riscv-openocd/src/flash/tms470.c

1160 lines
32 KiB
C

/***************************************************************************
* (c) Copyright 2007, 2008 by Christopher Kilgour *
* techie |_at_| whiterocker |_dot_| com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "log.h"
#include "tms470.h"
#include <string.h>
#include <unistd.h>
int tms470_register_commands(struct command_context_s *cmd_ctx);
int tms470_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank);
int tms470_erase(struct flash_bank_s *bank, int first, int last);
int tms470_protect(struct flash_bank_s *bank, int set, int first, int last);
int tms470_write(struct flash_bank_s *bank, u8 * buffer, u32 offset, u32 count);
int tms470_probe(struct flash_bank_s *bank);
int tms470_auto_probe(struct flash_bank_s *bank);
int tms470_erase_check(struct flash_bank_s *bank);
int tms470_protect_check(struct flash_bank_s *bank);
int tms470_info(struct flash_bank_s *bank, char *buf, int buf_size);
flash_driver_t tms470_flash = {
.name = "tms470",
.register_commands = tms470_register_commands,
.flash_bank_command = tms470_flash_bank_command,
.erase = tms470_erase,
.protect = tms470_protect,
.write = tms470_write,
.probe = tms470_probe,
.auto_probe = tms470_auto_probe,
.erase_check = tms470_erase_check,
.protect_check = tms470_protect_check,
.info = tms470_info
};
/* ----------------------------------------------------------------------
Internal Support, Helpers
---------------------------------------------------------------------- */
const flash_sector_t TMS470R1A256_SECTORS[] = {
{0x00000000, 0x00002000, -1, -1},
{0x00002000, 0x00002000, -1, -1},
{0x00004000, 0x00002000, -1, -1},
{0x00006000, 0x00002000, -1, -1},
{0x00008000, 0x00008000, -1, -1},
{0x00010000, 0x00008000, -1, -1},
{0x00018000, 0x00008000, -1, -1},
{0x00020000, 0x00008000, -1, -1},
{0x00028000, 0x00008000, -1, -1},
{0x00030000, 0x00008000, -1, -1},
{0x00038000, 0x00002000, -1, -1},
{0x0003A000, 0x00002000, -1, -1},
{0x0003C000, 0x00002000, -1, -1},
{0x0003E000, 0x00002000, -1, -1},
};
#define TMS470R1A256_NUM_SECTORS \
(sizeof(TMS470R1A256_SECTORS)/sizeof(TMS470R1A256_SECTORS[0]))
const flash_sector_t TMS470R1A288_BANK0_SECTORS[] = {
{0x00000000, 0x00002000, -1, -1},
{0x00002000, 0x00002000, -1, -1},
{0x00004000, 0x00002000, -1, -1},
{0x00006000, 0x00002000, -1, -1},
};
#define TMS470R1A288_BANK0_NUM_SECTORS \
(sizeof(TMS470R1A288_BANK0_SECTORS)/sizeof(TMS470R1A288_BANK0_SECTORS[0]))
const flash_sector_t TMS470R1A288_BANK1_SECTORS[] = {
{0x00040000, 0x00010000, -1, -1},
{0x00050000, 0x00010000, -1, -1},
{0x00060000, 0x00010000, -1, -1},
{0x00070000, 0x00010000, -1, -1},
};
#define TMS470R1A288_BANK1_NUM_SECTORS \
(sizeof(TMS470R1A288_BANK1_SECTORS)/sizeof(TMS470R1A288_BANK1_SECTORS[0]))
/* ---------------------------------------------------------------------- */
int tms470_read_part_info(struct flash_bank_s *bank)
{
tms470_flash_bank_t *tms470_info = bank->driver_priv;
target_t *target = bank->target;
u32 device_ident_reg;
u32 silicon_version;
u32 technology_family;
u32 rom_flash;
u32 part_number;
char *part_name;
if (target->state != TARGET_HALTED)
{
WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
/* read and parse the device identification register */
target_read_u32(target, 0xFFFFFFF0, &device_ident_reg);
INFO("device_ident_reg=0x%08x", device_ident_reg);
if ((device_ident_reg & 7) == 0)
{
WARNING("Cannot identify target as a TMS470 family.");
return ERROR_FLASH_OPERATION_FAILED;
}
silicon_version = (device_ident_reg >> 12) & 0xF;
technology_family = (device_ident_reg >> 11) & 1;
rom_flash = (device_ident_reg >> 10) & 1;
part_number = (device_ident_reg >> 3) & 0x7f;
/*
* If the part number is known, determine if the flash bank is valid
* based on the base address being within the known flash bank
* ranges. Then fixup/complete the remaining fields of the flash
* bank structure.
*/
switch (part_number)
{
case 0x0a:
part_name = "TMS470R1A256";
if (bank->base >= 0x00040000)
{
ERROR("No %s flash bank contains base address 0x%08x.", part_name, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
tms470_info->ordinal = 0;
bank->base = 0x00000000;
bank->size = 256 * 1024;
bank->num_sectors = TMS470R1A256_NUM_SECTORS;
bank->sectors = malloc(sizeof(TMS470R1A256_SECTORS));
if (!bank->sectors)
{
return ERROR_FLASH_OPERATION_FAILED;
}
(void)memcpy(bank->sectors, TMS470R1A256_SECTORS, sizeof(TMS470R1A256_SECTORS));
break;
case 0x2b:
part_name = "TMS470R1A288";
if ((bank->base >= 0x00000000) && (bank->base < 0x00008000))
{
tms470_info->ordinal = 0;
bank->base = 0x00000000;
bank->size = 32 * 1024;
bank->num_sectors = TMS470R1A288_BANK0_NUM_SECTORS;
bank->sectors = malloc(sizeof(TMS470R1A288_BANK0_SECTORS));
if (!bank->sectors)
{
return ERROR_FLASH_OPERATION_FAILED;
}
(void)memcpy(bank->sectors, TMS470R1A288_BANK0_SECTORS, sizeof(TMS470R1A288_BANK0_SECTORS));
}
else if ((bank->base >= 0x00040000) && (bank->base < 0x00080000))
{
tms470_info->ordinal = 1;
bank->base = 0x00040000;
bank->size = 256 * 1024;
bank->num_sectors = TMS470R1A288_BANK1_NUM_SECTORS;
bank->sectors = malloc(sizeof(TMS470R1A288_BANK1_SECTORS));
if (!bank->sectors)
{
return ERROR_FLASH_OPERATION_FAILED;
}
(void)memcpy(bank->sectors, TMS470R1A288_BANK1_SECTORS, sizeof(TMS470R1A288_BANK1_SECTORS));
}
else
{
ERROR("No %s flash bank contains base address 0x%08x.", part_name, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
break;
default:
WARNING("Could not identify part 0x%02x as a member of the TMS470 family.", part_number);
return ERROR_FLASH_OPERATION_FAILED;
}
/* turn off memory selects */
target_write_u32(target, 0xFFFFFFE4, 0x00000000);
target_write_u32(target, 0xFFFFFFE0, 0x00000000);
bank->chip_width = 32;
bank->bus_width = 32;
INFO("Identified %s, ver=%d, core=%s, nvmem=%s.", part_name, silicon_version, (technology_family ? "1.8v" : "3.3v"), (rom_flash ? "rom" : "flash"));
tms470_info->device_ident_reg = device_ident_reg;
tms470_info->silicon_version = silicon_version;
tms470_info->technology_family = technology_family;
tms470_info->rom_flash = rom_flash;
tms470_info->part_number = part_number;
tms470_info->part_name = part_name;
/*
* Disable reset on address access violation.
*/
target_write_u32(target, 0xFFFFFFE0, 0x00004007);
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
u32 keysSet = 0;
u32 flashKeys[4];
int tms470_handle_flash_keyset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc > 4)
{
command_print(cmd_ctx, "tms470 flash_keyset <key0> <key1> <key2> <key3>");
return ERROR_INVALID_ARGUMENTS;
}
else if (argc == 4)
{
int i;
for (i = 0; i < 4; i++)
{
int start = (0 == strncmp(args[i], "0x", 2)) ? 2 : 0;
if (1 != sscanf(&args[i][start], "%x", &flashKeys[i]))
{
command_print(cmd_ctx, "could not process flash key %s", args[i]);
ERROR("could not process flash key %s", args[i]);
return ERROR_INVALID_ARGUMENTS;
}
}
keysSet = 1;
}
else if (argc != 0)
{
command_print(cmd_ctx, "tms470 flash_keyset <key0> <key1> <key2> <key3>");
return ERROR_INVALID_ARGUMENTS;
}
if (keysSet)
{
command_print(cmd_ctx, "using flash keys 0x%08x, 0x%08x, 0x%08x, 0x%08x", flashKeys[0], flashKeys[1], flashKeys[2], flashKeys[3]);
}
else
{
command_print(cmd_ctx, "flash keys not set");
}
return ERROR_OK;
}
const u32 FLASH_KEYS_ALL_ONES[] = { 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF, 0xFFFFFFFF,
};
const u32 FLASH_KEYS_ALL_ZEROS[] = { 0x00000000, 0x00000000,
0x00000000, 0x00000000,
};
const u32 FLASH_KEYS_MIX1[] = { 0xf0fff0ff, 0xf0fff0ff,
0xf0fff0ff, 0xf0fff0ff
};
const u32 FLASH_KEYS_MIX2[] = { 0x0000ffff, 0x0000ffff,
0x0000ffff, 0x0000ffff
};
/* ---------------------------------------------------------------------- */
int oscMHz = 12;
int tms470_handle_osc_megahertz_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc > 1)
{
command_print(cmd_ctx, "tms470 osc_megahertz <MHz>");
return ERROR_INVALID_ARGUMENTS;
}
else if (argc == 1)
{
sscanf(args[0], "%d", &oscMHz);
}
if (oscMHz <= 0)
{
ERROR("osc_megahertz must be positive and non-zero!");
command_print(cmd_ctx, "osc_megahertz must be positive and non-zero!");
oscMHz = 12;
return ERROR_INVALID_ARGUMENTS;
}
command_print(cmd_ctx, "osc_megahertz=%d", oscMHz);
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
int plldis = 0;
int tms470_handle_plldis_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
if (argc > 1)
{
command_print(cmd_ctx, "tms470 plldis <0|1>");
return ERROR_INVALID_ARGUMENTS;
}
else if (argc == 1)
{
sscanf(args[0], "%d", &plldis);
plldis = plldis ? 1 : 0;
}
command_print(cmd_ctx, "plldis=%d", plldis);
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
int tms470_check_flash_unlocked(target_t * target)
{
u32 fmbbusy;
target_read_u32(target, 0xFFE89C08, &fmbbusy);
INFO("tms470 fmbbusy=0x%08x -> %s", fmbbusy, fmbbusy & 0x8000 ? "unlocked" : "LOCKED");
return fmbbusy & 0x8000 ? ERROR_OK : ERROR_FLASH_OPERATION_FAILED;
}
/* ---------------------------------------------------------------------- */
int tms470_try_flash_keys(target_t * target, const u32 * key_set)
{
u32 glbctrl, fmmstat;
int retval = ERROR_FLASH_OPERATION_FAILED;
/* set GLBCTRL.4 */
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10);
/* only perform the key match when 3VSTAT is clear */
target_read_u32(target, 0xFFE8BC0C, &fmmstat);
if (!(fmmstat & 0x08))
{
unsigned i;
u32 fmbptr, fmbac2, orig_fmregopt;
target_write_u32(target, 0xFFE8BC04, fmmstat & ~0x07);
/* wait for pump ready */
do
{
target_read_u32(target, 0xFFE8A814, &fmbptr);
usleep(1000);
}
while (!(fmbptr & 0x0200));
/* force max wait states */
target_read_u32(target, 0xFFE88004, &fmbac2);
target_write_u32(target, 0xFFE88004, fmbac2 | 0xff);
/* save current access mode, force normal read mode */
target_read_u32(target, 0xFFE89C00, &orig_fmregopt);
target_write_u32(target, 0xFFE89C00, 0x00);
for (i = 0; i < 4; i++)
{
u32 tmp;
/* There is no point displaying the value of tmp, it is
* filtered by the chip. The purpose of this read is to
* prime the unlocking logic rather than read out the value.
*/
target_read_u32(target, 0x00001FF0 + 4 * i, &tmp);
INFO("tms470 writing fmpkey=0x%08x", key_set[i]);
target_write_u32(target, 0xFFE89C0C, key_set[i]);
}
if (ERROR_OK == tms470_check_flash_unlocked(target))
{
/*
* There seems to be a side-effect of reading the FMPKEY
* register in that it re-enables the protection. So we
* re-enable it.
*/
for (i = 0; i < 4; i++)
{
u32 tmp;
target_read_u32(target, 0x00001FF0 + 4 * i, &tmp);
target_write_u32(target, 0xFFE89C0C, key_set[i]);
}
retval = ERROR_OK;
}
/* restore settings */
target_write_u32(target, 0xFFE89C00, orig_fmregopt);
target_write_u32(target, 0xFFE88004, fmbac2);
}
/* clear config bit */
target_write_u32(target, 0xFFFFFFDC, glbctrl);
return retval;
}
/* ---------------------------------------------------------------------- */
int tms470_unlock_flash(struct flash_bank_s *bank)
{
target_t *target = bank->target;
const u32 *p_key_sets[5];
unsigned i, key_set_count;
if (keysSet)
{
p_key_sets[0] = flashKeys;
p_key_sets[1] = FLASH_KEYS_ALL_ONES;
p_key_sets[2] = FLASH_KEYS_ALL_ZEROS;
p_key_sets[3] = FLASH_KEYS_MIX1;
p_key_sets[4] = FLASH_KEYS_MIX2;
}
else
{
key_set_count = 4;
p_key_sets[0] = FLASH_KEYS_ALL_ONES;
p_key_sets[1] = FLASH_KEYS_ALL_ZEROS;
p_key_sets[2] = FLASH_KEYS_MIX1;
p_key_sets[3] = FLASH_KEYS_MIX2;
}
for (i = 0; i < key_set_count; i++)
{
if (tms470_try_flash_keys(target, p_key_sets[i]) == ERROR_OK)
{
INFO("tms470 flash is unlocked");
return ERROR_OK;
}
}
WARNING("tms470 could not unlock flash memory protection level 2");
return ERROR_FLASH_OPERATION_FAILED;
}
/* ---------------------------------------------------------------------- */
int tms470_flash_initialize_internal_state_machine(struct flash_bank_s *bank)
{
u32 fmmac2, fmmac1, fmmaxep, k, delay, glbctrl, sysclk;
target_t *target = bank->target;
tms470_flash_bank_t *tms470_info = bank->driver_priv;
int result = ERROR_OK;
/*
* Select the desired bank to be programmed by writing BANK[2:0] of
* FMMAC2.
*/
target_read_u32(target, 0xFFE8BC04, &fmmac2);
fmmac2 &= ~0x0007;
fmmac2 |= (tms470_info->ordinal & 7);
target_write_u32(target, 0xFFE8BC04, fmmac2);
DEBUG("set fmmac2=0x%04x", fmmac2);
/*
* Disable level 1 sector protection by setting bit 15 of FMMAC1.
*/
target_read_u32(target, 0xFFE8BC00, &fmmac1);
fmmac1 |= 0x8000;
target_write_u32(target, 0xFFE8BC00, fmmac1);
DEBUG("set fmmac1=0x%04x", fmmac1);
/*
* FMTCREG=0x2fc0;
*/
target_write_u32(target, 0xFFE8BC10, 0x2fc0);
DEBUG("set fmtcreg=0x2fc0");
/*
* MAXPP=50
*/
target_write_u32(target, 0xFFE8A07C, 50);
DEBUG("set fmmaxpp=50");
/*
* MAXCP=0xf000+2000
*/
target_write_u32(target, 0xFFE8A084, 0xf000 + 2000);
DEBUG("set fmmaxcp=0x%04x", 0xf000 + 2000);
/*
* configure VHV
*/
target_read_u32(target, 0xFFE8A080, &fmmaxep);
if (fmmaxep == 0xf000)
{
fmmaxep = 0xf000 + 4095;
target_write_u32(target, 0xFFE8A80C, 0x9964);
DEBUG("set fmptr3=0x9964");
}
else
{
fmmaxep = 0xa000 + 4095;
target_write_u32(target, 0xFFE8A80C, 0x9b64);
DEBUG("set fmptr3=0x9b64");
}
target_write_u32(target, 0xFFE8A080, fmmaxep);
DEBUG("set fmmaxep=0x%04x", fmmaxep);
/*
* FMPTR4=0xa000
*/
target_write_u32(target, 0xFFE8A810, 0xa000);
DEBUG("set fmptr4=0xa000");
/*
* FMPESETUP, delay parameter selected based on clock frequency.
*
* According to the TI App Note SPNU257 and flashing code, delay is
* int((sysclk(MHz) + 1) / 2), with a minimum of 5. The system
* clock is usually derived from the ZPLL module, and selected by
* the plldis global.
*/
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
sysclk = (plldis ? 1 : (glbctrl & 0x08) ? 4 : 8) * oscMHz / (1 + (glbctrl & 7));
delay = (sysclk > 10) ? (sysclk + 1) / 2 : 5;
target_write_u32(target, 0xFFE8A018, (delay << 4) | (delay << 8));
DEBUG("set fmpsetup=0x%04x", (delay << 4) | (delay << 8));
/*
* FMPVEVACCESS, based on delay.
*/
k = delay | (delay << 8);
target_write_u32(target, 0xFFE8A05C, k);
DEBUG("set fmpvevaccess=0x%04x", k);
/*
* FMPCHOLD, FMPVEVHOLD, FMPVEVSETUP, based on delay.
*/
k <<= 1;
target_write_u32(target, 0xFFE8A034, k);
DEBUG("set fmpchold=0x%04x", k);
target_write_u32(target, 0xFFE8A040, k);
DEBUG("set fmpvevhold=0x%04x", k);
target_write_u32(target, 0xFFE8A024, k);
DEBUG("set fmpvevsetup=0x%04x", k);
/*
* FMCVACCESS, based on delay.
*/
k = delay * 16;
target_write_u32(target, 0xFFE8A060, k);
DEBUG("set fmcvaccess=0x%04x", k);
/*
* FMCSETUP, based on delay.
*/
k = 0x3000 | delay * 20;
target_write_u32(target, 0xFFE8A020, k);
DEBUG("set fmcsetup=0x%04x", k);
/*
* FMEHOLD, based on delay.
*/
k = (delay * 20) << 2;
target_write_u32(target, 0xFFE8A038, k);
DEBUG("set fmehold=0x%04x", k);
/*
* PWIDTH, CWIDTH, EWIDTH, based on delay.
*/
target_write_u32(target, 0xFFE8A050, delay * 8);
DEBUG("set fmpwidth=0x%04x", delay * 8);
target_write_u32(target, 0xFFE8A058, delay * 1000);
DEBUG("set fmcwidth=0x%04x", delay * 1000);
target_write_u32(target, 0xFFE8A054, delay * 5400);
DEBUG("set fmewidth=0x%04x", delay * 5400);
return result;
}
/* ---------------------------------------------------------------------- */
int tms470_flash_status(struct flash_bank_s *bank)
{
target_t *target = bank->target;
int result = ERROR_OK;
u32 fmmstat;
target_read_u32(target, 0xFFE8BC0C, &fmmstat);
DEBUG("set fmmstat=0x%04x", fmmstat);
if (fmmstat & 0x0080)
{
WARNING("tms470 flash command: erase still active after busy clear.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0040)
{
WARNING("tms470 flash command: program still active after busy clear.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0020)
{
WARNING("tms470 flash command: invalid data command.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0010)
{
WARNING("tms470 flash command: program, erase or validate sector failed.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0008)
{
WARNING("tms470 flash command: voltage instability detected.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0006)
{
WARNING("tms470 flash command: command suspend detected.");
result = ERROR_FLASH_OPERATION_FAILED;
}
if (fmmstat & 0x0001)
{
WARNING("tms470 flash command: sector was locked.");
result = ERROR_FLASH_OPERATION_FAILED;
}
return result;
}
/* ---------------------------------------------------------------------- */
int tms470_erase_sector(struct flash_bank_s *bank, int sector)
{
u32 glbctrl, orig_fmregopt, fmbsea, fmbseb, fmmstat;
target_t *target = bank->target;
u32 flashAddr = bank->base + bank->sectors[sector].offset;
int result = ERROR_OK;
/*
* Set the bit GLBCTRL4 of the GLBCTRL register (in the System
* module) to enable writing to the flash registers }.
*/
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10);
DEBUG("set glbctrl=0x%08x", glbctrl | 0x10);
/* Force normal read mode. */
target_read_u32(target, 0xFFE89C00, &orig_fmregopt);
target_write_u32(target, 0xFFE89C00, 0);
DEBUG("set fmregopt=0x%08x", 0);
(void)tms470_flash_initialize_internal_state_machine(bank);
/*
* Select one or more bits in FMBSEA or FMBSEB to disable Level 1
* protection for the particular sector to be erased/written.
*/
if (sector < 16)
{
target_read_u32(target, 0xFFE88008, &fmbsea);
target_write_u32(target, 0xFFE88008, fmbsea | (1 << sector));
DEBUG("set fmbsea=0x%04x", fmbsea | (1 << sector));
}
else
{
target_read_u32(target, 0xFFE8800C, &fmbseb);
target_write_u32(target, 0xFFE8800C, fmbseb | (1 << (sector - 16)));
DEBUG("set fmbseb=0x%04x", fmbseb | (1 << (sector - 16)));
}
bank->sectors[sector].is_protected = 0;
/*
* clear status regiser, sent erase command, kickoff erase
*/
target_write_u16(target, flashAddr, 0x0040);
DEBUG("write *(u16 *)0x%08x=0x0040", flashAddr);
target_write_u16(target, flashAddr, 0x0020);
DEBUG("write *(u16 *)0x%08x=0x0020", flashAddr);
target_write_u16(target, flashAddr, 0xffff);
DEBUG("write *(u16 *)0x%08x=0xffff", flashAddr);
/*
* Monitor FMMSTAT, busy until clear, then check and other flags for
* ultimate result of the operation.
*/
do
{
target_read_u32(target, 0xFFE8BC0C, &fmmstat);
if (fmmstat & 0x0100)
{
usleep(1000);
}
}
while (fmmstat & 0x0100);
result = tms470_flash_status(bank);
if (sector < 16)
{
target_write_u32(target, 0xFFE88008, fmbsea);
DEBUG("set fmbsea=0x%04x", fmbsea);
bank->sectors[sector].is_protected = fmbsea & (1 << sector) ? 0 : 1;
}
else
{
target_write_u32(target, 0xFFE8800C, fmbseb);
DEBUG("set fmbseb=0x%04x", fmbseb);
bank->sectors[sector].is_protected = fmbseb & (1 << (sector - 16)) ? 0 : 1;
}
target_write_u32(target, 0xFFE89C00, orig_fmregopt);
DEBUG("set fmregopt=0x%08x", orig_fmregopt);
target_write_u32(target, 0xFFFFFFDC, glbctrl);
DEBUG("set glbctrl=0x%08x", glbctrl);
if (result == ERROR_OK)
{
bank->sectors[sector].is_erased = 1;
}
return result;
}
/* ----------------------------------------------------------------------
Implementation of Flash Driver Interfaces
---------------------------------------------------------------------- */
int tms470_register_commands(struct command_context_s *cmd_ctx)
{
command_t *tms470_cmd = register_command(cmd_ctx, NULL, "tms470", NULL, COMMAND_ANY, "applies to TI tms470 family");
register_command(cmd_ctx, tms470_cmd, "flash_keyset", tms470_handle_flash_keyset_command, COMMAND_ANY, "tms470 flash_keyset <key0> <key1> <key2> <key3>");
register_command(cmd_ctx, tms470_cmd, "osc_megahertz", tms470_handle_osc_megahertz_command, COMMAND_ANY, "tms470 osc_megahertz <MHz>");
register_command(cmd_ctx, tms470_cmd, "plldis", tms470_handle_plldis_command, COMMAND_ANY, "tms470 plldis <0/1>");
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
int tms470_erase(struct flash_bank_s *bank, int first, int last)
{
tms470_flash_bank_t *tms470_info = bank->driver_priv;
int sector, result = ERROR_OK;
if (!tms470_info->device_ident_reg)
{
tms470_read_part_info(bank);
}
if ((first < 0) || (first >= bank->num_sectors) || (last < 0) || (last >= bank->num_sectors) || (first > last))
{
ERROR("Sector range %d to %d invalid.", first, last);
return ERROR_FLASH_SECTOR_INVALID;
}
result = tms470_unlock_flash(bank);
if (result != ERROR_OK)
{
return result;
}
for (sector = first; sector <= last; sector++)
{
INFO("Erasing tms470 bank %d sector %d...", tms470_info->ordinal, sector);
result = tms470_erase_sector(bank, sector);
if (result != ERROR_OK)
{
ERROR("tms470 could not erase flash sector.");
break;
}
else
{
INFO("sector erased successfully.");
}
}
return result;
}
/* ---------------------------------------------------------------------- */
int tms470_protect(struct flash_bank_s *bank, int set, int first, int last)
{
tms470_flash_bank_t *tms470_info = bank->driver_priv;
target_t *target = bank->target;
u32 fmmac2, fmbsea, fmbseb;
int sector;
if (!tms470_info->device_ident_reg)
{
tms470_read_part_info(bank);
}
if ((first < 0) || (first >= bank->num_sectors) || (last < 0) || (last >= bank->num_sectors) || (first > last))
{
ERROR("Sector range %d to %d invalid.", first, last);
return ERROR_FLASH_SECTOR_INVALID;
}
/* enable the appropriate bank */
target_read_u32(target, 0xFFE8BC04, &fmmac2);
target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal);
/* get the original sector proection flags for this bank */
target_read_u32(target, 0xFFE88008, &fmbsea);
target_read_u32(target, 0xFFE8800C, &fmbseb);
for (sector = 0; sector < bank->num_sectors; sector++)
{
if (sector < 16)
{
fmbsea = set ? fmbsea & ~(1 << sector) : fmbsea | (1 << sector);
bank->sectors[sector].is_protected = set ? 1 : 0;
}
else
{
fmbseb = set ? fmbseb & ~(1 << (sector - 16)) : fmbseb | (1 << (sector - 16));
bank->sectors[sector].is_protected = set ? 1 : 0;
}
}
/* update the protection bits */
target_write_u32(target, 0xFFE88008, fmbsea);
target_write_u32(target, 0xFFE8800C, fmbseb);
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
int tms470_write(struct flash_bank_s *bank, u8 * buffer, u32 offset, u32 count)
{
target_t *target = bank->target;
tms470_flash_bank_t *tms470_info = bank->driver_priv;
u32 glbctrl, fmbac2, orig_fmregopt, fmbsea, fmbseb, fmmaxpp, fmmstat;
int i, result = ERROR_OK;
if (!tms470_info->device_ident_reg)
{
tms470_read_part_info(bank);
}
INFO("Writing %d bytes starting at 0x%08x", count, bank->base + offset);
/* set GLBCTRL.4 */
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10);
(void)tms470_flash_initialize_internal_state_machine(bank);
/* force max wait states */
target_read_u32(target, 0xFFE88004, &fmbac2);
target_write_u32(target, 0xFFE88004, fmbac2 | 0xff);
/* save current access mode, force normal read mode */
target_read_u32(target, 0xFFE89C00, &orig_fmregopt);
target_write_u32(target, 0xFFE89C00, 0x00);
/*
* Disable Level 1 protection for all sectors to be erased/written.
*/
target_read_u32(target, 0xFFE88008, &fmbsea);
target_write_u32(target, 0xFFE88008, 0xffff);
target_read_u32(target, 0xFFE8800C, &fmbseb);
target_write_u32(target, 0xFFE8800C, 0xffff);
/* read MAXPP */
target_read_u32(target, 0xFFE8A07C, &fmmaxpp);
for (i = 0; i < count; i += 2)
{
u32 addr = bank->base + offset + i;
u16 word = (((u16) buffer[i]) << 8) | (u16) buffer[i + 1];
if (word != 0xffff)
{
INFO("writing 0x%04x at 0x%08x", word, addr);
/* clear status register */
target_write_u16(target, addr, 0x0040);
/* program flash command */
target_write_u16(target, addr, 0x0010);
/* burn the 16-bit word (big-endian) */
target_write_u16(target, addr, word);
/*
* Monitor FMMSTAT, busy until clear, then check and other flags
* for ultimate result of the operation.
*/
do
{
target_read_u32(target, 0xFFE8BC0C, &fmmstat);
if (fmmstat & 0x0100)
{
usleep(1000);
}
}
while (fmmstat & 0x0100);
if (fmmstat & 0x3ff)
{
ERROR("fmstat=0x%04x", fmmstat);
ERROR("Could not program word 0x%04x at address 0x%08x.", word, addr);
result = ERROR_FLASH_OPERATION_FAILED;
break;
}
}
else
{
INFO("skipping 0xffff at 0x%08x", addr);
}
}
/* restore */
target_write_u32(target, 0xFFE88008, fmbsea);
target_write_u32(target, 0xFFE8800C, fmbseb);
target_write_u32(target, 0xFFE88004, fmbac2);
target_write_u32(target, 0xFFE89C00, orig_fmregopt);
target_write_u32(target, 0xFFFFFFDC, glbctrl);
return result;
}
/* ---------------------------------------------------------------------- */
int tms470_probe(struct flash_bank_s *bank)
{
tms470_flash_bank_t *tms470_info = bank->driver_priv;
tms470_info->probed = 0;
if (!tms470_info->device_ident_reg)
{
tms470_read_part_info(bank);
}
tms470_info->probed = 1;
return ERROR_OK;
}
int tms470_auto_probe(struct flash_bank_s *bank)
{
tms470_flash_bank_t *tms470_info = bank->driver_priv;
if (tms470_info->probed)
return ERROR_OK;
return tms470_probe(bank);
}
/* ---------------------------------------------------------------------- */
int tms470_erase_check(struct flash_bank_s *bank)
{
target_t *target = bank->target;
tms470_flash_bank_t *tms470_info = bank->driver_priv;
int sector, result = ERROR_OK;
u32 fmmac2, fmbac2, glbctrl, orig_fmregopt;
static u8 buffer[64 * 1024];
if (!tms470_info->device_ident_reg)
{
tms470_read_part_info(bank);
}
/* set GLBCTRL.4 */
target_read_u32(target, 0xFFFFFFDC, &glbctrl);
target_write_u32(target, 0xFFFFFFDC, glbctrl | 0x10);
/* save current access mode, force normal read mode */
target_read_u32(target, 0xFFE89C00, &orig_fmregopt);
target_write_u32(target, 0xFFE89C00, 0x00);
/* enable the appropriate bank */
target_read_u32(target, 0xFFE8BC04, &fmmac2);
target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal);
/* TCR=0 */
target_write_u32(target, 0xFFE8BC10, 0x2fc0);
/* clear TEZ in fmbrdy */
target_write_u32(target, 0xFFE88010, 0x0b);
/* save current wait states, force max */
target_read_u32(target, 0xFFE88004, &fmbac2);
target_write_u32(target, 0xFFE88004, fmbac2 | 0xff);
/*
* The TI primitives inspect the flash memory by reading one 32-bit
* word at a time. Here we read an entire sector and inspect it in
* an attempt to reduce the JTAG overhead.
*/
for (sector = 0; sector < bank->num_sectors; sector++)
{
if (bank->sectors[sector].is_erased != 1)
{
u32 i, addr = bank->base + bank->sectors[sector].offset;
INFO("checking flash bank %d sector %d", tms470_info->ordinal, sector);
target_read_buffer(target, addr, bank->sectors[sector].size, buffer);
bank->sectors[sector].is_erased = 1;
for (i = 0; i < bank->sectors[sector].size; i++)
{
if (buffer[i] != 0xff)
{
WARNING("tms470 bank %d, sector %d, not erased.", tms470_info->ordinal, sector);
WARNING("at location 0x%08x: flash data is 0x%02x.", addr + i, buffer[i]);
bank->sectors[sector].is_erased = 0;
break;
}
}
}
if (bank->sectors[sector].is_erased != 1)
{
result = ERROR_FLASH_SECTOR_NOT_ERASED;
break;
}
else
{
INFO("sector erased");
}
}
/* reset TEZ, wait states, read mode, GLBCTRL.4 */
target_write_u32(target, 0xFFE88010, 0x0f);
target_write_u32(target, 0xFFE88004, fmbac2);
target_write_u32(target, 0xFFE89C00, orig_fmregopt);
target_write_u32(target, 0xFFFFFFDC, glbctrl);
return result;
}
/* ---------------------------------------------------------------------- */
int tms470_protect_check(struct flash_bank_s *bank)
{
target_t *target = bank->target;
tms470_flash_bank_t *tms470_info = bank->driver_priv;
int sector, result = ERROR_OK;
u32 fmmac2, fmbsea, fmbseb;
if (!tms470_info->device_ident_reg)
{
tms470_read_part_info(bank);
}
/* enable the appropriate bank */
target_read_u32(target, 0xFFE8BC04, &fmmac2);
target_write_u32(target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal);
target_read_u32(target, 0xFFE88008, &fmbsea);
target_read_u32(target, 0xFFE8800C, &fmbseb);
for (sector = 0; sector < bank->num_sectors; sector++)
{
int protected;
if (sector < 16)
{
protected = fmbsea & (1 << sector) ? 0 : 1;
bank->sectors[sector].is_protected = protected;
}
else
{
protected = fmbseb & (1 << (sector - 16)) ? 0 : 1;
bank->sectors[sector].is_protected = protected;
}
DEBUG("bank %d sector %d is %s", tms470_info->ordinal, sector, protected ? "protected" : "not protected");
}
return result;
}
/* ---------------------------------------------------------------------- */
int tms470_info(struct flash_bank_s *bank, char *buf, int buf_size)
{
int used = 0;
tms470_flash_bank_t *tms470_info = bank->driver_priv;
if (!tms470_info->device_ident_reg)
{
tms470_read_part_info(bank);
}
if (!tms470_info->device_ident_reg)
{
(void)snprintf(buf, buf_size, "Cannot identify target as a TMS470\n");
return ERROR_FLASH_OPERATION_FAILED;
}
used += snprintf(buf, buf_size, "\ntms470 information: Chip is %s\n", tms470_info->part_name);
buf += used;
buf_size -= used;
used += snprintf(buf, buf_size, "Flash protection level 2 is %s\n", tms470_check_flash_unlocked(bank->target) == ERROR_OK ? "disabled" : "enabled");
buf += used;
buf_size -= used;
return ERROR_OK;
}
/* ---------------------------------------------------------------------- */
/*
* flash bank tms470 <base> <size> <chip_width> <bus_width> <target>
* [options...]
*/
int tms470_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank)
{
bank->driver_priv = malloc(sizeof(tms470_flash_bank_t));
if (!bank->driver_priv)
{
return ERROR_FLASH_OPERATION_FAILED;
}
(void)memset(bank->driver_priv, 0, sizeof(tms470_flash_bank_t));
return ERROR_OK;
}