrivData(goi.interp);
|
|
return target_configure(&goi, target);
|
|
}
|
|
|
|
static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
const char *cmd_name = Jim_GetString(argv[0], NULL);
|
|
|
|
Jim_GetOptInfo goi;
|
|
Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
|
|
|
|
if (goi.argc < 2 || goi.argc > 4) {
|
|
Jim_SetResultFormatted(goi.interp,
|
|
"usage: %s [phys] <address> <data> [<count>]", cmd_name);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
target_write_fn fn;
|
|
fn = target_write_memory;
|
|
|
|
int e;
|
|
if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
|
|
/* consume it */
|
|
struct Jim_Obj *obj;
|
|
e = Jim_GetOpt_Obj(&goi, &obj);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
|
|
fn = target_write_phys_memory;
|
|
}
|
|
|
|
jim_wide a;
|
|
e = Jim_GetOpt_Wide(&goi, &a);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
|
|
jim_wide b;
|
|
e = Jim_GetOpt_Wide(&goi, &b);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
|
|
jim_wide c = 1;
|
|
if (goi.argc == 1) {
|
|
e = Jim_GetOpt_Wide(&goi, &c);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
}
|
|
|
|
/* all args must be consumed */
|
|
if (goi.argc != 0)
|
|
return JIM_ERR;
|
|
|
|
struct target *target = Jim_CmdPrivData(goi.interp);
|
|
unsigned data_size;
|
|
if (strcasecmp(cmd_name, "mww") == 0)
|
|
data_size = 4;
|
|
else if (strcasecmp(cmd_name, "mwh") == 0)
|
|
data_size = 2;
|
|
else if (strcasecmp(cmd_name, "mwb") == 0)
|
|
data_size = 1;
|
|
else {
|
|
LOG_ERROR("command '%s' unknown: ", cmd_name);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
|
|
}
|
|
|
|
/**
|
|
* @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
|
|
*
|
|
* Usage: mdw [phys] <address> [<count>] - for 32 bit reads
|
|
* mdh [phys] <address> [<count>] - for 16 bit reads
|
|
* mdb [phys] <address> [<count>] - for 8 bit reads
|
|
*
|
|
* Count defaults to 1.
|
|
*
|
|
* Calls target_read_memory or target_read_phys_memory depending on
|
|
* the presence of the "phys" argument
|
|
* Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
|
|
* to int representation in base16.
|
|
* Also outputs read data in a human readable form using command_print
|
|
*
|
|
* @param phys if present target_read_phys_memory will be used instead of target_read_memory
|
|
* @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
|
|
* @param count optional count parameter to read an array of values. If not specified, defaults to 1.
|
|
* @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
|
|
* on success, with [<count>] number of elements.
|
|
*
|
|
* In case of little endian target:
|
|
* Example1: "mdw 0x00000000" returns "10123456"
|
|
* Exmaple2: "mdh 0x00000000 1" returns "3456"
|
|
* Example3: "mdb 0x00000000" returns "56"
|
|
* Example4: "mdh 0x00000000 2" returns "3456 1012"
|
|
* Example5: "mdb 0x00000000 3" returns "56 34 12"
|
|
**/
|
|
static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
const char *cmd_name = Jim_GetString(argv[0], NULL);
|
|
|
|
Jim_GetOptInfo goi;
|
|
Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
|
|
|
|
if ((goi.argc < 1) || (goi.argc > 3)) {
|
|
Jim_SetResultFormatted(goi.interp,
|
|
"usage: %s [phys] <address> [<count>]", cmd_name);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
int (*fn)(struct target *target,
|
|
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
|
|
fn = target_read_memory;
|
|
|
|
int e;
|
|
if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
|
|
/* consume it */
|
|
struct Jim_Obj *obj;
|
|
e = Jim_GetOpt_Obj(&goi, &obj);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
|
|
fn = target_read_phys_memory;
|
|
}
|
|
|
|
/* Read address parameter */
|
|
jim_wide addr;
|
|
e = Jim_GetOpt_Wide(&goi, &addr);
|
|
if (e != JIM_OK)
|
|
return JIM_ERR;
|
|
|
|
/* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
|
|
jim_wide count;
|
|
if (goi.argc == 1) {
|
|
e = Jim_GetOpt_Wide(&goi, &count);
|
|
if (e != JIM_OK)
|
|
return JIM_ERR;
|
|
} else
|
|
count = 1;
|
|
|
|
/* all args must be consumed */
|
|
if (goi.argc != 0)
|
|
return JIM_ERR;
|
|
|
|
jim_wide dwidth = 1; /* shut up gcc */
|
|
if (strcasecmp(cmd_name, "mdw") == 0)
|
|
dwidth = 4;
|
|
else if (strcasecmp(cmd_name, "mdh") == 0)
|
|
dwidth = 2;
|
|
else if (strcasecmp(cmd_name, "mdb") == 0)
|
|
dwidth = 1;
|
|
else {
|
|
LOG_ERROR("command '%s' unknown: ", cmd_name);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
/* convert count to "bytes" */
|
|
int bytes = count * dwidth;
|
|
|
|
struct target *target = Jim_CmdPrivData(goi.interp);
|
|
uint8_t target_buf[32];
|
|
jim_wide x, y, z;
|
|
while (bytes > 0) {
|
|
y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
|
|
|
|
/* Try to read out next block */
|
|
e = fn(target, addr, dwidth, y / dwidth, target_buf);
|
|
|
|
if (e != ERROR_OK) {
|
|
Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
command_print_sameline(NULL, "0x%08x ", (int)(addr));
|
|
switch (dwidth) {
|
|
case 4:
|
|
for (x = 0; x < 16 && x < y; x += 4) {
|
|
z = target_buffer_get_u32(target, &(target_buf[x]));
|
|
command_print_sameline(NULL, "%08x ", (int)(z));
|
|
}
|
|
for (; (x < 16) ; x += 4)
|
|
command_print_sameline(NULL, " ");
|
|
break;
|
|
case 2:
|
|
for (x = 0; x < 16 && x < y; x += 2) {
|
|
z = target_buffer_get_u16(target, &(target_buf[x]));
|
|
command_print_sameline(NULL, "%04x ", (int)(z));
|
|
}
|
|
for (; (x < 16) ; x += 2)
|
|
command_print_sameline(NULL, " ");
|
|
break;
|
|
case 1:
|
|
default:
|
|
for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
|
|
z = target_buffer_get_u8(target, &(target_buf[x]));
|
|
command_print_sameline(NULL, "%02x ", (int)(z));
|
|
}
|
|
for (; (x < 16) ; x += 1)
|
|
command_print_sameline(NULL, " ");
|
|
break;
|
|
}
|
|
/* ascii-ify the bytes */
|
|
for (x = 0 ; x < y ; x++) {
|
|
if ((target_buf[x] >= 0x20) &&
|
|
(target_buf[x] <= 0x7e)) {
|
|
/* good */
|
|
} else {
|
|
/* smack it */
|
|
target_buf[x] = '.';
|
|
}
|
|
}
|
|
/* space pad */
|
|
while (x < 16) {
|
|
target_buf[x] = ' ';
|
|
x++;
|
|
}
|
|
/* terminate */
|
|
target_buf[16] = 0;
|
|
/* print - with a newline */
|
|
command_print_sameline(NULL, "%s\n", target_buf);
|
|
/* NEXT... */
|
|
bytes -= 16;
|
|
addr += 16;
|
|
}
|
|
return JIM_OK;
|
|
}
|
|
|
|
static int jim_target_mem2array(Jim_Interp *interp,
|
|
int argc, Jim_Obj *const *argv)
|
|
{
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
return target_mem2array(interp, target, argc - 1, argv + 1);
|
|
}
|
|
|
|
static int jim_target_array2mem(Jim_Interp *interp,
|
|
int argc, Jim_Obj *const *argv)
|
|
{
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
return target_array2mem(interp, target, argc - 1, argv + 1);
|
|
}
|
|
|
|
static int jim_target_tap_disabled(Jim_Interp *interp)
|
|
{
|
|
Jim_SetResultFormatted(interp, "[TAP is disabled]");
|
|
return JIM_ERR;
|
|
}
|
|
|
|
static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
if (argc != 1) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
|
|
return JIM_ERR;
|
|
}
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
if (!target->tap->enabled)
|
|
return jim_target_tap_disabled(interp);
|
|
|
|
int e = target->type->examine(target);
|
|
if (e != ERROR_OK)
|
|
return JIM_ERR;
|
|
return JIM_OK;
|
|
}
|
|
|
|
static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
if (argc != 1) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
|
|
return JIM_ERR;
|
|
}
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
|
|
if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
|
|
return JIM_ERR;
|
|
|
|
return JIM_OK;
|
|
}
|
|
|
|
static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
if (argc != 1) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
|
|
return JIM_ERR;
|
|
}
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
if (!target->tap->enabled)
|
|
return jim_target_tap_disabled(interp);
|
|
|
|
int e;
|
|
if (!(target_was_examined(target)))
|
|
e = ERROR_TARGET_NOT_EXAMINED;
|
|
else
|
|
e = target->type->poll(target);
|
|
if (e != ERROR_OK)
|
|
return JIM_ERR;
|
|
return JIM_OK;
|
|
}
|
|
|
|
static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
Jim_GetOptInfo goi;
|
|
Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
|
|
|
|
if (goi.argc != 2) {
|
|
Jim_WrongNumArgs(interp, 0, argv,
|
|
"([tT]|[fF]|assert|deassert) BOOL");
|
|
return JIM_ERR;
|
|
}
|
|
|
|
Jim_Nvp *n;
|
|
int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
|
|
if (e != JIM_OK) {
|
|
Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
|
|
return e;
|
|
}
|
|
/* the halt or not param */
|
|
jim_wide a;
|
|
e = Jim_GetOpt_Wide(&goi, &a);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
|
|
struct target *target = Jim_CmdPrivData(goi.interp);
|
|
if (!target->tap->enabled)
|
|
return jim_target_tap_disabled(interp);
|
|
|
|
if (!target->type->assert_reset || !target->type->deassert_reset) {
|
|
Jim_SetResultFormatted(interp,
|
|
"No target-specific reset for %s",
|
|
target_name(target));
|
|
return JIM_ERR;
|
|
}
|
|
/* determine if we should halt or not. */
|
|
target->reset_halt = !!a;
|
|
/* When this happens - all workareas are invalid. */
|
|
target_free_all_working_areas_restore(target, 0);
|
|
|
|
/* do the assert */
|
|
if (n->value == NVP_ASSERT)
|
|
e = target->type->assert_reset(target);
|
|
else
|
|
e = target->type->deassert_reset(target);
|
|
return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
|
|
}
|
|
|
|
static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
if (argc != 1) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
|
|
return JIM_ERR;
|
|
}
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
if (!target->tap->enabled)
|
|
return jim_target_tap_disabled(interp);
|
|
int e = target->type->halt(target);
|
|
return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
|
|
}
|
|
|
|
static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
Jim_GetOptInfo goi;
|
|
Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
|
|
|
|
/* params: <name> statename timeoutmsecs */
|
|
if (goi.argc != 2) {
|
|
const char *cmd_name = Jim_GetString(argv[0], NULL);
|
|
Jim_SetResultFormatted(goi.interp,
|
|
"%s <state_name> <timeout_in_msec>", cmd_name);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
Jim_Nvp *n;
|
|
int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
|
|
if (e != JIM_OK) {
|
|
Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
|
|
return e;
|
|
}
|
|
jim_wide a;
|
|
e = Jim_GetOpt_Wide(&goi, &a);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
if (!target->tap->enabled)
|
|
return jim_target_tap_disabled(interp);
|
|
|
|
e = target_wait_state(target, n->value, a);
|
|
if (e != ERROR_OK) {
|
|
Jim_Obj *eObj = Jim_NewIntObj(interp, e);
|
|
Jim_SetResultFormatted(goi.interp,
|
|
"target: %s wait %s fails (%#s) %s",
|
|
target_name(target), n->name,
|
|
eObj, target_strerror_safe(e));
|
|
Jim_FreeNewObj(interp, eObj);
|
|
return JIM_ERR;
|
|
}
|
|
return JIM_OK;
|
|
}
|
|
/* List for human, Events defined for this target.
|
|
* scripts/programs should use 'name cget -event NAME'
|
|
*/
|
|
static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
struct command_context *cmd_ctx = current_command_context(interp);
|
|
assert(cmd_ctx != NULL);
|
|
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
struct target_event_action *teap = target->event_action;
|
|
command_print(cmd_ctx, "Event actions for target (%d) %s\n",
|
|
target->target_number,
|
|
target_name(target));
|
|
command_print(cmd_ctx, "%-25s | Body", "Event");
|
|
command_print(cmd_ctx, "------------------------- | "
|
|
"----------------------------------------");
|
|
while (teap) {
|
|
Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
|
|
command_print(cmd_ctx, "%-25s | %s",
|
|
opt->name, Jim_GetString(teap->body, NULL));
|
|
teap = teap->next;
|
|
}
|
|
command_print(cmd_ctx, "***END***");
|
|
return JIM_OK;
|
|
}
|
|
static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
if (argc != 1) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
|
|
return JIM_ERR;
|
|
}
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
Jim_SetResultString(interp, target_state_name(target), -1);
|
|
return JIM_OK;
|
|
}
|
|
static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
Jim_GetOptInfo goi;
|
|
Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
|
|
if (goi.argc != 1) {
|
|
const char *cmd_name = Jim_GetString(argv[0], NULL);
|
|
Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
|
|
return JIM_ERR;
|
|
}
|
|
Jim_Nvp *n;
|
|
int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
|
|
if (e != JIM_OK) {
|
|
Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
|
|
return e;
|
|
}
|
|
struct target *target = Jim_CmdPrivData(interp);
|
|
target_handle_event(target, n->value);
|
|
return JIM_OK;
|
|
}
|
|
|
|
static const struct command_registration target_instance_command_handlers[] = {
|
|
{
|
|
.name = "configure",
|
|
.mode = COMMAND_CONFIG,
|
|
.jim_handler = jim_target_configure,
|
|
.help = "configure a new target for use",
|
|
.usage = "[target_attribute ...]",
|
|
},
|
|
{
|
|
.name = "cget",
|
|
.mode = COMMAND_ANY,
|
|
.jim_handler = jim_target_configure,
|
|
.help = "returns the specified target attribute",
|
|
.usage = "target_attribute",
|
|
},
|
|
{
|
|
.name = "mww",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_mw,
|
|
.help = "Write 32-bit word(s) to target memory",
|
|
.usage = "address data [count]",
|
|
},
|
|
{
|
|
.name = "mwh",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_mw,
|
|
.help = "Write 16-bit half-word(s) to target memory",
|
|
.usage = "address data [count]",
|
|
},
|
|
{
|
|
.name = "mwb",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_mw,
|
|
.help = "Write byte(s) to target memory",
|
|
.usage = "address data [count]",
|
|
},
|
|
{
|
|
.name = "mdw",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_md,
|
|
.help = "Display target memory as 32-bit words",
|
|
.usage = "address [count]",
|
|
},
|
|
{
|
|
.name = "mdh",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_md,
|
|
.help = "Display target memory as 16-bit half-words",
|
|
.usage = "address [count]",
|
|
},
|
|
{
|
|
.name = "mdb",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_md,
|
|
.help = "Display target memory as 8-bit bytes",
|
|
.usage = "address [count]",
|
|
},
|
|
{
|
|
.name = "array2mem",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_array2mem,
|
|
.help = "Writes Tcl array of 8/16/32 bit numbers "
|
|
"to target memory",
|
|
.usage = "arrayname bitwidth address count",
|
|
},
|
|
{
|
|
.name = "mem2array",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_mem2array,
|
|
.help = "Loads Tcl array of 8/16/32 bit numbers "
|
|
"from target memory",
|
|
.usage = "arrayname bitwidth address count",
|
|
},
|
|
{
|
|
.name = "eventlist",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_event_list,
|
|
.help = "displays a table of events defined for this target",
|
|
},
|
|
{
|
|
.name = "curstate",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_current_state,
|
|
.help = "displays the current state of this target",
|
|
},
|
|
{
|
|
.name = "arp_examine",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_examine,
|
|
.help = "used internally for reset processing",
|
|
},
|
|
{
|
|
.name = "arp_halt_gdb",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_halt_gdb,
|
|
.help = "used internally for reset processing to halt GDB",
|
|
},
|
|
{
|
|
.name = "arp_poll",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_poll,
|
|
.help = "used internally for reset processing",
|
|
},
|
|
{
|
|
.name = "arp_reset",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_reset,
|
|
.help = "used internally for reset processing",
|
|
},
|
|
{
|
|
.name = "arp_halt",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_halt,
|
|
.help = "used internally for reset processing",
|
|
},
|
|
{
|
|
.name = "arp_waitstate",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_wait_state,
|
|
.help = "used internally for reset processing",
|
|
},
|
|
{
|
|
.name = "invoke-event",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_target_invoke_event,
|
|
.help = "invoke handler for specified event",
|
|
.usage = "event_name",
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
static int target_create(Jim_GetOptInfo *goi)
|
|
{
|
|
Jim_Obj *new_cmd;
|
|
Jim_Cmd *cmd;
|
|
const char *cp;
|
|
int e;
|
|
int x;
|
|
struct target *target;
|
|
struct command_context *cmd_ctx;
|
|
|
|
cmd_ctx = current_command_context(goi->interp);
|
|
assert(cmd_ctx != NULL);
|
|
|
|
if (goi->argc < 3) {
|
|
Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
|
|
return JIM_ERR;
|
|
}
|
|
|
|
/* COMMAND */
|
|
Jim_GetOpt_Obj(goi, &new_cmd);
|
|
/* does this command exist? */
|
|
cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
|
|
if (cmd) {
|
|
cp = Jim_GetString(new_cmd, NULL);
|
|
Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
|
|
return JIM_ERR;
|
|
}
|
|
|
|
/* TYPE */
|
|
e = Jim_GetOpt_String(goi, &cp, NULL);
|
|
if (e != JIM_OK)
|
|
return e;
|
|
struct transport *tr = get_current_transport();
|
|
if (tr->override_target) {
|
|
e = tr->override_target(&cp);
|
|
if (e != ERROR_OK) {
|
|
LOG_ERROR("The selected transport doesn't support this target");
|
|
return JIM_ERR;
|
|
}
|
|
LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
|
|
}
|
|
/* now does target type exist */
|
|
for (x = 0 ; target_types[x] ; x++) {
|
|
if (0 == strcmp(cp, target_types[x]->name)) {
|
|
/* found */
|
|
break;
|
|
}
|
|
|
|
/* check for deprecated name */
|
|
if (target_types[x]->deprecated_name) {
|
|
if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
|
|
/* found */
|
|
LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (target_types[x] == NULL) {
|
|
Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
|
|
for (x = 0 ; target_types[x] ; x++) {
|
|
if (target_types[x + 1]) {
|
|
Jim_AppendStrings(goi->interp,
|
|
Jim_GetResult(goi->interp),
|
|
target_types[x]->name,
|
|
", ", NULL);
|
|
} else {
|
|
Jim_AppendStrings(goi->interp,
|
|
Jim_GetResult(goi->interp),
|
|
" or ",
|
|
target_types[x]->name, NULL);
|
|
}
|
|
}
|
|
return JIM_ERR;
|
|
}
|
|
|
|
/* Create it */
|
|
target = calloc(1, sizeof(struct target));
|
|
/* set target number */
|
|
target->target_number = new_target_number();
|
|
cmd_ctx->current_target = target->target_number;
|
|
|
|
/* allocate memory for each unique target type */
|
|
target->type = calloc(1, sizeof(struct target_type));
|
|
|
|
memcpy(target->type, target_types[x], sizeof(struct target_type));
|
|
|
|
/* will be set by "-endian" */
|
|
target->endianness = TARGET_ENDIAN_UNKNOWN;
|
|
|
|
/* default to first core, override with -coreid */
|
|
target->coreid = 0;
|
|
|
|
target->working_area = 0x0;
|
|
target->working_area_size = 0x0;
|
|
target->working_areas = NULL;
|
|
target->backup_working_area = 0;
|
|
|
|
target->state = TARGET_UNKNOWN;
|
|
target->debug_reason = DBG_REASON_UNDEFINED;
|
|
target->reg_cache = NULL;
|
|
target->breakpoints = NULL;
|
|
target->watchpoints = NULL;
|
|
target->next = NULL;
|
|
target->arch_info = NULL;
|
|
|
|
target->display = 1;
|
|
|
|
target->halt_issued = false;
|
|
|
|
/* initialize trace information */
|
|
target->trace_info = malloc(sizeof(struct trace));
|
|
target->trace_info->num_trace_points = 0;
|
|
target->trace_info->trace_points_size = 0;
|
|
target->trace_info->trace_points = NULL;
|
|
target->trace_info->trace_history_size = 0;
|
|
target->trace_info->trace_history = NULL;
|
|
target->trace_info->trace_history_pos = 0;
|
|
target->trace_info->trace_history_overflowed = 0;
|
|
|
|
target->dbgmsg = NULL;
|
|
target->dbg_msg_enabled = 0;
|
|
|
|
target->endianness = TARGET_ENDIAN_UNKNOWN;
|
|
|
|
target->rtos = NULL;
|
|
target->rtos_auto_detect = false;
|
|
|
|
/* Do the rest as "configure" options */
|
|
goi->isconfigure = 1;
|
|
e = target_configure(goi, target);
|
|
|
|
if (target->tap == NULL) {
|
|
Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
|
|
e = JIM_ERR;
|
|
}
|
|
|
|
if (e != JIM_OK) {
|
|
free(target->type);
|
|
free(target);
|
|
return e;
|
|
}
|
|
|
|
if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
|
|
/* default endian to little if not specified */
|
|
target->endianness = TARGET_LITTLE_ENDIAN;
|
|
}
|
|
|
|
cp = Jim_GetString(new_cmd, NULL);
|
|
target->cmd_name = strdup(cp);
|
|
|
|
/* create the target specific commands */
|
|
if (target->type->commands) {
|
|
e = register_commands(cmd_ctx, NULL, target->type->commands);
|
|
if (ERROR_OK != e)
|
|
LOG_ERROR("unable to register '%s' commands", cp);
|
|
}
|
|
if (target->type->target_create)
|
|
(*(target->type->target_create))(target, goi->interp);
|
|
|
|
/* append to end of list */
|
|
{
|
|
struct target **tpp;
|
|
tpp = &(all_targets);
|
|
while (*tpp)
|
|
tpp = &((*tpp)->next);
|
|
*tpp = target;
|
|
}
|
|
|
|
/* now - create the new target name command */
|
|
const struct command_registration target_subcommands[] = {
|
|
{
|
|
.chain = target_instance_command_handlers,
|
|
},
|
|
{
|
|
.chain = target->type->commands,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
const struct command_registration target_commands[] = {
|
|
{
|
|
.name = cp,
|
|
.mode = COMMAND_ANY,
|
|
.help = "target command group",
|
|
.usage = "",
|
|
.chain = target_subcommands,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
e = register_commands(cmd_ctx, NULL, target_commands);
|
|
if (ERROR_OK != e)
|
|
return JIM_ERR;
|
|
|
|
struct command *c = command_find_in_context(cmd_ctx, cp);
|
|
assert(c);
|
|
command_set_handler_data(c, target);
|
|
|
|
return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
|
|
}
|
|
|
|
static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
if (argc != 1) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
|
|
return JIM_ERR;
|
|
}
|
|
struct command_context *cmd_ctx = current_command_context(interp);
|
|
assert(cmd_ctx != NULL);
|
|
|
|
Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
|
|
return JIM_OK;
|
|
}
|
|
|
|
static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
if (argc != 1) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
|
|
return JIM_ERR;
|
|
}
|
|
Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
|
|
for (unsigned x = 0; NULL != target_types[x]; x++) {
|
|
Jim_ListAppendElement(interp, Jim_GetResult(interp),
|
|
Jim_NewStringObj(interp, target_types[x]->name, -1));
|
|
}
|
|
return JIM_OK;
|
|
}
|
|
|
|
static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
if (argc != 1) {
|
|
Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
|
|
return JIM_ERR;
|
|
}
|
|
Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
|
|
struct target *target = all_targets;
|
|
while (target) {
|
|
Jim_ListAppendElement(interp, Jim_GetResult(interp),
|
|
Jim_NewStringObj(interp, target_name(target), -1));
|
|
target = target->next;
|
|
}
|
|
return JIM_OK;
|
|
}
|
|
|
|
static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
int i;
|
|
const char *targetname;
|
|
int retval, len;
|
|
struct target *target = (struct target *) NULL;
|
|
struct target_list *head, *curr, *new;
|
|
curr = (struct target_list *) NULL;
|
|
head = (struct target_list *) NULL;
|
|
|
|
retval = 0;
|
|
LOG_DEBUG("%d", argc);
|
|
/* argv[1] = target to associate in smp
|
|
* argv[2] = target to assoicate in smp
|
|
* argv[3] ...
|
|
*/
|
|
|
|
for (i = 1; i < argc; i++) {
|
|
|
|
targetname = Jim_GetString(argv[i], &len);
|
|
target = get_target(targetname);
|
|
LOG_DEBUG("%s ", targetname);
|
|
if (target) {
|
|
new = malloc(sizeof(struct target_list));
|
|
new->target = target;
|
|
new->next = (struct target_list *)NULL;
|
|
if (head == (struct target_list *)NULL) {
|
|
head = new;
|
|
curr = head;
|
|
} else {
|
|
curr->next = new;
|
|
curr = new;
|
|
}
|
|
}
|
|
}
|
|
/* now parse the list of cpu and put the target in smp mode*/
|
|
curr = head;
|
|
|
|
while (curr != (struct target_list *)NULL) {
|
|
target = curr->target;
|
|
target->smp = 1;
|
|
target->head = head;
|
|
curr = curr->next;
|
|
}
|
|
|
|
if (target && target->rtos)
|
|
retval = rtos_smp_init(head->target);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
|
|
{
|
|
Jim_GetOptInfo goi;
|
|
Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
|
|
if (goi.argc < 3) {
|
|
Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
|
|
"<name> <target_type> [<target_options> ...]");
|
|
return JIM_ERR;
|
|
}
|
|
return target_create(&goi);
|
|
}
|
|
|
|
static const struct command_registration target_subcommand_handlers[] = {
|
|
{
|
|
.name = "init",
|
|
.mode = COMMAND_CONFIG,
|
|
.handler = handle_target_init_command,
|
|
.help = "initialize targets",
|
|
},
|
|
{
|
|
.name = "create",
|
|
/* REVISIT this should be COMMAND_CONFIG ... */
|
|
.mode = COMMAND_ANY,
|
|
.jim_handler = jim_target_create,
|
|
.usage = "name type '-chain-position' name [options ...]",
|
|
.help = "Creates and selects a new target",
|
|
},
|
|
{
|
|
.name = "current",
|
|
.mode = COMMAND_ANY,
|
|
.jim_handler = jim_target_current,
|
|
.help = "Returns the currently selected target",
|
|
},
|
|
{
|
|
.name = "types",
|
|
.mode = COMMAND_ANY,
|
|
.jim_handler = jim_target_types,
|
|
.help = "Returns the available target types as "
|
|
"a list of strings",
|
|
},
|
|
{
|
|
.name = "names",
|
|
.mode = COMMAND_ANY,
|
|
.jim_handler = jim_target_names,
|
|
.help = "Returns the names of all targets as a list of strings",
|
|
},
|
|
{
|
|
.name = "smp",
|
|
.mode = COMMAND_ANY,
|
|
.jim_handler = jim_target_smp,
|
|
.usage = "targetname1 targetname2 ...",
|
|
.help = "gather several target in a smp list"
|
|
},
|
|
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
struct FastLoad {
|
|
uint32_t address;
|
|
uint8_t *data;
|
|
int length;
|
|
|
|
};
|
|
|
|
static int fastload_num;
|
|
static struct FastLoad *fastload;
|
|
|
|
static void free_fastload(void)
|
|
{
|
|
if (fastload != NULL) {
|
|
int i;
|
|
for (i = 0; i < fastload_num; i++) {
|
|
if (fastload[i].data)
|
|
free(fastload[i].data);
|
|
}
|
|
free(fastload);
|
|
fastload = NULL;
|
|
}
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_fast_load_image_command)
|
|
{
|
|
uint8_t *buffer;
|
|
size_t buf_cnt;
|
|
uint32_t image_size;
|
|
uint32_t min_address = 0;
|
|
uint32_t max_address = 0xffffffff;
|
|
int i;
|
|
|
|
struct image image;
|
|
|
|
int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
|
|
&image, &min_address, &max_address);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
struct duration bench;
|
|
duration_start(&bench);
|
|
|
|
retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
image_size = 0x0;
|
|
retval = ERROR_OK;
|
|
fastload_num = image.num_sections;
|
|
fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
|
|
if (fastload == NULL) {
|
|
command_print(CMD_CTX, "out of memory");
|
|
image_close(&image);
|
|
return ERROR_FAIL;
|
|
}
|
|
memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
|
|
for (i = 0; i < image.num_sections; i++) {
|
|
buffer = malloc(image.sections[i].size);
|
|
if (buffer == NULL) {
|
|
command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
|
|
(int)(image.sections[i].size));
|
|
retval = ERROR_FAIL;
|
|
break;
|
|
}
|
|
|
|
retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
|
|
if (retval != ERROR_OK) {
|
|
free(buffer);
|
|
break;
|
|
}
|
|
|
|
uint32_t offset = 0;
|
|
uint32_t length = buf_cnt;
|
|
|
|
/* DANGER!!! beware of unsigned comparision here!!! */
|
|
|
|
if ((image.sections[i].base_address + buf_cnt >= min_address) &&
|
|
(image.sections[i].base_address < max_address)) {
|
|
if (image.sections[i].base_address < min_address) {
|
|
/* clip addresses below */
|
|
offset += min_address-image.sections[i].base_address;
|
|
length -= offset;
|
|
}
|
|
|
|
if (image.sections[i].base_address + buf_cnt > max_address)
|
|
length -= (image.sections[i].base_address + buf_cnt)-max_address;
|
|
|
|
fastload[i].address = image.sections[i].base_address + offset;
|
|
fastload[i].data = malloc(length);
|
|
if (fastload[i].data == NULL) {
|
|
free(buffer);
|
|
command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
|
|
length);
|
|
retval = ERROR_FAIL;
|
|
break;
|
|
}
|
|
memcpy(fastload[i].data, buffer + offset, length);
|
|
fastload[i].length = length;
|
|
|
|
image_size += length;
|
|
command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
|
|
(unsigned int)length,
|
|
((unsigned int)(image.sections[i].base_address + offset)));
|
|
}
|
|
|
|
free(buffer);
|
|
}
|
|
|
|
if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
|
|
command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
|
|
"in %fs (%0.3f KiB/s)", image_size,
|
|
duration_elapsed(&bench), duration_kbps(&bench, image_size));
|
|
|
|
command_print(CMD_CTX,
|
|
"WARNING: image has not been loaded to target!"
|
|
"You can issue a 'fast_load' to finish loading.");
|
|
}
|
|
|
|
image_close(&image);
|
|
|
|
if (retval != ERROR_OK)
|
|
free_fastload();
|
|
|
|
return retval;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_fast_load_command)
|
|
{
|
|
if (CMD_ARGC > 0)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
if (fastload == NULL) {
|
|
LOG_ERROR("No image in memory");
|
|
return ERROR_FAIL;
|
|
}
|
|
int i;
|
|
int64_t ms = timeval_ms();
|
|
int size = 0;
|
|
int retval = ERROR_OK;
|
|
for (i = 0; i < fastload_num; i++) {
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
|
|
(unsigned int)(fastload[i].address),
|
|
(unsigned int)(fastload[i].length));
|
|
retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
|
|
if (retval != ERROR_OK)
|
|
break;
|
|
size += fastload[i].length;
|
|
}
|
|
if (retval == ERROR_OK) {
|
|
int64_t after = timeval_ms();
|
|
command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static const struct command_registration target_command_handlers[] = {
|
|
{
|
|
.name = "targets",
|
|
.handler = handle_targets_command,
|
|
.mode = COMMAND_ANY,
|
|
.help = "change current default target (one parameter) "
|
|
"or prints table of all targets (no parameters)",
|
|
.usage = "[target]",
|
|
},
|
|
{
|
|
.name = "target",
|
|
.mode = COMMAND_CONFIG,
|
|
.help = "configure target",
|
|
|
|
.chain = target_subcommand_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
int target_register_commands(struct command_context *cmd_ctx)
|
|
{
|
|
return register_commands(cmd_ctx, NULL, target_command_handlers);
|
|
}
|
|
|
|
static bool target_reset_nag = true;
|
|
|
|
bool get_target_reset_nag(void)
|
|
{
|
|
return target_reset_nag;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_target_reset_nag)
|
|
{
|
|
return CALL_COMMAND_HANDLER(handle_command_parse_bool,
|
|
&target_reset_nag, "Nag after each reset about options to improve "
|
|
"performance");
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_ps_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
char *display;
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_INFO("target not halted !!");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
if ((target->rtos) && (target->rtos->type)
|
|
&& (target->rtos->type->ps_command)) {
|
|
display = target->rtos->type->ps_command(target);
|
|
command_print(CMD_CTX, "%s", display);
|
|
free(display);
|
|
return ERROR_OK;
|
|
} else {
|
|
LOG_INFO("failed");
|
|
return ERROR_TARGET_FAILURE;
|
|
}
|
|
}
|
|
|
|
static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
|
|
{
|
|
if (text != NULL)
|
|
command_print_sameline(cmd_ctx, "%s", text);
|
|
for (int i = 0; i < size; i++)
|
|
command_print_sameline(cmd_ctx, " %02x", buf[i]);
|
|
command_print(cmd_ctx, " ");
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_test_mem_access_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
uint32_t test_size;
|
|
int retval = ERROR_OK;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_INFO("target not halted !!");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (CMD_ARGC != 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
|
|
|
|
/* Test reads */
|
|
size_t num_bytes = test_size + 4;
|
|
|
|
struct working_area *wa = NULL;
|
|
retval = target_alloc_working_area(target, num_bytes, &wa);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Not enough working area");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
uint8_t *test_pattern = malloc(num_bytes);
|
|
|
|
for (size_t i = 0; i < num_bytes; i++)
|
|
test_pattern[i] = rand();
|
|
|
|
retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Test pattern write failed");
|
|
goto out;
|
|
}
|
|
|
|
for (int host_offset = 0; host_offset <= 1; host_offset++) {
|
|
for (int size = 1; size <= 4; size *= 2) {
|
|
for (int offset = 0; offset < 4; offset++) {
|
|
uint32_t count = test_size / size;
|
|
size_t host_bufsiz = (count + 2) * size + host_offset;
|
|
uint8_t *read_ref = malloc(host_bufsiz);
|
|
uint8_t *read_buf = malloc(host_bufsiz);
|
|
|
|
for (size_t i = 0; i < host_bufsiz; i++) {
|
|
read_ref[i] = rand();
|
|
read_buf[i] = read_ref[i];
|
|
}
|
|
command_print_sameline(CMD_CTX,
|
|
"Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
|
|
size, offset, host_offset ? "un" : "");
|
|
|
|
struct duration bench;
|
|
duration_start(&bench);
|
|
|
|
retval = target_read_memory(target, wa->address + offset, size, count,
|
|
read_buf + size + host_offset);
|
|
|
|
duration_measure(&bench);
|
|
|
|
if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
|
|
command_print(CMD_CTX, "Unsupported alignment");
|
|
goto next;
|
|
} else if (retval != ERROR_OK) {
|
|
command_print(CMD_CTX, "Memory read failed");
|
|
goto next;
|
|
}
|
|
|
|
/* replay on host */
|
|
memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
|
|
|
|
/* check result */
|
|
int result = memcmp(read_ref, read_buf, host_bufsiz);
|
|
if (result == 0) {
|
|
command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
|
|
duration_elapsed(&bench),
|
|
duration_kbps(&bench, count * size));
|
|
} else {
|
|
command_print(CMD_CTX, "Compare failed");
|
|
binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
|
|
binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
|
|
}
|
|
next:
|
|
free(read_ref);
|
|
free(read_buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
free(test_pattern);
|
|
|
|
if (wa != NULL)
|
|
target_free_working_area(target, wa);
|
|
|
|
/* Test writes */
|
|
num_bytes = test_size + 4 + 4 + 4;
|
|
|
|
retval = target_alloc_working_area(target, num_bytes, &wa);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Not enough working area");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
test_pattern = malloc(num_bytes);
|
|
|
|
for (size_t i = 0; i < num_bytes; i++)
|
|
test_pattern[i] = rand();
|
|
|
|
for (int host_offset = 0; host_offset <= 1; host_offset++) {
|
|
for (int size = 1; size <= 4; size *= 2) {
|
|
for (int offset = 0; offset < 4; offset++) {
|
|
uint32_t count = test_size / size;
|
|
size_t host_bufsiz = count * size + host_offset;
|
|
uint8_t *read_ref = malloc(num_bytes);
|
|
uint8_t *read_buf = malloc(num_bytes);
|
|
uint8_t *write_buf = malloc(host_bufsiz);
|
|
|
|
for (size_t i = 0; i < host_bufsiz; i++)
|
|
write_buf[i] = rand();
|
|
command_print_sameline(CMD_CTX,
|
|
"Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
|
|
size, offset, host_offset ? "un" : "");
|
|
|
|
retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
|
|
if (retval != ERROR_OK) {
|
|
command_print(CMD_CTX, "Test pattern write failed");
|
|
goto nextw;
|
|
}
|
|
|
|
/* replay on host */
|
|
memcpy(read_ref, test_pattern, num_bytes);
|
|
memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
|
|
|
|
struct duration bench;
|
|
duration_start(&bench);
|
|
|
|
retval = target_write_memory(target, wa->address + size + offset, size, count,
|
|
write_buf + host_offset);
|
|
|
|
duration_measure(&bench);
|
|
|
|
if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
|
|
command_print(CMD_CTX, "Unsupported alignment");
|
|
goto nextw;
|
|
} else if (retval != ERROR_OK) {
|
|
command_print(CMD_CTX, "Memory write failed");
|
|
goto nextw;
|
|
}
|
|
|
|
/* read back */
|
|
retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
|
|
if (retval != ERROR_OK) {
|
|
command_print(CMD_CTX, "Test pattern write failed");
|
|
goto nextw;
|
|
}
|
|
|
|
/* check result */
|
|
int result = memcmp(read_ref, read_buf, num_bytes);
|
|
if (result == 0) {
|
|
command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
|
|
duration_elapsed(&bench),
|
|
duration_kbps(&bench, count * size));
|
|
} else {
|
|
command_print(CMD_CTX, "Compare failed");
|
|
binprint(CMD_CTX, "ref:", read_ref, num_bytes);
|
|
binprint(CMD_CTX, "buf:", read_buf, num_bytes);
|
|
}
|
|
nextw:
|
|
free(read_ref);
|
|
free(read_buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
free(test_pattern);
|
|
|
|
if (wa != NULL)
|
|
target_free_working_area(target, wa);
|
|
return retval;
|
|
}
|
|
|
|
static const struct command_registration target_exec_command_handlers[] = {
|
|
{
|
|
.name = "fast_load_image",
|
|
.handler = handle_fast_load_image_command,
|
|
.mode = COMMAND_ANY,
|
|
.help = "Load image into server memory for later use by "
|
|
"fast_load; primarily for profiling",
|
|
.usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
|
|
"[min_address [max_length]]",
|
|
},
|
|
{
|
|
.name = "fast_load",
|
|
.handler = handle_fast_load_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "loads active fast load image to current target "
|
|
"- mainly for profiling purposes",
|
|
.usage = "",
|
|
},
|
|
{
|
|
.name = "profile",
|
|
.handler = handle_profile_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "seconds filename [start end]",
|
|
.help = "profiling samples the CPU PC",
|
|
},
|
|
/** @todo don't register virt2phys() unless target supports it */
|
|
{
|
|
.name = "virt2phys",
|
|
.handler = handle_virt2phys_command,
|
|
.mode = COMMAND_ANY,
|
|
.help = "translate a virtual address into a physical address",
|
|
.usage = "virtual_address",
|
|
},
|
|
{
|
|
.name = "reg",
|
|
.handler = handle_reg_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "display (reread from target with \"force\") or set a register; "
|
|
"with no arguments, displays all registers and their values",
|
|
.usage = "[(register_number|register_name) [(value|'force')]]",
|
|
},
|
|
{
|
|
.name = "poll",
|
|
.handler = handle_poll_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "poll target state; or reconfigure background polling",
|
|
.usage = "['on'|'off']",
|
|
},
|
|
{
|
|
.name = "wait_halt",
|
|
.handler = handle_wait_halt_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "wait up to the specified number of milliseconds "
|
|
"(default 5000) for a previously requested halt",
|
|
.usage = "[milliseconds]",
|
|
},
|
|
{
|
|
.name = "halt",
|
|
.handler = handle_halt_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "request target to halt, then wait up to the specified"
|
|
"number of milliseconds (default 5000) for it to complete",
|
|
.usage = "[milliseconds]",
|
|
},
|
|
{
|
|
.name = "resume",
|
|
.handler = handle_resume_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "resume target execution from current PC or address",
|
|
.usage = "[address]",
|
|
},
|
|
{
|
|
.name = "reset",
|
|
.handler = handle_reset_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "[run|halt|init]",
|
|
.help = "Reset all targets into the specified mode."
|
|
"Default reset mode is run, if not given.",
|
|
},
|
|
{
|
|
.name = "soft_reset_halt",
|
|
.handler = handle_soft_reset_halt_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "",
|
|
.help = "halt the target and do a soft reset",
|
|
},
|
|
{
|
|
.name = "step",
|
|
.handler = handle_step_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "step one instruction from current PC or address",
|
|
.usage = "[address]",
|
|
},
|
|
{
|
|
.name = "mdw",
|
|
.handler = handle_md_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "display memory words",
|
|
.usage = "['phys'] address [count]",
|
|
},
|
|
{
|
|
.name = "mdh",
|
|
.handler = handle_md_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "display memory half-words",
|
|
.usage = "['phys'] address [count]",
|
|
},
|
|
{
|
|
.name = "mdb",
|
|
.handler = handle_md_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "display memory bytes",
|
|
.usage = "['phys'] address [count]",
|
|
},
|
|
{
|
|
.name = "mww",
|
|
.handler = handle_mw_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "write memory word",
|
|
.usage = "['phys'] address value [count]",
|
|
},
|
|
{
|
|
.name = "mwh",
|
|
.handler = handle_mw_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "write memory half-word",
|
|
.usage = "['phys'] address value [count]",
|
|
},
|
|
{
|
|
.name = "mwb",
|
|
.handler = handle_mw_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "write memory byte",
|
|
.usage = "['phys'] address value [count]",
|
|
},
|
|
{
|
|
.name = "bp",
|
|
.handler = handle_bp_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "list or set hardware or software breakpoint",
|
|
.usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
|
|
},
|
|
{
|
|
.name = "rbp",
|
|
.handler = handle_rbp_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "remove breakpoint",
|
|
.usage = "address",
|
|
},
|
|
{
|
|
.name = "wp",
|
|
.handler = handle_wp_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "list (no params) or create watchpoints",
|
|
.usage = "[address length [('r'|'w'|'a') value [mask]]]",
|
|
},
|
|
{
|
|
.name = "rwp",
|
|
.handler = handle_rwp_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "remove watchpoint",
|
|
.usage = "address",
|
|
},
|
|
{
|
|
.name = "load_image",
|
|
.handler = handle_load_image_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
|
|
"[min_address] [max_length]",
|
|
},
|
|
{
|
|
.name = "dump_image",
|
|
.handler = handle_dump_image_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "filename address size",
|
|
},
|
|
{
|
|
.name = "verify_image",
|
|
.handler = handle_verify_image_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "filename [offset [type]]",
|
|
},
|
|
{
|
|
.name = "test_image",
|
|
.handler = handle_test_image_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "filename [offset [type]]",
|
|
},
|
|
{
|
|
.name = "mem2array",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_mem2array,
|
|
.help = "read 8/16/32 bit memory and return as a TCL array "
|
|
"for script processing",
|
|
.usage = "arrayname bitwidth address count",
|
|
},
|
|
{
|
|
.name = "array2mem",
|
|
.mode = COMMAND_EXEC,
|
|
.jim_handler = jim_array2mem,
|
|
.help = "convert a TCL array to memory locations "
|
|
"and write the 8/16/32 bit values",
|
|
.usage = "arrayname bitwidth address count",
|
|
},
|
|
{
|
|
.name = "reset_nag",
|
|
.handler = handle_target_reset_nag,
|
|
.mode = COMMAND_ANY,
|
|
.help = "Nag after each reset about options that could have been "
|
|
"enabled to improve performance. ",
|
|
.usage = "['enable'|'disable']",
|
|
},
|
|
{
|
|
.name = "ps",
|
|
.handler = handle_ps_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "list all tasks ",
|
|
.usage = " ",
|
|
},
|
|
{
|
|
.name = "test_mem_access",
|
|
.handler = handle_test_mem_access_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "Test the target's memory access functions",
|
|
.usage = "size",
|
|
},
|
|
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
static int target_register_user_commands(struct command_context *cmd_ctx)
|
|
{
|
|
int retval = ERROR_OK;
|
|
retval = target_request_register_commands(cmd_ctx);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = trace_register_commands(cmd_ctx);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
|
|
return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
|
|
}
|