1165 lines
33 KiB
C
1165 lines
33 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2013 Synapse Product Development *
|
|
* Andrey Smirnov <andrew.smironv@gmail.com> *
|
|
* Angus Gratton <gus@projectgus.com> *
|
|
* Erdem U. Altunyurt <spamjunkeater@gmail.com> *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
***************************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "imp.h"
|
|
#include <target/algorithm.h>
|
|
#include <target/armv7m.h>
|
|
#include <helper/types.h>
|
|
|
|
enum {
|
|
NRF5_FLASH_BASE = 0x00000000,
|
|
};
|
|
|
|
enum nrf5_ficr_registers {
|
|
NRF5_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
|
|
|
|
#define NRF5_FICR_REG(offset) (NRF5_FICR_BASE + offset)
|
|
|
|
NRF5_FICR_CODEPAGESIZE = NRF5_FICR_REG(0x010),
|
|
NRF5_FICR_CODESIZE = NRF5_FICR_REG(0x014),
|
|
NRF5_FICR_CLENR0 = NRF5_FICR_REG(0x028),
|
|
NRF5_FICR_PPFC = NRF5_FICR_REG(0x02C),
|
|
NRF5_FICR_NUMRAMBLOCK = NRF5_FICR_REG(0x034),
|
|
NRF5_FICR_SIZERAMBLOCK0 = NRF5_FICR_REG(0x038),
|
|
NRF5_FICR_SIZERAMBLOCK1 = NRF5_FICR_REG(0x03C),
|
|
NRF5_FICR_SIZERAMBLOCK2 = NRF5_FICR_REG(0x040),
|
|
NRF5_FICR_SIZERAMBLOCK3 = NRF5_FICR_REG(0x044),
|
|
NRF5_FICR_CONFIGID = NRF5_FICR_REG(0x05C),
|
|
NRF5_FICR_DEVICEID0 = NRF5_FICR_REG(0x060),
|
|
NRF5_FICR_DEVICEID1 = NRF5_FICR_REG(0x064),
|
|
NRF5_FICR_ER0 = NRF5_FICR_REG(0x080),
|
|
NRF5_FICR_ER1 = NRF5_FICR_REG(0x084),
|
|
NRF5_FICR_ER2 = NRF5_FICR_REG(0x088),
|
|
NRF5_FICR_ER3 = NRF5_FICR_REG(0x08C),
|
|
NRF5_FICR_IR0 = NRF5_FICR_REG(0x090),
|
|
NRF5_FICR_IR1 = NRF5_FICR_REG(0x094),
|
|
NRF5_FICR_IR2 = NRF5_FICR_REG(0x098),
|
|
NRF5_FICR_IR3 = NRF5_FICR_REG(0x09C),
|
|
NRF5_FICR_DEVICEADDRTYPE = NRF5_FICR_REG(0x0A0),
|
|
NRF5_FICR_DEVICEADDR0 = NRF5_FICR_REG(0x0A4),
|
|
NRF5_FICR_DEVICEADDR1 = NRF5_FICR_REG(0x0A8),
|
|
NRF5_FICR_OVERRIDEN = NRF5_FICR_REG(0x0AC),
|
|
NRF5_FICR_NRF_1MBIT0 = NRF5_FICR_REG(0x0B0),
|
|
NRF5_FICR_NRF_1MBIT1 = NRF5_FICR_REG(0x0B4),
|
|
NRF5_FICR_NRF_1MBIT2 = NRF5_FICR_REG(0x0B8),
|
|
NRF5_FICR_NRF_1MBIT3 = NRF5_FICR_REG(0x0BC),
|
|
NRF5_FICR_NRF_1MBIT4 = NRF5_FICR_REG(0x0C0),
|
|
NRF5_FICR_BLE_1MBIT0 = NRF5_FICR_REG(0x0EC),
|
|
NRF5_FICR_BLE_1MBIT1 = NRF5_FICR_REG(0x0F0),
|
|
NRF5_FICR_BLE_1MBIT2 = NRF5_FICR_REG(0x0F4),
|
|
NRF5_FICR_BLE_1MBIT3 = NRF5_FICR_REG(0x0F8),
|
|
NRF5_FICR_BLE_1MBIT4 = NRF5_FICR_REG(0x0FC),
|
|
};
|
|
|
|
enum nrf5_uicr_registers {
|
|
NRF5_UICR_BASE = 0x10001000, /* User Information
|
|
* Configuration Regsters */
|
|
|
|
NRF5_UICR_SIZE = 0x100,
|
|
|
|
#define NRF5_UICR_REG(offset) (NRF5_UICR_BASE + offset)
|
|
|
|
NRF5_UICR_CLENR0 = NRF5_UICR_REG(0x000),
|
|
NRF5_UICR_RBPCONF = NRF5_UICR_REG(0x004),
|
|
NRF5_UICR_XTALFREQ = NRF5_UICR_REG(0x008),
|
|
NRF5_UICR_FWID = NRF5_UICR_REG(0x010),
|
|
};
|
|
|
|
enum nrf5_nvmc_registers {
|
|
NRF5_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
|
|
* Controller Regsters */
|
|
|
|
#define NRF5_NVMC_REG(offset) (NRF5_NVMC_BASE + offset)
|
|
|
|
NRF5_NVMC_READY = NRF5_NVMC_REG(0x400),
|
|
NRF5_NVMC_CONFIG = NRF5_NVMC_REG(0x504),
|
|
NRF5_NVMC_ERASEPAGE = NRF5_NVMC_REG(0x508),
|
|
NRF5_NVMC_ERASEALL = NRF5_NVMC_REG(0x50C),
|
|
NRF5_NVMC_ERASEUICR = NRF5_NVMC_REG(0x514),
|
|
};
|
|
|
|
enum nrf5_nvmc_config_bits {
|
|
NRF5_NVMC_CONFIG_REN = 0x00,
|
|
NRF5_NVMC_CONFIG_WEN = 0x01,
|
|
NRF5_NVMC_CONFIG_EEN = 0x02,
|
|
|
|
};
|
|
|
|
struct nrf5_info {
|
|
uint32_t code_page_size;
|
|
uint32_t refcount;
|
|
|
|
struct {
|
|
bool probed;
|
|
int (*write) (struct flash_bank *bank,
|
|
struct nrf5_info *chip,
|
|
const uint8_t *buffer, uint32_t offset, uint32_t count);
|
|
} bank[2];
|
|
struct target *target;
|
|
};
|
|
|
|
struct nrf5_device_spec {
|
|
uint16_t hwid;
|
|
const char *part;
|
|
const char *variant;
|
|
const char *build_code;
|
|
unsigned int flash_size_kb;
|
|
};
|
|
|
|
#define NRF5_DEVICE_DEF(id, pt, var, bcode, fsize) \
|
|
{ \
|
|
.hwid = (id), \
|
|
.part = pt, \
|
|
.variant = var, \
|
|
.build_code = bcode, \
|
|
.flash_size_kb = (fsize), \
|
|
}
|
|
|
|
/* The known devices table below is derived from the "nRF51 Series
|
|
* Compatibility Matrix" document, which can be found by searching for
|
|
* ATTN-51 on the Nordic Semi website:
|
|
*
|
|
* http://www.nordicsemi.com/eng/content/search?SearchText=ATTN-51
|
|
*
|
|
* Up to date with Matrix v2.0, plus some additional HWIDs.
|
|
*
|
|
* The additional HWIDs apply where the build code in the matrix is
|
|
* shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
|
|
* for x==0, x!=0 means different (unspecified) HWIDs.
|
|
*/
|
|
static const struct nrf5_device_spec nrf5_known_devices_table[] = {
|
|
/* nRF51822 Devices (IC rev 1). */
|
|
NRF5_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
|
|
NRF5_DEVICE_DEF(0x0026, "51822", "QFAB", "AA", 128),
|
|
NRF5_DEVICE_DEF(0x0027, "51822", "QFAB", "A0", 128),
|
|
NRF5_DEVICE_DEF(0x0020, "51822", "CEAA", "BA", 256),
|
|
NRF5_DEVICE_DEF(0x002F, "51822", "CEAA", "B0", 256),
|
|
|
|
/* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
|
|
with built-in jlink seem to use engineering samples not listed
|
|
in the nRF51 Series Compatibility Matrix V1.0. */
|
|
NRF5_DEVICE_DEF(0x0071, "51822", "QFAC", "AB", 256),
|
|
|
|
/* nRF51822 Devices (IC rev 2). */
|
|
NRF5_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0", 256),
|
|
NRF5_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0", 256),
|
|
NRF5_DEVICE_DEF(0x003C, "51822", "QFAA", "G0", 256),
|
|
NRF5_DEVICE_DEF(0x0057, "51822", "QFAA", "G2", 256),
|
|
NRF5_DEVICE_DEF(0x0058, "51822", "QFAA", "G3", 256),
|
|
NRF5_DEVICE_DEF(0x004C, "51822", "QFAB", "B0", 128),
|
|
NRF5_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0", 256),
|
|
NRF5_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0", 256),
|
|
NRF5_DEVICE_DEF(0x004D, "51822", "CEAA", "D00", 256),
|
|
|
|
/* nRF51822 Devices (IC rev 3). */
|
|
NRF5_DEVICE_DEF(0x0072, "51822", "QFAA", "H0", 256),
|
|
NRF5_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2", 256),
|
|
NRF5_DEVICE_DEF(0x007B, "51822", "QFAB", "C0", 128),
|
|
NRF5_DEVICE_DEF(0x0083, "51822", "QFAC", "A0", 256),
|
|
NRF5_DEVICE_DEF(0x0084, "51822", "QFAC", "A1", 256),
|
|
NRF5_DEVICE_DEF(0x007D, "51822", "CDAB", "A0", 128),
|
|
NRF5_DEVICE_DEF(0x0079, "51822", "CEAA", "E0", 256),
|
|
NRF5_DEVICE_DEF(0x0087, "51822", "CFAC", "A0", 256),
|
|
NRF5_DEVICE_DEF(0x008F, "51822", "QFAA", "H1", 256),
|
|
|
|
/* nRF51422 Devices (IC rev 1). */
|
|
NRF5_DEVICE_DEF(0x001E, "51422", "QFAA", "CA", 256),
|
|
NRF5_DEVICE_DEF(0x0024, "51422", "QFAA", "C0", 256),
|
|
NRF5_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A", 256),
|
|
|
|
/* nRF51422 Devices (IC rev 2). */
|
|
NRF5_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA", 256),
|
|
NRF5_DEVICE_DEF(0x002E, "51422", "QFAA", "E0", 256),
|
|
NRF5_DEVICE_DEF(0x0061, "51422", "QFAB", "A00", 128),
|
|
NRF5_DEVICE_DEF(0x0050, "51422", "CEAA", "B0", 256),
|
|
|
|
/* nRF51422 Devices (IC rev 3). */
|
|
NRF5_DEVICE_DEF(0x0073, "51422", "QFAA", "F0", 256),
|
|
NRF5_DEVICE_DEF(0x007C, "51422", "QFAB", "B0", 128),
|
|
NRF5_DEVICE_DEF(0x0085, "51422", "QFAC", "A0", 256),
|
|
NRF5_DEVICE_DEF(0x0086, "51422", "QFAC", "A1", 256),
|
|
NRF5_DEVICE_DEF(0x007E, "51422", "CDAB", "A0", 128),
|
|
NRF5_DEVICE_DEF(0x007A, "51422", "CEAA", "C0", 256),
|
|
NRF5_DEVICE_DEF(0x0088, "51422", "CFAC", "A0", 256),
|
|
|
|
/* nRF52832 Devices */
|
|
NRF5_DEVICE_DEF(0x00C7, "52832", "QFAA", "B0", 512),
|
|
NRF5_DEVICE_DEF(0x0139, "52832", "QFAA", "E0", 512),
|
|
};
|
|
|
|
static int nrf5_bank_is_probed(struct flash_bank *bank)
|
|
{
|
|
struct nrf5_info *chip = bank->driver_priv;
|
|
|
|
assert(chip != NULL);
|
|
|
|
return chip->bank[bank->bank_number].probed;
|
|
}
|
|
static int nrf5_probe(struct flash_bank *bank);
|
|
|
|
static int nrf5_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf5_info **chip)
|
|
{
|
|
if (bank->target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
*chip = bank->driver_priv;
|
|
|
|
int probed = nrf5_bank_is_probed(bank);
|
|
if (probed < 0)
|
|
return probed;
|
|
else if (!probed)
|
|
return nrf5_probe(bank);
|
|
else
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
|
|
{
|
|
uint32_t ready;
|
|
int res;
|
|
int timeout = 100;
|
|
|
|
do {
|
|
res = target_read_u32(chip->target, NRF5_NVMC_READY, &ready);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read NVMC_READY register");
|
|
return res;
|
|
}
|
|
|
|
if (ready == 0x00000001)
|
|
return ERROR_OK;
|
|
|
|
alive_sleep(1);
|
|
} while (timeout--);
|
|
|
|
LOG_DEBUG("Timed out waiting for NVMC_READY");
|
|
return ERROR_FLASH_BUSY;
|
|
}
|
|
|
|
static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
|
|
{
|
|
int res;
|
|
res = target_write_u32(chip->target,
|
|
NRF5_NVMC_CONFIG,
|
|
NRF5_NVMC_CONFIG_EEN);
|
|
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Failed to enable erase operation");
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
According to NVMC examples in Nordic SDK busy status must be
|
|
checked after writing to NVMC_CONFIG
|
|
*/
|
|
res = nrf5_wait_for_nvmc(chip);
|
|
if (res != ERROR_OK)
|
|
LOG_ERROR("Erase enable did not complete");
|
|
|
|
return res;
|
|
}
|
|
|
|
static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
|
|
{
|
|
int res;
|
|
res = target_write_u32(chip->target,
|
|
NRF5_NVMC_CONFIG,
|
|
NRF5_NVMC_CONFIG_WEN);
|
|
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Failed to enable write operation");
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
According to NVMC examples in Nordic SDK busy status must be
|
|
checked after writing to NVMC_CONFIG
|
|
*/
|
|
res = nrf5_wait_for_nvmc(chip);
|
|
if (res != ERROR_OK)
|
|
LOG_ERROR("Write enable did not complete");
|
|
|
|
return res;
|
|
}
|
|
|
|
static int nrf5_nvmc_read_only(struct nrf5_info *chip)
|
|
{
|
|
int res;
|
|
res = target_write_u32(chip->target,
|
|
NRF5_NVMC_CONFIG,
|
|
NRF5_NVMC_CONFIG_REN);
|
|
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Failed to enable read-only operation");
|
|
return res;
|
|
}
|
|
/*
|
|
According to NVMC examples in Nordic SDK busy status must be
|
|
checked after writing to NVMC_CONFIG
|
|
*/
|
|
res = nrf5_wait_for_nvmc(chip);
|
|
if (res != ERROR_OK)
|
|
LOG_ERROR("Read only enable did not complete");
|
|
|
|
return res;
|
|
}
|
|
|
|
static int nrf5_nvmc_generic_erase(struct nrf5_info *chip,
|
|
uint32_t erase_register, uint32_t erase_value)
|
|
{
|
|
int res;
|
|
|
|
res = nrf5_nvmc_erase_enable(chip);
|
|
if (res != ERROR_OK)
|
|
goto error;
|
|
|
|
res = target_write_u32(chip->target,
|
|
erase_register,
|
|
erase_value);
|
|
if (res != ERROR_OK)
|
|
goto set_read_only;
|
|
|
|
res = nrf5_wait_for_nvmc(chip);
|
|
if (res != ERROR_OK)
|
|
goto set_read_only;
|
|
|
|
return nrf5_nvmc_read_only(chip);
|
|
|
|
set_read_only:
|
|
nrf5_nvmc_read_only(chip);
|
|
error:
|
|
LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
|
|
erase_register, erase_value);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
static int nrf5_protect_check(struct flash_bank *bank)
|
|
{
|
|
int res;
|
|
uint32_t clenr0;
|
|
|
|
/* UICR cannot be write protected so just return early */
|
|
if (bank->base == NRF5_UICR_BASE)
|
|
return ERROR_OK;
|
|
|
|
struct nrf5_info *chip = bank->driver_priv;
|
|
|
|
assert(chip != NULL);
|
|
|
|
res = target_read_u32(chip->target, NRF5_FICR_CLENR0,
|
|
&clenr0);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read code region 0 size[FICR]");
|
|
return res;
|
|
}
|
|
|
|
if (clenr0 == 0xFFFFFFFF) {
|
|
res = target_read_u32(chip->target, NRF5_UICR_CLENR0,
|
|
&clenr0);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read code region 0 size[UICR]");
|
|
return res;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < bank->num_sectors; i++)
|
|
bank->sectors[i].is_protected =
|
|
clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int nrf5_protect(struct flash_bank *bank, int set, int first, int last)
|
|
{
|
|
int res;
|
|
uint32_t clenr0, ppfc;
|
|
struct nrf5_info *chip;
|
|
|
|
/* UICR cannot be write protected so just bail out early */
|
|
if (bank->base == NRF5_UICR_BASE)
|
|
return ERROR_FAIL;
|
|
|
|
res = nrf5_get_probed_chip_if_halted(bank, &chip);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
if (first != 0) {
|
|
LOG_ERROR("Code region 0 must start at the begining of the bank");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
res = target_read_u32(chip->target, NRF5_FICR_PPFC,
|
|
&ppfc);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read PPFC register");
|
|
return res;
|
|
}
|
|
|
|
if ((ppfc & 0xFF) == 0x00) {
|
|
LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
res = target_read_u32(chip->target, NRF5_UICR_CLENR0,
|
|
&clenr0);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read code region 0 size[UICR]");
|
|
return res;
|
|
}
|
|
|
|
if (clenr0 == 0xFFFFFFFF) {
|
|
res = target_write_u32(chip->target, NRF5_UICR_CLENR0,
|
|
clenr0);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't write code region 0 size[UICR]");
|
|
return res;
|
|
}
|
|
|
|
} else {
|
|
LOG_ERROR("You need to perform chip erase before changing the protection settings");
|
|
}
|
|
|
|
nrf5_protect_check(bank);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int nrf5_probe(struct flash_bank *bank)
|
|
{
|
|
uint32_t hwid;
|
|
int res;
|
|
struct nrf5_info *chip = bank->driver_priv;
|
|
|
|
res = target_read_u32(chip->target, NRF5_FICR_CONFIGID, &hwid);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read CONFIGID register");
|
|
return res;
|
|
}
|
|
|
|
hwid &= 0xFFFF; /* HWID is stored in the lower two
|
|
* bytes of the CONFIGID register */
|
|
|
|
const struct nrf5_device_spec *spec = NULL;
|
|
for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
|
|
if (hwid == nrf5_known_devices_table[i].hwid) {
|
|
spec = &nrf5_known_devices_table[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!chip->bank[0].probed && !chip->bank[1].probed) {
|
|
if (spec)
|
|
LOG_INFO("nRF%s-%s(build code: %s) %ukB Flash",
|
|
spec->part, spec->variant, spec->build_code,
|
|
spec->flash_size_kb);
|
|
else
|
|
LOG_WARNING("Unknown device (HWID 0x%08" PRIx32 ")", hwid);
|
|
}
|
|
|
|
if (bank->base == NRF5_FLASH_BASE) {
|
|
/* The value stored in NRF5_FICR_CODEPAGESIZE is the number of bytes in one page of FLASH. */
|
|
res = target_read_u32(chip->target, NRF5_FICR_CODEPAGESIZE,
|
|
&chip->code_page_size);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read code page size");
|
|
return res;
|
|
}
|
|
|
|
/* Note the register name is misleading,
|
|
* NRF5_FICR_CODESIZE is the number of pages in flash memory, not the number of bytes! */
|
|
uint32_t num_sectors;
|
|
res = target_read_u32(chip->target, NRF5_FICR_CODESIZE, &num_sectors);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read code memory size");
|
|
return res;
|
|
}
|
|
|
|
bank->num_sectors = num_sectors;
|
|
bank->size = num_sectors * chip->code_page_size;
|
|
|
|
if (spec && bank->size / 1024 != spec->flash_size_kb)
|
|
LOG_WARNING("Chip's reported Flash capacity does not match expected one");
|
|
|
|
bank->sectors = calloc(bank->num_sectors,
|
|
sizeof((bank->sectors)[0]));
|
|
if (!bank->sectors)
|
|
return ERROR_FLASH_BANK_NOT_PROBED;
|
|
|
|
/* Fill out the sector information: all NRF5 sectors are the same size and
|
|
* there is always a fixed number of them. */
|
|
for (int i = 0; i < bank->num_sectors; i++) {
|
|
bank->sectors[i].size = chip->code_page_size;
|
|
bank->sectors[i].offset = i * chip->code_page_size;
|
|
|
|
/* mark as unknown */
|
|
bank->sectors[i].is_erased = -1;
|
|
bank->sectors[i].is_protected = -1;
|
|
}
|
|
|
|
nrf5_protect_check(bank);
|
|
|
|
chip->bank[0].probed = true;
|
|
} else {
|
|
bank->size = NRF5_UICR_SIZE;
|
|
bank->num_sectors = 1;
|
|
bank->sectors = calloc(bank->num_sectors,
|
|
sizeof((bank->sectors)[0]));
|
|
if (!bank->sectors)
|
|
return ERROR_FLASH_BANK_NOT_PROBED;
|
|
|
|
bank->sectors[0].size = bank->size;
|
|
bank->sectors[0].offset = 0;
|
|
|
|
bank->sectors[0].is_erased = 0;
|
|
bank->sectors[0].is_protected = 0;
|
|
|
|
chip->bank[1].probed = true;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int nrf5_auto_probe(struct flash_bank *bank)
|
|
{
|
|
int probed = nrf5_bank_is_probed(bank);
|
|
|
|
if (probed < 0)
|
|
return probed;
|
|
else if (probed)
|
|
return ERROR_OK;
|
|
else
|
|
return nrf5_probe(bank);
|
|
}
|
|
|
|
static int nrf5_erase_all(struct nrf5_info *chip)
|
|
{
|
|
LOG_DEBUG("Erasing all non-volatile memory");
|
|
return nrf5_nvmc_generic_erase(chip,
|
|
NRF5_NVMC_ERASEALL,
|
|
0x00000001);
|
|
}
|
|
|
|
static int nrf5_erase_page(struct flash_bank *bank,
|
|
struct nrf5_info *chip,
|
|
struct flash_sector *sector)
|
|
{
|
|
int res;
|
|
|
|
LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
|
|
if (sector->is_protected) {
|
|
LOG_ERROR("Cannot erase protected sector at 0x%" PRIx32, sector->offset);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (bank->base == NRF5_UICR_BASE) {
|
|
uint32_t ppfc;
|
|
res = target_read_u32(chip->target, NRF5_FICR_PPFC,
|
|
&ppfc);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read PPFC register");
|
|
return res;
|
|
}
|
|
|
|
if ((ppfc & 0xFF) == 0xFF) {
|
|
/* We can't erase the UICR. Double-check to
|
|
see if it's already erased before complaining. */
|
|
default_flash_blank_check(bank);
|
|
if (sector->is_erased == 1)
|
|
return ERROR_OK;
|
|
|
|
LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
res = nrf5_nvmc_generic_erase(chip,
|
|
NRF5_NVMC_ERASEUICR,
|
|
0x00000001);
|
|
|
|
|
|
} else {
|
|
res = nrf5_nvmc_generic_erase(chip,
|
|
NRF5_NVMC_ERASEPAGE,
|
|
sector->offset);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static const uint8_t nrf5_flash_write_code[] = {
|
|
/* See contrib/loaders/flash/cortex-m0.S */
|
|
/* <wait_fifo>: */
|
|
0x0d, 0x68, /* ldr r5, [r1, #0] */
|
|
0x00, 0x2d, /* cmp r5, #0 */
|
|
0x0b, 0xd0, /* beq.n 1e <exit> */
|
|
0x4c, 0x68, /* ldr r4, [r1, #4] */
|
|
0xac, 0x42, /* cmp r4, r5 */
|
|
0xf9, 0xd0, /* beq.n 0 <wait_fifo> */
|
|
0x20, 0xcc, /* ldmia r4!, {r5} */
|
|
0x20, 0xc3, /* stmia r3!, {r5} */
|
|
0x94, 0x42, /* cmp r4, r2 */
|
|
0x01, 0xd3, /* bcc.n 18 <no_wrap> */
|
|
0x0c, 0x46, /* mov r4, r1 */
|
|
0x08, 0x34, /* adds r4, #8 */
|
|
/* <no_wrap>: */
|
|
0x4c, 0x60, /* str r4, [r1, #4] */
|
|
0x04, 0x38, /* subs r0, #4 */
|
|
0xf0, 0xd1, /* bne.n 0 <wait_fifo> */
|
|
/* <exit>: */
|
|
0x00, 0xbe /* bkpt 0x0000 */
|
|
};
|
|
|
|
|
|
/* Start a low level flash write for the specified region */
|
|
static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t offset, const uint8_t *buffer, uint32_t bytes)
|
|
{
|
|
struct target *target = chip->target;
|
|
uint32_t buffer_size = 8192;
|
|
struct working_area *write_algorithm;
|
|
struct working_area *source;
|
|
uint32_t address = NRF5_FLASH_BASE + offset;
|
|
struct reg_param reg_params[4];
|
|
struct armv7m_algorithm armv7m_info;
|
|
int retval = ERROR_OK;
|
|
|
|
|
|
LOG_DEBUG("Writing buffer to flash offset=0x%"PRIx32" bytes=0x%"PRIx32, offset, bytes);
|
|
assert(bytes % 4 == 0);
|
|
|
|
/* allocate working area with flash programming code */
|
|
if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
|
|
&write_algorithm) != ERROR_OK) {
|
|
LOG_WARNING("no working area available, falling back to slow memory writes");
|
|
|
|
for (; bytes > 0; bytes -= 4) {
|
|
retval = target_write_memory(chip->target, offset, 4, 1, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = nrf5_wait_for_nvmc(chip);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
offset += 4;
|
|
buffer += 4;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
LOG_WARNING("using fast async flash loader. This is currently supported");
|
|
LOG_WARNING("only with ST-Link and CMSIS-DAP. If you have issues, add");
|
|
LOG_WARNING("\"set WORKAREASIZE 0\" before sourcing nrf51.cfg/nrf52.cfg to disable it");
|
|
|
|
retval = target_write_buffer(target, write_algorithm->address,
|
|
sizeof(nrf5_flash_write_code),
|
|
nrf5_flash_write_code);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* memory buffer */
|
|
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
|
|
buffer_size /= 2;
|
|
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
|
|
if (buffer_size <= 256) {
|
|
/* free working area, write algorithm already allocated */
|
|
target_free_working_area(target, write_algorithm);
|
|
|
|
LOG_WARNING("No large enough working area available, can't do block memory writes");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
|
|
armv7m_info.core_mode = ARM_MODE_THREAD;
|
|
|
|
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
|
|
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer start */
|
|
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* buffer end */
|
|
init_reg_param(®_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
|
|
|
|
buf_set_u32(reg_params[0].value, 0, 32, bytes);
|
|
buf_set_u32(reg_params[1].value, 0, 32, source->address);
|
|
buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
|
|
buf_set_u32(reg_params[3].value, 0, 32, address);
|
|
|
|
retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
|
|
0, NULL,
|
|
4, reg_params,
|
|
source->address, source->size,
|
|
write_algorithm->address, 0,
|
|
&armv7m_info);
|
|
|
|
target_free_working_area(target, source);
|
|
target_free_working_area(target, write_algorithm);
|
|
|
|
destroy_reg_param(®_params[0]);
|
|
destroy_reg_param(®_params[1]);
|
|
destroy_reg_param(®_params[2]);
|
|
destroy_reg_param(®_params[3]);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Check and erase flash sectors in specified range then start a low level page write.
|
|
start/end must be sector aligned.
|
|
*/
|
|
static int nrf5_write_pages(struct flash_bank *bank, uint32_t start, uint32_t end, const uint8_t *buffer)
|
|
{
|
|
int res = ERROR_FAIL;
|
|
struct nrf5_info *chip = bank->driver_priv;
|
|
|
|
assert(start % chip->code_page_size == 0);
|
|
assert(end % chip->code_page_size == 0);
|
|
|
|
res = nrf5_nvmc_write_enable(chip);
|
|
if (res != ERROR_OK)
|
|
goto error;
|
|
|
|
res = nrf5_ll_flash_write(chip, start, buffer, (end - start));
|
|
if (res != ERROR_OK)
|
|
goto error;
|
|
|
|
return nrf5_nvmc_read_only(chip);
|
|
|
|
error:
|
|
nrf5_nvmc_read_only(chip);
|
|
LOG_ERROR("Failed to write to nrf5 flash");
|
|
return res;
|
|
}
|
|
|
|
static int nrf5_erase(struct flash_bank *bank, int first, int last)
|
|
{
|
|
int res;
|
|
struct nrf5_info *chip;
|
|
|
|
res = nrf5_get_probed_chip_if_halted(bank, &chip);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
/* For each sector to be erased */
|
|
for (int s = first; s <= last && res == ERROR_OK; s++)
|
|
res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
|
|
|
|
return res;
|
|
}
|
|
|
|
static int nrf5_code_flash_write(struct flash_bank *bank,
|
|
struct nrf5_info *chip,
|
|
const uint8_t *buffer, uint32_t offset, uint32_t count)
|
|
{
|
|
|
|
int res;
|
|
/* Need to perform reads to fill any gaps we need to preserve in the first page,
|
|
before the start of buffer, or in the last page, after the end of buffer */
|
|
uint32_t first_page = offset/chip->code_page_size;
|
|
uint32_t last_page = DIV_ROUND_UP(offset+count, chip->code_page_size);
|
|
|
|
uint32_t first_page_offset = first_page * chip->code_page_size;
|
|
uint32_t last_page_offset = last_page * chip->code_page_size;
|
|
|
|
LOG_DEBUG("Padding write from 0x%08"PRIx32"-0x%08"PRIx32" as 0x%08"PRIx32"-0x%08"PRIx32,
|
|
offset, offset+count, first_page_offset, last_page_offset);
|
|
|
|
uint32_t page_cnt = last_page - first_page;
|
|
uint8_t buffer_to_flash[page_cnt*chip->code_page_size];
|
|
|
|
/* Fill in any space between start of first page and start of buffer */
|
|
uint32_t pre = offset - first_page_offset;
|
|
if (pre > 0) {
|
|
res = target_read_memory(bank->target,
|
|
first_page_offset,
|
|
1,
|
|
pre,
|
|
buffer_to_flash);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
}
|
|
|
|
/* Fill in main contents of buffer */
|
|
memcpy(buffer_to_flash+pre, buffer, count);
|
|
|
|
/* Fill in any space between end of buffer and end of last page */
|
|
uint32_t post = last_page_offset - (offset+count);
|
|
if (post > 0) {
|
|
/* Retrieve the full row contents from Flash */
|
|
res = target_read_memory(bank->target,
|
|
offset + count,
|
|
1,
|
|
post,
|
|
buffer_to_flash+pre+count);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
}
|
|
|
|
return nrf5_write_pages(bank, first_page_offset, last_page_offset, buffer_to_flash);
|
|
}
|
|
|
|
static int nrf5_uicr_flash_write(struct flash_bank *bank,
|
|
struct nrf5_info *chip,
|
|
const uint8_t *buffer, uint32_t offset, uint32_t count)
|
|
{
|
|
int res;
|
|
uint8_t uicr[NRF5_UICR_SIZE];
|
|
struct flash_sector *sector = &bank->sectors[0];
|
|
|
|
if ((offset + count) > NRF5_UICR_SIZE)
|
|
return ERROR_FAIL;
|
|
|
|
res = target_read_memory(bank->target,
|
|
NRF5_UICR_BASE,
|
|
1,
|
|
NRF5_UICR_SIZE,
|
|
uicr);
|
|
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
res = nrf5_erase_page(bank, chip, sector);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
res = nrf5_nvmc_write_enable(chip);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
memcpy(&uicr[offset], buffer, count);
|
|
|
|
res = nrf5_ll_flash_write(chip, NRF5_UICR_BASE, uicr, NRF5_UICR_SIZE);
|
|
if (res != ERROR_OK) {
|
|
nrf5_nvmc_read_only(chip);
|
|
return res;
|
|
}
|
|
|
|
return nrf5_nvmc_read_only(chip);
|
|
}
|
|
|
|
|
|
static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
|
|
uint32_t offset, uint32_t count)
|
|
{
|
|
int res;
|
|
struct nrf5_info *chip;
|
|
|
|
res = nrf5_get_probed_chip_if_halted(bank, &chip);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
return chip->bank[bank->bank_number].write(bank, chip, buffer, offset, count);
|
|
}
|
|
|
|
static void nrf5_free_driver_priv(struct flash_bank *bank)
|
|
{
|
|
struct nrf5_info *chip = bank->driver_priv;
|
|
if (chip == NULL)
|
|
return;
|
|
|
|
chip->refcount--;
|
|
if (chip->refcount == 0) {
|
|
free(chip);
|
|
bank->driver_priv = NULL;
|
|
}
|
|
}
|
|
|
|
FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
|
|
{
|
|
static struct nrf5_info *chip;
|
|
|
|
switch (bank->base) {
|
|
case NRF5_FLASH_BASE:
|
|
bank->bank_number = 0;
|
|
break;
|
|
case NRF5_UICR_BASE:
|
|
bank->bank_number = 1;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Invalid bank address 0x%08" PRIx32, bank->base);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (!chip) {
|
|
/* Create a new chip */
|
|
chip = calloc(1, sizeof(*chip));
|
|
if (!chip)
|
|
return ERROR_FAIL;
|
|
|
|
chip->target = bank->target;
|
|
}
|
|
|
|
switch (bank->base) {
|
|
case NRF5_FLASH_BASE:
|
|
chip->bank[bank->bank_number].write = nrf5_code_flash_write;
|
|
break;
|
|
case NRF5_UICR_BASE:
|
|
chip->bank[bank->bank_number].write = nrf5_uicr_flash_write;
|
|
break;
|
|
}
|
|
|
|
chip->refcount++;
|
|
chip->bank[bank->bank_number].probed = false;
|
|
bank->driver_priv = chip;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(nrf5_handle_mass_erase_command)
|
|
{
|
|
int res;
|
|
struct flash_bank *bank = NULL;
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
|
|
res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
assert(bank != NULL);
|
|
|
|
struct nrf5_info *chip;
|
|
|
|
res = nrf5_get_probed_chip_if_halted(bank, &chip);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
uint32_t ppfc;
|
|
|
|
res = target_read_u32(target, NRF5_FICR_PPFC,
|
|
&ppfc);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read PPFC register");
|
|
return res;
|
|
}
|
|
|
|
if ((ppfc & 0xFF) == 0x00) {
|
|
LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
|
|
"mass erase command won't work.");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
res = nrf5_erase_all(chip);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Failed to erase the chip");
|
|
nrf5_protect_check(bank);
|
|
return res;
|
|
}
|
|
|
|
res = nrf5_protect_check(bank);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Failed to check chip's write protection");
|
|
return res;
|
|
}
|
|
|
|
res = get_flash_bank_by_addr(target, NRF5_UICR_BASE, true, &bank);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int nrf5_info(struct flash_bank *bank, char *buf, int buf_size)
|
|
{
|
|
int res;
|
|
|
|
struct nrf5_info *chip;
|
|
|
|
res = nrf5_get_probed_chip_if_halted(bank, &chip);
|
|
if (res != ERROR_OK)
|
|
return res;
|
|
|
|
static struct {
|
|
const uint32_t address;
|
|
uint32_t value;
|
|
} ficr[] = {
|
|
{ .address = NRF5_FICR_CODEPAGESIZE },
|
|
{ .address = NRF5_FICR_CODESIZE },
|
|
{ .address = NRF5_FICR_CLENR0 },
|
|
{ .address = NRF5_FICR_PPFC },
|
|
{ .address = NRF5_FICR_NUMRAMBLOCK },
|
|
{ .address = NRF5_FICR_SIZERAMBLOCK0 },
|
|
{ .address = NRF5_FICR_SIZERAMBLOCK1 },
|
|
{ .address = NRF5_FICR_SIZERAMBLOCK2 },
|
|
{ .address = NRF5_FICR_SIZERAMBLOCK3 },
|
|
{ .address = NRF5_FICR_CONFIGID },
|
|
{ .address = NRF5_FICR_DEVICEID0 },
|
|
{ .address = NRF5_FICR_DEVICEID1 },
|
|
{ .address = NRF5_FICR_ER0 },
|
|
{ .address = NRF5_FICR_ER1 },
|
|
{ .address = NRF5_FICR_ER2 },
|
|
{ .address = NRF5_FICR_ER3 },
|
|
{ .address = NRF5_FICR_IR0 },
|
|
{ .address = NRF5_FICR_IR1 },
|
|
{ .address = NRF5_FICR_IR2 },
|
|
{ .address = NRF5_FICR_IR3 },
|
|
{ .address = NRF5_FICR_DEVICEADDRTYPE },
|
|
{ .address = NRF5_FICR_DEVICEADDR0 },
|
|
{ .address = NRF5_FICR_DEVICEADDR1 },
|
|
{ .address = NRF5_FICR_OVERRIDEN },
|
|
{ .address = NRF5_FICR_NRF_1MBIT0 },
|
|
{ .address = NRF5_FICR_NRF_1MBIT1 },
|
|
{ .address = NRF5_FICR_NRF_1MBIT2 },
|
|
{ .address = NRF5_FICR_NRF_1MBIT3 },
|
|
{ .address = NRF5_FICR_NRF_1MBIT4 },
|
|
{ .address = NRF5_FICR_BLE_1MBIT0 },
|
|
{ .address = NRF5_FICR_BLE_1MBIT1 },
|
|
{ .address = NRF5_FICR_BLE_1MBIT2 },
|
|
{ .address = NRF5_FICR_BLE_1MBIT3 },
|
|
{ .address = NRF5_FICR_BLE_1MBIT4 },
|
|
}, uicr[] = {
|
|
{ .address = NRF5_UICR_CLENR0, },
|
|
{ .address = NRF5_UICR_RBPCONF },
|
|
{ .address = NRF5_UICR_XTALFREQ },
|
|
{ .address = NRF5_UICR_FWID },
|
|
};
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
|
|
res = target_read_u32(chip->target, ficr[i].address,
|
|
&ficr[i].value);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
|
|
res = target_read_u32(chip->target, uicr[i].address,
|
|
&uicr[i].value);
|
|
if (res != ERROR_OK) {
|
|
LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
snprintf(buf, buf_size,
|
|
"\n[factory information control block]\n\n"
|
|
"code page size: %"PRIu32"B\n"
|
|
"code memory size: %"PRIu32"kB\n"
|
|
"code region 0 size: %"PRIu32"kB\n"
|
|
"pre-programmed code: %s\n"
|
|
"number of ram blocks: %"PRIu32"\n"
|
|
"ram block 0 size: %"PRIu32"B\n"
|
|
"ram block 1 size: %"PRIu32"B\n"
|
|
"ram block 2 size: %"PRIu32"B\n"
|
|
"ram block 3 size: %"PRIu32 "B\n"
|
|
"config id: %" PRIx32 "\n"
|
|
"device id: 0x%"PRIx32"%08"PRIx32"\n"
|
|
"encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
|
|
"identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
|
|
"device address type: 0x%"PRIx32"\n"
|
|
"device address: 0x%"PRIx32"%08"PRIx32"\n"
|
|
"override enable: %"PRIx32"\n"
|
|
"NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
|
|
"BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
|
|
"\n[user information control block]\n\n"
|
|
"code region 0 size: %"PRIu32"kB\n"
|
|
"read back protection configuration: %"PRIx32"\n"
|
|
"reset value for XTALFREQ: %"PRIx32"\n"
|
|
"firmware id: 0x%04"PRIx32,
|
|
ficr[0].value,
|
|
(ficr[1].value * ficr[0].value) / 1024,
|
|
(ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
|
|
((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
|
|
ficr[4].value,
|
|
ficr[5].value,
|
|
(ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
|
|
(ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
|
|
(ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
|
|
ficr[9].value,
|
|
ficr[10].value, ficr[11].value,
|
|
ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
|
|
ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
|
|
ficr[20].value,
|
|
ficr[21].value, ficr[22].value,
|
|
ficr[23].value,
|
|
ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
|
|
ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
|
|
(uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
|
|
uicr[1].value & 0xFFFF,
|
|
uicr[2].value & 0xFF,
|
|
uicr[3].value & 0xFFFF);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static const struct command_registration nrf5_exec_command_handlers[] = {
|
|
{
|
|
.name = "mass_erase",
|
|
.handler = nrf5_handle_mass_erase_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "Erase all flash contents of the chip.",
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
static const struct command_registration nrf5_command_handlers[] = {
|
|
{
|
|
.name = "nrf5",
|
|
.mode = COMMAND_ANY,
|
|
.help = "nrf5 flash command group",
|
|
.usage = "",
|
|
.chain = nrf5_exec_command_handlers,
|
|
},
|
|
{
|
|
.name = "nrf51",
|
|
.mode = COMMAND_ANY,
|
|
.help = "nrf51 flash command group",
|
|
.usage = "",
|
|
.chain = nrf5_exec_command_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
struct flash_driver nrf5_flash = {
|
|
.name = "nrf5",
|
|
.commands = nrf5_command_handlers,
|
|
.flash_bank_command = nrf5_flash_bank_command,
|
|
.info = nrf5_info,
|
|
.erase = nrf5_erase,
|
|
.protect = nrf5_protect,
|
|
.write = nrf5_write,
|
|
.read = default_flash_read,
|
|
.probe = nrf5_probe,
|
|
.auto_probe = nrf5_auto_probe,
|
|
.erase_check = default_flash_blank_check,
|
|
.protect_check = nrf5_protect_check,
|
|
.free_driver_priv = nrf5_free_driver_priv,
|
|
};
|
|
|
|
/* We need to retain the flash-driver name as well as the commands
|
|
* for backwards compatability */
|
|
struct flash_driver nrf51_flash = {
|
|
.name = "nrf51",
|
|
.commands = nrf5_command_handlers,
|
|
.flash_bank_command = nrf5_flash_bank_command,
|
|
.info = nrf5_info,
|
|
.erase = nrf5_erase,
|
|
.protect = nrf5_protect,
|
|
.write = nrf5_write,
|
|
.read = default_flash_read,
|
|
.probe = nrf5_probe,
|
|
.auto_probe = nrf5_auto_probe,
|
|
.erase_check = default_flash_blank_check,
|
|
.protect_check = nrf5_protect_check,
|
|
.free_driver_priv = nrf5_free_driver_priv,
|
|
};
|