riscv-openocd/src/target/riscv/riscv-013.c

5531 lines
178 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Support for RISC-V, debug version 0.13, which is currently (2/4/17) the
* latest draft.
*/
#include <assert.h>
#include <stdlib.h>
#include <time.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target/target.h"
#include "target/algorithm.h"
#include "target/target_type.h"
#include <target/smp.h>
#include <helper/log.h>
#include "jtag/jtag.h"
#include "target/register.h"
#include "target/breakpoints.h"
#include "helper/time_support.h"
#include "helper/list.h"
#include "riscv.h"
#include "debug_defines.h"
#include "rtos/rtos.h"
#include "program.h"
#include "asm.h"
#include "batch.h"
#include "debug_reg_printer.h"
#include "field_helpers.h"
static int riscv013_on_step_or_resume(struct target *target, bool skip, bool step);
static int riscv013_step_or_resume_current_hart(struct target *target,
bool step);
static int riscv013_clear_abstract_error(struct target *target);
/* Implementations of the functions in struct riscv_info. */
static int riscv013_get_register(struct target *target,
riscv_reg_t *value, enum gdb_regno rid);
static int riscv013_set_register(struct target *target, enum gdb_regno regid,
riscv_reg_t value);
static int dm013_select_hart(struct target *target, int hart_index);
static int riscv013_halt_prep(struct target *target);
static int riscv013_halt_go(struct target *target);
static int riscv013_halt_target(struct target *target);
static int riscv013_resume_go(struct target *target);
static int riscv013_step_current_hart(struct target *target);
static int riscv013_on_step(struct target *target);
static int riscv013_resume_prep(struct target *target);
static enum riscv_halt_reason riscv013_halt_reason(struct target *target);
static int riscv013_write_progbuf(struct target *target, unsigned int index,
riscv_insn_t d);
static riscv_insn_t riscv013_read_progbuf(struct target *target, unsigned int
index);
static int riscv013_invalidate_cached_progbuf(struct target *target);
static int riscv013_execute_progbuf(struct target *target, uint32_t *cmderr);
static void riscv013_fill_dmi_write(struct target *target, char *buf, uint64_t a, uint32_t d);
static void riscv013_fill_dmi_read(struct target *target, char *buf, uint64_t a);
static void riscv013_fill_dmi_nop(struct target *target, char *buf);
static int riscv013_get_dmi_scan_length(struct target *target);
static void riscv013_fill_dm_write(struct target *target, char *buf, uint64_t a, uint32_t d);
static void riscv013_fill_dm_read(struct target *target, char *buf, uint64_t a);
static void riscv013_fill_dm_nop(struct target *target, char *buf);
static unsigned int register_size(struct target *target, enum gdb_regno number);
static int register_read_direct(struct target *target, riscv_reg_t *value,
enum gdb_regno number);
static int register_write_direct(struct target *target, enum gdb_regno number,
riscv_reg_t value);
static int read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment);
static int write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer);
typedef enum {
HALT_GROUP,
RESUME_GROUP
} grouptype_t;
static int set_group(struct target *target, bool *supported, unsigned int group,
grouptype_t grouptype);
/**
* Since almost everything can be accomplish by scanning the dbus register, all
* functions here assume dbus is already selected. The exception are functions
* called directly by OpenOCD, which can't assume anything about what's
* currently in IR. They should set IR to dbus explicitly.
*/
#define RISCV013_INFO(r) riscv013_info_t *r = get_info(target)
/*** JTAG registers. ***/
typedef enum {
DMI_OP_NOP = DTM_DMI_OP_NOP,
DMI_OP_READ = DTM_DMI_OP_READ,
DMI_OP_WRITE = DTM_DMI_OP_WRITE
} dmi_op_t;
typedef enum {
DMI_STATUS_SUCCESS = DTM_DMI_OP_SUCCESS,
DMI_STATUS_FAILED = DTM_DMI_OP_FAILED,
DMI_STATUS_BUSY = DTM_DMI_OP_BUSY
} dmi_status_t;
typedef enum slot {
SLOT0,
SLOT1,
SLOT_LAST,
} slot_t;
/*** Debug Bus registers. ***/
/* TODO: CMDERR_* defines can removed */
#define CMDERR_NONE DM_ABSTRACTCS_CMDERR_NONE
#define CMDERR_BUSY DM_ABSTRACTCS_CMDERR_BUSY
#define CMDERR_NOT_SUPPORTED DM_ABSTRACTCS_CMDERR_NOT_SUPPORTED
#define CMDERR_EXCEPTION DM_ABSTRACTCS_CMDERR_EXCEPTION
#define CMDERR_HALT_RESUME DM_ABSTRACTCS_CMDERR_HALT_RESUME
#define CMDERR_OTHER DM_ABSTRACTCS_CMDERR_OTHER
#define HART_INDEX_MULTIPLE -1
#define HART_INDEX_UNKNOWN -2
typedef struct {
struct list_head list;
int abs_chain_position;
/* The base address to access this DM on DMI */
uint32_t base;
/* The number of harts connected to this DM. */
int hart_count;
/* Indicates we already examined this DM, so don't need to do it again. */
bool was_examined;
/* Indicates we already reset this DM, so don't need to do it again. */
bool was_reset;
/* Targets that are connected to this DM. */
struct list_head target_list;
/* Contains the ID of the hart that is currently selected by this DM.
* If multiple harts are selected this is HART_INDEX_MULTIPLE. */
int current_hartid;
bool hasel_supported;
/* The program buffer stores executable code. 0 is an illegal instruction,
* so we use 0 to mean the cached value is invalid. */
uint32_t progbuf_cache[16];
/* Some operations are illegal when an abstract command is running.
* The field is used to track whether the last command timed out, and
* abstractcs.busy may have remained set. In that case we may need to
* re-check the busy state before executing these operations. */
bool abstract_cmd_maybe_busy;
} dm013_info_t;
typedef struct {
struct list_head list;
struct target *target;
} target_list_t;
typedef struct {
/* The indexed used to address this hart in its DM. */
unsigned index;
/* Number of address bits in the dbus register. */
unsigned abits;
/* Number of abstract command data registers. */
unsigned datacount;
/* Number of words in the Program Buffer. */
unsigned progbufsize;
/* We cache the read-only bits of sbcs here. */
uint32_t sbcs;
yes_no_maybe_t progbuf_writable;
/* We only need the address so that we know the alignment of the buffer. */
riscv_addr_t progbuf_address;
/* Number of run-test/idle cycles the target requests we do after each dbus
* access. */
unsigned int dtmcs_idle;
/* This value is incremented every time a dbus access comes back as "busy".
* It's used to determine how many run-test/idle cycles to feed the target
* in between accesses. */
unsigned int dmi_busy_delay;
/* Number of run-test/idle cycles to add between consecutive bus master
* reads/writes respectively. */
unsigned int bus_master_write_delay, bus_master_read_delay;
/* This value is increased every time we tried to execute two commands
* consecutively, and the second one failed because the previous hadn't
* completed yet. It's used to add extra run-test/idle cycles after
* starting a command, so we don't have to waste time checking for busy to
* go low. */
unsigned int ac_busy_delay;
bool abstract_read_csr_supported;
bool abstract_write_csr_supported;
bool abstract_read_fpr_supported;
bool abstract_write_fpr_supported;
yes_no_maybe_t has_aampostincrement;
/* Some fields from hartinfo. */
uint8_t datasize;
uint8_t dataaccess;
int16_t dataaddr;
uint8_t nscratch;
/* DM that provides access to this target. */
dm013_info_t *dm;
/* This target was selected using hasel. */
bool selected;
/* When false, we need to set dcsr.ebreak*, halting the target if that's
* necessary. */
bool dcsr_ebreak_is_set;
/* This hart was placed into a halt group in examine(). */
bool haltgroup_supported;
} riscv013_info_t;
static LIST_HEAD(dm_list);
static riscv013_info_t *get_info(const struct target *target)
{
struct riscv_info *info = target->arch_info;
assert(info);
assert(info->version_specific);
return info->version_specific;
}
/**
* Return the DM structure for this target. If there isn't one, find it in the
* global list of DMs. If it's not in there, then create one and initialize it
* to 0.
*/
static dm013_info_t *get_dm(struct target *target)
{
RISCV013_INFO(info);
if (info->dm)
return info->dm;
int abs_chain_position = target->tap->abs_chain_position;
dm013_info_t *entry;
dm013_info_t *dm = NULL;
list_for_each_entry(entry, &dm_list, list) {
if (entry->abs_chain_position == abs_chain_position
&& entry->base == target->dbgbase) {
dm = entry;
break;
}
}
if (!dm) {
LOG_TARGET_DEBUG(target, "Coreid [%d] Allocating new DM", target->coreid);
dm = calloc(1, sizeof(dm013_info_t));
if (!dm)
return NULL;
dm->abs_chain_position = abs_chain_position;
/* Safety check for dbgbase */
assert(target->dbgbase_set || target->dbgbase == 0);
dm->base = target->dbgbase;
dm->current_hartid = 0;
dm->hart_count = -1;
INIT_LIST_HEAD(&dm->target_list);
list_add(&dm->list, &dm_list);
}
info->dm = dm;
target_list_t *target_entry;
list_for_each_entry(target_entry, &dm->target_list, list) {
if (target_entry->target == target)
return dm;
}
target_entry = calloc(1, sizeof(*target_entry));
if (!target_entry) {
info->dm = NULL;
return NULL;
}
target_entry->target = target;
list_add(&target_entry->list, &dm->target_list);
return dm;
}
static void riscv013_dm_free(struct target *target)
{
RISCV013_INFO(info);
dm013_info_t *dm = info->dm;
if (!dm)
return;
target_list_t *target_entry;
list_for_each_entry(target_entry, &dm->target_list, list) {
if (target_entry->target == target) {
list_del(&target_entry->list);
free(target_entry);
break;
}
}
if (list_empty(&dm->target_list)) {
list_del(&dm->list);
free(dm);
}
info->dm = NULL;
}
static riscv_debug_reg_ctx_t get_riscv_debug_reg_ctx(const struct target *target)
{
if (!target_was_examined(target)) {
const riscv_debug_reg_ctx_t default_context = {0};
return default_context;
}
RISCV013_INFO(info);
const riscv_debug_reg_ctx_t context = {
.XLEN = { .value = riscv_xlen(target), .is_set = true },
.DXLEN = { .value = riscv_xlen(target), .is_set = true },
.abits = { .value = info->abits, .is_set = true },
};
return context;
}
static void log_debug_reg(struct target *target, enum riscv_debug_reg_ordinal reg,
riscv_reg_t value, const char *file, unsigned int line, const char *func)
{
if (debug_level < LOG_LVL_DEBUG)
return;
const riscv_debug_reg_ctx_t context = get_riscv_debug_reg_ctx(target);
char * const buf = malloc(riscv_debug_reg_to_s(NULL, reg, context, value, RISCV_DEBUG_REG_HIDE_UNNAMED_0) + 1);
if (!buf) {
LOG_ERROR("Unable to allocate memory.");
return;
}
riscv_debug_reg_to_s(buf, reg, context, value, RISCV_DEBUG_REG_HIDE_UNNAMED_0);
log_printf_lf(LOG_LVL_DEBUG, file, line, func, "[%s] %s", target_name(target), buf);
free(buf);
}
#define LOG_DEBUG_REG(t, r, v) log_debug_reg(t, r##_ORDINAL, v, __FILE__, __LINE__, __func__)
static uint32_t set_dmcontrol_hartsel(uint32_t initial, int hart_index)
{
assert(hart_index != HART_INDEX_UNKNOWN);
if (hart_index >= 0) {
initial = set_field(initial, DM_DMCONTROL_HASEL, DM_DMCONTROL_HASEL_SINGLE);
uint32_t index_lo = hart_index & ((1 << DM_DMCONTROL_HARTSELLO_LENGTH) - 1);
initial = set_field(initial, DM_DMCONTROL_HARTSELLO, index_lo);
uint32_t index_hi = hart_index >> DM_DMCONTROL_HARTSELLO_LENGTH;
assert(index_hi < (1 << DM_DMCONTROL_HARTSELHI_LENGTH));
initial = set_field(initial, DM_DMCONTROL_HARTSELHI, index_hi);
} else if (hart_index == HART_INDEX_MULTIPLE) {
initial = set_field(initial, DM_DMCONTROL_HASEL, DM_DMCONTROL_HASEL_MULTIPLE);
/* TODO: https://github.com/riscv/riscv-openocd/issues/748 */
initial = set_field(initial, DM_DMCONTROL_HARTSELLO, 0);
initial = set_field(initial, DM_DMCONTROL_HARTSELHI, 0);
}
return initial;
}
static unsigned int decode_dmi(const struct target *target, char *text, uint32_t address, uint32_t data)
{
static const struct {
uint32_t address;
enum riscv_debug_reg_ordinal ordinal;
} description[] = {
{DM_DMCONTROL, DM_DMCONTROL_ORDINAL},
{DM_DMSTATUS, DM_DMSTATUS_ORDINAL},
{DM_ABSTRACTCS, DM_ABSTRACTCS_ORDINAL},
{DM_COMMAND, DM_COMMAND_ORDINAL},
{DM_SBCS, DM_SBCS_ORDINAL}
};
for (unsigned i = 0; i < ARRAY_SIZE(description); i++) {
if (riscv_get_dmi_address(target, description[i].address) == address) {
const riscv_debug_reg_ctx_t context = {
.XLEN = { .value = 0, .is_set = false },
.DXLEN = { .value = 0, .is_set = false },
.abits = { .value = 0, .is_set = false },
};
return riscv_debug_reg_to_s(text, description[i].ordinal,
context, data, RISCV_DEBUG_REG_HIDE_ALL_0);
}
}
if (text)
text[0] = '\0';
return 0;
}
void riscv_decode_dmi_scan(const struct target *target, int idle, const struct scan_field *field, bool discard_in)
{
static const char * const op_string[] = {"-", "r", "w", "?"};
static const char * const status_string[] = {"+", "?", "F", "b"};
if (debug_level < LOG_LVL_DEBUG)
return;
assert(field->out_value);
const uint64_t out = buf_get_u64(field->out_value, 0, field->num_bits);
const unsigned int out_op = get_field(out, DTM_DMI_OP);
const uint32_t out_data = get_field(out, DTM_DMI_DATA);
const uint32_t out_address = out >> DTM_DMI_ADDRESS_OFFSET;
if (field->in_value) {
const uint64_t in = buf_get_u64(field->in_value, 0, field->num_bits);
const unsigned int in_op = get_field(in, DTM_DMI_OP);
const uint32_t in_data = get_field(in, DTM_DMI_DATA);
const uint32_t in_address = in >> DTM_DMI_ADDRESS_OFFSET;
LOG_DEBUG("%db %s %08" PRIx32 " @%02" PRIx32 " -> %s %08" PRIx32 " @%02" PRIx32 "; %di",
field->num_bits, op_string[out_op], out_data, out_address,
status_string[in_op], in_data, in_address, idle);
if (!discard_in && in_op == DTM_DMI_OP_SUCCESS) {
char in_decoded[decode_dmi(target, NULL, in_address, in_data) + 1];
decode_dmi(target, in_decoded, in_address, in_data);
/* FIXME: The current code assumes that the hardware
* provides the read address in the dmi.address field
* when returning the dmi.data. That is however not
* required by the spec, and therefore not guaranteed.
* See https://github.com/riscv-collab/riscv-openocd/issues/1043
*/
LOG_DEBUG("read: %s", in_decoded);
}
} else {
LOG_DEBUG("%db %s %08" PRIx32 " @%02" PRIx32 " -> ?; %di",
field->num_bits, op_string[out_op], out_data, out_address,
idle);
}
if (out_op == DTM_DMI_OP_WRITE) {
char out_decoded[decode_dmi(target, NULL, out_address, out_data) + 1];
decode_dmi(target, out_decoded, out_address, out_data);
LOG_DEBUG("write: %s", out_decoded);
}
}
/*** Utility functions. ***/
static void select_dmi(struct target *target)
{
if (bscan_tunnel_ir_width != 0) {
select_dmi_via_bscan(target);
return;
}
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
}
static int dtmcontrol_scan(struct target *target, uint32_t out, uint32_t *in_ptr)
{
struct scan_field field;
uint8_t in_value[4];
uint8_t out_value[4] = { 0 };
if (bscan_tunnel_ir_width != 0)
return dtmcontrol_scan_via_bscan(target, out, in_ptr);
buf_set_u32(out_value, 0, 32, out);
jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);
field.num_bits = 32;
field.out_value = out_value;
field.in_value = in_value;
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
/* Always return to dmi. */
select_dmi(target);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("failed jtag scan: %d", retval);
return retval;
}
uint32_t in = buf_get_u32(field.in_value, 0, 32);
LOG_DEBUG("DTMCS: 0x%x -> 0x%x", out, in);
if (in_ptr)
*in_ptr = in;
return ERROR_OK;
}
static void increase_dmi_busy_delay(struct target *target)
{
riscv013_info_t *info = get_info(target);
info->dmi_busy_delay += info->dmi_busy_delay / 10 + 1;
LOG_TARGET_DEBUG(target, "dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
info->dtmcs_idle, info->dmi_busy_delay,
info->ac_busy_delay);
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET, NULL /* discard result */);
}
static void decrement_reset_delays_counter(struct target *target, size_t finished_scans)
{
RISCV_INFO(r);
if (r->reset_delays_wait < 0) {
assert(r->reset_delays_wait == -1);
return;
}
if ((size_t)r->reset_delays_wait >= finished_scans) {
r->reset_delays_wait -= finished_scans;
return;
}
r->reset_delays_wait = -1;
LOG_TARGET_DEBUG(target,
"resetting learned delays (reset_delays_wait counter expired)");
RISCV013_INFO(info);
info->dmi_busy_delay = 0;
info->ac_busy_delay = 0;
}
/**
* exec: If this is set, assume the scan results in an execution, so more
* run-test/idle cycles may be required.
*/
static dmi_status_t dmi_scan(struct target *target, uint32_t *address_in,
uint32_t *data_in, dmi_op_t op, uint32_t address_out, uint32_t data_out,
bool exec)
{
riscv013_info_t *info = get_info(target);
unsigned num_bits = info->abits + DTM_DMI_OP_LENGTH + DTM_DMI_DATA_LENGTH;
size_t num_bytes = (num_bits + 7) / 8;
uint8_t in[num_bytes];
uint8_t out[num_bytes];
struct scan_field field = {
.num_bits = num_bits,
.out_value = out,
.in_value = in
};
riscv_bscan_tunneled_scan_context_t bscan_ctxt;
decrement_reset_delays_counter(target, 1);
memset(in, 0, num_bytes);
memset(out, 0, num_bytes);
if (info->abits == 0) {
LOG_TARGET_ERROR(target, "Can't access DMI because addrbits=0.");
return DMI_STATUS_FAILED;
}
buf_set_u32(out, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, op);
buf_set_u32(out, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, data_out);
buf_set_u32(out, DTM_DMI_ADDRESS_OFFSET, info->abits, address_out);
/* I wanted to place this code in a different function, but the way JTAG command
queueing works in the jtag handling functions, the scan fields either have to be
heap allocated, global/static, or else they need to stay on the stack until
the jtag_execute_queue() call. Heap or static fields in this case doesn't seem
the best fit. Declaring stack based field values in a subsidiary function call wouldn't
work. */
if (bscan_tunnel_ir_width != 0) {
riscv_add_bscan_tunneled_scan(target, &field, &bscan_ctxt);
} else {
/* Assume dbus is already selected. */
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
}
int idle_count = info->dmi_busy_delay;
if (exec)
idle_count += info->ac_busy_delay;
if (idle_count)
jtag_add_runtest(idle_count, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("dmi_scan failed jtag scan");
if (data_in)
*data_in = ~0;
return DMI_STATUS_FAILED;
}
if (bscan_tunnel_ir_width != 0) {
/* need to right-shift "in" by one bit, because of clock skew between BSCAN TAP and DM TAP */
buffer_shr(in, num_bytes, 1);
}
if (data_in)
*data_in = buf_get_u32(in, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH);
if (address_in)
*address_in = buf_get_u32(in, DTM_DMI_ADDRESS_OFFSET, info->abits);
riscv_decode_dmi_scan(target, idle_count, &field, /*discard_in*/ !data_in);
return buf_get_u32(in, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH);
}
/**
* @param target
* @param data_in The data we received from the target.
* @param dmi_busy_encountered
* If non-NULL, will be updated to reflect whether DMI busy was
* encountered while executing this operation or not.
* @param op The operation to perform (read/write/nop).
* @param address The address argument to that operation.
* @param data_out The data to send to the target.
* @param timeout_sec
* @param exec When true, this scan will execute something, so extra RTI
* cycles may be added.
* @param ensure_success
* Scan a nop after the requested operation, ensuring the
* DMI operation succeeded.
*/
static int dmi_op_timeout(struct target *target, uint32_t *data_in,
bool *dmi_busy_encountered, int op, uint32_t address,
uint32_t data_out, int timeout_sec, bool exec, bool ensure_success)
{
select_dmi(target);
dmi_status_t status;
if (dmi_busy_encountered)
*dmi_busy_encountered = false;
const char *op_name;
switch (op) {
case DMI_OP_NOP:
op_name = "nop";
break;
case DMI_OP_READ:
op_name = "read";
break;
case DMI_OP_WRITE:
op_name = "write";
break;
default:
LOG_ERROR("Invalid DMI operation: %d", op);
return ERROR_FAIL;
}
keep_alive();
time_t start = time(NULL);
/* This first loop performs the request. Note that if for some reason this
* stays busy, it is actually due to the previous access. */
while (1) {
status = dmi_scan(target, NULL, NULL, op, address, data_out,
exec);
if (status == DMI_STATUS_BUSY) {
increase_dmi_busy_delay(target);
if (dmi_busy_encountered)
*dmi_busy_encountered = true;
} else if (status == DMI_STATUS_SUCCESS) {
break;
} else {
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET, NULL /* discard result */);
break;
}
if (time(NULL) - start > timeout_sec)
return ERROR_TIMEOUT_REACHED;
}
if (status != DMI_STATUS_SUCCESS) {
LOG_TARGET_ERROR(target, "Failed DMI %s at 0x%x; status=%d", op_name, address, status);
return ERROR_FAIL;
}
if (ensure_success) {
/* This second loop ensures the request succeeded, and gets back data.
* Note that NOP can result in a 'busy' result as well, but that would be
* noticed on the next DMI access we do. */
while (1) {
status = dmi_scan(target, NULL, data_in, DMI_OP_NOP, address, 0,
false);
if (status == DMI_STATUS_BUSY) {
increase_dmi_busy_delay(target);
if (dmi_busy_encountered)
*dmi_busy_encountered = true;
} else if (status == DMI_STATUS_SUCCESS) {
break;
} else {
if (data_in) {
LOG_TARGET_ERROR(target,
"Failed DMI %s (NOP) at 0x%x; value=0x%x, status=%d",
op_name, address, *data_in, status);
} else {
LOG_TARGET_ERROR(target,
"Failed DMI %s (NOP) at 0x%x; status=%d", op_name, address,
status);
}
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET, NULL /* discard result */);
return ERROR_FAIL;
}
if (time(NULL) - start > timeout_sec)
return ERROR_TIMEOUT_REACHED;
}
}
return ERROR_OK;
}
static int dmi_op(struct target *target, uint32_t *data_in,
bool *dmi_busy_encountered, int op, uint32_t address,
uint32_t data_out, bool exec, bool ensure_success)
{
int result = dmi_op_timeout(target, data_in, dmi_busy_encountered, op,
address, data_out, riscv_command_timeout_sec, exec, ensure_success);
if (result == ERROR_TIMEOUT_REACHED) {
LOG_TARGET_ERROR(target, "DMI operation didn't complete in %d seconds. The target is "
"either really slow or broken. You could increase the "
"timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec);
return ERROR_FAIL;
}
return result;
}
static int dmi_read(struct target *target, uint32_t *value, uint32_t address)
{
return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, false, true);
}
static int dmi_read_exec(struct target *target, uint32_t *value, uint32_t address)
{
return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, true, true);
}
static int dmi_write(struct target *target, uint32_t address, uint32_t value)
{
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, false, true);
}
static int dmi_write_exec(struct target *target, uint32_t address,
uint32_t value, bool ensure_success)
{
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, true, ensure_success);
}
static uint32_t riscv013_get_dmi_address(const struct target *target, uint32_t address)
{
assert(target);
uint32_t base = 0;
RISCV013_INFO(info);
if (info && info->dm)
base = info->dm->base;
return address + base;
}
static int dm_op_timeout(struct target *target, uint32_t *data_in,
bool *dmi_busy_encountered, int op, uint32_t address,
uint32_t data_out, int timeout_sec, bool exec, bool ensure_success)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
return dmi_op_timeout(target, data_in, dmi_busy_encountered, op, address + dm->base,
data_out, timeout_sec, exec, ensure_success);
}
static int dm_op(struct target *target, uint32_t *data_in,
bool *dmi_busy_encountered, int op, uint32_t address,
uint32_t data_out, bool exec, bool ensure_success)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
return dmi_op(target, data_in, dmi_busy_encountered, op, address + dm->base,
data_out, exec, ensure_success);
}
static int dm_read(struct target *target, uint32_t *value, uint32_t address)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
return dmi_read(target, value, address + dm->base);
}
static int dm_read_exec(struct target *target, uint32_t *value, uint32_t address)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
dm->abstract_cmd_maybe_busy = true;
return dmi_read_exec(target, value, address + dm->base);
}
static int dm_write(struct target *target, uint32_t address, uint32_t value)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
return dmi_write(target, address + dm->base, value);
}
static int dm_write_exec(struct target *target, uint32_t address,
uint32_t value, bool ensure_success)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
dm->abstract_cmd_maybe_busy = true;
return dmi_write_exec(target, address + dm->base, value, ensure_success);
}
static bool check_dbgbase_exists(struct target *target)
{
uint32_t next_dm = 0;
unsigned int count = 1;
LOG_TARGET_DEBUG(target, "Searching for DM with DMI base address (dbgbase) = 0x%x", target->dbgbase);
while (1) {
uint32_t current_dm = next_dm;
if (current_dm == target->dbgbase)
return true;
if (dmi_read(target, &next_dm, DM_NEXTDM + current_dm) != ERROR_OK)
break;
LOG_TARGET_DEBUG(target, "dm @ 0x%x --> nextdm=0x%x", current_dm, next_dm);
/* Check if it's last one in the chain. */
if (next_dm == 0) {
LOG_TARGET_ERROR(target, "Reached the end of DM chain (detected %u DMs in total).", count);
break;
}
/* Safety: Avoid looping forever in case of buggy nextdm values in the hardware. */
if (count++ > RISCV_MAX_DMS) {
LOG_TARGET_ERROR(target, "Supporting no more than %d DMs on a DMI bus. Aborting", RISCV_MAX_DMS);
break;
}
}
return false;
}
static int dmstatus_read_timeout(struct target *target, uint32_t *dmstatus,
bool authenticated, unsigned timeout_sec)
{
int result = dm_op_timeout(target, dmstatus, NULL, DMI_OP_READ,
DM_DMSTATUS, 0, timeout_sec, false, true);
if (result != ERROR_OK)
return result;
int dmstatus_version = get_field(*dmstatus, DM_DMSTATUS_VERSION);
if (dmstatus_version != 2 && dmstatus_version != 3) {
LOG_ERROR("OpenOCD only supports Debug Module version 2 (0.13) and 3 (1.0), not "
"%" PRId32 " (dmstatus=0x%" PRIx32 "). This error might be caused by a JTAG "
"signal issue. Try reducing the JTAG clock speed.",
get_field32(*dmstatus, DM_DMSTATUS_VERSION), *dmstatus);
} else if (authenticated && !get_field(*dmstatus, DM_DMSTATUS_AUTHENTICATED)) {
LOG_ERROR("Debugger is not authenticated to target Debug Module. "
"(dmstatus=0x%x). Use `riscv authdata_read` and "
"`riscv authdata_write` commands to authenticate.", *dmstatus);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int dmstatus_read(struct target *target, uint32_t *dmstatus,
bool authenticated)
{
int result = dmstatus_read_timeout(target, dmstatus, authenticated,
riscv_command_timeout_sec);
if (result == ERROR_TIMEOUT_REACHED)
LOG_TARGET_ERROR(target, "DMSTATUS read didn't complete in %d seconds. The target is "
"either really slow or broken. You could increase the "
"timeout with `riscv set_command_timeout_sec`.",
riscv_command_timeout_sec);
return result;
}
static void increase_ac_busy_delay(struct target *target)
{
riscv013_info_t *info = get_info(target);
info->ac_busy_delay += info->ac_busy_delay / 10 + 1;
LOG_TARGET_DEBUG(target, "dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
info->dtmcs_idle, info->dmi_busy_delay,
info->ac_busy_delay);
}
static uint32_t __attribute__((unused)) abstract_register_size(unsigned width)
{
switch (width) {
case 32:
return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 2);
case 64:
return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 3);
case 128:
return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 4);
default:
LOG_ERROR("Unsupported register width: %d", width);
return 0;
}
}
static int wait_for_idle(struct target *target, uint32_t *abstractcs)
{
assert(target);
assert(abstractcs);
dm013_info_t *dm = get_dm(target);
if (!dm) {
LOG_ERROR("BUG: Target %s is not assigned to any RISC-V debug module",
target_name(target));
*abstractcs = 0;
return ERROR_FAIL;
}
time_t start = time(NULL);
do {
if (dm_read(target, abstractcs, DM_ABSTRACTCS) != ERROR_OK) {
/* We couldn't read abstractcs. For safety, overwrite the output value to
* prevent the caller working with a stale value of abstractcs. */
*abstractcs = 0;
LOG_TARGET_ERROR(target,
"potentially unrecoverable error detected - could not read abstractcs");
return ERROR_FAIL;
}
if (get_field(*abstractcs, DM_ABSTRACTCS_BUSY) == 0) {
dm->abstract_cmd_maybe_busy = false;
return ERROR_OK;
}
} while ((time(NULL) - start) < riscv_command_timeout_sec);
LOG_TARGET_ERROR(target,
"Timed out after %ds waiting for busy to go low (abstractcs=0x%" PRIx32 "). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec,
*abstractcs);
if (!dm->abstract_cmd_maybe_busy)
LOG_TARGET_ERROR(target,
"BUG: dm->abstract_cmd_maybe_busy had not been set when starting an abstract command.");
dm->abstract_cmd_maybe_busy = true;
return ERROR_TIMEOUT_REACHED;
}
static int dm013_select_target(struct target *target)
{
riscv013_info_t *info = get_info(target);
return dm013_select_hart(target, info->index);
}
static int execute_abstract_command(struct target *target, uint32_t command,
uint32_t *cmderr)
{
assert(cmderr);
*cmderr = CMDERR_NONE;
if (debug_level >= LOG_LVL_DEBUG) {
switch (get_field(command, DM_COMMAND_CMDTYPE)) {
case 0:
LOG_DEBUG_REG(target, AC_ACCESS_REGISTER, command);
break;
default:
LOG_TARGET_DEBUG(target, "command=0x%x", command);
break;
}
}
if (dm_write_exec(target, DM_COMMAND, command, false /* ensure success */) != ERROR_OK)
return ERROR_FAIL;
uint32_t abstractcs;
int wait_result = wait_for_idle(target, &abstractcs);
if (wait_result != ERROR_OK) {
/* TODO: can we recover from this? */
if (wait_result == ERROR_TIMEOUT_REACHED)
LOG_TARGET_DEBUG(target, "command 0x%" PRIx32 " failed (timeout)", command);
else
LOG_TARGET_DEBUG(target, "command 0x%" PRIx32 " failed (unknown fatal error %d)", command, wait_result);
return wait_result;
}
*cmderr = get_field32(abstractcs, DM_ABSTRACTCS_CMDERR);
if (*cmderr != CMDERR_NONE) {
LOG_TARGET_DEBUG(target, "command 0x%" PRIx32 " failed; abstractcs=0x%" PRIx32,
command, abstractcs);
/* Attempt to clear the error. */
/* TODO: can we add a more substantial recovery if the clear operation fails ? */
if (dm_write(target, DM_ABSTRACTCS, DM_ABSTRACTCS_CMDERR) != ERROR_OK)
LOG_TARGET_ERROR(target, "could not clear abstractcs error");
return ERROR_FAIL;
}
return ERROR_OK;
}
static riscv_reg_t read_abstract_arg(struct target *target, unsigned index,
unsigned size_bits)
{
riscv_reg_t value = 0;
uint32_t v;
unsigned offset = index * size_bits / 32;
switch (size_bits) {
default:
LOG_TARGET_ERROR(target, "Unsupported size: %d bits", size_bits);
return ~0;
case 64:
if (dm_read(target, &v, DM_DATA0 + offset + 1) == ERROR_OK)
value |= ((uint64_t)v) << 32;
/* falls through */
case 32:
if (dm_read(target, &v, DM_DATA0 + offset) == ERROR_OK)
value |= v;
}
return value;
}
static int write_abstract_arg(struct target *target, unsigned index,
riscv_reg_t value, unsigned size_bits)
{
unsigned offset = index * size_bits / 32;
switch (size_bits) {
default:
LOG_TARGET_ERROR(target, "Unsupported size: %d bits", size_bits);
return ERROR_FAIL;
case 64:
dm_write(target, DM_DATA0 + offset + 1, (uint32_t)(value >> 32));
/* falls through */
case 32:
dm_write(target, DM_DATA0 + offset, (uint32_t)value);
}
return ERROR_OK;
}
/**
* @par size in bits
*/
static uint32_t access_register_command(struct target *target, uint32_t number,
unsigned size, uint32_t flags)
{
uint32_t command = set_field(0, DM_COMMAND_CMDTYPE, 0);
switch (size) {
case 32:
command = set_field(command, AC_ACCESS_REGISTER_AARSIZE, 2);
break;
case 64:
command = set_field(command, AC_ACCESS_REGISTER_AARSIZE, 3);
break;
default:
LOG_TARGET_ERROR(target, "%d-bit register %s not supported.",
size, gdb_regno_name(target, number));
assert(0);
}
if (number <= GDB_REGNO_XPR31) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0x1000 + number - GDB_REGNO_ZERO);
} else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0x1020 + number - GDB_REGNO_FPR0);
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
number - GDB_REGNO_CSR0);
} else if (number >= GDB_REGNO_COUNT) {
/* Custom register. */
assert(target->reg_cache->reg_list[number].arch_info);
riscv_reg_info_t *reg_info = target->reg_cache->reg_list[number].arch_info;
assert(reg_info);
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0xc000 + reg_info->custom_number);
} else {
assert(0);
}
command |= flags;
return command;
}
static int register_read_abstract_with_size(struct target *target,
riscv_reg_t *value, enum gdb_regno number, unsigned int size)
{
RISCV013_INFO(info);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
!info->abstract_read_fpr_supported)
return ERROR_FAIL;
if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
!info->abstract_read_csr_supported)
return ERROR_FAIL;
/* The spec doesn't define abstract register numbers for vector registers. */
if (number >= GDB_REGNO_V0 && number <= GDB_REGNO_V31)
return ERROR_FAIL;
uint32_t command = access_register_command(target, number, size,
AC_ACCESS_REGISTER_TRANSFER);
uint32_t cmderr;
int result = execute_abstract_command(target, command, &cmderr);
if (result != ERROR_OK) {
if (cmderr == CMDERR_NOT_SUPPORTED) {
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
info->abstract_read_fpr_supported = false;
LOG_TARGET_INFO(target, "Disabling abstract command reads from FPRs.");
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
info->abstract_read_csr_supported = false;
LOG_TARGET_INFO(target, "Disabling abstract command reads from CSRs.");
}
}
return result;
}
if (value)
*value = read_abstract_arg(target, 0, size);
return ERROR_OK;
}
static int register_read_abstract(struct target *target, riscv_reg_t *value,
enum gdb_regno number)
{
const unsigned int size = register_size(target, number);
return register_read_abstract_with_size(target, value, number, size);
}
static int register_write_abstract(struct target *target, enum gdb_regno number,
riscv_reg_t value)
{
RISCV013_INFO(info);
const unsigned int size = register_size(target, number);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
!info->abstract_write_fpr_supported)
return ERROR_FAIL;
if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
!info->abstract_write_csr_supported)
return ERROR_FAIL;
uint32_t command = access_register_command(target, number, size,
AC_ACCESS_REGISTER_TRANSFER |
AC_ACCESS_REGISTER_WRITE);
if (write_abstract_arg(target, 0, value, size) != ERROR_OK)
return ERROR_FAIL;
uint32_t cmderr;
int result = execute_abstract_command(target, command, &cmderr);
if (result != ERROR_OK) {
if (cmderr == CMDERR_NOT_SUPPORTED) {
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
info->abstract_write_fpr_supported = false;
LOG_TARGET_INFO(target, "Disabling abstract command writes to FPRs.");
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
info->abstract_write_csr_supported = false;
LOG_TARGET_INFO(target, "Disabling abstract command writes to CSRs.");
}
}
return result;
}
return ERROR_OK;
}
/*
* Sets the AAMSIZE field of a memory access abstract command based on
* the width (bits).
*/
static uint32_t abstract_memory_size(unsigned width)
{
switch (width) {
case 8:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 0);
case 16:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 1);
case 32:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 2);
case 64:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 3);
case 128:
return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 4);
default:
LOG_ERROR("Unsupported memory width: %d", width);
return 0;
}
}
/*
* Creates a memory access abstract command.
*/
static uint32_t access_memory_command(struct target *target, bool virtual,
unsigned int width, bool postincrement, bool is_write)
{
uint32_t command = set_field(0, AC_ACCESS_MEMORY_CMDTYPE, 2);
command = set_field(command, AC_ACCESS_MEMORY_AAMVIRTUAL, virtual);
command |= abstract_memory_size(width);
command = set_field(command, AC_ACCESS_MEMORY_AAMPOSTINCREMENT,
postincrement);
command = set_field(command, AC_ACCESS_MEMORY_WRITE, is_write);
return command;
}
static int examine_progbuf(struct target *target)
{
riscv013_info_t *info = get_info(target);
if (info->progbuf_writable != YNM_MAYBE)
return ERROR_OK;
/* Figure out if progbuf is writable. */
if (info->progbufsize < 1) {
info->progbuf_writable = YNM_NO;
LOG_TARGET_INFO(target, "No program buffer present.");
return ERROR_OK;
}
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, auipc(S0));
if (riscv_program_exec(&program, target) != ERROR_OK)
return ERROR_FAIL;
if (register_read_direct(target, &info->progbuf_address, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
riscv_program_init(&program, target);
riscv_program_insert(&program, sw(S0, S0, 0));
int result = riscv_program_exec(&program, target);
if (result != ERROR_OK) {
/* This program might have failed if the program buffer is not
* writable. */
info->progbuf_writable = YNM_NO;
return ERROR_OK;
}
uint32_t written;
if (dm_read(target, &written, DM_PROGBUF0) != ERROR_OK)
return ERROR_FAIL;
if (written == (uint32_t) info->progbuf_address) {
LOG_TARGET_INFO(target, "progbuf is writable at 0x%" PRIx64,
info->progbuf_address);
info->progbuf_writable = YNM_YES;
} else {
LOG_TARGET_INFO(target, "progbuf is not writeable at 0x%" PRIx64,
info->progbuf_address);
info->progbuf_writable = YNM_NO;
}
return ERROR_OK;
}
static int is_fpu_reg(enum gdb_regno gdb_regno)
{
return (gdb_regno >= GDB_REGNO_FPR0 && gdb_regno <= GDB_REGNO_FPR31) ||
(gdb_regno == GDB_REGNO_CSR0 + CSR_FFLAGS) ||
(gdb_regno == GDB_REGNO_CSR0 + CSR_FRM) ||
(gdb_regno == GDB_REGNO_CSR0 + CSR_FCSR);
}
static int is_vector_reg(enum gdb_regno gdb_regno)
{
return (gdb_regno >= GDB_REGNO_V0 && gdb_regno <= GDB_REGNO_V31) ||
gdb_regno == GDB_REGNO_VSTART ||
gdb_regno == GDB_REGNO_VXSAT ||
gdb_regno == GDB_REGNO_VXRM ||
gdb_regno == GDB_REGNO_VCSR ||
gdb_regno == GDB_REGNO_VL ||
gdb_regno == GDB_REGNO_VTYPE ||
gdb_regno == GDB_REGNO_VLENB;
}
static int prep_for_register_access(struct target *target,
riscv_reg_t *orig_mstatus, enum gdb_regno regno)
{
assert(orig_mstatus);
if (!is_fpu_reg(regno) && !is_vector_reg(regno)) {
/* If we don't assign orig_mstatus, clang static analysis
* complains when this value is passed to
* cleanup_after_register_access(). */
*orig_mstatus = 0;
/* No special preparation needed */
return ERROR_OK;
}
LOG_TARGET_DEBUG(target, "Preparing mstatus to access %s",
gdb_regno_name(target, regno));
assert(target->state == TARGET_HALTED &&
"The target must be halted to modify and then restore mstatus");
if (riscv_get_register(target, orig_mstatus, GDB_REGNO_MSTATUS) != ERROR_OK)
return ERROR_FAIL;
riscv_reg_t new_mstatus = *orig_mstatus;
riscv_reg_t field_mask = is_fpu_reg(regno) ? MSTATUS_FS : MSTATUS_VS;
if ((new_mstatus & field_mask) != 0)
return ERROR_OK;
new_mstatus = set_field(new_mstatus, field_mask, 1);
if (riscv_write_register(target, GDB_REGNO_MSTATUS, new_mstatus) != ERROR_OK)
return ERROR_FAIL;
LOG_TARGET_DEBUG(target, "Prepared to access %s (mstatus=0x%" PRIx64 ")",
gdb_regno_name(target, regno), new_mstatus);
return ERROR_OK;
}
static int cleanup_after_register_access(struct target *target,
riscv_reg_t mstatus, enum gdb_regno regno)
{
if (!is_fpu_reg(regno) && !is_vector_reg(regno))
/* Mstatus was not changed for this register access. No need to restore it. */
return ERROR_OK;
LOG_TARGET_DEBUG(target, "Restoring mstatus to 0x%" PRIx64, mstatus);
return riscv_write_register(target, GDB_REGNO_MSTATUS, mstatus);
}
typedef enum {
SPACE_DM_DATA,
SPACE_DMI_PROGBUF,
SPACE_DMI_RAM
} memory_space_t;
typedef struct {
/* How can the debugger access this memory? */
memory_space_t memory_space;
/* Memory address to access the scratch memory from the hart. */
riscv_addr_t hart_address;
/* Memory address to access the scratch memory from the debugger. */
riscv_addr_t debug_address;
struct working_area *area;
} scratch_mem_t;
/**
* Find some scratch memory to be used with the given program.
*/
static int scratch_reserve(struct target *target,
scratch_mem_t *scratch,
struct riscv_program *program,
unsigned size_bytes)
{
riscv_addr_t alignment = 1;
while (alignment < size_bytes)
alignment *= 2;
scratch->area = NULL;
riscv013_info_t *info = get_info(target);
/* Option 1: See if data# registers can be used as the scratch memory */
if (info->dataaccess == 1) {
/* Sign extend dataaddr. */
scratch->hart_address = info->dataaddr;
if (info->dataaddr & (1<<11))
scratch->hart_address |= 0xfffffffffffff000ULL;
/* Align. */
scratch->hart_address = (scratch->hart_address + alignment - 1) & ~(alignment - 1);
if ((size_bytes + scratch->hart_address - info->dataaddr + 3) / 4 >=
info->datasize) {
scratch->memory_space = SPACE_DM_DATA;
scratch->debug_address = (scratch->hart_address - info->dataaddr) / 4;
return ERROR_OK;
}
}
/* Option 2: See if progbuf can be used as the scratch memory */
if (examine_progbuf(target) != ERROR_OK)
return ERROR_FAIL;
/* Allow for ebreak at the end of the program. */
unsigned program_size = (program->instruction_count + 1) * 4;
scratch->hart_address = (info->progbuf_address + program_size + alignment - 1) &
~(alignment - 1);
if ((info->progbuf_writable == YNM_YES) &&
((size_bytes + scratch->hart_address - info->progbuf_address + 3) / 4 >=
info->progbufsize)) {
scratch->memory_space = SPACE_DMI_PROGBUF;
scratch->debug_address = (scratch->hart_address - info->progbuf_address) / 4;
return ERROR_OK;
}
/* Option 3: User-configured memory area as scratch RAM */
if (target_alloc_working_area(target, size_bytes + alignment - 1,
&scratch->area) == ERROR_OK) {
scratch->hart_address = (scratch->area->address + alignment - 1) &
~(alignment - 1);
scratch->memory_space = SPACE_DMI_RAM;
scratch->debug_address = scratch->hart_address;
return ERROR_OK;
}
LOG_TARGET_ERROR(target, "Couldn't find %d bytes of scratch RAM to use. Please configure "
"a work area with 'configure -work-area-phys'.", size_bytes);
return ERROR_FAIL;
}
static int scratch_release(struct target *target,
scratch_mem_t *scratch)
{
return target_free_working_area(target, scratch->area);
}
static int scratch_read64(struct target *target, scratch_mem_t *scratch,
uint64_t *value)
{
uint32_t v;
switch (scratch->memory_space) {
case SPACE_DM_DATA:
if (dm_read(target, &v, DM_DATA0 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value = v;
if (dm_read(target, &v, DM_DATA1 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value |= ((uint64_t) v) << 32;
break;
case SPACE_DMI_PROGBUF:
if (dm_read(target, &v, DM_PROGBUF0 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value = v;
if (dm_read(target, &v, DM_PROGBUF1 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value |= ((uint64_t) v) << 32;
break;
case SPACE_DMI_RAM:
{
uint8_t buffer[8] = {0};
if (read_memory(target, scratch->debug_address, 4, 2, buffer, 4) != ERROR_OK)
return ERROR_FAIL;
*value = buffer[0] |
(((uint64_t) buffer[1]) << 8) |
(((uint64_t) buffer[2]) << 16) |
(((uint64_t) buffer[3]) << 24) |
(((uint64_t) buffer[4]) << 32) |
(((uint64_t) buffer[5]) << 40) |
(((uint64_t) buffer[6]) << 48) |
(((uint64_t) buffer[7]) << 56);
}
break;
}
return ERROR_OK;
}
static int scratch_write64(struct target *target, scratch_mem_t *scratch,
uint64_t value)
{
switch (scratch->memory_space) {
case SPACE_DM_DATA:
dm_write(target, DM_DATA0 + scratch->debug_address, (uint32_t)value);
dm_write(target, DM_DATA1 + scratch->debug_address, (uint32_t)(value >> 32));
break;
case SPACE_DMI_PROGBUF:
dm_write(target, DM_PROGBUF0 + scratch->debug_address, (uint32_t)value);
dm_write(target, DM_PROGBUF1 + scratch->debug_address, (uint32_t)(value >> 32));
riscv013_invalidate_cached_progbuf(target);
break;
case SPACE_DMI_RAM:
{
uint8_t buffer[8] = {
value,
value >> 8,
value >> 16,
value >> 24,
value >> 32,
value >> 40,
value >> 48,
value >> 56
};
if (write_memory(target, scratch->debug_address, 4, 2, buffer) != ERROR_OK)
return ERROR_FAIL;
}
break;
}
return ERROR_OK;
}
/** Return register size in bits. */
static unsigned int register_size(struct target *target, enum gdb_regno number)
{
/* If reg_cache hasn't been initialized yet, make a guess. We need this for
* when this function is called during examine(). */
if (target->reg_cache)
return target->reg_cache->reg_list[number].size;
else
return riscv_xlen(target);
}
static bool has_sufficient_progbuf(struct target *target, unsigned size)
{
RISCV013_INFO(info);
RISCV_INFO(r);
return info->progbufsize + r->impebreak >= size;
}
/**
* This function is used to read a 64-bit value from a register by executing a
* program.
* The program stores a register to address located in S0.
* The caller should save S0.
*/
static int internal_register_read64_progbuf_scratch(struct target *target,
struct riscv_program *program, riscv_reg_t *value)
{
scratch_mem_t scratch;
if (scratch_reserve(target, &scratch, program, 8) != ERROR_OK)
return ERROR_FAIL;
if (register_write_abstract(target, GDB_REGNO_S0, scratch.hart_address)
!= ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
if (riscv_program_exec(program, target) != ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
int result = scratch_read64(target, &scratch, value);
scratch_release(target, &scratch);
return result;
}
static int fpr_read_progbuf(struct target *target, uint64_t *value,
enum gdb_regno number)
{
assert(target->state == TARGET_HALTED);
assert(number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31);
const unsigned int freg = number - GDB_REGNO_FPR0;
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_supports_extension(target, 'D') && riscv_xlen(target) < 64) {
/* There are no instructions to move all the bits from a
* register, so we need to use some scratch RAM.
*/
if (riscv_program_insert(&program, fsd(freg, S0, 0)) != ERROR_OK)
return ERROR_FAIL;
return internal_register_read64_progbuf_scratch(target, &program, value);
}
if (riscv_program_insert(&program,
riscv_supports_extension(target, 'D') ?
fmv_x_d(S0, freg) : fmv_x_w(S0, freg)) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_exec(&program, target) != ERROR_OK)
return ERROR_FAIL;
return register_read_abstract(target, value, GDB_REGNO_S0) != ERROR_OK;
}
static int csr_read_progbuf(struct target *target, uint64_t *value,
enum gdb_regno number)
{
assert(target->state == TARGET_HALTED);
assert(number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095);
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_csrr(&program, S0, number) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_exec(&program, target) != ERROR_OK)
return ERROR_FAIL;
return register_read_abstract(target, value, GDB_REGNO_S0) != ERROR_OK;
}
/**
* This function reads a register by writing a program to program buffer and
* executing it.
*/
static int register_read_progbuf(struct target *target, uint64_t *value,
enum gdb_regno number)
{
assert(target->state == TARGET_HALTED);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31)
return fpr_read_progbuf(target, value, number);
else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095)
return csr_read_progbuf(target, value, number);
LOG_TARGET_ERROR(target, "Unexpected read of %s via program buffer.",
gdb_regno_name(target, number));
return ERROR_FAIL;
}
/**
* This function is used to write a 64-bit value to a register by executing a
* program.
* The program loads a value from address located in S0 to a register.
* The caller should save S0.
*/
static int internal_register_write64_progbuf_scratch(struct target *target,
struct riscv_program *program, riscv_reg_t value)
{
scratch_mem_t scratch;
if (scratch_reserve(target, &scratch, program, 8) != ERROR_OK)
return ERROR_FAIL;
if (register_write_abstract(target, GDB_REGNO_S0, scratch.hart_address)
!= ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
if (scratch_write64(target, &scratch, value) != ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
int result = riscv_program_exec(program, target);
scratch_release(target, &scratch);
return result;
}
static int fpr_write_progbuf(struct target *target, enum gdb_regno number,
riscv_reg_t value)
{
assert(target->state == TARGET_HALTED);
assert(number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31);
const unsigned int freg = number - GDB_REGNO_FPR0;
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_supports_extension(target, 'D') && riscv_xlen(target) < 64) {
/* There are no instructions to move all the bits from a register,
* so we need to use some scratch RAM.
*/
if (riscv_program_insert(&program, fld(freg, S0, 0)) != ERROR_OK)
return ERROR_FAIL;
return internal_register_write64_progbuf_scratch(target, &program, value);
}
if (register_write_abstract(target, GDB_REGNO_S0, value) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_insert(&program,
riscv_supports_extension(target, 'D') ?
fmv_d_x(freg, S0) : fmv_w_x(freg, S0)) != ERROR_OK)
return ERROR_FAIL;
return riscv_program_exec(&program, target);
}
static int vtype_write_progbuf(struct target *target, riscv_reg_t value)
{
assert(target->state == TARGET_HALTED);
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_write_abstract(target, GDB_REGNO_S0, value) != ERROR_OK)
return ERROR_FAIL;
if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_insert(&program, csrr(S1, CSR_VL)) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_insert(&program, vsetvl(ZERO, S1, S0)) != ERROR_OK)
return ERROR_FAIL;
return riscv_program_exec(&program, target);
}
static int vl_write_progbuf(struct target *target, riscv_reg_t value)
{
assert(target->state == TARGET_HALTED);
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_write_abstract(target, GDB_REGNO_S0, value) != ERROR_OK)
return ERROR_FAIL;
if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_insert(&program, csrr(S1, CSR_VTYPE)) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_insert(&program, vsetvl(ZERO, S0, S1)) != ERROR_OK)
return ERROR_FAIL;
return riscv_program_exec(&program, target);
}
static int csr_write_progbuf(struct target *target, enum gdb_regno number,
riscv_reg_t value)
{
assert(target->state == TARGET_HALTED);
assert(number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095);
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_write_abstract(target, GDB_REGNO_S0, value) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_csrw(&program, S0, number) != ERROR_OK)
return ERROR_FAIL;
return riscv_program_exec(&program, target);
}
/**
* This function writes a register by writing a program to program buffer and
* executing it.
*/
static int register_write_progbuf(struct target *target, enum gdb_regno number,
riscv_reg_t value)
{
assert(target->state == TARGET_HALTED);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31)
return fpr_write_progbuf(target, number, value);
else if (number == GDB_REGNO_VTYPE)
return vtype_write_progbuf(target, value);
else if (number == GDB_REGNO_VL)
return vl_write_progbuf(target, value);
else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095)
return csr_write_progbuf(target, number, value);
LOG_TARGET_ERROR(target, "Unexpected write to %s via program buffer.",
gdb_regno_name(target, number));
return ERROR_FAIL;
}
/**
* Immediately write the new value to the requested register. This mechanism
* bypasses any caches.
*/
static int register_write_direct(struct target *target, enum gdb_regno number,
riscv_reg_t value)
{
LOG_TARGET_DEBUG(target, "Writing 0x%" PRIx64 " to %s", value,
gdb_regno_name(target, number));
if (target->state != TARGET_HALTED)
return register_write_abstract(target, number, value);
riscv_reg_t mstatus;
if (prep_for_register_access(target, &mstatus, number) != ERROR_OK)
return ERROR_FAIL;
int result = register_write_abstract(target, number, value);
if (result != ERROR_OK && target->state == TARGET_HALTED)
result = register_write_progbuf(target, number, value);
if (cleanup_after_register_access(target, mstatus, number) != ERROR_OK)
return ERROR_FAIL;
if (result == ERROR_OK)
LOG_TARGET_DEBUG(target, "%s <- 0x%" PRIx64, gdb_regno_name(target, number),
value);
return result;
}
/** Actually read registers from the target right now. */
static int register_read_direct(struct target *target, riscv_reg_t *value,
enum gdb_regno number)
{
LOG_TARGET_DEBUG(target, "Reading %s", gdb_regno_name(target, number));
if (target->state != TARGET_HALTED)
return register_read_abstract(target, value, number);
riscv_reg_t mstatus;
if (prep_for_register_access(target, &mstatus, number) != ERROR_OK)
return ERROR_FAIL;
int result = register_read_abstract(target, value, number);
if (result != ERROR_OK && target->state == TARGET_HALTED)
result = register_read_progbuf(target, value, number);
if (cleanup_after_register_access(target, mstatus, number) != ERROR_OK)
return ERROR_FAIL;
if (result == ERROR_OK)
LOG_TARGET_DEBUG(target, "%s = 0x%" PRIx64, gdb_regno_name(target, number),
*value);
return result;
}
static int wait_for_authbusy(struct target *target, uint32_t *dmstatus)
{
time_t start = time(NULL);
while (1) {
uint32_t value;
if (dmstatus_read(target, &value, false) != ERROR_OK)
return ERROR_FAIL;
if (dmstatus)
*dmstatus = value;
if (!get_field(value, DM_DMSTATUS_AUTHBUSY))
break;
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_TARGET_ERROR(target, "Timed out after %ds waiting for authbusy to go low (dmstatus=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec,
value);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int set_dcsr_ebreak(struct target *target, bool step)
{
LOG_TARGET_DEBUG(target, "Set dcsr.ebreak*");
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
RISCV_INFO(r);
RISCV013_INFO(info);
if ((info->nscratch >= 1) && has_sufficient_progbuf(target, 8)) {
uint64_t set_ebreak_bits = 0;
uint64_t clr_ebreak_bits = 0;
if (r->riscv_ebreakm)
set_ebreak_bits |= CSR_DCSR_EBREAKM;
else
clr_ebreak_bits |= CSR_DCSR_EBREAKM;
if (r->riscv_ebreaks && riscv_supports_extension(target, 'S'))
set_ebreak_bits |= CSR_DCSR_EBREAKS;
else
clr_ebreak_bits |= CSR_DCSR_EBREAKS;
if (r->riscv_ebreaku && riscv_supports_extension(target, 'U'))
set_ebreak_bits |= CSR_DCSR_EBREAKU;
else
clr_ebreak_bits |= CSR_DCSR_EBREAKU;
if (r->riscv_ebreaku && riscv_supports_extension(target, 'H'))
set_ebreak_bits |= CSR_DCSR_EBREAKVS;
else
clr_ebreak_bits |= CSR_DCSR_EBREAKVS;
if (r->riscv_ebreaku && riscv_supports_extension(target, 'H'))
set_ebreak_bits |= CSR_DCSR_EBREAKVU;
else
clr_ebreak_bits |= CSR_DCSR_EBREAKVU;
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, csrw(S0, CSR_DSCRATCH0));
riscv_program_insert(&program, lui(S0, set_ebreak_bits));
riscv_program_insert(&program, csrrs(ZERO, S0, CSR_DCSR));
riscv_program_insert(&program, lui(S0, clr_ebreak_bits));
riscv_program_insert(&program, csrrc(ZERO, S0, CSR_DCSR));
if (step)
riscv_program_insert(&program, csrsi(CSR_DCSR, 0x4));
else
riscv_program_insert(&program, csrci(CSR_DCSR, 0x4));
riscv_program_insert(&program, csrr(S0, CSR_DSCRATCH0));
if (riscv_program_exec(&program, target) != ERROR_OK)
return ERROR_FAIL;
} else {
riscv_reg_t original_dcsr, dcsr;
/* We want to twiddle some bits in the debug CSR so debugging works. */
if (riscv_get_register(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
original_dcsr = dcsr;
dcsr = set_field(dcsr, CSR_DCSR_STEP, step);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKM, r->riscv_ebreakm);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKS, r->riscv_ebreaks && riscv_supports_extension(target, 'S'));
dcsr = set_field(dcsr, CSR_DCSR_EBREAKU, r->riscv_ebreaku && riscv_supports_extension(target, 'U'));
dcsr = set_field(dcsr, CSR_DCSR_EBREAKVS, r->riscv_ebreaku && riscv_supports_extension(target, 'H'));
dcsr = set_field(dcsr, CSR_DCSR_EBREAKVU, r->riscv_ebreaku && riscv_supports_extension(target, 'H'));
if (dcsr != original_dcsr &&
riscv_set_register(target, GDB_REGNO_DCSR, dcsr) != ERROR_OK)
return ERROR_FAIL;
}
info->dcsr_ebreak_is_set = true;
return ERROR_OK;
}
static int halt_set_dcsr_ebreak(struct target *target)
{
LOG_TARGET_DEBUG(target, "Halt to set DCSR.ebreak*");
/* Remove this hart from the halt group. This won't work on all targets
* because the debug spec allows halt groups to be hard-coded, but I
* haven't actually encountered those in the wild yet.
*
* There is a possible race condition when another hart halts, and
* this one is expected to also halt because it's supposed to be in the
* same halt group. Or when this hart is halted when that happens.
*
* A better solution might be to leave the halt groups alone, and track
* why we're halting when a halt occurs. When there are halt groups,
* that leads to extra halting if not all harts need to set dcsr.ebreak
* at the same time. It also makes for more complicated code.
*
* The perfect solution would be Quick Access, but I'm not aware of any
* hardware that implements it.
*
* We don't need a perfect solution, because we only get here when a
* hart spontaneously resets, or when it powers down and back up again.
* Those are both relatively rare. (At least I hope so. Maybe some
* design just powers each hart down for 90ms out of every 100ms)
*/
struct target_list *entry;
struct list_head *targets;
if (target->smp) {
targets = target->smp_targets;
foreach_smp_target(entry, targets) {
struct target *t = entry->target;
if (riscv013_halt_prep(t) != ERROR_OK)
return ERROR_FAIL;
}
}
int result = ERROR_OK;
int halt_result = ERROR_OK;
int resume_result = ERROR_OK;
halt_result = riscv013_halt_go(target);
if (halt_result == ERROR_OK)
if (riscv013_on_step_or_resume(target, true, false) == ERROR_OK) {
resume_result = riscv013_step_or_resume_current_hart(target, false);
if (resume_result == ERROR_OK) {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
} else if (resume_result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
target->state = TARGET_UNAVAILABLE;
else
result = ERROR_FAIL;
} else
result = ERROR_FAIL;
else if (halt_result != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
result = ERROR_FAIL;
return result;
}
/*** OpenOCD target functions. ***/
static void deinit_target(struct target *target)
{
LOG_TARGET_DEBUG(target, "Deinitializing target.");
struct riscv_info *info = target->arch_info;
if (!info)
return;
riscv013_dm_free(target);
free(info->version_specific);
/* TODO: free register arch_info */
info->version_specific = NULL;
}
static int set_group(struct target *target, bool *supported, unsigned int group,
grouptype_t grouptype)
{
uint32_t write_val = DM_DMCS2_HGWRITE;
assert(group <= 31);
write_val = set_field(write_val, DM_DMCS2_GROUP, group);
write_val = set_field(write_val, DM_DMCS2_GROUPTYPE, (grouptype == HALT_GROUP) ? 0 : 1);
if (dm_write(target, DM_DMCS2, write_val) != ERROR_OK)
return ERROR_FAIL;
uint32_t read_val;
if (dm_read(target, &read_val, DM_DMCS2) != ERROR_OK)
return ERROR_FAIL;
if (supported)
*supported = (get_field(read_val, DM_DMCS2_GROUP) == group);
return ERROR_OK;
}
static int wait_for_idle_if_needed(struct target *target)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
if (!dm->abstract_cmd_maybe_busy)
/* The previous abstract command ended correctly
* and busy was cleared. No need to do anything. */
return ERROR_OK;
/* The previous abstract command timed out and abstractcs.busy
* may have remained set. Wait for it to get cleared. */
uint32_t abstractcs;
int result = wait_for_idle(target, &abstractcs);
if (result != ERROR_OK)
return result;
LOG_DEBUG_REG(target, DM_ABSTRACTCS, abstractcs);
return ERROR_OK;
}
static int examine_dm(struct target *target)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
if (dm->was_examined)
return ERROR_OK;
int result = ERROR_FAIL;
uint32_t dmcontrol;
if (!dm->was_reset) {
/* First, the Debug Module is reset. However,
* `dmcontrol.hartsel` should be read first, in order not to
* change it when requesting the reset, since changing it
* without checking that `abstractcs.busy` is low is
* prohibited.
*/
result = dm_read(target, &dmcontrol, DM_DMCONTROL);
if (result != ERROR_OK)
return result;
/* Initiate the reset (`dmcontrol.dmactive == 0`) leaving
* `dmcontrol.hartsel` the same.
*/
dmcontrol = (dmcontrol & DM_DMCONTROL_HARTSELLO) |
(dmcontrol & DM_DMCONTROL_HARTSELHI);
result = dm_write(target, DM_DMCONTROL, dmcontrol);
if (result != ERROR_OK)
return result;
/* FIXME: We should poll dmcontrol until dmactive becomes 0
* See https://github.com/riscv/riscv-debug-spec/pull/566
*/
} else {
/* The DM was already reset when examining a different hart.
* No need to reset it again. But for safety, assume that an abstract
* command might be in progress at the moment.
*/
dm->abstract_cmd_maybe_busy = true;
}
dm->current_hartid = HART_INDEX_UNKNOWN;
result = dm_write(target, DM_DMCONTROL, DM_DMCONTROL_HARTSELLO |
DM_DMCONTROL_HARTSELHI | DM_DMCONTROL_DMACTIVE |
DM_DMCONTROL_HASEL);
if (result != ERROR_OK)
return result;
result = dm_read(target, &dmcontrol, DM_DMCONTROL);
if (result != ERROR_OK)
return result;
/* FIXME: We should poll for dmactive==1 as the debug module
* may need some time to actually activate.
* See https://github.com/riscv/riscv-debug-spec/pull/566
*/
if (!get_field(dmcontrol, DM_DMCONTROL_DMACTIVE)) {
LOG_TARGET_ERROR(target, "Debug Module did not become active.");
LOG_DEBUG_REG(target, DM_DMCONTROL, dmcontrol);
return ERROR_FAIL;
}
/* The DM has been reset and has successfully came out of the reset (dmactive=1):
* - either the reset has been performed during this call to examine_dm() (above);
* - or the reset had already happened in an earlier call of examine_dm() when
* examining a different hart.
*/
dm->was_reset = true;
dm->hasel_supported = get_field(dmcontrol, DM_DMCONTROL_HASEL);
uint32_t hartsel =
(get_field(dmcontrol, DM_DMCONTROL_HARTSELHI) <<
DM_DMCONTROL_HARTSELLO_LENGTH) |
get_field(dmcontrol, DM_DMCONTROL_HARTSELLO);
/* Before doing anything else we must first enumerate the harts. */
const int max_hart_count = MIN(RISCV_MAX_HARTS, hartsel + 1);
if (dm->hart_count < 0) {
for (int i = 0; i < max_hart_count; ++i) {
/* TODO: This is extremely similar to
* riscv013_get_hart_state().
* It would be best to reuse the code.
*/
result = dm013_select_hart(target, i);
if (result != ERROR_OK)
return result;
uint32_t s;
result = dmstatus_read(target, &s, /*authenticated*/ true);
if (result != ERROR_OK)
return result;
if (get_field(s, DM_DMSTATUS_ANYNONEXISTENT))
break;
dm->hart_count = i + 1;
if (get_field(s, DM_DMSTATUS_ANYHAVERESET)) {
dmcontrol = DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_ACKHAVERESET;
/* If `abstractcs.busy` is set, debugger should not
* change `hartsel`.
*/
result = wait_for_idle_if_needed(target);
if (result != ERROR_OK)
return result;
dmcontrol = set_dmcontrol_hartsel(dmcontrol, i);
result = dm_write(target, DM_DMCONTROL, dmcontrol);
if (result != ERROR_OK)
return result;
}
}
LOG_TARGET_DEBUG(target, "Detected %d harts.", dm->hart_count);
}
if (dm->hart_count <= 0) {
LOG_TARGET_ERROR(target, "No harts found!");
return ERROR_FAIL;
}
dm->was_examined = true;
return ERROR_OK;
}
static int examine(struct target *target)
{
/* We reset target state in case if something goes wrong during examine:
* DTM/DM scans could fail or hart may fail to halt. */
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
/* Don't need to select dbus, since the first thing we do is read dtmcontrol. */
LOG_TARGET_DEBUG(target, "dbgbase=0x%x", target->dbgbase);
uint32_t dtmcontrol;
if (dtmcontrol_scan(target, 0, &dtmcontrol) != ERROR_OK || dtmcontrol == 0) {
LOG_TARGET_ERROR(target, "Could not scan dtmcontrol. Check JTAG connectivity/board power.");
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "dtmcontrol=0x%x", dtmcontrol);
LOG_DEBUG_REG(target, DTM_DTMCS, dtmcontrol);
if (get_field(dtmcontrol, DTM_DTMCS_VERSION) != 1) {
LOG_TARGET_ERROR(target, "Unsupported DTM version %" PRIu32 ". (dtmcontrol=0x%" PRIx32 ")",
get_field32(dtmcontrol, DTM_DTMCS_VERSION), dtmcontrol);
return ERROR_FAIL;
}
riscv013_info_t *info = get_info(target);
info->index = target->coreid;
info->abits = get_field(dtmcontrol, DTM_DTMCS_ABITS);
info->dtmcs_idle = get_field(dtmcontrol, DTM_DTMCS_IDLE);
if (!check_dbgbase_exists(target)) {
LOG_TARGET_ERROR(target, "Could not find debug module with DMI base address (dbgbase) = 0x%x", target->dbgbase);
return ERROR_FAIL;
}
int result = examine_dm(target);
if (result != ERROR_OK)
return result;
result = dm013_select_target(target);
if (result != ERROR_OK)
return result;
/* We're here because we're uncertain about the state of the target. That
* includes our progbuf cache. */
riscv013_invalidate_cached_progbuf(target);
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, false) != ERROR_OK)
return ERROR_FAIL;
LOG_TARGET_DEBUG(target, "dmstatus: 0x%08x", dmstatus);
int dmstatus_version = get_field(dmstatus, DM_DMSTATUS_VERSION);
if (dmstatus_version != 2 && dmstatus_version != 3) {
/* Error was already printed out in dmstatus_read(). */
return ERROR_FAIL;
}
uint32_t hartinfo;
if (dm_read(target, &hartinfo, DM_HARTINFO) != ERROR_OK)
return ERROR_FAIL;
info->datasize = get_field(hartinfo, DM_HARTINFO_DATASIZE);
info->dataaccess = get_field(hartinfo, DM_HARTINFO_DATAACCESS);
info->dataaddr = get_field(hartinfo, DM_HARTINFO_DATAADDR);
info->nscratch = get_field(hartinfo, DM_HARTINFO_NSCRATCH);
if (!get_field(dmstatus, DM_DMSTATUS_AUTHENTICATED)) {
LOG_TARGET_ERROR(target, "Debugger is not authenticated to target Debug Module. "
"(dmstatus=0x%x). Use `riscv authdata_read` and "
"`riscv authdata_write` commands to authenticate.", dmstatus);
return ERROR_FAIL;
}
if (dm_read(target, &info->sbcs, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
/* Check that abstract data registers are accessible. */
uint32_t abstractcs;
if (dm_read(target, &abstractcs, DM_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->datacount = get_field(abstractcs, DM_ABSTRACTCS_DATACOUNT);
info->progbufsize = get_field(abstractcs, DM_ABSTRACTCS_PROGBUFSIZE);
RISCV_INFO(r);
r->impebreak = get_field(dmstatus, DM_DMSTATUS_IMPEBREAK);
/* Don't call any riscv_* functions until after we've counted the number of
* cores and initialized registers. */
enum riscv_hart_state riscv_state_at_examine_start;
if (riscv_get_hart_state(target, &riscv_state_at_examine_start) != ERROR_OK)
return ERROR_FAIL;
/* Skip full examination and reporting of hart if it is currently unavailable */
const bool hart_unavailable_at_examine_start = riscv_state_at_examine_start == RISCV_STATE_UNAVAILABLE;
if (hart_unavailable_at_examine_start) {
LOG_TARGET_DEBUG(target, "Did not fully examine hart %d as it was currently unavailable, deferring examine.", info->index);
target->state = TARGET_UNAVAILABLE;
target->defer_examine = true;
return ERROR_OK;
}
const bool hart_halted_at_examine_start = riscv_state_at_examine_start == RISCV_STATE_HALTED;
if (!hart_halted_at_examine_start) {
if (riscv013_halt_target(target) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Fatal: Hart %d failed to halt during %s",
info->index, __func__);
return ERROR_FAIL;
}
}
LOG_TARGET_INFO(target, "datacount=%d progbufsize=%d",
info->datacount, info->progbufsize);
if (!has_sufficient_progbuf(target, 2)) {
LOG_TARGET_WARNING(target, "We won't be able to execute fence instructions on this "
"target. Memory may not always appear consistent. "
"(progbufsize=%d, impebreak=%d)", info->progbufsize,
r->impebreak);
}
if (info->progbufsize < 4 && riscv_enable_virtual) {
LOG_TARGET_ERROR(target, "set_enable_virtual is not available on this target. It "
"requires a program buffer size of at least 4. (progbufsize=%d) "
"Use `riscv set_enable_virtual off` to continue."
, info->progbufsize);
}
target->state = TARGET_HALTED;
target->debug_reason = hart_halted_at_examine_start ? DBG_REASON_UNDEFINED : DBG_REASON_DBGRQ;
/* Without knowing anything else we can at least mess with the
* program buffer. */
r->progbuf_size = info->progbufsize;
result = register_read_abstract_with_size(target, NULL, GDB_REGNO_S0, 64);
if (result == ERROR_OK)
r->xlen = 64;
else
r->xlen = 32;
/* Save s0 and s1. The register cache hasn't be initialized yet so we
* need to take care of this manually. */
uint64_t s0, s1;
if (register_read_abstract(target, &s0, GDB_REGNO_S0) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Fatal: Failed to read s0.");
return ERROR_FAIL;
}
if (register_read_abstract(target, &s1, GDB_REGNO_S1) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Fatal: Failed to read s1.");
return ERROR_FAIL;
}
if (register_read_direct(target, &r->misa, GDB_REGNO_MISA)) {
LOG_TARGET_ERROR(target, "Fatal: Failed to read MISA.");
return ERROR_FAIL;
}
uint64_t value;
if (register_read_direct(target, &value, GDB_REGNO_VLENB) != ERROR_OK) {
if (riscv_supports_extension(target, 'V'))
LOG_TARGET_WARNING(target, "Couldn't read vlenb; vector register access won't work.");
r->vlenb = 0;
} else {
r->vlenb = value;
LOG_TARGET_INFO(target, "Vector support with vlenb=%d", r->vlenb);
}
if (register_read_direct(target, &value, GDB_REGNO_MTOPI) == ERROR_OK) {
r->mtopi_readable = true;
if (register_read_direct(target, &value, GDB_REGNO_MTOPEI) == ERROR_OK) {
LOG_TARGET_INFO(target, "S?aia detected with IMSIC");
r->mtopei_readable = true;
} else {
r->mtopei_readable = false;
LOG_TARGET_INFO(target, "S?aia detected without IMSIC");
}
} else {
r->mtopi_readable = false;
}
/* Display this as early as possible to help people who are using
* really slow simulators. */
LOG_TARGET_DEBUG(target, " XLEN=%d, misa=0x%" PRIx64, r->xlen, r->misa);
/* Restore s0 and s1. */
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Fatal: Failed to write back s0.");
return ERROR_FAIL;
}
if (register_write_direct(target, GDB_REGNO_S1, s1) != ERROR_OK) {
LOG_TARGET_ERROR(target, "Fatal: Failed to write back s1.");
return ERROR_FAIL;
}
/* Now init registers based on what we discovered. */
if (riscv_init_registers(target) != ERROR_OK)
return ERROR_FAIL;
if (set_dcsr_ebreak(target, false) != ERROR_OK)
return ERROR_FAIL;
if (riscv_state_at_examine_start == RISCV_STATE_RUNNING) {
riscv013_step_or_resume_current_hart(target, false);
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
} else if (riscv_state_at_examine_start == RISCV_STATE_HALTED) {
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_UNDEFINED;
}
if (target->smp) {
if (set_group(target, &info->haltgroup_supported, target->smp, HALT_GROUP) != ERROR_OK)
return ERROR_FAIL;
if (info->haltgroup_supported)
LOG_TARGET_INFO(target, "Core %d made part of halt group %d.", info->index,
target->smp);
else
LOG_TARGET_INFO(target, "Core %d could not be made part of halt group %d.",
info->index, target->smp);
}
/* Some regression suites rely on seeing 'Examined RISC-V core' to know
* when they can connect with gdb/telnet.
* We will need to update those suites if we want to change that text. */
LOG_TARGET_INFO(target, "Examined RISC-V core");
LOG_TARGET_INFO(target, " XLEN=%d, misa=0x%" PRIx64, r->xlen, r->misa);
return ERROR_OK;
}
static int riscv013_authdata_read(struct target *target, uint32_t *value, unsigned int index)
{
if (index > 0) {
LOG_TARGET_ERROR(target, "Spec 0.13 only has a single authdata register.");
return ERROR_FAIL;
}
if (wait_for_authbusy(target, NULL) != ERROR_OK)
return ERROR_FAIL;
return dm_read(target, value, DM_AUTHDATA);
}
static int riscv013_authdata_write(struct target *target, uint32_t value, unsigned int index)
{
if (index > 0) {
LOG_TARGET_ERROR(target, "Spec 0.13 only has a single authdata register.");
return ERROR_FAIL;
}
uint32_t before, after;
if (wait_for_authbusy(target, &before) != ERROR_OK)
return ERROR_FAIL;
dm_write(target, DM_AUTHDATA, value);
if (wait_for_authbusy(target, &after) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(before, DM_DMSTATUS_AUTHENTICATED) &&
get_field(after, DM_DMSTATUS_AUTHENTICATED)) {
LOG_TARGET_INFO(target, "authdata_write resulted in successful authentication");
int result = ERROR_OK;
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
target_list_t *entry;
list_for_each_entry(entry, &dm->target_list, list) {
if (target_examine_one(entry->target) != ERROR_OK)
result = ERROR_FAIL;
}
return result;
}
return ERROR_OK;
}
/* Try to find out the widest memory access size depending on the selected memory access methods. */
static unsigned riscv013_data_bits(struct target *target)
{
RISCV013_INFO(info);
RISCV_INFO(r);
for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
int method = r->mem_access_methods[i];
if (method == RISCV_MEM_ACCESS_PROGBUF) {
if (has_sufficient_progbuf(target, 3))
return riscv_xlen(target);
} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
if (get_field(info->sbcs, DM_SBCS_SBACCESS128))
return 128;
if (get_field(info->sbcs, DM_SBCS_SBACCESS64))
return 64;
if (get_field(info->sbcs, DM_SBCS_SBACCESS32))
return 32;
if (get_field(info->sbcs, DM_SBCS_SBACCESS16))
return 16;
if (get_field(info->sbcs, DM_SBCS_SBACCESS8))
return 8;
} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
/* TODO: Once there is a spec for discovering abstract commands, we can
* take those into account as well. For now we assume abstract commands
* support XLEN-wide accesses. */
return riscv_xlen(target);
} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
/* No further mem access method to try. */
break;
}
LOG_TARGET_ERROR(target, "Unable to determine supported data bits on this target. Assuming 32 bits.");
return 32;
}
static COMMAND_HELPER(riscv013_print_info, struct target *target)
{
RISCV013_INFO(info);
/* Abstract description. */
riscv_print_info_line(CMD, "target", "memory.read_while_running8", get_field(info->sbcs, DM_SBCS_SBACCESS8));
riscv_print_info_line(CMD, "target", "memory.write_while_running8", get_field(info->sbcs, DM_SBCS_SBACCESS8));
riscv_print_info_line(CMD, "target", "memory.read_while_running16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
riscv_print_info_line(CMD, "target", "memory.write_while_running16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
riscv_print_info_line(CMD, "target", "memory.read_while_running32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
riscv_print_info_line(CMD, "target", "memory.write_while_running32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
riscv_print_info_line(CMD, "target", "memory.read_while_running64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
riscv_print_info_line(CMD, "target", "memory.write_while_running64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
riscv_print_info_line(CMD, "target", "memory.read_while_running128", get_field(info->sbcs, DM_SBCS_SBACCESS128));
riscv_print_info_line(CMD, "target", "memory.write_while_running128", get_field(info->sbcs, DM_SBCS_SBACCESS128));
/* Lower level description. */
riscv_print_info_line(CMD, "dm", "abits", info->abits);
riscv_print_info_line(CMD, "dm", "progbufsize", info->progbufsize);
riscv_print_info_line(CMD, "dm", "sbversion", get_field(info->sbcs, DM_SBCS_SBVERSION));
riscv_print_info_line(CMD, "dm", "sbasize", get_field(info->sbcs, DM_SBCS_SBASIZE));
riscv_print_info_line(CMD, "dm", "sbaccess128", get_field(info->sbcs, DM_SBCS_SBACCESS128));
riscv_print_info_line(CMD, "dm", "sbaccess64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
riscv_print_info_line(CMD, "dm", "sbaccess32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
riscv_print_info_line(CMD, "dm", "sbaccess16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
riscv_print_info_line(CMD, "dm", "sbaccess8", get_field(info->sbcs, DM_SBCS_SBACCESS8));
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, false) == ERROR_OK)
riscv_print_info_line(CMD, "dm", "authenticated", get_field(dmstatus, DM_DMSTATUS_AUTHENTICATED));
return 0;
}
static int try_set_vsew(struct target *target, unsigned int *debug_vsew)
{
RISCV_INFO(r);
unsigned int encoded_vsew =
(riscv_xlen(target) == 64 && r->vsew64_supported != YNM_NO) ? 3 : 2;
/* Set standard element width to match XLEN, for vmv instruction to move
* the least significant bits into a GPR.
*/
if (riscv_write_register(target, GDB_REGNO_VTYPE, encoded_vsew << 3) != ERROR_OK)
return ERROR_FAIL;
if (encoded_vsew == 3 && r->vsew64_supported == YNM_MAYBE) {
/* Check that it's supported. */
riscv_reg_t vtype;
if (riscv_get_register(target, &vtype, GDB_REGNO_VTYPE) != ERROR_OK)
return ERROR_FAIL;
if (vtype >> (riscv_xlen(target) - 1)) {
r->vsew64_supported = YNM_NO;
/* Try again. */
return try_set_vsew(target, debug_vsew);
}
r->vsew64_supported = YNM_YES;
}
*debug_vsew = encoded_vsew == 3 ? 64 : 32;
return ERROR_OK;
}
static int prep_for_vector_access(struct target *target,
riscv_reg_t *orig_mstatus, riscv_reg_t *orig_vtype, riscv_reg_t *orig_vl,
unsigned int *debug_vl, unsigned int *debug_vsew)
{
assert(orig_mstatus);
assert(orig_vtype);
assert(orig_vl);
assert(debug_vl);
assert(debug_vsew);
RISCV_INFO(r);
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target,
"Unable to access vector register: target not halted");
return ERROR_FAIL;
}
if (prep_for_register_access(target, orig_mstatus, GDB_REGNO_VL) != ERROR_OK)
return ERROR_FAIL;
/* Save vtype and vl. */
if (riscv_get_register(target, orig_vtype, GDB_REGNO_VTYPE) != ERROR_OK)
return ERROR_FAIL;
if (riscv_get_register(target, orig_vl, GDB_REGNO_VL) != ERROR_OK)
return ERROR_FAIL;
if (try_set_vsew(target, debug_vsew) != ERROR_OK)
return ERROR_FAIL;
/* Set the number of elements to be updated with results from a vector
* instruction, for the vslide1down instruction.
* Set it so the entire V register is updated. */
*debug_vl = DIV_ROUND_UP(r->vlenb * 8, *debug_vsew);
return riscv_write_register(target, GDB_REGNO_VL, *debug_vl);
}
static int cleanup_after_vector_access(struct target *target,
riscv_reg_t mstatus, riscv_reg_t vtype, riscv_reg_t vl)
{
/* Restore vtype and vl. */
if (riscv_write_register(target, GDB_REGNO_VTYPE, vtype) != ERROR_OK)
return ERROR_FAIL;
if (riscv_write_register(target, GDB_REGNO_VL, vl) != ERROR_OK)
return ERROR_FAIL;
return cleanup_after_register_access(target, mstatus, GDB_REGNO_VL);
}
static int riscv013_get_register_buf(struct target *target,
uint8_t *value, enum gdb_regno regno)
{
assert(regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31);
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
riscv_reg_t mstatus, vtype, vl;
unsigned int debug_vl, debug_vsew;
if (prep_for_vector_access(target, &mstatus, &vtype, &vl,
&debug_vl, &debug_vsew) != ERROR_OK)
return ERROR_FAIL;
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
unsigned int vnum = regno - GDB_REGNO_V0;
int result = ERROR_OK;
for (unsigned int i = 0; i < debug_vl; i++) {
/* Can't reuse the same program because riscv_program_exec() adds
* ebreak to the end every time. */
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, vmv_x_s(S0, vnum));
riscv_program_insert(&program, vslide1down_vx(vnum, vnum, S0, true));
/* Executing the program might result in an exception if there is some
* issue with the vector implementation/instructions we're using. If that
* happens, attempt to restore as usual. We may have clobbered the
* vector register we tried to read already.
* For other failures, we just return error because things are probably
* so messed up that attempting to restore isn't going to help. */
result = riscv_program_exec(&program, target);
if (result == ERROR_OK) {
riscv_reg_t v;
if (register_read_direct(target, &v, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
buf_set_u64(value, debug_vsew * i, debug_vsew, v);
} else {
LOG_TARGET_ERROR(target,
"Failed to execute vmv/vslide1down while reading %s",
gdb_regno_name(target, regno));
break;
}
}
if (cleanup_after_vector_access(target, mstatus, vtype, vl) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static int riscv013_set_register_buf(struct target *target,
enum gdb_regno regno, const uint8_t *value)
{
assert(regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31);
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
riscv_reg_t mstatus, vtype, vl;
unsigned int debug_vl, debug_vsew;
if (prep_for_vector_access(target, &mstatus, &vtype, &vl,
&debug_vl, &debug_vsew) != ERROR_OK)
return ERROR_FAIL;
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
unsigned int vnum = regno - GDB_REGNO_V0;
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, vslide1down_vx(vnum, vnum, S0, true));
int result = ERROR_OK;
for (unsigned int i = 0; i < debug_vl; i++) {
if (register_write_direct(target, GDB_REGNO_S0,
buf_get_u64(value, debug_vsew * i, debug_vsew)) != ERROR_OK)
return ERROR_FAIL;
result = riscv_program_exec(&program, target);
if (result != ERROR_OK)
break;
}
if (cleanup_after_vector_access(target, mstatus, vtype, vl) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static uint32_t sb_sbaccess(unsigned int size_bytes)
{
switch (size_bytes) {
case 1:
return set_field(0, DM_SBCS_SBACCESS, 0);
case 2:
return set_field(0, DM_SBCS_SBACCESS, 1);
case 4:
return set_field(0, DM_SBCS_SBACCESS, 2);
case 8:
return set_field(0, DM_SBCS_SBACCESS, 3);
case 16:
return set_field(0, DM_SBCS_SBACCESS, 4);
}
assert(0);
return 0;
}
static int sb_write_address(struct target *target, target_addr_t address,
bool ensure_success)
{
RISCV013_INFO(info);
unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
/* There currently is no support for >64-bit addresses in OpenOCD. */
if (sbasize > 96)
dm_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS3, 0, false, false);
if (sbasize > 64)
dm_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS2, 0, false, false);
if (sbasize > 32)
dm_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS1,
(uint32_t)(address >> 32), false, false);
return dm_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS0,
(uint32_t)address, false, ensure_success);
}
static int batch_run(struct target *target, struct riscv_batch *batch)
{
RISCV_INFO(r);
const int result = riscv_batch_run(batch, /*resets_delays*/ r->reset_delays_wait >= 0,
r->reset_delays_wait);
/* TODO: `finished_scans` should be the number of scans that have
* finished, not the number of scans scheduled. */
const size_t finished_scans = batch->used_scans;
decrement_reset_delays_counter(target, finished_scans);
return result;
}
static int sba_supports_access(struct target *target, unsigned int size_bytes)
{
RISCV013_INFO(info);
switch (size_bytes) {
case 1:
return get_field(info->sbcs, DM_SBCS_SBACCESS8);
case 2:
return get_field(info->sbcs, DM_SBCS_SBACCESS16);
case 4:
return get_field(info->sbcs, DM_SBCS_SBACCESS32);
case 8:
return get_field(info->sbcs, DM_SBCS_SBACCESS64);
case 16:
return get_field(info->sbcs, DM_SBCS_SBACCESS128);
default:
return 0;
}
}
static int sample_memory_bus_v1(struct target *target,
struct riscv_sample_buf *buf,
const riscv_sample_config_t *config,
int64_t until_ms)
{
RISCV013_INFO(info);
unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
if (sbasize > 64) {
LOG_TARGET_ERROR(target, "Memory sampling is only implemented for sbasize <= 64.");
return ERROR_NOT_IMPLEMENTED;
}
if (get_field(info->sbcs, DM_SBCS_SBVERSION) != 1) {
LOG_TARGET_ERROR(target, "Memory sampling is only implemented for SBA version 1.");
return ERROR_NOT_IMPLEMENTED;
}
uint32_t sbcs = 0;
uint32_t sbcs_valid = false;
uint32_t sbaddress0 = 0;
bool sbaddress0_valid = false;
uint32_t sbaddress1 = 0;
bool sbaddress1_valid = false;
/* How often to read each value in a batch. */
const unsigned int repeat = 5;
unsigned int enabled_count = 0;
for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
if (config->bucket[i].enabled)
enabled_count++;
}
while (timeval_ms() < until_ms) {
/*
* batch_run() adds to the batch, so we can't simply reuse the same
* batch over and over. So we create a new one every time through the
* loop.
*/
struct riscv_batch *batch = riscv_batch_alloc(
target, 1 + enabled_count * 5 * repeat,
info->dmi_busy_delay + info->bus_master_read_delay);
if (!batch)
return ERROR_FAIL;
unsigned int result_bytes = 0;
for (unsigned int n = 0; n < repeat; n++) {
for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
if (config->bucket[i].enabled) {
if (!sba_supports_access(target, config->bucket[i].size_bytes)) {
LOG_TARGET_ERROR(target, "Hardware does not support SBA access for %d-byte memory sampling.",
config->bucket[i].size_bytes);
return ERROR_NOT_IMPLEMENTED;
}
uint32_t sbcs_write = DM_SBCS_SBREADONADDR;
if (enabled_count == 1)
sbcs_write |= DM_SBCS_SBREADONDATA;
sbcs_write |= sb_sbaccess(config->bucket[i].size_bytes);
if (!sbcs_valid || sbcs_write != sbcs) {
riscv_batch_add_dm_write(batch, DM_SBCS, sbcs_write, true);
sbcs = sbcs_write;
sbcs_valid = true;
}
if (sbasize > 32 &&
(!sbaddress1_valid ||
sbaddress1 != config->bucket[i].address >> 32)) {
sbaddress1 = config->bucket[i].address >> 32;
riscv_batch_add_dm_write(batch, DM_SBADDRESS1, sbaddress1, true);
sbaddress1_valid = true;
}
if (!sbaddress0_valid ||
sbaddress0 != (config->bucket[i].address & 0xffffffff)) {
sbaddress0 = config->bucket[i].address;
riscv_batch_add_dm_write(batch, DM_SBADDRESS0, sbaddress0, true);
sbaddress0_valid = true;
}
if (config->bucket[i].size_bytes > 4)
riscv_batch_add_dm_read(batch, DM_SBDATA1);
riscv_batch_add_dm_read(batch, DM_SBDATA0);
result_bytes += 1 + config->bucket[i].size_bytes;
}
}
}
if (buf->used + result_bytes >= buf->size) {
riscv_batch_free(batch);
break;
}
size_t sbcs_read_index = riscv_batch_add_dm_read(batch, DM_SBCS);
int result = batch_run(target, batch);
if (result != ERROR_OK) {
riscv_batch_free(batch);
return result;
}
/* Discard the batch when we encounter a busy state on the DMI level.
* It's too much hassle to try to recover partial data. We'll try again
* with a larger DMI delay. */
unsigned int sbcs_read_op = riscv_batch_get_dmi_read_op(batch, sbcs_read_index);
if (sbcs_read_op == DTM_DMI_OP_BUSY) {
increase_dmi_busy_delay(target);
continue;
}
uint32_t sbcs_read = riscv_batch_get_dmi_read_data(batch, sbcs_read_index);
if (get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
/* Discard this batch when we encounter "busy error" state on the System Bus level.
* We'll try next time with a larger System Bus read delay. */
info->bus_master_read_delay += info->bus_master_read_delay / 10 + 1;
dm_write(target, DM_SBCS, sbcs_read | DM_SBCS_SBBUSYERROR | DM_SBCS_SBERROR);
riscv_batch_free(batch);
continue;
}
if (get_field(sbcs_read, DM_SBCS_SBERROR)) {
/* The memory we're sampling was unreadable, somehow. Give up. */
dm_write(target, DM_SBCS, DM_SBCS_SBBUSYERROR | DM_SBCS_SBERROR);
riscv_batch_free(batch);
return ERROR_FAIL;
}
unsigned int read_count = 0;
for (unsigned int n = 0; n < repeat; n++) {
for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
if (config->bucket[i].enabled) {
assert(i < RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE);
uint64_t value = 0;
if (config->bucket[i].size_bytes > 4)
value = ((uint64_t)riscv_batch_get_dmi_read_data(batch, read_count++)) << 32;
value |= riscv_batch_get_dmi_read_data(batch, read_count++);
buf->buf[buf->used] = i;
buf_set_u64(buf->buf + buf->used + 1, 0, config->bucket[i].size_bytes * 8, value);
buf->used += 1 + config->bucket[i].size_bytes;
}
}
}
riscv_batch_free(batch);
}
return ERROR_OK;
}
static int sample_memory(struct target *target,
struct riscv_sample_buf *buf,
riscv_sample_config_t *config,
int64_t until_ms)
{
if (!config->enabled)
return ERROR_OK;
return sample_memory_bus_v1(target, buf, config, until_ms);
}
static int riscv013_get_hart_state(struct target *target, enum riscv_hart_state *riscv_state)
{
RISCV013_INFO(info);
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
if (get_field(dmstatus, DM_DMSTATUS_ANYHAVERESET)) {
LOG_TARGET_DEBUG(target, "Hart unexpectedly reset!");
info->dcsr_ebreak_is_set = false;
/* TODO: Can we make this more obvious to eg. a gdb user? */
uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE |
DM_DMCONTROL_ACKHAVERESET;
dmcontrol = set_dmcontrol_hartsel(dmcontrol, info->index);
/* If we had been halted when we reset, request another halt. If we
* ended up running out of reset, then the user will (hopefully) get a
* message that a reset happened, that the target is running, and then
* that it is halted again once the request goes through.
*/
if (target->state == TARGET_HALTED) {
dmcontrol |= DM_DMCONTROL_HALTREQ;
/* `haltreq` should not be issued if `abstractcs.busy`
* is set. */
int result = wait_for_idle_if_needed(target);
if (result != ERROR_OK)
return result;
}
dm_write(target, DM_DMCONTROL, dmcontrol);
}
if (get_field(dmstatus, DM_DMSTATUS_ALLNONEXISTENT)) {
*riscv_state = RISCV_STATE_NON_EXISTENT;
return ERROR_OK;
}
if (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL)) {
*riscv_state = RISCV_STATE_UNAVAILABLE;
return ERROR_OK;
}
if (get_field(dmstatus, DM_DMSTATUS_ALLHALTED)) {
*riscv_state = RISCV_STATE_HALTED;
return ERROR_OK;
}
if (get_field(dmstatus, DM_DMSTATUS_ALLRUNNING)) {
*riscv_state = RISCV_STATE_RUNNING;
return ERROR_OK;
}
LOG_TARGET_ERROR(target, "Couldn't determine state. dmstatus=0x%x", dmstatus);
return ERROR_FAIL;
}
static int handle_became_available(struct target *target,
enum riscv_hart_state previous_riscv_state)
{
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
target->state = TARGET_HALTED;
int result = riscv013_step_or_resume_current_hart(target, false);
if (result == ERROR_OK) {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
return ERROR_OK;
} else if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
target->state = TARGET_UNAVAILABLE;
return ERROR_OK;
}
return ERROR_FAIL;
}
static int handle_became_unavailable(struct target *target,
enum riscv_hart_state previous_riscv_state)
{
RISCV013_INFO(info);
info->dcsr_ebreak_is_set = false;
return ERROR_OK;
}
static int tick(struct target *target)
{
RISCV013_INFO(info);
if (!info->dcsr_ebreak_is_set &&
target->state == TARGET_RUNNING &&
target_was_examined(target))
return halt_set_dcsr_ebreak(target);
return ERROR_OK;
}
static int init_target(struct command_context *cmd_ctx,
struct target *target)
{
LOG_TARGET_DEBUG(target, "Init.");
RISCV_INFO(generic_info);
generic_info->get_register = &riscv013_get_register;
generic_info->set_register = &riscv013_set_register;
generic_info->get_register_buf = &riscv013_get_register_buf;
generic_info->set_register_buf = &riscv013_set_register_buf;
generic_info->select_target = &dm013_select_target;
generic_info->get_hart_state = &riscv013_get_hart_state;
generic_info->resume_go = &riscv013_resume_go;
generic_info->step_current_hart = &riscv013_step_current_hart;
generic_info->resume_prep = &riscv013_resume_prep;
generic_info->halt_prep = &riscv013_halt_prep;
generic_info->halt_go = &riscv013_halt_go;
generic_info->on_step = &riscv013_on_step;
generic_info->halt_reason = &riscv013_halt_reason;
generic_info->read_progbuf = &riscv013_read_progbuf;
generic_info->write_progbuf = &riscv013_write_progbuf;
generic_info->execute_progbuf = &riscv013_execute_progbuf;
generic_info->invalidate_cached_progbuf = &riscv013_invalidate_cached_progbuf;
generic_info->fill_dm_write = &riscv013_fill_dm_write;
generic_info->fill_dm_read = &riscv013_fill_dm_read;
generic_info->fill_dm_nop = &riscv013_fill_dm_nop;
generic_info->get_dmi_scan_length = &riscv013_get_dmi_scan_length;
generic_info->authdata_read = &riscv013_authdata_read;
generic_info->authdata_write = &riscv013_authdata_write;
generic_info->dmi_read = &dmi_read;
generic_info->dmi_write = &dmi_write;
generic_info->get_dmi_address = &riscv013_get_dmi_address;
generic_info->read_memory = read_memory;
generic_info->data_bits = &riscv013_data_bits;
generic_info->print_info = &riscv013_print_info;
generic_info->handle_became_available = &handle_became_available;
generic_info->handle_became_unavailable = &handle_became_unavailable;
generic_info->tick = &tick;
if (!generic_info->version_specific) {
generic_info->version_specific = calloc(1, sizeof(riscv013_info_t));
if (!generic_info->version_specific)
return ERROR_FAIL;
}
generic_info->sample_memory = sample_memory;
riscv013_info_t *info = get_info(target);
info->progbufsize = -1;
info->dmi_busy_delay = 0;
info->bus_master_read_delay = 0;
info->bus_master_write_delay = 0;
info->ac_busy_delay = 0;
/* Assume all these abstract commands are supported until we learn
* otherwise.
* TODO: The spec allows eg. one CSR to be able to be accessed abstractly
* while another one isn't. We don't track that this closely here, but in
* the future we probably should. */
info->abstract_read_csr_supported = true;
info->abstract_write_csr_supported = true;
info->abstract_read_fpr_supported = true;
info->abstract_write_fpr_supported = true;
info->has_aampostincrement = YNM_MAYBE;
return ERROR_OK;
}
static int assert_reset(struct target *target)
{
RISCV013_INFO(info);
int result;
select_dmi(target);
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
/* Run the user-supplied script if there is one. */
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
} else {
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
uint32_t control = set_field(0, DM_DMCONTROL_DMACTIVE, 1);
control = set_dmcontrol_hartsel(control, info->index);
control = set_field(control, DM_DMCONTROL_HALTREQ,
target->reset_halt ? 1 : 0);
control = set_field(control, DM_DMCONTROL_NDMRESET, 1);
/* If `abstractcs.busy` is set, debugger should not
* change `hartsel` or set `haltreq`
*/
const bool hartsel_changed = (int)info->index != dm->current_hartid;
if (hartsel_changed || target->reset_halt) {
result = wait_for_idle_if_needed(target);
if (result != ERROR_OK)
return result;
}
result = dm_write(target, DM_DMCONTROL, control);
if (result != ERROR_OK)
return result;
}
target->state = TARGET_RESET;
/* The DM might have gotten reset if OpenOCD called us in some reset that
* involves SRST being toggled. So clear our cache which may be out of
* date. */
return riscv013_invalidate_cached_progbuf(target);
}
static int deassert_reset(struct target *target)
{
RISCV013_INFO(info);
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
int result;
select_dmi(target);
/* Clear the reset, but make sure haltreq is still set */
uint32_t control = 0;
control = set_field(control, DM_DMCONTROL_DMACTIVE, 1);
control = set_field(control, DM_DMCONTROL_HALTREQ, target->reset_halt ? 1 : 0);
control = set_dmcontrol_hartsel(control, info->index);
/* If `abstractcs.busy` is set, debugger should not
* change `hartsel`.
*/
const bool hartsel_changed = (int)info->index != dm->current_hartid;
if (hartsel_changed) {
result = wait_for_idle_if_needed(target);
if (result != ERROR_OK)
return result;
}
result = dm_write(target, DM_DMCONTROL, control);
if (result != ERROR_OK)
return result;
uint32_t dmstatus;
const int orig_dmi_busy_delay = info->dmi_busy_delay;
time_t start = time(NULL);
LOG_TARGET_DEBUG(target, "Waiting for hart to come out of reset.");
do {
result = dmstatus_read_timeout(target, &dmstatus, true,
riscv_reset_timeout_sec);
if (result == ERROR_TIMEOUT_REACHED)
LOG_TARGET_ERROR(target, "Hart didn't complete a DMI read coming "
"out of reset in %ds; Increase the timeout with riscv "
"set_reset_timeout_sec.",
riscv_reset_timeout_sec);
if (result != ERROR_OK)
return result;
if (time(NULL) - start > riscv_reset_timeout_sec) {
LOG_TARGET_ERROR(target, "Hart didn't leave reset in %ds; "
"dmstatus=0x%x (allunavail=%s, allhavereset=%s); "
"Increase the timeout with riscv set_reset_timeout_sec.",
riscv_reset_timeout_sec, dmstatus,
get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL) ? "true" : "false",
get_field(dmstatus, DM_DMSTATUS_ALLHAVERESET) ? "true" : "false");
return ERROR_TIMEOUT_REACHED;
}
/* Certain debug modules, like the one in GD32VF103
* MCUs, violate the specification's requirement that
* each hart is in "exactly one of four states" and,
* during reset, report harts as both unavailable and
* halted/running. To work around this, we check for
* the absence of the unavailable state rather than
* the presence of any other state. */
} while (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL) &&
!get_field(dmstatus, DM_DMSTATUS_ALLHAVERESET));
info->dmi_busy_delay = orig_dmi_busy_delay;
if (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL)) {
target->state = TARGET_UNAVAILABLE;
} else if (target->reset_halt) {
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
} else {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}
info->dcsr_ebreak_is_set = false;
/* Ack reset and clear DM_DMCONTROL_HALTREQ if previously set */
control = 0;
control = set_field(control, DM_DMCONTROL_DMACTIVE, 1);
control = set_field(control, DM_DMCONTROL_ACKHAVERESET, 1);
control = set_dmcontrol_hartsel(control, info->index);
return dm_write(target, DM_DMCONTROL, control);
}
static int execute_fence(struct target *target)
{
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
/* FIXME: For non-coherent systems we need to flush the caches right
* here, but there's no ISA-defined way of doing that. */
struct riscv_program program;
/* program.execution_result may indicate RISCV_PROGBUF_EXEC_RESULT_EXCEPTION -
* currently, we ignore this error since most likely this is an indication
* that target does not support a fence instruction (execution of an
* unsupported instruction results in "Illegal instruction" exception on
* targets that comply with riscv-privilege spec).
* Currently, RISC-V specification does not provide us with a portable and
* less invasive way to detect if a fence is supported by the target. We may
* revise this code once the spec allows us to do this */
if (has_sufficient_progbuf(target, 3)) {
riscv_program_init(&program, target);
riscv_program_fence_i(&program);
riscv_program_fence_rw_rw(&program);
if (riscv_program_exec(&program, target) != ERROR_OK) {
if (program.execution_result != RISCV_PROGBUF_EXEC_RESULT_EXCEPTION) {
LOG_TARGET_ERROR(target, "Unexpected error during fence execution");
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "Unable to execute fence");
}
return ERROR_OK;
}
if (has_sufficient_progbuf(target, 2)) {
riscv_program_init(&program, target);
riscv_program_fence_i(&program);
if (riscv_program_exec(&program, target) != ERROR_OK) {
if (program.execution_result != RISCV_PROGBUF_EXEC_RESULT_EXCEPTION) {
LOG_TARGET_ERROR(target, "Unexpected error during fence.i execution");
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "Unable to execute fence.i");
}
riscv_program_init(&program, target);
riscv_program_fence_rw_rw(&program);
if (riscv_program_exec(&program, target) != ERROR_OK) {
if (program.execution_result != RISCV_PROGBUF_EXEC_RESULT_EXCEPTION) {
LOG_TARGET_ERROR(target, "Unexpected error during fence rw, rw execution");
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "Unable to execute fence rw, rw");
}
return ERROR_OK;
}
return ERROR_FAIL;
}
static void log_memory_access128(target_addr_t address, uint64_t value_h,
uint64_t value_l, bool is_read)
{
if (debug_level < LOG_LVL_DEBUG)
return;
char fmt[80];
sprintf(fmt, "M[0x%" TARGET_PRIxADDR "] %ss 0x%%016" PRIx64 "%%016" PRIx64,
address, is_read ? "read" : "write");
LOG_DEBUG(fmt, value_h, value_l);
}
static void log_memory_access64(target_addr_t address, uint64_t value,
unsigned int size_bytes, bool is_read)
{
if (debug_level < LOG_LVL_DEBUG)
return;
char fmt[80];
sprintf(fmt, "M[0x%" TARGET_PRIxADDR "] %ss 0x%%0%d" PRIx64,
address, is_read ? "read" : "write", size_bytes * 2);
switch (size_bytes) {
case 1:
value &= 0xff;
break;
case 2:
value &= 0xffff;
break;
case 4:
value &= 0xffffffffUL;
break;
case 8:
break;
default:
assert(false);
}
LOG_DEBUG(fmt, value);
}
static void log_memory_access(target_addr_t address, uint32_t *sbvalue,
unsigned int size_bytes, bool is_read)
{
if (size_bytes == 16) {
uint64_t value_h = ((uint64_t)sbvalue[3] << 32) | sbvalue[2];
uint64_t value_l = ((uint64_t)sbvalue[1] << 32) | sbvalue[0];
log_memory_access128(address, value_h, value_l, is_read);
} else {
uint64_t value = ((uint64_t)sbvalue[1] << 32) | sbvalue[0];
log_memory_access64(address, value, size_bytes, is_read);
}
}
/* Read the relevant sbdata regs depending on size, and put the results into
* buffer. */
static int read_memory_bus_word(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
int result;
uint32_t sbvalue[4] = { 0 };
static int sbdata[4] = { DM_SBDATA0, DM_SBDATA1, DM_SBDATA2, DM_SBDATA3 };
assert(size <= 16);
for (int i = (size - 1) / 4; i >= 0; i--) {
result = dm_read(target, &sbvalue[i], sbdata[i]);
if (result != ERROR_OK)
return result;
buf_set_u32(buffer + i * 4, 0, 8 * MIN(size, 4), sbvalue[i]);
}
log_memory_access(address, sbvalue, size, true);
return ERROR_OK;
}
static target_addr_t sb_read_address(struct target *target)
{
RISCV013_INFO(info);
unsigned sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
target_addr_t address = 0;
uint32_t v;
if (sbasize > 32) {
if (dm_read(target, &v, DM_SBADDRESS1) == ERROR_OK)
address |= v;
address <<= 32;
}
if (dm_read(target, &v, DM_SBADDRESS0) == ERROR_OK)
address |= v;
return address;
}
static int read_sbcs_nonbusy(struct target *target, uint32_t *sbcs)
{
time_t start = time(NULL);
while (1) {
if (dm_read(target, sbcs, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(*sbcs, DM_SBCS_SBBUSY))
return ERROR_OK;
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_TARGET_ERROR(target, "Timed out after %ds waiting for sbbusy to go low (sbcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec, *sbcs);
return ERROR_FAIL;
}
}
}
static int modify_privilege(struct target *target, uint64_t *mstatus, uint64_t *mstatus_old)
{
if (riscv_enable_virtual && has_sufficient_progbuf(target, 5)) {
/* Read DCSR */
uint64_t dcsr;
if (register_read_direct(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
/* Read and save MSTATUS */
if (register_read_direct(target, mstatus, GDB_REGNO_MSTATUS) != ERROR_OK)
return ERROR_FAIL;
*mstatus_old = *mstatus;
/* If we come from m-mode with mprv set, we want to keep mpp */
if (get_field(dcsr, CSR_DCSR_PRV) < 3) {
/* MPP = PRIV */
*mstatus = set_field(*mstatus, MSTATUS_MPP, get_field(dcsr, CSR_DCSR_PRV));
/* MPRV = 1 */
*mstatus = set_field(*mstatus, MSTATUS_MPRV, 1);
/* Write MSTATUS */
if (*mstatus != *mstatus_old)
if (register_write_direct(target, GDB_REGNO_MSTATUS, *mstatus) != ERROR_OK)
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int read_memory_bus_v0(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (size != increment) {
LOG_TARGET_ERROR(target, "sba v0 reads only support size==increment");
return ERROR_NOT_IMPLEMENTED;
}
LOG_TARGET_DEBUG(target, "System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
TARGET_PRIxADDR, size, count, address);
uint8_t *t_buffer = buffer;
riscv_addr_t cur_addr = address;
riscv_addr_t fin_addr = address + (count * size);
uint32_t access = 0;
const int DM_SBCS_SBSINGLEREAD_OFFSET = 20;
const uint32_t DM_SBCS_SBSINGLEREAD = (0x1U << DM_SBCS_SBSINGLEREAD_OFFSET);
const int DM_SBCS_SBAUTOREAD_OFFSET = 15;
const uint32_t DM_SBCS_SBAUTOREAD = (0x1U << DM_SBCS_SBAUTOREAD_OFFSET);
/* ww favorise one off reading if there is an issue */
if (count == 1) {
for (uint32_t i = 0; i < count; i++) {
if (dm_read(target, &access, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
dm_write(target, DM_SBADDRESS0, cur_addr);
/* size/2 matching the bit access of the spec 0.13 */
access = set_field(access, DM_SBCS_SBACCESS, size/2);
access = set_field(access, DM_SBCS_SBSINGLEREAD, 1);
LOG_TARGET_DEBUG(target, "read_memory: sab: access: 0x%08x", access);
dm_write(target, DM_SBCS, access);
/* 3) read */
uint32_t value;
if (dm_read(target, &value, DM_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
LOG_TARGET_DEBUG(target, "read_memory: sab: value: 0x%08x", value);
buf_set_u32(t_buffer, 0, 8 * size, value);
t_buffer += size;
cur_addr += size;
}
return ERROR_OK;
}
/* has to be the same size if we want to read a block */
LOG_TARGET_DEBUG(target, "Reading block until final address 0x%" PRIx64, fin_addr);
if (dm_read(target, &access, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
/* set current address */
dm_write(target, DM_SBADDRESS0, cur_addr);
/* 2) write sbaccess=2, sbsingleread,sbautoread,sbautoincrement
* size/2 matching the bit access of the spec 0.13 */
access = set_field(access, DM_SBCS_SBACCESS, size/2);
access = set_field(access, DM_SBCS_SBAUTOREAD, 1);
access = set_field(access, DM_SBCS_SBSINGLEREAD, 1);
access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 1);
LOG_TARGET_DEBUG(target, "access: 0x%08x", access);
dm_write(target, DM_SBCS, access);
while (cur_addr < fin_addr) {
LOG_TARGET_DEBUG(target, "sab:autoincrement:\r\n\tsize: %d\tcount:%d\taddress: 0x%08"
PRIx64, size, count, cur_addr);
/* read */
uint32_t value;
if (dm_read(target, &value, DM_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
buf_set_u32(t_buffer, 0, 8 * size, value);
cur_addr += size;
t_buffer += size;
/* if we are reaching last address, we must clear autoread */
if (cur_addr == fin_addr && count != 1) {
dm_write(target, DM_SBCS, 0);
if (dm_read(target, &value, DM_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
buf_set_u32(t_buffer, 0, 8 * size, value);
}
}
uint32_t sbcs;
if (dm_read(target, &sbcs, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
/**
* Read the requested memory using the system bus interface.
*/
static int read_memory_bus_v1(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (increment != size && increment != 0) {
LOG_TARGET_ERROR(target, "sba v1 reads only support increment of size or 0");
return ERROR_NOT_IMPLEMENTED;
}
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
RISCV013_INFO(info);
target_addr_t next_address = address;
target_addr_t end_address = address + (increment ? count : 1) * size;
while (next_address < end_address) {
uint32_t sbcs_write = set_field(0, DM_SBCS_SBREADONADDR, 1);
sbcs_write |= sb_sbaccess(size);
if (increment == size)
sbcs_write = set_field(sbcs_write, DM_SBCS_SBAUTOINCREMENT, 1);
if (count > 1)
sbcs_write = set_field(sbcs_write, DM_SBCS_SBREADONDATA, count > 1);
if (dm_write(target, DM_SBCS, sbcs_write) != ERROR_OK)
return ERROR_FAIL;
/* This address write will trigger the first read. */
if (sb_write_address(target, next_address, true) != ERROR_OK)
return ERROR_FAIL;
if (info->bus_master_read_delay) {
LOG_TARGET_DEBUG(target, "Waiting %d cycles for bus master read delay",
info->bus_master_read_delay);
jtag_add_runtest(info->bus_master_read_delay, TAP_IDLE);
if (jtag_execute_queue() != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to scan idle sequence");
return ERROR_FAIL;
}
}
/* First read has been started. Optimistically assume that it has
* completed. */
static int sbdata[4] = {DM_SBDATA0, DM_SBDATA1, DM_SBDATA2, DM_SBDATA3};
uint32_t sbvalue[4] = {0};
assert(size <= 16);
target_addr_t next_read = address - 1;
uint32_t buffer_offset = 0;
int next_read_j = 0;
for (uint32_t i = (next_address - address) / size; i < count - 1; i++) {
for (int j = (size - 1) / 4; j >= 0; j--) {
unsigned attempt = 0;
while (1) {
if (attempt++ > 100) {
LOG_TARGET_ERROR(target, "DMI keeps being busy in while reading memory"
" just past " TARGET_ADDR_FMT, next_read);
return ERROR_FAIL;
}
keep_alive();
dmi_status_t status = dmi_scan(target, NULL, &sbvalue[next_read_j],
DMI_OP_READ, sbdata[j] + dm->base, 0, false);
/* By reading from sbdata0, we have just initiated another system bus read.
* If necessary add a delay so the read can finish. */
if (j == 0 && info->bus_master_read_delay) {
LOG_TARGET_DEBUG(target, "Waiting %d cycles for bus master read delay",
info->bus_master_read_delay);
jtag_add_runtest(info->bus_master_read_delay, TAP_IDLE);
if (jtag_execute_queue() != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to scan idle sequence");
return ERROR_FAIL;
}
}
if (status == DMI_STATUS_BUSY)
increase_dmi_busy_delay(target);
else if (status == DMI_STATUS_SUCCESS)
break;
else
return ERROR_FAIL;
}
if (next_read != address - 1) {
buf_set_u32(buffer + buffer_offset, 0, 8 * MIN(size, 4), sbvalue[next_read_j]);
if (next_read_j == 0) {
log_memory_access(next_read, sbvalue, size, true);
memset(sbvalue, 0, size);
}
}
next_read_j = j;
next_read = address + i * increment + next_read_j * 4;
buffer_offset = i * size + next_read_j * 4;
}
}
uint32_t sbcs_read = 0;
if (count > 1) {
unsigned attempt = 0;
while (1) {
if (attempt++ > 100) {
LOG_TARGET_ERROR(target, "DMI keeps being busy in while reading memory"
" just past " TARGET_ADDR_FMT, next_read);
return ERROR_FAIL;
}
dmi_status_t status = dmi_scan(target, NULL, &sbvalue[0], DMI_OP_NOP, 0, 0, false);
if (status == DMI_STATUS_BUSY)
increase_dmi_busy_delay(target);
else if (status == DMI_STATUS_SUCCESS)
break;
else
return ERROR_FAIL;
}
buf_set_u32(buffer + buffer_offset, 0, 8 * MIN(size, 4), sbvalue[0]);
log_memory_access(next_read, sbvalue, size, true);
/* "Writes to sbcs while sbbusy is high result in undefined behavior.
* A debugger must not write to sbcs until it reads sbbusy as 0." */
if (read_sbcs_nonbusy(target, &sbcs_read) != ERROR_OK)
return ERROR_FAIL;
sbcs_write = set_field(sbcs_write, DM_SBCS_SBREADONDATA, 0);
if (dm_write(target, DM_SBCS, sbcs_write) != ERROR_OK)
return ERROR_FAIL;
}
/* Read the last word, after we disabled sbreadondata if necessary. */
if (!get_field(sbcs_read, DM_SBCS_SBERROR) &&
!get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
if (read_memory_bus_word(target, address + (count - 1) * increment, size,
buffer + (count - 1) * size) != ERROR_OK)
return ERROR_FAIL;
if (read_sbcs_nonbusy(target, &sbcs_read) != ERROR_OK)
return ERROR_FAIL;
}
if (get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
/* We read while the target was busy. Slow down and try again.
* Clear sbbusyerror, as well as readondata or readonaddr. */
if (dm_write(target, DM_SBCS, DM_SBCS_SBBUSYERROR) != ERROR_OK)
return ERROR_FAIL;
if (get_field(sbcs_read, DM_SBCS_SBERROR) == DM_SBCS_SBERROR_NONE) {
/* Read the address whose read was last completed. */
next_address = sb_read_address(target);
/* Read the value for the last address. It's
* sitting in the register for us, but we read it
* too early (sbbusyerror became set). */
target_addr_t current_address = next_address - (increment ? size : 0);
if (read_memory_bus_word(target, current_address, size,
buffer + current_address - address) != ERROR_OK)
return ERROR_FAIL;
}
info->bus_master_read_delay += info->bus_master_read_delay / 10 + 1;
LOG_TARGET_DEBUG(target, "Increasing bus_master_read_delay to %d.",
info->bus_master_read_delay);
continue;
}
unsigned error = get_field(sbcs_read, DM_SBCS_SBERROR);
if (error == DM_SBCS_SBERROR_NONE) {
next_address = end_address;
} else {
/* Some error indicating the bus access failed, but not because of
* something we did wrong. */
if (dm_write(target, DM_SBCS, DM_SBCS_SBERROR) != ERROR_OK)
return ERROR_FAIL;
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static void log_mem_access_result(struct target *target, bool success, int method, bool is_read)
{
RISCV_INFO(r);
bool warn = false;
char msg[60];
/* Compose the message */
snprintf(msg, 60, "%s to %s memory via %s.",
success ? "Succeeded" : "Failed",
is_read ? "read" : "write",
(method == RISCV_MEM_ACCESS_PROGBUF) ? "program buffer" :
(method == RISCV_MEM_ACCESS_SYSBUS) ? "system bus" : "abstract access");
/* Determine the log message severity. Show warnings only once. */
if (!success) {
if (method == RISCV_MEM_ACCESS_PROGBUF) {
warn = r->mem_access_progbuf_warn;
r->mem_access_progbuf_warn = false;
}
if (method == RISCV_MEM_ACCESS_SYSBUS) {
warn = r->mem_access_sysbus_warn;
r->mem_access_sysbus_warn = false;
}
if (method == RISCV_MEM_ACCESS_ABSTRACT) {
warn = r->mem_access_abstract_warn;
r->mem_access_abstract_warn = false;
}
}
if (warn)
LOG_TARGET_WARNING(target, "%s", msg);
else
LOG_TARGET_DEBUG(target, "%s", msg);
}
static bool mem_should_skip_progbuf(struct target *target, target_addr_t address,
uint32_t size, bool is_read, char **skip_reason)
{
assert(skip_reason);
if (!has_sufficient_progbuf(target, 3)) {
LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - insufficient progbuf size.",
is_read ? "read" : "write");
*skip_reason = "skipped (insufficient progbuf)";
return true;
}
if (target->state != TARGET_HALTED) {
LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - target not halted.",
is_read ? "read" : "write");
*skip_reason = "skipped (target not halted)";
return true;
}
if (riscv_xlen(target) < size * 8) {
LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - XLEN (%d) is too short for %d-bit memory access.",
is_read ? "read" : "write", riscv_xlen(target), size * 8);
*skip_reason = "skipped (XLEN too short)";
return true;
}
if (size > 8) {
LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - unsupported size.",
is_read ? "read" : "write");
*skip_reason = "skipped (unsupported size)";
return true;
}
if ((sizeof(address) * 8 > riscv_xlen(target)) && (address >> riscv_xlen(target))) {
LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - progbuf only supports %u-bit address.",
is_read ? "read" : "write", riscv_xlen(target));
*skip_reason = "skipped (too large address)";
return true;
}
return false;
}
static bool mem_should_skip_sysbus(struct target *target, target_addr_t address,
uint32_t size, uint32_t increment, bool is_read, char **skip_reason)
{
assert(skip_reason);
RISCV013_INFO(info);
if (!sba_supports_access(target, size)) {
LOG_TARGET_DEBUG(target, "Skipping mem %s via system bus - unsupported size.",
is_read ? "read" : "write");
*skip_reason = "skipped (unsupported size)";
return true;
}
unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
if ((sizeof(address) * 8 > sbasize) && (address >> sbasize)) {
LOG_TARGET_DEBUG(target, "Skipping mem %s via system bus - sba only supports %u-bit address.",
is_read ? "read" : "write", sbasize);
*skip_reason = "skipped (too large address)";
return true;
}
if (is_read && increment != size && (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0 || increment != 0)) {
LOG_TARGET_DEBUG(target, "Skipping mem read via system bus - "
"sba reads only support size==increment or also size==0 for sba v1.");
*skip_reason = "skipped (unsupported increment)";
return true;
}
return false;
}
static bool mem_should_skip_abstract(struct target *target, target_addr_t address,
uint32_t size, uint32_t increment, bool is_read, char **skip_reason)
{
assert(skip_reason);
if (size > 8) {
/* TODO: Add 128b support if it's ever used. Involves modifying
read/write_abstract_arg() to work on two 64b values. */
LOG_TARGET_DEBUG(target, "Skipping mem %s via abstract access - unsupported size: %d bits",
is_read ? "read" : "write", size * 8);
*skip_reason = "skipped (unsupported size)";
return true;
}
if ((sizeof(address) * 8 > riscv_xlen(target)) && (address >> riscv_xlen(target))) {
LOG_TARGET_DEBUG(target, "Skipping mem %s via abstract access - abstract access only supports %u-bit address.",
is_read ? "read" : "write", riscv_xlen(target));
*skip_reason = "skipped (too large address)";
return true;
}
if (is_read && size != increment) {
LOG_TARGET_ERROR(target, "Skipping mem read via abstract access - "
"abstract command reads only support size==increment.");
*skip_reason = "skipped (unsupported increment)";
return true;
}
return false;
}
/*
* Performs a memory read using memory access abstract commands. The read sizes
* supported are 1, 2, and 4 bytes despite the spec's support of 8 and 16 byte
* aamsize fields in the memory access abstract command.
*/
static int read_memory_abstract(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
RISCV013_INFO(info);
int result = ERROR_OK;
bool use_aampostincrement = info->has_aampostincrement != YNM_NO;
LOG_TARGET_DEBUG(target, "Reading %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
size, address);
memset(buffer, 0, count * size);
/* Convert the size (bytes) to width (bits) */
unsigned width = size << 3;
/* Create the command (physical address, postincrement, read) */
uint32_t command = access_memory_command(target, false, width, use_aampostincrement, false);
/* Execute the reads */
uint8_t *p = buffer;
bool updateaddr = true;
unsigned int width32 = (width < 32) ? 32 : width;
for (uint32_t c = 0; c < count; c++) {
/* Update the address if it is the first time or aampostincrement is not supported by the target. */
if (updateaddr) {
/* Set arg1 to the address: address + c * size */
result = write_abstract_arg(target, 1, address + c * size, riscv_xlen(target));
if (result != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to write arg1.");
return result;
}
}
/* Execute the command */
uint32_t cmderr;
result = execute_abstract_command(target, command, &cmderr);
/* TODO: we need to modify error handling here. */
/* NOTE: in case of timeout cmderr is set to CMDERR_NONE */
if (info->has_aampostincrement == YNM_MAYBE) {
if (result == ERROR_OK) {
/* Safety: double-check that the address was really auto-incremented */
riscv_reg_t new_address = read_abstract_arg(target, 1, riscv_xlen(target));
if (new_address == address + size) {
LOG_TARGET_DEBUG(target, "aampostincrement is supported on this target.");
info->has_aampostincrement = YNM_YES;
} else {
LOG_TARGET_WARNING(target, "Buggy aampostincrement! Address not incremented correctly.");
info->has_aampostincrement = YNM_NO;
}
} else {
/* Try the same access but with postincrement disabled. */
command = access_memory_command(target, false, width, false, false);
result = execute_abstract_command(target, command, &cmderr);
if (result == ERROR_OK) {
LOG_TARGET_DEBUG(target, "aampostincrement is not supported on this target.");
info->has_aampostincrement = YNM_NO;
}
}
}
if (result != ERROR_OK)
return result;
/* Copy arg0 to buffer (rounded width up to nearest 32) */
riscv_reg_t value = read_abstract_arg(target, 0, width32);
buf_set_u64(p, 0, 8 * size, value);
if (info->has_aampostincrement == YNM_YES)
updateaddr = false;
p += size;
}
return result;
}
/*
* Performs a memory write using memory access abstract commands. The write
* sizes supported are 1, 2, and 4 bytes despite the spec's support of 8 and 16
* byte aamsize fields in the memory access abstract command.
*/
static int write_memory_abstract(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
int result = ERROR_OK;
bool use_aampostincrement = info->has_aampostincrement != YNM_NO;
LOG_TARGET_DEBUG(target, "writing %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
size, address);
/* Convert the size (bytes) to width (bits) */
unsigned width = size << 3;
/* Create the command (physical address, postincrement, write) */
uint32_t command = access_memory_command(target, false, width, use_aampostincrement, true);
/* Execute the writes */
const uint8_t *p = buffer;
bool updateaddr = true;
for (uint32_t c = 0; c < count; c++) {
/* Move data to arg0 */
riscv_reg_t value = buf_get_u64(p, 0, 8 * size);
result = write_abstract_arg(target, 0, value, riscv_xlen(target));
if (result != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to write arg0.");
return result;
}
/* Update the address if it is the first time or aampostincrement is not supported by the target. */
if (updateaddr) {
/* Set arg1 to the address: address + c * size */
result = write_abstract_arg(target, 1, address + c * size, riscv_xlen(target));
if (result != ERROR_OK) {
LOG_TARGET_ERROR(target, "Failed to write arg1.");
return result;
}
}
/* Execute the command */
uint32_t cmderr;
result = execute_abstract_command(target, command, &cmderr);
/* TODO: we need to modify error handling here. */
/* NOTE: in case of timeout cmderr is set to CMDERR_NONE */
if (info->has_aampostincrement == YNM_MAYBE) {
if (result == ERROR_OK) {
/* Safety: double-check that the address was really auto-incremented */
riscv_reg_t new_address = read_abstract_arg(target, 1, riscv_xlen(target));
if (new_address == address + size) {
LOG_TARGET_DEBUG(target, "aampostincrement is supported on this target.");
info->has_aampostincrement = YNM_YES;
} else {
LOG_TARGET_WARNING(target, "Buggy aampostincrement! Address not incremented correctly.");
info->has_aampostincrement = YNM_NO;
}
} else {
/* Try the same access but with postincrement disabled. */
command = access_memory_command(target, false, width, false, true);
result = execute_abstract_command(target, command, &cmderr);
if (result == ERROR_OK) {
LOG_TARGET_DEBUG(target, "aampostincrement is not supported on this target.");
info->has_aampostincrement = YNM_NO;
}
}
}
if (result != ERROR_OK)
return result;
if (info->has_aampostincrement == YNM_YES)
updateaddr = false;
p += size;
}
return result;
}
/**
* This function is used to start the memory-reading pipeline.
* The pipeline looks like this:
* memory -> s1 -> dm_data[0:1] -> debugger
* Prior to calling it, the program buffer should contain the appropriate
* program.
* This function sets DM_ABSTRACTAUTO_AUTOEXECDATA to trigger second stage of the
* pipeline (s1 -> dm_data[0:1]) whenever dm_data is read.
*/
static int read_memory_progbuf_inner_startup(struct target *target,
target_addr_t address, uint32_t increment, uint32_t index)
{
/* s0 holds the next address to read from.
* s1 holds the next data value read.
* a0 is a counter in case increment is 0.
*/
if (register_write_direct(target, GDB_REGNO_S0, address + index * increment)
!= ERROR_OK)
return ERROR_FAIL;
if (/*is_repeated_read*/ increment == 0 &&
register_write_direct(target, GDB_REGNO_A0, index) != ERROR_OK)
return ERROR_FAIL;
/* AC_ACCESS_REGISTER_POSTEXEC is used to trigger first stage of the
* pipeline (memory -> s1) whenever this command is executed.
*/
const uint32_t startup_command = access_register_command(target,
GDB_REGNO_S1, riscv_xlen(target),
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
uint32_t cmderr;
if (execute_abstract_command(target, startup_command, &cmderr) != ERROR_OK)
return ERROR_FAIL;
/* TODO: we need to modify error handling here. */
/* NOTE: in case of timeout cmderr is set to CMDERR_NONE */
/* First read has just triggered. Result is in s1.
* dm_data registers contain the previous value of s1 (garbage).
*/
if (dm_write(target, DM_ABSTRACTAUTO,
set_field(0, DM_ABSTRACTAUTO_AUTOEXECDATA, 1)) != ERROR_OK)
return ERROR_FAIL;
/* Read garbage from dm_data0, which triggers another execution of the
* program. Now dm_data contains the first good result (from s1),
* and s1 the next memory value.
*/
if (dm_read_exec(target, NULL, DM_DATA0) != ERROR_OK)
goto clear_abstractauto_and_fail;
uint32_t abstractcs;
if (wait_for_idle(target, &abstractcs) != ERROR_OK)
goto clear_abstractauto_and_fail;
cmderr = get_field32(abstractcs, DM_ABSTRACTCS_CMDERR);
switch (cmderr) {
case CMDERR_NONE:
return ERROR_OK;
case CMDERR_BUSY:
LOG_TARGET_ERROR(target, "Unexpected busy error. This is probably a hardware bug.");
/* fall through */
default:
LOG_TARGET_DEBUG(target, "error when reading memory, cmderr=0x%" PRIx32, cmderr);
riscv013_clear_abstract_error(target);
goto clear_abstractauto_and_fail;
}
clear_abstractauto_and_fail:
dm_write(target, DM_ABSTRACTAUTO, 0);
return ERROR_FAIL;
}
struct memory_access_info {
uint8_t *buffer_address;
target_addr_t target_address;
uint32_t element_size;
uint32_t increment;
};
/**
* This function attempts to restore the pipeline after a busy on abstract
* access.
* Target's state is as follows:
* s0 contains address + index_on_target * increment
* s1 contains mem[address + (index_on_target - 1) * increment]
* dm_data[0:1] contains mem[address + (index_on_target - 2) * increment]
*/
static int read_memory_progbuf_inner_on_ac_busy(struct target *target,
uint32_t start_index, uint32_t *elements_read,
struct memory_access_info access)
{
increase_ac_busy_delay(target);
riscv013_clear_abstract_error(target);
if (dm_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
return ERROR_FAIL;
/* See how far we got by reading s0/a0 */
uint32_t index_on_target;
if (/*is_repeated_read*/ access.increment == 0) {
/* s0 is constant, a0 is incremented by one each execution */
riscv_reg_t counter;
if (register_read_direct(target, &counter, GDB_REGNO_A0) != ERROR_OK)
return ERROR_FAIL;
index_on_target = counter;
} else {
target_addr_t address_on_target;
if (register_read_direct(target, &address_on_target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
index_on_target = (address_on_target - access.target_address) /
access.increment;
}
/* According to the spec, if an abstract command fails, one can't make any
* assumptions about dm_data registers, so all the values in the pipeline
* are clobbered now and need to be reread.
*/
const uint32_t min_index_on_target = start_index + 2;
if (index_on_target < min_index_on_target) {
LOG_TARGET_ERROR(target, "Arithmetic does not work correctly on the target");
return ERROR_FAIL;
} else if (index_on_target == min_index_on_target) {
LOG_TARGET_DEBUG(target, "No forward progress");
}
const uint32_t next_index = (index_on_target - 2);
*elements_read = next_index - start_index;
LOG_TARGET_WARNING(target, "Re-reading memory from addresses 0x%"
TARGET_PRIxADDR " and 0x%" TARGET_PRIxADDR ".",
access.target_address + access.increment * next_index,
access.target_address + access.increment * (next_index + 1));
return read_memory_progbuf_inner_startup(target, access.target_address,
access.increment, next_index);
}
/**
* This function attempts to restore the pipeline after a dmi busy.
*/
static int read_memory_progbuf_inner_on_dmi_busy(struct target *target,
uint32_t start_index, uint32_t next_start_index,
struct memory_access_info access)
{
LOG_TARGET_DEBUG(target, "DMI_STATUS_BUSY encountered in batch. Memory read [%"
PRIu32 ", %" PRIu32 ")", start_index, next_start_index);
if (start_index == next_start_index)
LOG_TARGET_DEBUG(target, "No forward progress");
if (dm_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
return ERROR_FAIL;
return read_memory_progbuf_inner_startup(target, access.target_address,
access.increment, next_start_index);
}
/**
* This function extracts the data from the batch.
*/
static int read_memory_progbuf_inner_extract_batch_data(struct target *target,
const struct riscv_batch *batch,
uint32_t start_index, uint32_t elements_to_read, uint32_t *elements_read,
struct memory_access_info access)
{
const bool two_reads_per_element = access.element_size > 4;
const uint32_t reads_per_element = (two_reads_per_element ? 2 : 1);
assert(!two_reads_per_element || riscv_xlen(target) == 64);
assert(elements_to_read <= UINT32_MAX / reads_per_element);
const uint32_t nreads = elements_to_read * reads_per_element;
for (uint32_t curr_idx = start_index, read = 0; read < nreads; ++read) {
switch (riscv_batch_get_dmi_read_op(batch, read)) {
case DMI_STATUS_BUSY:
*elements_read = curr_idx - start_index;
return read_memory_progbuf_inner_on_dmi_busy(target, start_index, curr_idx
, access);
case DMI_STATUS_FAILED:
LOG_TARGET_DEBUG(target,
"Batch memory read encountered DMI_STATUS_FAILED on read %"
PRIu32, read);
return ERROR_FAIL;
case DMI_STATUS_SUCCESS:
break;
default:
assert(0);
}
const uint32_t value = riscv_batch_get_dmi_read_data(batch, read);
uint8_t * const curr_buff = access.buffer_address +
curr_idx * access.element_size;
const target_addr_t curr_addr = access.target_address +
curr_idx * access.increment;
const uint32_t size = access.element_size;
assert(size <= 8);
const bool is_odd_read = read % 2;
if (two_reads_per_element && !is_odd_read) {
buf_set_u32(curr_buff + 4, 0, (size * 8) - 32, value);
continue;
}
const bool is_second_read = two_reads_per_element;
buf_set_u32(curr_buff, 0, is_second_read ? 32 : (size * 8), value);
log_memory_access64(curr_addr, buf_get_u64(curr_buff, 0, size * 8),
size, /*is_read*/ true);
++curr_idx;
}
*elements_read = elements_to_read;
return ERROR_OK;
}
/**
* This function reads a batch of elements from memory.
* Prior to calling this function the folowing conditions should be met:
* - Appropriate program loaded to program buffer.
* - DM_ABSTRACTAUTO_AUTOEXECDATA is set.
*/
static int read_memory_progbuf_inner_run_and_process_batch(struct target *target,
struct riscv_batch *batch, struct memory_access_info access,
uint32_t start_index, uint32_t elements_to_read, uint32_t *elements_read)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
/* Abstract commands are executed while running the batch. */
dm->abstract_cmd_maybe_busy = true;
if (batch_run(target, batch) != ERROR_OK)
return ERROR_FAIL;
uint32_t abstractcs;
if (wait_for_idle(target, &abstractcs) != ERROR_OK)
return ERROR_FAIL;
uint32_t elements_to_extract_from_batch;
uint32_t cmderr = get_field32(abstractcs, DM_ABSTRACTCS_CMDERR);
switch (cmderr) {
case CMDERR_NONE:
LOG_TARGET_DEBUG(target, "successful (partial?) memory read [%"
PRIu32 ", %" PRIu32 ")", start_index, start_index + elements_to_read);
elements_to_extract_from_batch = elements_to_read;
break;
case CMDERR_BUSY:
LOG_TARGET_DEBUG(target, "memory read resulted in busy response");
if (read_memory_progbuf_inner_on_ac_busy(target, start_index,
&elements_to_extract_from_batch, access)
!= ERROR_OK)
return ERROR_FAIL;
break;
default:
LOG_TARGET_DEBUG(target, "error when reading memory, cmderr=0x%" PRIx32, cmderr);
riscv013_clear_abstract_error(target);
return ERROR_FAIL;
}
if (read_memory_progbuf_inner_extract_batch_data(target, batch, start_index,
elements_to_extract_from_batch, elements_read, access) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static uint32_t read_memory_progbuf_inner_fill_batch(struct riscv_batch *batch,
uint32_t count, uint32_t size)
{
assert(size <= 8);
const uint32_t two_regs_used[] = {DM_DATA1, DM_DATA0};
const uint32_t one_reg_used[] = {DM_DATA0};
const uint32_t reads_per_element = size > 4 ? 2 : 1;
const uint32_t * const used_regs = size > 4 ? two_regs_used : one_reg_used;
const uint32_t batch_capacity = riscv_batch_available_scans(batch) / reads_per_element;
const uint32_t end = MIN(batch_capacity, count);
for (uint32_t j = 0; j < end; ++j)
for (uint32_t i = 0; i < reads_per_element; ++i)
riscv_batch_add_dm_read(batch, used_regs[i]);
return end;
}
static int read_memory_progbuf_inner_try_to_read(struct target *target,
struct memory_access_info access, uint32_t *elements_read,
uint32_t index, uint32_t loop_count)
{
RISCV013_INFO(info);
struct riscv_batch *batch = riscv_batch_alloc(target, RISCV_BATCH_ALLOC_SIZE,
info->dmi_busy_delay + info->ac_busy_delay);
if (!batch)
return ERROR_FAIL;
const uint32_t elements_to_read = read_memory_progbuf_inner_fill_batch(batch,
loop_count - index, access.element_size);
int result = read_memory_progbuf_inner_run_and_process_batch(target, batch,
access, index, elements_to_read, elements_read);
riscv_batch_free(batch);
return result;
}
/**
* read_memory_progbuf_inner_startup() must be called before calling this function
* with the address argument equal to curr_target_address.
*/
static int read_memory_progbuf_inner_ensure_forward_progress(struct target *target,
struct memory_access_info access, uint32_t start_index)
{
LOG_TARGET_DEBUG(target,
"Executing one loop iteration to ensure forward progress (index=%"
PRIu32 ")", start_index);
const target_addr_t curr_target_address = access.target_address +
start_index * access.increment;
uint8_t * const curr_buffer_address = access.buffer_address +
start_index * access.element_size;
const struct memory_access_info curr_access = {
.buffer_address = curr_buffer_address,
.target_address = curr_target_address,
.element_size = access.element_size,
.increment = access.increment,
};
uint32_t elements_read;
if (read_memory_progbuf_inner_try_to_read(target, curr_access, &elements_read,
/*index*/ 0, /*loop_count*/ 1) != ERROR_OK)
return ERROR_FAIL;
if (elements_read != 1) {
assert(elements_read == 0);
LOG_TARGET_DEBUG(target, "Can not ensure forward progress");
/* FIXME: Here it would be better to retry the read and fail only if the
* delay is greater then some threshold.
*/
return ERROR_FAIL;
}
return ERROR_OK;
}
static void set_buffer_and_log_read(struct memory_access_info access,
uint32_t index, uint64_t value)
{
uint8_t * const buffer = access.buffer_address;
const uint32_t size = access.element_size;
const uint32_t increment = access.increment;
const target_addr_t address = access.target_address;
assert(size <= 8);
buf_set_u64(buffer + index * size, 0, 8 * size, value);
log_memory_access64(address + index * increment, value, size,
/*is_read*/ true);
}
static int read_word_from_dm_data_regs(struct target *target,
struct memory_access_info access, uint32_t index)
{
assert(access.element_size <= 8);
const uint64_t value = read_abstract_arg(target, /*index*/ 0,
access.element_size > 4 ? 64 : 32);
set_buffer_and_log_read(access, index, value);
return ERROR_OK;
}
static int read_word_from_s1(struct target *target,
struct memory_access_info access, uint32_t index)
{
uint64_t value;
if (register_read_direct(target, &value, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
set_buffer_and_log_read(access, index, value);
return ERROR_OK;
}
static int riscv_program_load_mprv(struct riscv_program *p, enum gdb_regno d,
enum gdb_regno b, int offset, unsigned int size, bool mprven)
{
if (mprven && riscv_program_csrrsi(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_load(p, d, b, offset, size) != ERROR_OK)
return ERROR_FAIL;
if (mprven && riscv_program_csrrci(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int read_memory_progbuf_inner_fill_progbuf(struct target *target,
uint32_t increment, uint32_t size, bool mprven)
{
const bool is_repeated_read = increment == 0;
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
if (is_repeated_read && riscv_save_register(target, GDB_REGNO_A0) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_load_mprv(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0, size,
mprven) != ERROR_OK)
return ERROR_FAIL;
if (is_repeated_read) {
if (riscv_program_addi(&program, GDB_REGNO_A0, GDB_REGNO_A0, 1)
!= ERROR_OK)
return ERROR_FAIL;
} else {
if (riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0,
increment)
!= ERROR_OK)
return ERROR_FAIL;
}
if (riscv_program_ebreak(&program) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_write(&program) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
/**
* Read the requested memory, taking care to minimize the number of reads and
* re-read the data only if `abstract command busy` or `DMI busy`
* is encountered in the process.
*/
static int read_memory_progbuf_inner(struct target *target,
struct memory_access_info access, uint32_t count, bool mprven)
{
assert(count > 1 && "If count == 1, read_memory_progbuf_inner_one must be called");
if (read_memory_progbuf_inner_fill_progbuf(target, access.increment,
access.element_size, mprven) != ERROR_OK)
return ERROR_FAIL;
if (read_memory_progbuf_inner_startup(target, access.target_address,
access.increment, /*index*/ 0)
!= ERROR_OK)
return ERROR_FAIL;
/* The program in program buffer is executed twice during
* read_memory_progbuf_inner_startup().
* Here:
* dm_data[0:1] == M[address]
* s1 == M[address + increment]
* s0 == address + increment * 2
* `count - 2` program executions are performed in this loop.
* No need to execute the program any more, since S1 will already contain
* M[address + increment * (count - 1)] and we can read it directly.
*/
const uint32_t loop_count = count - 2;
for (uint32_t index = 0; index < loop_count;) {
uint32_t elements_read;
if (read_memory_progbuf_inner_try_to_read(target, access, &elements_read,
index, loop_count) != ERROR_OK) {
dm_write(target, DM_ABSTRACTAUTO, 0);
return ERROR_FAIL;
}
if (elements_read == 0) {
if (read_memory_progbuf_inner_ensure_forward_progress(target, access,
index) != ERROR_OK) {
dm_write(target, DM_ABSTRACTAUTO, 0);
return ERROR_FAIL;
}
elements_read = 1;
}
index += elements_read;
assert(index <= loop_count);
}
if (dm_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
return ERROR_FAIL;
/* Read the penultimate word. */
if (read_word_from_dm_data_regs(target, access, count - 2)
!= ERROR_OK)
return ERROR_FAIL;
/* Read the last word. */
return read_word_from_s1(target, access, count - 1);
}
/**
* Only need to save/restore one GPR to read a single word, and the progbuf
* program doesn't need to increment.
*/
static int read_memory_progbuf_inner_one(struct target *target,
struct memory_access_info access, bool mprven)
{
if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_load_mprv(&program, GDB_REGNO_S1, GDB_REGNO_S1, 0,
access.element_size, mprven) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_ebreak(&program) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_write(&program) != ERROR_OK)
return ERROR_FAIL;
/* Write address to S1, and execute buffer. */
if (write_abstract_arg(target, 0, access.target_address, riscv_xlen(target))
!= ERROR_OK)
return ERROR_FAIL;
uint32_t command = access_register_command(target, GDB_REGNO_S1,
riscv_xlen(target), AC_ACCESS_REGISTER_WRITE |
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
uint32_t cmderr;
if (execute_abstract_command(target, command, &cmderr) != ERROR_OK)
return ERROR_FAIL;
return read_word_from_s1(target, access, 0);
}
/**
* Read the requested memory, silently handling memory access errors.
*/
static int read_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (riscv_xlen(target) < size * 8) {
LOG_TARGET_ERROR(target, "XLEN (%d) is too short for %"
PRIu32 "-bit memory read.", riscv_xlen(target), size * 8);
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "reading %" PRIu32 " elements of %" PRIu32
" bytes from 0x%" TARGET_PRIxADDR, count, size, address);
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
select_dmi(target);
memset(buffer, 0, count*size);
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
uint64_t mstatus = 0;
uint64_t mstatus_old = 0;
if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
return ERROR_FAIL;
const bool mprven = riscv_enable_virtual && get_field(mstatus, MSTATUS_MPRV);
const struct memory_access_info access = {
.target_address = address,
.increment = increment,
.buffer_address = buffer,
.element_size = size,
};
int result = (count == 1) ?
read_memory_progbuf_inner_one(target, access, mprven) :
read_memory_progbuf_inner(target, access, count, mprven);
if (mstatus != mstatus_old &&
register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static int read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
if (count == 0)
return ERROR_OK;
if (size != 1 && size != 2 && size != 4 && size != 8 && size != 16) {
LOG_TARGET_ERROR(target, "BUG: Unsupported size for memory read: %d", size);
return ERROR_FAIL;
}
int ret = ERROR_FAIL;
RISCV_INFO(r);
RISCV013_INFO(info);
char *progbuf_result = "disabled";
char *sysbus_result = "disabled";
char *abstract_result = "disabled";
for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
int method = r->mem_access_methods[i];
if (method == RISCV_MEM_ACCESS_PROGBUF) {
if (mem_should_skip_progbuf(target, address, size, true, &progbuf_result))
continue;
ret = read_memory_progbuf(target, address, size, count, buffer, increment);
if (ret != ERROR_OK)
progbuf_result = "failed";
} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
if (mem_should_skip_sysbus(target, address, size, increment, true, &sysbus_result))
continue;
if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0)
ret = read_memory_bus_v0(target, address, size, count, buffer, increment);
else if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 1)
ret = read_memory_bus_v1(target, address, size, count, buffer, increment);
if (ret != ERROR_OK)
sysbus_result = "failed";
} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
if (mem_should_skip_abstract(target, address, size, increment, true, &abstract_result))
continue;
ret = read_memory_abstract(target, address, size, count, buffer, increment);
if (ret != ERROR_OK)
abstract_result = "failed";
} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
/* No further mem access method to try. */
break;
log_mem_access_result(target, ret == ERROR_OK, method, true);
if (ret == ERROR_OK)
return ret;
}
LOG_TARGET_ERROR(target, "Failed to read memory (addr=0x%" PRIx64 ")", address);
LOG_TARGET_ERROR(target, " progbuf=%s, sysbus=%s, abstract=%s", progbuf_result, sysbus_result, abstract_result);
return ret;
}
static int write_memory_bus_v0(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
/*1) write sbaddress: for singlewrite and autoincrement, we need to write the address once*/
LOG_TARGET_DEBUG(target, "System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
TARGET_PRIxADDR, size, count, address);
dm_write(target, DM_SBADDRESS0, address);
int64_t value = 0;
int64_t access = 0;
riscv_addr_t offset = 0;
riscv_addr_t t_addr = 0;
const uint8_t *t_buffer = buffer + offset;
/* B.8 Writing Memory, single write check if we write in one go */
if (count == 1) { /* count is in bytes here */
value = buf_get_u64(t_buffer, 0, 8 * size);
access = 0;
access = set_field(access, DM_SBCS_SBACCESS, size/2);
dm_write(target, DM_SBCS, access);
LOG_TARGET_DEBUG(target, " access: 0x%08" PRIx64, access);
LOG_TARGET_DEBUG(target, " write_memory:SAB: ONE OFF: value 0x%08" PRIx64, value);
dm_write(target, DM_SBDATA0, value);
return ERROR_OK;
}
/*B.8 Writing Memory, using autoincrement*/
access = 0;
access = set_field(access, DM_SBCS_SBACCESS, size/2);
access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 1);
LOG_TARGET_DEBUG(target, " access: 0x%08" PRIx64, access);
dm_write(target, DM_SBCS, access);
/*2)set the value according to the size required and write*/
for (riscv_addr_t i = 0; i < count; ++i) {
offset = size*i;
/* for monitoring only */
t_addr = address + offset;
t_buffer = buffer + offset;
value = buf_get_u64(t_buffer, 0, 8 * size);
LOG_TARGET_DEBUG(target, "SAB:autoincrement: expected address: 0x%08x value: 0x%08x"
PRIx64, (uint32_t)t_addr, (uint32_t)value);
dm_write(target, DM_SBDATA0, value);
}
/*reset the autoincrement when finished (something weird is happening if this is not done at the end*/
access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 0);
dm_write(target, DM_SBCS, access);
return ERROR_OK;
}
static int write_memory_bus_v1(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
uint32_t sbcs = sb_sbaccess(size);
sbcs = set_field(sbcs, DM_SBCS_SBAUTOINCREMENT, 1);
dm_write(target, DM_SBCS, sbcs);
target_addr_t next_address = address;
target_addr_t end_address = address + count * size;
int result;
sb_write_address(target, next_address, true);
while (next_address < end_address) {
LOG_TARGET_DEBUG(target, "Transferring burst starting at address 0x%" TARGET_PRIxADDR,
next_address);
struct riscv_batch *batch = riscv_batch_alloc(
target,
RISCV_BATCH_ALLOC_SIZE,
info->dmi_busy_delay + info->bus_master_write_delay);
if (!batch)
return ERROR_FAIL;
for (uint32_t i = (next_address - address) / size; i < count; i++) {
const uint8_t *p = buffer + i * size;
if (riscv_batch_available_scans(batch) < (size + 3) / 4)
break;
uint32_t sbvalue[4] = { 0 };
if (size > 12) {
sbvalue[3] = ((uint32_t)p[12]) |
(((uint32_t)p[13]) << 8) |
(((uint32_t)p[14]) << 16) |
(((uint32_t)p[15]) << 24);
riscv_batch_add_dm_write(batch, DM_SBDATA3, sbvalue[3], false);
}
if (size > 8) {
sbvalue[2] = ((uint32_t)p[8]) |
(((uint32_t)p[9]) << 8) |
(((uint32_t)p[10]) << 16) |
(((uint32_t)p[11]) << 24);
riscv_batch_add_dm_write(batch, DM_SBDATA2, sbvalue[2], false);
}
if (size > 4) {
sbvalue[1] = ((uint32_t)p[4]) |
(((uint32_t)p[5]) << 8) |
(((uint32_t)p[6]) << 16) |
(((uint32_t)p[7]) << 24);
riscv_batch_add_dm_write(batch, DM_SBDATA1, sbvalue[1], false);
}
sbvalue[0] = p[0];
if (size > 2) {
sbvalue[0] |= ((uint32_t)p[2]) << 16;
sbvalue[0] |= ((uint32_t)p[3]) << 24;
}
if (size > 1)
sbvalue[0] |= ((uint32_t)p[1]) << 8;
riscv_batch_add_dm_write(batch, DM_SBDATA0, sbvalue[0], false);
log_memory_access(address + i * size, sbvalue, size, false);
next_address += size;
}
/* Execute the batch of writes */
result = batch_run(target, batch);
riscv_batch_free(batch);
if (result != ERROR_OK)
return result;
/* Read sbcs value.
* At the same time, detect if DMI busy has occurred during the batch write. */
bool dmi_busy_encountered;
if (dm_op(target, &sbcs, &dmi_busy_encountered, DMI_OP_READ,
DM_SBCS, 0, false, true) != ERROR_OK)
return ERROR_FAIL;
if (dmi_busy_encountered)
LOG_TARGET_DEBUG(target, "DMI busy encountered during system bus write.");
/* Wait until sbbusy goes low */
time_t start = time(NULL);
while (get_field(sbcs, DM_SBCS_SBBUSY)) {
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_TARGET_ERROR(target, "Timed out after %ds waiting for sbbusy to go low (sbcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec, sbcs);
return ERROR_FAIL;
}
if (dm_read(target, &sbcs, DM_SBCS) != ERROR_OK)
return ERROR_FAIL;
}
if (get_field(sbcs, DM_SBCS_SBBUSYERROR)) {
/* We wrote while the target was busy. */
LOG_TARGET_DEBUG(target, "Sbbusyerror encountered during system bus write.");
/* Clear the sticky error flag. */
dm_write(target, DM_SBCS, sbcs | DM_SBCS_SBBUSYERROR);
/* Slow down before trying again. */
info->bus_master_write_delay += info->bus_master_write_delay / 10 + 1;
}
if (get_field(sbcs, DM_SBCS_SBBUSYERROR) || dmi_busy_encountered) {
/* Recover from the case when the write commands were issued too fast.
* Determine the address from which to resume writing. */
next_address = sb_read_address(target);
if (next_address < address) {
/* This should never happen, probably buggy hardware. */
LOG_TARGET_DEBUG(target, "unexpected sbaddress=0x%" TARGET_PRIxADDR
" - buggy sbautoincrement in hw?", next_address);
/* Fail the whole operation. */
return ERROR_FAIL;
}
/* Try again - resume writing. */
continue;
}
unsigned int sberror = get_field(sbcs, DM_SBCS_SBERROR);
if (sberror != 0) {
/* Sberror indicates the bus access failed, but not because we issued the writes
* too fast. Cannot recover. Sbaddress holds the address where the error occurred
* (unless sbautoincrement in the HW is buggy).
*/
target_addr_t sbaddress = sb_read_address(target);
LOG_TARGET_DEBUG(target, "System bus access failed with sberror=%u (sbaddress=0x%" TARGET_PRIxADDR ")",
sberror, sbaddress);
if (sbaddress < address) {
/* This should never happen, probably buggy hardware.
* Make a note to the user not to trust the sbaddress value. */
LOG_TARGET_DEBUG(target, "unexpected sbaddress=0x%" TARGET_PRIxADDR
" - buggy sbautoincrement in hw?", next_address);
}
/* Clear the sticky error flag */
dm_write(target, DM_SBCS, DM_SBCS_SBERROR);
/* Fail the whole operation */
return ERROR_FAIL;
}
}
return ERROR_OK;
}
/**
* This function is used to start the memory-writing pipeline.
* As part of the process, the function writes the first item and waits for completion,
* so forward progress is ensured.
* The pipeline looks like this:
* debugger -> dm_data[0:1] -> s1 -> memory
* Prior to calling it, the program buffer should contain the appropriate
* program.
* This function sets DM_ABSTRACTAUTO_AUTOEXECDATA to trigger second stage of the
* pipeline (dm_data[0:1] -> s1) whenever dm_data is written.
*/
static int write_memory_progbuf_startup(struct target *target, target_addr_t *address_p,
const uint8_t *buffer, uint32_t size)
{
/* TODO: There is potential to gain some performance if the operations below are
* executed inside the first DMI batch (not separately). */
if (register_write_direct(target, GDB_REGNO_S0, *address_p) != ERROR_OK)
return ERROR_FAIL;
/* Write the first item to data0 [, data1] */
assert(size <= 8);
const uint64_t value = buf_get_u64(buffer, 0, 8 * size);
if (write_abstract_arg(target, /*index*/ 0, value, size > 4 ? 64 : 32)
!= ERROR_OK)
return ERROR_FAIL;
/* Write and execute command that moves the value from data0 [, data1]
* into S1 and executes program buffer. */
uint32_t command = access_register_command(target,
GDB_REGNO_S1, riscv_xlen(target),
AC_ACCESS_REGISTER_POSTEXEC |
AC_ACCESS_REGISTER_TRANSFER |
AC_ACCESS_REGISTER_WRITE);
uint32_t cmderr;
if (execute_abstract_command(target, command, &cmderr) != ERROR_OK)
return ERROR_FAIL;
log_memory_access64(*address_p, value, size, /*is_read*/ false);
/* The execution of the command succeeded, which means:
* - write of the first item to memory succeeded
* - address on the target (S0) was incremented
*/
*address_p += size;
/* TODO: Setting abstractauto.autoexecdata is not necessary for a write
* of one element. */
return dm_write(target, DM_ABSTRACTAUTO,
1 << DM_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
}
/**
* This function reverts the changes made by `write_memory_progbuf_startup()`
*/
static int write_memory_progbuf_teardown(struct target *target)
{
return dm_write(target, DM_ABSTRACTAUTO, 0);
}
/**
* This function attempts to restore the pipeline after a busy on abstract
* access or a DMI busy by reading the content of s0 -- the address of the
* failed write.
*/
static int write_memory_progbuf_handle_busy(struct target *target,
target_addr_t *address_p, uint32_t size, const uint8_t *buffer)
{
riscv013_clear_abstract_error(target);
increase_ac_busy_delay(target);
if (write_memory_progbuf_teardown(target) != ERROR_OK)
return ERROR_FAIL;
target_addr_t address_on_target;
if (register_read_direct(target, &address_on_target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
const uint8_t * const curr_buff = buffer + (address_on_target - *address_p);
LOG_TARGET_DEBUG(target, "Restarting from 0x%" TARGET_PRIxADDR, *address_p);
*address_p = address_on_target;
/* This restores the pipeline and ensures one item gets reliably written */
return write_memory_progbuf_startup(target, address_p, curr_buff, size);
}
/**
* This function fills the batch with DMI writes (but does not execute the batch).
* It returns the next address -- the address that will be the start of the next batch.
*/
static target_addr_t write_memory_progbuf_fill_batch(struct riscv_batch *batch,
target_addr_t start_address, target_addr_t end_address, uint32_t size,
const uint8_t *buffer)
{
assert(size <= 8);
const unsigned int writes_per_element = size > 4 ? 2 : 1;
const size_t batch_capacity = riscv_batch_available_scans(batch) / writes_per_element;
/* This is safe even for the edge case when writing at the very top of
* the 64-bit address space (in which case end_address overflows to 0).
*/
const target_addr_t batch_end_address = start_address +
MIN((target_addr_t)batch_capacity * size,
end_address - start_address);
for (target_addr_t address = start_address; address != batch_end_address;
address += size, buffer += size) {
assert(size <= 8);
const uint64_t value = buf_get_u64(buffer, 0, 8 * size);
log_memory_access64(address, value, size, /*is_read*/ false);
if (writes_per_element == 2)
riscv_batch_add_dm_write(batch, DM_DATA1,
(uint32_t)(value >> 32), false);
riscv_batch_add_dm_write(batch, DM_DATA0, (uint32_t)value, false);
}
return batch_end_address;
}
/**
* This function runs the batch of writes and updates address_p with the
* address of the next write.
*/
static int write_memory_progbuf_run_batch(struct target *target, struct riscv_batch *batch,
target_addr_t *address_p, target_addr_t end_address, uint32_t size,
const uint8_t *buffer)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
/* Abstract commands are executed while running the batch. */
dm->abstract_cmd_maybe_busy = true;
if (batch_run(target, batch) != ERROR_OK)
return ERROR_FAIL;
/* Note that if the scan resulted in a Busy DMI response, it
* is this call to wait_for_idle() that will cause the dmi_busy_delay
* to be incremented if necessary. */
uint32_t abstractcs;
if (wait_for_idle(target, &abstractcs) != ERROR_OK)
return ERROR_FAIL;
uint32_t cmderr = get_field32(abstractcs, DM_ABSTRACTCS_CMDERR);
const bool dmi_busy_encountered = riscv_batch_dmi_busy_encountered(batch);
if (cmderr == CMDERR_NONE && !dmi_busy_encountered) {
LOG_TARGET_DEBUG(target, "Successfully written memory block M[0x%" TARGET_PRIxADDR
".. 0x%" TARGET_PRIxADDR ")", *address_p, end_address);
*address_p = end_address;
return ERROR_OK;
} else if (cmderr == CMDERR_BUSY || dmi_busy_encountered) {
if (cmderr == CMDERR_BUSY)
LOG_TARGET_DEBUG(target, "Encountered abstract command busy response while writing block M[0x%"
TARGET_PRIxADDR ".. 0x%" TARGET_PRIxADDR ")", *address_p, end_address);
if (dmi_busy_encountered)
LOG_TARGET_DEBUG(target, "Encountered DMI busy response while writing block M[0x%"
TARGET_PRIxADDR ".. 0x%" TARGET_PRIxADDR ")", *address_p, end_address);
/* TODO: If dmi busy is encountered, the address of the last
* successful write can be deduced by analysing the batch.
*/
return write_memory_progbuf_handle_busy(target, address_p, size, buffer);
}
LOG_TARGET_ERROR(target, "Error when writing memory, abstractcs=0x%" PRIx32,
abstractcs);
riscv013_clear_abstract_error(target);
return ERROR_FAIL;
}
static int write_memory_progbuf_try_to_write(struct target *target,
target_addr_t *address_p, target_addr_t end_address, uint32_t size,
const uint8_t *buffer)
{
RISCV013_INFO(info);
struct riscv_batch * const batch = riscv_batch_alloc(target, RISCV_BATCH_ALLOC_SIZE,
info->dmi_busy_delay + info->ac_busy_delay);
if (!batch)
return ERROR_FAIL;
const target_addr_t batch_end_addr = write_memory_progbuf_fill_batch(batch,
*address_p, end_address, size, buffer);
int result = write_memory_progbuf_run_batch(target, batch, address_p,
batch_end_addr, size, buffer);
riscv_batch_free(batch);
return result;
}
static int riscv_program_store_mprv(struct riscv_program *p, enum gdb_regno d,
enum gdb_regno b, int offset, unsigned int size, bool mprven)
{
if (mprven && riscv_program_csrrsi(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_store(p, d, b, offset, size) != ERROR_OK)
return ERROR_FAIL;
if (mprven && riscv_program_csrrci(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int write_memory_progbuf_fill_progbuf(struct target *target,
uint32_t size, bool mprven)
{
if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_store_mprv(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0, size,
mprven) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_ebreak(&program) != ERROR_OK)
return ERROR_FAIL;
return riscv_program_write(&program);
}
static int write_memory_progbuf_inner(struct target *target, target_addr_t start_addr,
uint32_t size, uint32_t count, const uint8_t *buffer, bool mprven)
{
if (write_memory_progbuf_fill_progbuf(target, size,
mprven) != ERROR_OK)
return ERROR_FAIL;
target_addr_t addr_on_target = start_addr;
if (write_memory_progbuf_startup(target, &addr_on_target, buffer, size) != ERROR_OK)
return ERROR_FAIL;
const target_addr_t end_addr = start_addr + (target_addr_t)size * count;
for (target_addr_t next_addr_on_target = addr_on_target; addr_on_target != end_addr;
addr_on_target = next_addr_on_target) {
const uint8_t * const curr_buff = buffer + (addr_on_target - start_addr);
if (write_memory_progbuf_try_to_write(target, &next_addr_on_target,
end_addr, size, curr_buff) != ERROR_OK) {
write_memory_progbuf_teardown(target);
return ERROR_FAIL;
}
/* write_memory_progbuf_try_to_write() ensures that at least one item
* gets successfully written even when busy condition is encountered.
* These assertions shuld hold when next_address_on_target overflows. */
assert(next_addr_on_target - addr_on_target > 0);
assert(next_addr_on_target - start_addr <= (target_addr_t)size * count);
}
return write_memory_progbuf_teardown(target);
}
static int write_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
if (riscv_xlen(target) < size * 8) {
LOG_TARGET_ERROR(target, "XLEN (%u) is too short for %" PRIu32 "-bit memory write.",
riscv_xlen(target), size * 8);
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "writing %" PRIu32 " words of %" PRIu32
" bytes to 0x%" TARGET_PRIxADDR, count, size, address);
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
uint64_t mstatus = 0;
uint64_t mstatus_old = 0;
if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
return ERROR_FAIL;
const bool mprven = riscv_enable_virtual && get_field(mstatus, MSTATUS_MPRV);
int result = write_memory_progbuf_inner(target, address, size, count, buffer, mprven);
/* Restore MSTATUS */
if (mstatus != mstatus_old)
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old))
return ERROR_FAIL;
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static int write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
if (size != 1 && size != 2 && size != 4 && size != 8 && size != 16) {
LOG_TARGET_ERROR(target, "BUG: Unsupported size for memory write: %d", size);
return ERROR_FAIL;
}
int ret = ERROR_FAIL;
RISCV_INFO(r);
RISCV013_INFO(info);
char *progbuf_result = "disabled";
char *sysbus_result = "disabled";
char *abstract_result = "disabled";
for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
int method = r->mem_access_methods[i];
if (method == RISCV_MEM_ACCESS_PROGBUF) {
if (mem_should_skip_progbuf(target, address, size, false, &progbuf_result))
continue;
ret = write_memory_progbuf(target, address, size, count, buffer);
if (ret != ERROR_OK)
progbuf_result = "failed";
} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
if (mem_should_skip_sysbus(target, address, size, 0, false, &sysbus_result))
continue;
if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0)
ret = write_memory_bus_v0(target, address, size, count, buffer);
else if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 1)
ret = write_memory_bus_v1(target, address, size, count, buffer);
if (ret != ERROR_OK)
sysbus_result = "failed";
} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
if (mem_should_skip_abstract(target, address, size, 0, false, &abstract_result))
continue;
ret = write_memory_abstract(target, address, size, count, buffer);
if (ret != ERROR_OK)
abstract_result = "failed";
} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
/* No further mem access method to try. */
break;
log_mem_access_result(target, ret == ERROR_OK, method, false);
if (ret == ERROR_OK)
return ret;
}
LOG_TARGET_ERROR(target, "Target %s: Failed to write memory (addr=0x%" PRIx64 ")", target_name(target), address);
LOG_TARGET_ERROR(target, " progbuf=%s, sysbus=%s, abstract=%s", progbuf_result, sysbus_result, abstract_result);
return ret;
}
static int arch_state(struct target *target)
{
return ERROR_OK;
}
struct target_type riscv013_target = {
.name = "riscv",
.init_target = init_target,
.deinit_target = deinit_target,
.examine = examine,
.poll = &riscv_openocd_poll,
.halt = &riscv_halt,
.step = &riscv_openocd_step,
.assert_reset = assert_reset,
.deassert_reset = deassert_reset,
.write_memory = write_memory,
.arch_state = arch_state
};
/*** 0.13-specific implementations of various RISC-V helper functions. ***/
static int riscv013_get_register(struct target *target,
riscv_reg_t *value, enum gdb_regno rid)
{
/* It would be beneficial to move this redirection to the
* version-independent section, but there is a conflict:
* `dcsr[5]` is `dcsr.v` in current spec, but it is `dcsr.debugint` in 0.11.
*/
if (rid == GDB_REGNO_PRIV) {
uint64_t dcsr;
if (riscv_get_register(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
return ERROR_FAIL;
*value = set_field(0, VIRT_PRIV_V, get_field(dcsr, CSR_DCSR_V));
*value = set_field(*value, VIRT_PRIV_PRV, get_field(dcsr, CSR_DCSR_PRV));
return ERROR_OK;
}
LOG_TARGET_DEBUG(target, "reading register %s", gdb_regno_name(target, rid));
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
if (register_read_direct(target, value, rid) != ERROR_OK) {
*value = -1;
return ERROR_FAIL;
}
return ERROR_OK;
}
static int riscv013_set_register(struct target *target, enum gdb_regno rid,
riscv_reg_t value)
{
LOG_TARGET_DEBUG(target, "writing 0x%" PRIx64 " to register %s",
value, gdb_regno_name(target, rid));
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
return register_write_direct(target, rid, value);
}
static int dm013_select_hart(struct target *target, int hart_index)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
if (hart_index == dm->current_hartid)
return ERROR_OK;
/* `hartsel` should not be changed if `abstractcs.busy` is set. */
int result = wait_for_idle_if_needed(target);
if (result != ERROR_OK)
return result;
uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE;
dmcontrol = set_dmcontrol_hartsel(dmcontrol, hart_index);
if (dm_write(target, DM_DMCONTROL, dmcontrol) != ERROR_OK) {
/* Who knows what the state is? */
dm->current_hartid = HART_INDEX_UNKNOWN;
return ERROR_FAIL;
}
dm->current_hartid = hart_index;
return ERROR_OK;
}
static int riscv013_halt_prep(struct target *target)
{
LOG_TARGET_DEBUG(target, "grouping hart");
if (target->smp) {
/* Let's make sure that all non-halted harts are in the same halt group */
riscv013_info_t *info = get_info(target);
if (info->haltgroup_supported) {
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
bool supported;
if (set_group(target, &supported, target->smp, HALT_GROUP) != ERROR_OK)
return ERROR_FAIL;
if (!supported)
LOG_TARGET_ERROR(target, "Couldn't place hart %d in halt group %d. "
"Some harts may be unexpectedly halted.", target->coreid, target->smp);
}
}
return ERROR_OK;
}
static int riscv013_halt_go(struct target *target)
{
LOG_TARGET_DEBUG(target, "halting hart");
if (dm013_select_target(target) != ERROR_OK) {
return ERROR_FAIL;
}
if (target->smp) {
/* Let's make sure that harts we want to halt are placed in another group */
riscv013_info_t *info = get_info(target);
if (info->haltgroup_supported) {
bool supported;
if (set_group(target, &supported, 0, HALT_GROUP) != ERROR_OK)
return ERROR_FAIL;
if (!supported)
LOG_TARGET_ERROR(target, "Couldn't place hart in halt group 0. "
"Some harts may be unexpectedly halted.");
}
}
int result = riscv013_halt_target(target);
if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
else if (result != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int riscv013_halt_target(struct target *target)
{
LOG_TARGET_DEBUG(target, "halting one hart");
/* `haltreq` should not be issued if `abstractcs.busy` is set. */
int result = wait_for_idle_if_needed(target);
if (result != ERROR_OK)
return result;
dm013_info_t *dm = get_dm(target);
/* Issue the halt command, and then wait for the current hart to halt. */
uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_HALTREQ;
dmcontrol = set_dmcontrol_hartsel(dmcontrol, dm->current_hartid);
dm_write(target, DM_DMCONTROL, dmcontrol);
uint32_t dmstatus;
for (size_t i = 0; i < 256; ++i) {
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
/* When hart is not running, there's no point in continuing this loop. */
if (!get_field(dmstatus, DM_DMSTATUS_ANYRUNNING))
break;
}
/* We declare success if hart is not running. It may be unavailable, though. */
if ((get_field(dmstatus, DM_DMSTATUS_ANYRUNNING))) {
if (dm_read(target, &dmcontrol, DM_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
LOG_TARGET_ERROR(target, "Unable to halt. dmcontrol=0x%08x, dmstatus=0x%08x",
dmcontrol, dmstatus);
return ERROR_FAIL;
}
dmcontrol = set_field(dmcontrol, DM_DMCONTROL_HALTREQ, 0);
dm_write(target, DM_DMCONTROL, dmcontrol);
/* Set state for the current target based on its dmstatus. */
if (get_field(dmstatus, DM_DMSTATUS_ALLHALTED)) {
target->state = TARGET_HALTED;
if (target->debug_reason == DBG_REASON_NOTHALTED)
target->debug_reason = DBG_REASON_DBGRQ;
} else if (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL)) {
target->state = TARGET_UNAVAILABLE;
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
return ERROR_OK;
}
static int riscv013_resume_go(struct target *target)
{
return riscv013_step_or_resume_current_hart(target, false);
}
static int riscv013_step_current_hart(struct target *target)
{
return riscv013_step_or_resume_current_hart(target, true);
}
static int riscv013_resume_prep(struct target *target)
{
assert(target->state == TARGET_HALTED);
return riscv013_on_step_or_resume(target, false, false);
}
static int riscv013_on_step(struct target *target)
{
return riscv013_on_step_or_resume(target, false, true);
}
static enum riscv_halt_reason riscv013_halt_reason(struct target *target)
{
riscv_reg_t dcsr;
int result = register_read_direct(target, &dcsr, GDB_REGNO_DCSR);
if (result != ERROR_OK)
return RISCV_HALT_UNKNOWN;
LOG_TARGET_DEBUG(target, "dcsr.cause: 0x%" PRIx64, get_field(dcsr, CSR_DCSR_CAUSE));
switch (get_field(dcsr, CSR_DCSR_CAUSE)) {
case CSR_DCSR_CAUSE_EBREAK:
return RISCV_HALT_EBREAK;
case CSR_DCSR_CAUSE_TRIGGER:
/* We could get here before triggers are enumerated if a trigger was
* already set when we connected. Force enumeration now, which has the
* side effect of clearing any triggers we did not set. */
riscv_enumerate_triggers(target);
LOG_TARGET_DEBUG(target, "halted because of trigger");
return RISCV_HALT_TRIGGER;
case CSR_DCSR_CAUSE_STEP:
return RISCV_HALT_SINGLESTEP;
case CSR_DCSR_CAUSE_HALTREQ:
case CSR_DCSR_CAUSE_RESETHALTREQ:
return RISCV_HALT_INTERRUPT;
case CSR_DCSR_CAUSE_GROUP:
return RISCV_HALT_GROUP;
}
LOG_TARGET_ERROR(target, "Unknown DCSR cause field: 0x%" PRIx64, get_field(dcsr, CSR_DCSR_CAUSE));
LOG_TARGET_ERROR(target, " dcsr=0x%" PRIx32, (uint32_t)dcsr);
return RISCV_HALT_UNKNOWN;
}
static int riscv013_write_progbuf(struct target *target, unsigned int index, riscv_insn_t data)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return ERROR_FAIL;
if (dm->progbuf_cache[index] != data) {
if (dm_write(target, DM_PROGBUF0 + index, data) != ERROR_OK)
return ERROR_FAIL;
dm->progbuf_cache[index] = data;
} else {
LOG_TARGET_DEBUG(target, "Cache hit for 0x%" PRIx32 " @%d", data, index);
}
return ERROR_OK;
}
static riscv_insn_t riscv013_read_progbuf(struct target *target, unsigned int index)
{
uint32_t value;
if (dm_read(target, &value, DM_PROGBUF0 + index) == ERROR_OK)
return value;
else
return 0;
}
static int riscv013_invalidate_cached_progbuf(struct target *target)
{
dm013_info_t *dm = get_dm(target);
if (!dm) {
LOG_TARGET_DEBUG(target, "No DM is specified for the target");
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "Invalidating progbuf cache");
for (unsigned int i = 0; i < 15; i++)
dm->progbuf_cache[i] = 0;
return ERROR_OK;
}
static int riscv013_execute_progbuf(struct target *target, uint32_t *cmderr)
{
uint32_t run_program = 0;
run_program = set_field(run_program, AC_ACCESS_REGISTER_AARSIZE, 2);
run_program = set_field(run_program, AC_ACCESS_REGISTER_POSTEXEC, 1);
run_program = set_field(run_program, AC_ACCESS_REGISTER_TRANSFER, 0);
run_program = set_field(run_program, AC_ACCESS_REGISTER_REGNO, 0x1000);
return execute_abstract_command(target, run_program, cmderr);
}
static void riscv013_fill_dmi_write(struct target *target, char *buf, uint64_t a, uint32_t d)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_WRITE);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, d);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}
static void riscv013_fill_dmi_read(struct target *target, char *buf, uint64_t a)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_READ);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}
static void riscv013_fill_dmi_nop(struct target *target, char *buf)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_NOP);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, 0);
}
static int riscv013_get_dmi_scan_length(struct target *target)
{
RISCV013_INFO(info);
return info->abits + DTM_DMI_DATA_LENGTH + DTM_DMI_OP_LENGTH;
}
void riscv013_fill_dm_write(struct target *target, char *buf, uint64_t a, uint32_t d)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return;
riscv013_fill_dmi_write(target, buf, a + dm->base, d);
}
void riscv013_fill_dm_read(struct target *target, char *buf, uint64_t a)
{
dm013_info_t *dm = get_dm(target);
if (!dm)
return;
riscv013_fill_dmi_read(target, buf, a + dm->base);
}
void riscv013_fill_dm_nop(struct target *target, char *buf)
{
riscv013_fill_dmi_nop(target, buf);
}
static int maybe_execute_fence_i(struct target *target, bool skip)
{
if (!skip && has_sufficient_progbuf(target, 2))
return execute_fence(target);
return ERROR_OK;
}
/* Helper Functions. */
static int riscv013_on_step_or_resume(struct target *target, bool skip, bool step)
{
if (maybe_execute_fence_i(target, skip) != ERROR_OK)
return ERROR_FAIL;
if (set_dcsr_ebreak(target, step) != ERROR_OK)
return ERROR_FAIL;
if (riscv_flush_registers(target) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int riscv013_step_or_resume_current_hart(struct target *target,
bool step)
{
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "Hart is not halted!");
return ERROR_FAIL;
}
LOG_TARGET_DEBUG(target, "resuming (for step?=%d)", step);
if (riscv_flush_registers(target) != ERROR_OK)
return ERROR_FAIL;
if (dm013_select_target(target) != ERROR_OK)
return ERROR_FAIL;
dm013_info_t *dm = get_dm(target);
/* Issue the resume command, and then wait for the current hart to resume. */
uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_RESUMEREQ;
dmcontrol = set_dmcontrol_hartsel(dmcontrol, dm->current_hartid);
/* `resumereq` should not be issued if `abstractcs.busy` is set. */
int result = wait_for_idle_if_needed(target);
if (result != ERROR_OK)
return result;
dm_write(target, DM_DMCONTROL, dmcontrol);
dmcontrol = set_field(dmcontrol, DM_DMCONTROL_RESUMEREQ, 0);
uint32_t dmstatus;
for (size_t i = 0; i < 256; ++i) {
usleep(10);
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
if (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL)) {
target->state = TARGET_UNAVAILABLE;
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (get_field(dmstatus, DM_DMSTATUS_ANYHAVERESET))
dmcontrol = dmcontrol | DM_DMCONTROL_ACKHAVERESET;
if (get_field(dmstatus, DM_DMSTATUS_ALLRESUMEACK) == 0)
continue;
if (step && get_field(dmstatus, DM_DMSTATUS_ALLHALTED) == 0)
continue;
dm_write(target, DM_DMCONTROL, dmcontrol);
if (target->smp) {
/* Let's make sure that this hart is placed back with all non-halted harts */
riscv013_info_t *info = get_info(target);
if (info->haltgroup_supported) {
bool supported;
if (set_group(target, &supported, target->smp, HALT_GROUP) != ERROR_OK)
return ERROR_FAIL;
if (!supported)
LOG_TARGET_ERROR(target, "Couldn't place hart back in halt group %d. "
"Some harts may be unexpectedly halted.", target->smp);
}
}
return ERROR_OK;
}
dm_write(target, DM_DMCONTROL, dmcontrol);
LOG_TARGET_ERROR(target, "unable to resume");
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
LOG_TARGET_ERROR(target, " dmstatus=0x%08x", dmstatus);
if (step) {
LOG_TARGET_ERROR(target, " was stepping, halting");
riscv_halt(target);
return ERROR_OK;
}
return ERROR_FAIL;
}
static int riscv013_clear_abstract_error(struct target *target)
{
uint32_t abstractcs;
int result = wait_for_idle(target, &abstractcs);
/* Clear the error status, even if busy is still set. */
if (dm_write(target, DM_ABSTRACTCS, DM_ABSTRACTCS_CMDERR) != ERROR_OK)
result = ERROR_FAIL;
return result;
}