2907 lines
88 KiB
C
2907 lines
88 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2005 by Dominic Rath *
|
|
* Dominic.Rath@gmx.de *
|
|
* *
|
|
* Copyright (C) 2007-2010 Øyvind Harboe *
|
|
* oyvind.harboe@zylin.com *
|
|
* *
|
|
* Copyright (C) 2008 by Spencer Oliver *
|
|
* spen@spen-soft.co.uk *
|
|
* *
|
|
* Copyright (C) 2008 by Hongtao Zheng *
|
|
* hontor@126.com *
|
|
* *
|
|
* Copyright (C) 2009 by David Brownell *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
***************************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "breakpoints.h"
|
|
#include "embeddedice.h"
|
|
#include "target_request.h"
|
|
#include "etm.h"
|
|
#include <helper/time_support.h>
|
|
#include "arm_simulator.h"
|
|
#include "arm_semihosting.h"
|
|
#include "algorithm.h"
|
|
#include "register.h"
|
|
#include "armv4_5.h"
|
|
|
|
/**
|
|
* @file
|
|
* Hold common code supporting the ARM7 and ARM9 core generations.
|
|
*
|
|
* While the ARM core implementations evolved substantially during these
|
|
* two generations, they look quite similar from the JTAG perspective.
|
|
* Both have similar debug facilities, based on the same two scan chains
|
|
* providing access to the core and to an EmbeddedICE module. Both can
|
|
* support similar ETM and ETB modules, for tracing. And both expose
|
|
* what could be viewed as "ARM Classic", with multiple processor modes,
|
|
* shadowed registers, and support for the Thumb instruction set.
|
|
*
|
|
* Processor differences include things like presence or absence of MMU
|
|
* and cache, pipeline sizes, use of a modified Harvard Architecure
|
|
* (with separate instruction and data busses from the CPU), support
|
|
* for cpu clock gating during idle, and more.
|
|
*/
|
|
|
|
static int arm7_9_debug_entry(struct target *target);
|
|
|
|
/**
|
|
* Clear watchpoints for an ARM7/9 target.
|
|
*
|
|
* @param arm7_9 Pointer to the common struct for an ARM7/9 target
|
|
* @return JTAG error status after executing queue
|
|
*/
|
|
static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
|
|
{
|
|
LOG_DEBUG("-");
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
|
|
arm7_9->sw_breakpoint_count = 0;
|
|
arm7_9->sw_breakpoints_added = 0;
|
|
arm7_9->wp0_used = 0;
|
|
arm7_9->wp1_used = arm7_9->wp1_used_default;
|
|
arm7_9->wp_available = arm7_9->wp_available_max;
|
|
|
|
return jtag_execute_queue();
|
|
}
|
|
|
|
/**
|
|
* Assign a watchpoint to one of the two available hardware comparators in an
|
|
* ARM7 or ARM9 target.
|
|
*
|
|
* @param arm7_9 Pointer to the common struct for an ARM7/9 target
|
|
* @param breakpoint Pointer to the breakpoint to be used as a watchpoint
|
|
*/
|
|
static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
|
|
{
|
|
if (!arm7_9->wp0_used) {
|
|
arm7_9->wp0_used = 1;
|
|
breakpoint->set = 1;
|
|
arm7_9->wp_available--;
|
|
} else if (!arm7_9->wp1_used) {
|
|
arm7_9->wp1_used = 1;
|
|
breakpoint->set = 2;
|
|
arm7_9->wp_available--;
|
|
} else
|
|
LOG_ERROR("BUG: no hardware comparator available");
|
|
|
|
LOG_DEBUG("BPID: %" PRId32 " (0x%08" TARGET_PRIxADDR ") using hw wp: %d",
|
|
breakpoint->unique_id,
|
|
breakpoint->address,
|
|
breakpoint->set);
|
|
}
|
|
|
|
/**
|
|
* Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
|
|
*
|
|
* @param arm7_9 Pointer to common struct for ARM7/9 targets
|
|
* @return Error codes if there is a problem finding a watchpoint or the result
|
|
* of executing the JTAG queue
|
|
*/
|
|
static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
|
|
{
|
|
if (arm7_9->sw_breakpoints_added)
|
|
return ERROR_OK;
|
|
if (arm7_9->wp_available < 1) {
|
|
LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
arm7_9->wp_available--;
|
|
|
|
/* pick a breakpoint unit */
|
|
if (!arm7_9->wp0_used) {
|
|
arm7_9->sw_breakpoints_added = 1;
|
|
arm7_9->wp0_used = 3;
|
|
} else if (!arm7_9->wp1_used) {
|
|
arm7_9->sw_breakpoints_added = 2;
|
|
arm7_9->wp1_used = 3;
|
|
} else {
|
|
LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (arm7_9->sw_breakpoints_added == 1) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
|
|
} else if (arm7_9->sw_breakpoints_added == 2) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
|
|
} else {
|
|
LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
|
|
return ERROR_FAIL;
|
|
}
|
|
LOG_DEBUG("SW BP using hw wp: %d",
|
|
arm7_9->sw_breakpoints_added);
|
|
|
|
return jtag_execute_queue();
|
|
}
|
|
|
|
/**
|
|
* Setup the common pieces for an ARM7/9 target after reset or on startup.
|
|
*
|
|
* @param target Pointer to an ARM7/9 target to setup
|
|
* @return Result of clearing the watchpoints on the target
|
|
*/
|
|
static int arm7_9_setup(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
return arm7_9_clear_watchpoints(arm7_9);
|
|
}
|
|
|
|
/**
|
|
* Set either a hardware or software breakpoint on an ARM7/9 target. The
|
|
* breakpoint is set up even if it is already set. Some actions, e.g. reset,
|
|
* might have erased the values in Embedded ICE.
|
|
*
|
|
* @param target Pointer to the target device to set the breakpoints on
|
|
* @param breakpoint Pointer to the breakpoint to be set
|
|
* @return For hardware breakpoints, this is the result of executing the JTAG
|
|
* queue. For software breakpoints, this will be the status of the
|
|
* required memory reads and writes
|
|
*/
|
|
static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
int retval = ERROR_OK;
|
|
|
|
LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" TARGET_PRIxADDR ", Type: %d",
|
|
breakpoint->unique_id,
|
|
breakpoint->address,
|
|
breakpoint->type);
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (breakpoint->type == BKPT_HARD) {
|
|
/* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
|
|
uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
|
|
|
|
/* reassign a hw breakpoint */
|
|
if (breakpoint->set == 0)
|
|
arm7_9_assign_wp(arm7_9, breakpoint);
|
|
|
|
if (breakpoint->set == 1) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
|
|
} else if (breakpoint->set == 2) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
|
|
} else {
|
|
LOG_ERROR("BUG: no hardware comparator available");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
retval = jtag_execute_queue();
|
|
} else if (breakpoint->type == BKPT_SOFT) {
|
|
/* did we already set this breakpoint? */
|
|
if (breakpoint->set)
|
|
return ERROR_OK;
|
|
|
|
if (breakpoint->length == 4) {
|
|
uint32_t verify = 0xffffffff;
|
|
/* keep the original instruction in target endianness */
|
|
retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
/* write the breakpoint instruction in target
|
|
* endianness (arm7_9->arm_bkpt is host endian) */
|
|
retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = target_read_u32(target, breakpoint->address, &verify);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
if (verify != arm7_9->arm_bkpt) {
|
|
LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" TARGET_PRIxADDR
|
|
" - check that memory is read/writable", breakpoint->address);
|
|
return ERROR_OK;
|
|
}
|
|
} else {
|
|
uint16_t verify = 0xffff;
|
|
/* keep the original instruction in target endianness */
|
|
retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
/* write the breakpoint instruction in target
|
|
* endianness (arm7_9->thumb_bkpt is host endian) */
|
|
retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = target_read_u16(target, breakpoint->address, &verify);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
if (verify != arm7_9->thumb_bkpt) {
|
|
LOG_ERROR("Unable to set thumb software breakpoint at address %08" TARGET_PRIxADDR
|
|
" - check that memory is read/writable", breakpoint->address);
|
|
return ERROR_OK;
|
|
}
|
|
}
|
|
|
|
retval = arm7_9_set_software_breakpoints(arm7_9);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
arm7_9->sw_breakpoint_count++;
|
|
|
|
breakpoint->set = 1;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
|
|
* breakpoint, the watchpoint used will be freed and the Embedded ICE registers
|
|
* will be updated. Otherwise, the software breakpoint will be restored to its
|
|
* original instruction if it hasn't already been modified.
|
|
*
|
|
* @param target Pointer to ARM7/9 target to unset the breakpoint from
|
|
* @param breakpoint Pointer to breakpoint to be unset
|
|
* @return For hardware breakpoints, this is the result of executing the JTAG
|
|
* queue. For software breakpoints, this will be the status of the
|
|
* required memory reads and writes
|
|
*/
|
|
static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" TARGET_PRIxADDR,
|
|
breakpoint->unique_id,
|
|
breakpoint->address);
|
|
|
|
if (!breakpoint->set) {
|
|
LOG_WARNING("breakpoint not set");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
if (breakpoint->type == BKPT_HARD) {
|
|
LOG_DEBUG("BPID: %" PRId32 " Releasing hw wp: %d",
|
|
breakpoint->unique_id,
|
|
breakpoint->set);
|
|
if (breakpoint->set == 1) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
|
|
arm7_9->wp0_used = 0;
|
|
arm7_9->wp_available++;
|
|
} else if (breakpoint->set == 2) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
|
|
arm7_9->wp1_used = 0;
|
|
arm7_9->wp_available++;
|
|
}
|
|
retval = jtag_execute_queue();
|
|
breakpoint->set = 0;
|
|
} else {
|
|
/* restore original instruction (kept in target endianness) */
|
|
if (breakpoint->length == 4) {
|
|
uint32_t current_instr;
|
|
/* check that user program as not modified breakpoint instruction */
|
|
retval = target_read_memory(target,
|
|
breakpoint->address, 4, 1, (uint8_t *)¤t_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
current_instr = target_buffer_get_u32(target, (uint8_t *)¤t_instr);
|
|
if (current_instr == arm7_9->arm_bkpt) {
|
|
retval = target_write_memory(target,
|
|
breakpoint->address, 4, 1, breakpoint->orig_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
} else {
|
|
uint16_t current_instr;
|
|
/* check that user program as not modified breakpoint instruction */
|
|
retval = target_read_memory(target,
|
|
breakpoint->address, 2, 1, (uint8_t *)¤t_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
current_instr = target_buffer_get_u16(target, (uint8_t *)¤t_instr);
|
|
if (current_instr == arm7_9->thumb_bkpt) {
|
|
retval = target_write_memory(target,
|
|
breakpoint->address, 2, 1, breakpoint->orig_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
if (--arm7_9->sw_breakpoint_count == 0) {
|
|
/* We have removed the last sw breakpoint, clear the hw breakpoint we used
|
|
*to implement it */
|
|
if (arm7_9->sw_breakpoints_added == 1)
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
|
|
EICE_W0_CONTROL_VALUE], 0);
|
|
else if (arm7_9->sw_breakpoints_added == 2)
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
|
|
EICE_W1_CONTROL_VALUE], 0);
|
|
}
|
|
|
|
breakpoint->set = 0;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Add a breakpoint to an ARM7/9 target. This makes sure that there are no
|
|
* dangling breakpoints and that the desired breakpoint can be added.
|
|
*
|
|
* @param target Pointer to the target ARM7/9 device to add a breakpoint to
|
|
* @param breakpoint Pointer to the breakpoint to be added
|
|
* @return An error status if there is a problem adding the breakpoint or the
|
|
* result of setting the breakpoint
|
|
*/
|
|
int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (arm7_9->breakpoint_count == 0) {
|
|
/* make sure we don't have any dangling breakpoints. This is vital upon
|
|
* GDB connect/disconnect
|
|
*/
|
|
arm7_9_clear_watchpoints(arm7_9);
|
|
}
|
|
|
|
if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) {
|
|
LOG_INFO("no watchpoint unit available for hardware breakpoint");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
|
|
LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
if (breakpoint->type == BKPT_HARD)
|
|
arm7_9_assign_wp(arm7_9, breakpoint);
|
|
|
|
arm7_9->breakpoint_count++;
|
|
|
|
return arm7_9_set_breakpoint(target, breakpoint);
|
|
}
|
|
|
|
/**
|
|
* Removes a breakpoint from an ARM7/9 target. This will make sure there are no
|
|
* dangling breakpoints and updates available watchpoints if it is a hardware
|
|
* breakpoint.
|
|
*
|
|
* @param target Pointer to the target to have a breakpoint removed
|
|
* @param breakpoint Pointer to the breakpoint to be removed
|
|
* @return Error status if there was a problem unsetting the breakpoint or the
|
|
* watchpoints could not be cleared
|
|
*/
|
|
int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
retval = arm7_9_unset_breakpoint(target, breakpoint);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (breakpoint->type == BKPT_HARD)
|
|
arm7_9->wp_available++;
|
|
|
|
arm7_9->breakpoint_count--;
|
|
if (arm7_9->breakpoint_count == 0) {
|
|
/* make sure we don't have any dangling breakpoints */
|
|
retval = arm7_9_clear_watchpoints(arm7_9);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
|
|
* considered a bug to call this function when there are no available watchpoint
|
|
* units.
|
|
*
|
|
* @param target Pointer to an ARM7/9 target to set a watchpoint on
|
|
* @param watchpoint Pointer to the watchpoint to be set
|
|
* @return Error status if watchpoint set fails or the result of executing the
|
|
* JTAG queue
|
|
*/
|
|
static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
int rw_mask = 1;
|
|
uint32_t mask;
|
|
|
|
mask = watchpoint->length - 1;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (watchpoint->rw == WPT_ACCESS)
|
|
rw_mask = 0;
|
|
else
|
|
rw_mask = 1;
|
|
|
|
if (!arm7_9->wp0_used) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE],
|
|
watchpoint->address);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK],
|
|
watchpoint->mask);
|
|
if (watchpoint->mask != 0xffffffffu)
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE],
|
|
watchpoint->value);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
|
|
0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
|
|
EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
|
|
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
watchpoint->set = 1;
|
|
arm7_9->wp0_used = 2;
|
|
} else if (!arm7_9->wp1_used) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
|
|
watchpoint->address);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK],
|
|
watchpoint->mask);
|
|
if (watchpoint->mask != 0xffffffffu)
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE],
|
|
watchpoint->value);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
|
|
0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
|
|
EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
|
|
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
watchpoint->set = 2;
|
|
arm7_9->wp1_used = 2;
|
|
} else {
|
|
LOG_ERROR("BUG: no hardware comparator available");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Unset an existing watchpoint and clear the used watchpoint unit.
|
|
*
|
|
* @param target Pointer to the target to have the watchpoint removed
|
|
* @param watchpoint Pointer to the watchpoint to be removed
|
|
* @return Error status while trying to unset the watchpoint or the result of
|
|
* executing the JTAG queue
|
|
*/
|
|
static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (!watchpoint->set) {
|
|
LOG_WARNING("breakpoint not set");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
if (watchpoint->set == 1) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
arm7_9->wp0_used = 0;
|
|
} else if (watchpoint->set == 2) {
|
|
embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
arm7_9->wp1_used = 0;
|
|
}
|
|
watchpoint->set = 0;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
|
|
* available, an error response is returned.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to add a watchpoint to
|
|
* @param watchpoint Pointer to the watchpoint to be added
|
|
* @return Error status while trying to add the watchpoint
|
|
*/
|
|
int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (arm7_9->wp_available < 1)
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
arm7_9->wp_available--;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
|
|
* the used watchpoint unit will be reopened.
|
|
*
|
|
* @param target Pointer to the target to remove a watchpoint from
|
|
* @param watchpoint Pointer to the watchpoint to be removed
|
|
* @return Result of trying to unset the watchpoint
|
|
*/
|
|
int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (watchpoint->set) {
|
|
retval = arm7_9_unset_watchpoint(target, watchpoint);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
arm7_9->wp_available++;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Restarts the target by sending a RESTART instruction and moving the JTAG
|
|
* state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
|
|
* asserted by the processor.
|
|
*
|
|
* @param target Pointer to target to issue commands to
|
|
* @return Error status if there is a timeout or a problem while executing the
|
|
* JTAG queue
|
|
*/
|
|
int arm7_9_execute_sys_speed(struct target *target)
|
|
{
|
|
int retval;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
|
|
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
|
|
|
|
/* set RESTART instruction */
|
|
if (arm7_9->need_bypass_before_restart) {
|
|
arm7_9->need_bypass_before_restart = 0;
|
|
retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
int64_t then = timeval_ms();
|
|
bool timeout;
|
|
while (!(timeout = ((timeval_ms()-then) > 1000))) {
|
|
/* read debug status register */
|
|
embeddedice_read_reg(dbg_stat);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
|
|
&& (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
|
|
break;
|
|
if (debug_level >= 3)
|
|
alive_sleep(100);
|
|
else
|
|
keep_alive();
|
|
}
|
|
if (timeout) {
|
|
LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "",
|
|
buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
|
|
return ERROR_TARGET_TIMEOUT;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Restarts the target by sending a RESTART instruction and moving the JTAG
|
|
* state to IDLE. This validates that DBGACK and SYSCOMP are set without
|
|
* waiting until they are.
|
|
*
|
|
* @param target Pointer to the target to issue commands to
|
|
* @return Always ERROR_OK
|
|
*/
|
|
static int arm7_9_execute_fast_sys_speed(struct target *target)
|
|
{
|
|
static int set;
|
|
static uint8_t check_value[4], check_mask[4];
|
|
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
|
|
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
|
|
int retval;
|
|
|
|
/* set RESTART instruction */
|
|
if (arm7_9->need_bypass_before_restart) {
|
|
arm7_9->need_bypass_before_restart = 0;
|
|
retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (!set) {
|
|
/* check for DBGACK and SYSCOMP set (others don't care) */
|
|
|
|
/* NB! These are constants that must be available until after next jtag_execute() and
|
|
* we evaluate the values upon first execution in lieu of setting up these constants
|
|
* during early setup.
|
|
* */
|
|
buf_set_u32(check_value, 0, 32, 0x9);
|
|
buf_set_u32(check_mask, 0, 32, 0x9);
|
|
set = 1;
|
|
}
|
|
|
|
/* read debug status register */
|
|
embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Get some data from the ARM7/9 target.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to read data from
|
|
* @param size The number of 32bit words to be read
|
|
* @param buffer Pointer to the buffer that will hold the data
|
|
* @return The result of receiving data from the Embedded ICE unit
|
|
*/
|
|
int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
|
|
uint32_t *data;
|
|
int retval = ERROR_OK;
|
|
uint32_t i;
|
|
|
|
data = malloc(size * (sizeof(uint32_t)));
|
|
|
|
retval = embeddedice_receive(jtag_info, data, size);
|
|
|
|
/* return the 32-bit ints in the 8-bit array */
|
|
for (i = 0; i < size; i++)
|
|
h_u32_to_le(buffer + (i * 4), data[i]);
|
|
|
|
free(data);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Handles requests to an ARM7/9 target. If debug messaging is enabled, the
|
|
* target is running and the DCC control register has the W bit high, this will
|
|
* execute the request on the target.
|
|
*
|
|
* @param priv Void pointer expected to be a struct target pointer
|
|
* @return ERROR_OK unless there are issues with the JTAG queue or when reading
|
|
* from the Embedded ICE unit
|
|
*/
|
|
static int arm7_9_handle_target_request(void *priv)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct target *target = priv;
|
|
if (!target_was_examined(target))
|
|
return ERROR_OK;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
|
|
struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
|
|
|
|
if (!target->dbg_msg_enabled)
|
|
return ERROR_OK;
|
|
|
|
if (target->state == TARGET_RUNNING) {
|
|
/* read DCC control register */
|
|
embeddedice_read_reg(dcc_control);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* check W bit */
|
|
if (buf_get_u32(dcc_control->value, 1, 1) == 1) {
|
|
uint32_t request;
|
|
|
|
retval = embeddedice_receive(jtag_info, &request, 1);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = target_request(target, request);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Polls an ARM7/9 target for its current status. If DBGACK is set, the target
|
|
* is manipulated to the right halted state based on its current state. This is
|
|
* what happens:
|
|
*
|
|
* <table>
|
|
* <tr><th > State</th><th > Action</th></tr>
|
|
* <tr><td > TARGET_RUNNING | TARGET_RESET</td>
|
|
* <td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
|
|
* <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
|
|
* <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
|
|
* <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
|
|
* </table>
|
|
*
|
|
* If the target does not end up in the halted state, a warning is produced. If
|
|
* DBGACK is cleared, then the target is expected to either be running or
|
|
* running in debug.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to poll
|
|
* @return ERROR_OK or an error status if a command fails
|
|
*/
|
|
int arm7_9_poll(struct target *target)
|
|
{
|
|
int retval;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
|
|
|
|
/* read debug status register */
|
|
embeddedice_read_reg(dbg_stat);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) {
|
|
/* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
|
|
if (target->state == TARGET_UNKNOWN) {
|
|
/* Starting OpenOCD with target in debug-halt */
|
|
target->state = TARGET_RUNNING;
|
|
LOG_DEBUG("DBGACK already set during server startup.");
|
|
}
|
|
if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
|
|
target->state = TARGET_HALTED;
|
|
|
|
retval = arm7_9_debug_entry(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (arm_semihosting(target, &retval) != 0)
|
|
return retval;
|
|
|
|
retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
if (target->state == TARGET_DEBUG_RUNNING) {
|
|
target->state = TARGET_HALTED;
|
|
retval = arm7_9_debug_entry(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
if (target->state != TARGET_HALTED)
|
|
LOG_WARNING(
|
|
"DBGACK set, but the target did not end up in the halted state %d",
|
|
target->state);
|
|
} else {
|
|
if (target->state != TARGET_DEBUG_RUNNING)
|
|
target->state = TARGET_RUNNING;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
|
|
* the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
|
|
* affected) completely stop the JTAG clock while the core is held in reset
|
|
* (SRST). It isn't possible to program the halt condition once reset is
|
|
* asserted, hence a hook that allows the target to set up its reset-halt
|
|
* condition is setup prior to asserting reset.
|
|
*
|
|
* @param target Pointer to an ARM7/9 target to assert reset on
|
|
* @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
|
|
*/
|
|
int arm7_9_assert_reset(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
enum reset_types jtag_reset_config = jtag_get_reset_config();
|
|
bool use_event = false;
|
|
|
|
/* TODO: apply hw reset signal in not examined state */
|
|
if (!(target_was_examined(target))) {
|
|
LOG_WARNING("Reset is not asserted because the target is not examined.");
|
|
LOG_WARNING("Use a reset button or power cycle the target.");
|
|
return ERROR_TARGET_NOT_EXAMINED;
|
|
}
|
|
|
|
LOG_DEBUG("target->state: %s", target_state_name(target));
|
|
|
|
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
|
|
use_event = true;
|
|
else if (!(jtag_reset_config & RESET_HAS_SRST)) {
|
|
LOG_ERROR("%s: how to reset?", target_name(target));
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/* At this point trst has been asserted/deasserted once. We would
|
|
* like to program EmbeddedICE while SRST is asserted, instead of
|
|
* depending on SRST to leave that module alone. However, many CPUs
|
|
* gate the JTAG clock while SRST is asserted; or JTAG may need
|
|
* clock stability guarantees (adaptive clocking might help).
|
|
*
|
|
* So we assume JTAG access during SRST is off the menu unless it's
|
|
* been specifically enabled.
|
|
*/
|
|
bool srst_asserted = false;
|
|
|
|
if (!use_event && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
|
|
&& (jtag_reset_config & RESET_SRST_NO_GATING)) {
|
|
jtag_add_reset(0, 1);
|
|
srst_asserted = true;
|
|
}
|
|
|
|
if (target->reset_halt) {
|
|
/*
|
|
* For targets that don't support communication while SRST is
|
|
* asserted, we need to set up the reset vector catch first.
|
|
*
|
|
* When we use TRST+SRST and that's equivalent to a power-up
|
|
* reset, these settings may well be reset anyway; so setting
|
|
* them here won't matter.
|
|
*/
|
|
if (arm7_9->has_vector_catch) {
|
|
/* program vector catch register to catch reset */
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
|
|
|
|
/* extra runtest added as issues were found with
|
|
* certain ARM9 cores (maybe more) - AT91SAM9260
|
|
* and STR9
|
|
*/
|
|
jtag_add_runtest(1, TAP_IDLE);
|
|
} else {
|
|
/* program watchpoint unit to match on reset vector
|
|
* address
|
|
*/
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
|
|
}
|
|
}
|
|
|
|
if (use_event)
|
|
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
|
|
else {
|
|
/* If we use SRST ... we'd like to issue just SRST, but the
|
|
* board or chip may be set up so we have to assert TRST as
|
|
* well. On some chips that combination is equivalent to a
|
|
* power-up reset, and generally clobbers EICE state.
|
|
*/
|
|
if (jtag_reset_config & RESET_SRST_PULLS_TRST)
|
|
jtag_add_reset(1, 1);
|
|
else if (!srst_asserted)
|
|
jtag_add_reset(0, 1);
|
|
jtag_add_sleep(50000);
|
|
}
|
|
|
|
target->state = TARGET_RESET;
|
|
register_cache_invalidate(arm7_9->arm.core_cache);
|
|
|
|
/* REVISIT why isn't standard debug entry logic sufficient?? */
|
|
if (target->reset_halt && (!(jtag_reset_config & RESET_SRST_PULLS_TRST) || use_event)) {
|
|
/* debug entry was prepared above */
|
|
target->debug_reason = DBG_REASON_DBGRQ;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
|
|
* and the target is being reset into a halt, a warning will be triggered
|
|
* because it is not possible to reset into a halted mode in this case. The
|
|
* target is halted using the target's functions.
|
|
*
|
|
* @param target Pointer to the target to have the reset deasserted
|
|
* @return ERROR_OK or an error from polling or halting the target
|
|
*/
|
|
int arm7_9_deassert_reset(struct target *target)
|
|
{
|
|
int retval = ERROR_OK;
|
|
LOG_DEBUG("target->state: %s", target_state_name(target));
|
|
|
|
/* deassert reset lines */
|
|
jtag_add_reset(0, 0);
|
|
|
|
/* In case polling is disabled, we need to examine the
|
|
* target and poll here for this target to work correctly.
|
|
*
|
|
* Otherwise, e.g. halt will fail afterwards with bogus
|
|
* error messages as halt will believe that reset is
|
|
* still in effect.
|
|
*/
|
|
retval = target_examine_one(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = target_poll(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
enum reset_types jtag_reset_config = jtag_get_reset_config();
|
|
if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) {
|
|
LOG_WARNING(
|
|
"srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
|
|
retval = target_halt(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Clears the halt condition for an ARM7/9 target. If it isn't coming out of
|
|
* reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
|
|
* vector catch was used, it is restored. Otherwise, the control value is
|
|
* restored and the watchpoint unit is restored if it was in use.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to have halt cleared
|
|
* @return Always ERROR_OK
|
|
*/
|
|
static int arm7_9_clear_halt(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
|
|
|
|
/* we used DBGRQ only if we didn't come out of reset */
|
|
if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) {
|
|
/* program EmbeddedICE Debug Control Register to deassert DBGRQ
|
|
*/
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
|
|
embeddedice_store_reg(dbg_ctrl);
|
|
} else {
|
|
if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) {
|
|
/* if we came out of reset, and vector catch is supported, we used
|
|
* vector catch to enter debug state
|
|
* restore the register in that case
|
|
*/
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
|
|
} else {
|
|
/* restore registers if watchpoint unit 0 was in use
|
|
*/
|
|
if (arm7_9->wp0_used) {
|
|
if (arm7_9->debug_entry_from_reset)
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
|
|
EICE_W0_ADDR_VALUE]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
|
|
EICE_W0_ADDR_MASK]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
|
|
EICE_W0_DATA_MASK]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
|
|
EICE_W0_CONTROL_MASK]);
|
|
}
|
|
/* control value always has to be restored, as it was either disabled,
|
|
* or enabled with possibly different bits
|
|
*/
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Issue a software reset and halt to an ARM7/9 target. The target is halted
|
|
* and then there is a wait until the processor shows the halt. This wait can
|
|
* timeout and results in an error being returned. The software reset involves
|
|
* clearing the halt, updating the debug control register, changing to ARM mode,
|
|
* reset of the program counter, and reset of all of the registers.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to be reset and halted by software
|
|
* @return Error status if any of the commands fail, otherwise ERROR_OK
|
|
*/
|
|
int arm7_9_soft_reset_halt(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
|
|
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
|
|
int i;
|
|
int retval;
|
|
|
|
/* FIX!!! replace some of this code with tcl commands
|
|
*
|
|
* halt # the halt command is synchronous
|
|
* armv4_5 core_state arm
|
|
*
|
|
*/
|
|
|
|
retval = target_halt(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
long long then = timeval_ms();
|
|
int timeout;
|
|
while (!(timeout = ((timeval_ms()-then) > 1000))) {
|
|
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
|
|
break;
|
|
embeddedice_read_reg(dbg_stat);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
if (debug_level >= 3)
|
|
alive_sleep(100);
|
|
else
|
|
keep_alive();
|
|
}
|
|
if (timeout) {
|
|
LOG_ERROR("Failed to halt CPU after 1 sec");
|
|
return ERROR_TARGET_TIMEOUT;
|
|
}
|
|
target->state = TARGET_HALTED;
|
|
|
|
/* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
|
|
* ensure that DBGRQ is cleared
|
|
*/
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
|
|
embeddedice_store_reg(dbg_ctrl);
|
|
|
|
retval = arm7_9_clear_halt(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* if the target is in Thumb state, change to ARM state */
|
|
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
|
|
uint32_t r0_thumb, pc_thumb;
|
|
LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
|
|
/* Entered debug from Thumb mode */
|
|
arm->core_state = ARM_STATE_THUMB;
|
|
arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
|
|
}
|
|
|
|
/* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
|
|
|
|
/* all register content is now invalid */
|
|
register_cache_invalidate(arm->core_cache);
|
|
|
|
/* SVC, ARM state, IRQ and FIQ disabled */
|
|
uint32_t cpsr;
|
|
|
|
cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
|
|
cpsr &= ~0xff;
|
|
cpsr |= 0xd3;
|
|
arm_set_cpsr(arm, cpsr);
|
|
arm->cpsr->dirty = 1;
|
|
|
|
/* start fetching from 0x0 */
|
|
buf_set_u32(arm->pc->value, 0, 32, 0x0);
|
|
arm->pc->dirty = 1;
|
|
arm->pc->valid = 1;
|
|
|
|
/* reset registers */
|
|
for (i = 0; i <= 14; i++) {
|
|
struct reg *r = arm_reg_current(arm, i);
|
|
|
|
buf_set_u32(r->value, 0, 32, 0xffffffff);
|
|
r->dirty = 1;
|
|
r->valid = 1;
|
|
}
|
|
|
|
retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
|
|
* line or by programming a watchpoint to trigger on any address. It is
|
|
* considered a bug to call this function while the target is in the
|
|
* TARGET_RESET state.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to be halted
|
|
* @return Always ERROR_OK
|
|
*/
|
|
int arm7_9_halt(struct target *target)
|
|
{
|
|
if (target->state == TARGET_RESET) {
|
|
LOG_ERROR(
|
|
"BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
|
|
|
|
LOG_DEBUG("target->state: %s",
|
|
target_state_name(target));
|
|
|
|
if (target->state == TARGET_HALTED) {
|
|
LOG_DEBUG("target was already halted");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
if (target->state == TARGET_UNKNOWN)
|
|
LOG_WARNING("target was in unknown state when halt was requested");
|
|
|
|
if (arm7_9->use_dbgrq) {
|
|
/* program EmbeddedICE Debug Control Register to assert DBGRQ
|
|
*/
|
|
if (arm7_9->set_special_dbgrq)
|
|
arm7_9->set_special_dbgrq(target);
|
|
else {
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
|
|
embeddedice_store_reg(dbg_ctrl);
|
|
}
|
|
} else {
|
|
/* program watchpoint unit to match on any address
|
|
*/
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
|
|
EICE_W_CTRL_ENABLE);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
|
|
~EICE_W_CTRL_nOPC & 0xff);
|
|
}
|
|
|
|
target->debug_reason = DBG_REASON_DBGRQ;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
|
|
* ARM. The JTAG queue is then executed and the reason for debug entry is
|
|
* examined. Once done, the target is verified to be halted and the processor
|
|
* is forced into ARM mode. The core registers are saved for the current core
|
|
* mode and the program counter (register 15) is updated as needed. The core
|
|
* registers and CPSR and SPSR are saved for restoration later.
|
|
*
|
|
* @param target Pointer to target that is entering debug mode
|
|
* @return Error code if anything fails, otherwise ERROR_OK
|
|
*/
|
|
static int arm7_9_debug_entry(struct target *target)
|
|
{
|
|
int i;
|
|
uint32_t context[16];
|
|
uint32_t *context_p[16];
|
|
uint32_t r0_thumb, pc_thumb;
|
|
uint32_t cpsr, cpsr_mask = 0;
|
|
int retval;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
|
|
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
|
|
|
|
#ifdef _DEBUG_ARM7_9_
|
|
LOG_DEBUG("-");
|
|
#endif
|
|
|
|
/* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
|
|
* ensure that DBGRQ is cleared
|
|
*/
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
|
|
embeddedice_store_reg(dbg_ctrl);
|
|
|
|
retval = arm7_9_clear_halt(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = arm7_9->examine_debug_reason(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
/* if the target is in Thumb state, change to ARM state */
|
|
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
|
|
LOG_DEBUG("target entered debug from Thumb state");
|
|
/* Entered debug from Thumb mode */
|
|
arm->core_state = ARM_STATE_THUMB;
|
|
cpsr_mask = 1 << 5;
|
|
arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
|
|
LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
|
|
", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
|
|
} else if (buf_get_u32(dbg_stat->value, 5, 1)) {
|
|
/* \todo Get some vaguely correct handling of Jazelle, if
|
|
* anyone ever uses it and full info becomes available.
|
|
* See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
|
|
* B.7.3 for the reverse. That'd be the bare minimum...
|
|
*/
|
|
LOG_DEBUG("target entered debug from Jazelle state");
|
|
arm->core_state = ARM_STATE_JAZELLE;
|
|
cpsr_mask = 1 << 24;
|
|
LOG_ERROR("Jazelle debug entry -- BROKEN!");
|
|
} else {
|
|
LOG_DEBUG("target entered debug from ARM state");
|
|
/* Entered debug from ARM mode */
|
|
arm->core_state = ARM_STATE_ARM;
|
|
}
|
|
|
|
for (i = 0; i < 16; i++)
|
|
context_p[i] = &context[i];
|
|
/* save core registers (r0 - r15 of current core mode) */
|
|
arm7_9->read_core_regs(target, 0xffff, context_p);
|
|
|
|
arm7_9->read_xpsr(target, &cpsr, 0);
|
|
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Sync our CPSR copy with J or T bits EICE reported, but
|
|
* which we then erased by putting the core into ARM mode.
|
|
*/
|
|
arm_set_cpsr(arm, cpsr | cpsr_mask);
|
|
|
|
if (!is_arm_mode(arm->core_mode)) {
|
|
target->state = TARGET_UNKNOWN;
|
|
LOG_ERROR("cpsr contains invalid mode value - communication failure");
|
|
return ERROR_TARGET_FAILURE;
|
|
}
|
|
|
|
LOG_DEBUG("target entered debug state in %s mode",
|
|
arm_mode_name(arm->core_mode));
|
|
|
|
if (arm->core_state == ARM_STATE_THUMB) {
|
|
LOG_DEBUG("thumb state, applying fixups");
|
|
context[0] = r0_thumb;
|
|
context[15] = pc_thumb;
|
|
} else if (arm->core_state == ARM_STATE_ARM) {
|
|
/* adjust value stored by STM */
|
|
context[15] -= 3 * 4;
|
|
}
|
|
|
|
if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
|
|
context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
|
|
else
|
|
context[15] -= arm7_9->dbgreq_adjust_pc *
|
|
((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
|
|
|
|
for (i = 0; i <= 15; i++) {
|
|
struct reg *r = arm_reg_current(arm, i);
|
|
|
|
LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
|
|
|
|
buf_set_u32(r->value, 0, 32, context[i]);
|
|
/* r0 and r15 (pc) have to be restored later */
|
|
r->dirty = (i == 0) || (i == 15);
|
|
r->valid = 1;
|
|
}
|
|
|
|
LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
|
|
|
|
/* exceptions other than USR & SYS have a saved program status register */
|
|
if (arm->spsr) {
|
|
uint32_t spsr;
|
|
arm7_9->read_xpsr(target, &spsr, 1);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
buf_set_u32(arm->spsr->value, 0, 32, spsr);
|
|
arm->spsr->dirty = 0;
|
|
arm->spsr->valid = 1;
|
|
}
|
|
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (arm7_9->post_debug_entry) {
|
|
retval = arm7_9->post_debug_entry(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Validate the full context for an ARM7/9 target in all processor modes. If
|
|
* there are any invalid registers for the target, they will all be read. This
|
|
* includes the PSR.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to capture the full context from
|
|
* @return Error if the target is not halted, has an invalid core mode, or if
|
|
* the JTAG queue fails to execute
|
|
*/
|
|
static int arm7_9_full_context(struct target *target)
|
|
{
|
|
int i;
|
|
int retval;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
|
|
LOG_DEBUG("-");
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (!is_arm_mode(arm->core_mode)) {
|
|
LOG_ERROR("not a valid arm core mode - communication failure?");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
|
|
* SYS shares registers with User, so we don't touch SYS
|
|
*/
|
|
for (i = 0; i < 6; i++) {
|
|
uint32_t mask = 0;
|
|
uint32_t *reg_p[16];
|
|
int j;
|
|
int valid = 1;
|
|
|
|
/* check if there are invalid registers in the current mode
|
|
*/
|
|
for (j = 0; j <= 16; j++) {
|
|
if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
|
|
valid = 0;
|
|
}
|
|
|
|
if (!valid) {
|
|
uint32_t tmp_cpsr;
|
|
|
|
/* change processor mode (and mask T bit) */
|
|
tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
|
|
& 0xe0;
|
|
tmp_cpsr |= armv4_5_number_to_mode(i);
|
|
tmp_cpsr &= ~0x20;
|
|
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
|
|
|
|
for (j = 0; j < 15; j++) {
|
|
if (ARMV4_5_CORE_REG_MODE(arm->core_cache,
|
|
armv4_5_number_to_mode(i), j).valid == 0) {
|
|
reg_p[j] = (uint32_t *)ARMV4_5_CORE_REG_MODE(
|
|
arm->core_cache,
|
|
armv4_5_number_to_mode(i),
|
|
j).value;
|
|
mask |= 1 << j;
|
|
ARMV4_5_CORE_REG_MODE(arm->core_cache,
|
|
armv4_5_number_to_mode(i),
|
|
j).valid = 1;
|
|
ARMV4_5_CORE_REG_MODE(arm->core_cache,
|
|
armv4_5_number_to_mode(i),
|
|
j).dirty = 0;
|
|
}
|
|
}
|
|
|
|
/* if only the PSR is invalid, mask is all zeroes */
|
|
if (mask)
|
|
arm7_9->read_core_regs(target, mask, reg_p);
|
|
|
|
/* check if the PSR has to be read */
|
|
if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
|
|
16).valid == 0) {
|
|
arm7_9->read_xpsr(target,
|
|
(uint32_t *)ARMV4_5_CORE_REG_MODE(arm->core_cache,
|
|
armv4_5_number_to_mode(i), 16).value, 1);
|
|
ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
|
|
16).valid = 1;
|
|
ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
|
|
16).dirty = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* restore processor mode (mask T bit) */
|
|
arm7_9->write_xpsr_im8(target,
|
|
buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
|
|
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Restore the processor context on an ARM7/9 target. The full processor
|
|
* context is analyzed to see if any of the registers are dirty on this end, but
|
|
* have a valid new value. If this is the case, the processor is changed to the
|
|
* appropriate mode and the new register values are written out to the
|
|
* processor. If there happens to be a dirty register with an invalid value, an
|
|
* error will be logged.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to have its context restored
|
|
* @return Error status if the target is not halted or the core mode in the
|
|
* armv4_5 struct is invalid.
|
|
*/
|
|
static int arm7_9_restore_context(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
struct reg *reg;
|
|
enum arm_mode current_mode = arm->core_mode;
|
|
int i, j;
|
|
int dirty;
|
|
int mode_change;
|
|
|
|
LOG_DEBUG("-");
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (arm7_9->pre_restore_context)
|
|
arm7_9->pre_restore_context(target);
|
|
|
|
if (!is_arm_mode(arm->core_mode)) {
|
|
LOG_ERROR("not a valid arm core mode - communication failure?");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
|
|
* SYS shares registers with User, so we don't touch SYS
|
|
*/
|
|
for (i = 0; i < 6; i++) {
|
|
LOG_DEBUG("examining %s mode",
|
|
arm_mode_name(arm->core_mode));
|
|
dirty = 0;
|
|
mode_change = 0;
|
|
/* check if there are dirty registers in the current mode
|
|
*/
|
|
for (j = 0; j <= 16; j++) {
|
|
reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
|
|
if (reg->dirty == 1) {
|
|
if (reg->valid == 1) {
|
|
dirty = 1;
|
|
LOG_DEBUG("examining dirty reg: %s", reg->name);
|
|
struct arm_reg *reg_arch_info;
|
|
reg_arch_info = reg->arch_info;
|
|
if ((reg_arch_info->mode != ARM_MODE_ANY)
|
|
&& (reg_arch_info->mode != current_mode)
|
|
&& !((reg_arch_info->mode == ARM_MODE_USR)
|
|
&& (arm->core_mode == ARM_MODE_SYS))
|
|
&& !((reg_arch_info->mode == ARM_MODE_SYS)
|
|
&& (arm->core_mode == ARM_MODE_USR))) {
|
|
mode_change = 1;
|
|
LOG_DEBUG("require mode change");
|
|
}
|
|
} else
|
|
LOG_ERROR("BUG: dirty register '%s', but no valid data",
|
|
reg->name);
|
|
}
|
|
}
|
|
|
|
if (dirty) {
|
|
uint32_t mask = 0x0;
|
|
int num_regs = 0;
|
|
uint32_t regs[16];
|
|
|
|
if (mode_change) {
|
|
uint32_t tmp_cpsr;
|
|
|
|
/* change processor mode (mask T bit) */
|
|
tmp_cpsr = buf_get_u32(arm->cpsr->value,
|
|
0, 8) & 0xe0;
|
|
tmp_cpsr |= armv4_5_number_to_mode(i);
|
|
tmp_cpsr &= ~0x20;
|
|
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
|
|
current_mode = armv4_5_number_to_mode(i);
|
|
}
|
|
|
|
for (j = 0; j <= 14; j++) {
|
|
reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
|
|
armv4_5_number_to_mode(i),
|
|
j);
|
|
|
|
if (reg->dirty == 1) {
|
|
regs[j] = buf_get_u32(reg->value, 0, 32);
|
|
mask |= 1 << j;
|
|
num_regs++;
|
|
reg->dirty = 0;
|
|
reg->valid = 1;
|
|
LOG_DEBUG("writing register %i mode %s "
|
|
"with value 0x%8.8" PRIx32, j,
|
|
arm_mode_name(arm->core_mode),
|
|
regs[j]);
|
|
}
|
|
}
|
|
|
|
if (mask)
|
|
arm7_9->write_core_regs(target, mask, regs);
|
|
|
|
reg =
|
|
&ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(
|
|
i), 16);
|
|
struct arm_reg *reg_arch_info;
|
|
reg_arch_info = reg->arch_info;
|
|
if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY)) {
|
|
LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "",
|
|
i,
|
|
buf_get_u32(reg->value, 0, 32));
|
|
arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
|
|
/* restore processor mode (mask T bit) */
|
|
uint32_t tmp_cpsr;
|
|
|
|
tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
|
|
tmp_cpsr |= armv4_5_number_to_mode(i);
|
|
tmp_cpsr &= ~0x20;
|
|
LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
|
|
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
|
|
|
|
} else if (arm->cpsr->dirty) {
|
|
/* CPSR has been changed, full restore necessary (mask T bit) */
|
|
LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
|
|
buf_get_u32(arm->cpsr->value, 0, 32));
|
|
arm7_9->write_xpsr(target,
|
|
buf_get_u32(arm->cpsr->value, 0, 32)
|
|
& ~0x20, 0);
|
|
arm->cpsr->dirty = 0;
|
|
arm->cpsr->valid = 1;
|
|
}
|
|
|
|
/* restore PC */
|
|
LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
|
|
buf_get_u32(arm->pc->value, 0, 32));
|
|
arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
|
|
arm->pc->dirty = 0;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Restart the core of an ARM7/9 target. A RESTART command is sent to the
|
|
* instruction register and the JTAG state is set to TAP_IDLE causing a core
|
|
* restart.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to be restarted
|
|
* @return Result of executing the JTAG queue
|
|
*/
|
|
static int arm7_9_restart_core(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
|
|
int retval;
|
|
|
|
/* set RESTART instruction */
|
|
if (arm7_9->need_bypass_before_restart) {
|
|
arm7_9->need_bypass_before_restart = 0;
|
|
|
|
retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
jtag_add_runtest(1, TAP_IDLE);
|
|
return jtag_execute_queue();
|
|
}
|
|
|
|
/**
|
|
* Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
|
|
* iterated through and are set on the target if they aren't already set.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to enable watchpoints on
|
|
*/
|
|
static void arm7_9_enable_watchpoints(struct target *target)
|
|
{
|
|
struct watchpoint *watchpoint = target->watchpoints;
|
|
|
|
while (watchpoint) {
|
|
if (watchpoint->set == 0)
|
|
arm7_9_set_watchpoint(target, watchpoint);
|
|
watchpoint = watchpoint->next;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
|
|
* iterated through and are set on the target.
|
|
*
|
|
* @param target Pointer to the ARM7/9 target to enable breakpoints on
|
|
*/
|
|
static void arm7_9_enable_breakpoints(struct target *target)
|
|
{
|
|
struct breakpoint *breakpoint = target->breakpoints;
|
|
|
|
/* set any pending breakpoints */
|
|
while (breakpoint) {
|
|
arm7_9_set_breakpoint(target, breakpoint);
|
|
breakpoint = breakpoint->next;
|
|
}
|
|
}
|
|
|
|
int arm7_9_resume(struct target *target,
|
|
int current,
|
|
target_addr_t address,
|
|
int handle_breakpoints,
|
|
int debug_execution)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
|
|
int err, retval = ERROR_OK;
|
|
|
|
LOG_DEBUG("-");
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (!debug_execution)
|
|
target_free_all_working_areas(target);
|
|
|
|
/* current = 1: continue on current pc, otherwise continue at <address> */
|
|
if (!current)
|
|
buf_set_u32(arm->pc->value, 0, 32, address);
|
|
|
|
uint32_t current_pc;
|
|
current_pc = buf_get_u32(arm->pc->value, 0, 32);
|
|
|
|
/* the front-end may request us not to handle breakpoints */
|
|
if (handle_breakpoints) {
|
|
struct breakpoint *breakpoint;
|
|
breakpoint = breakpoint_find(target,
|
|
buf_get_u32(arm->pc->value, 0, 32));
|
|
if (breakpoint != NULL) {
|
|
LOG_DEBUG("unset breakpoint at 0x%8.8" TARGET_PRIxADDR " (id: %" PRId32,
|
|
breakpoint->address,
|
|
breakpoint->unique_id);
|
|
retval = arm7_9_unset_breakpoint(target, breakpoint);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* calculate PC of next instruction */
|
|
uint32_t next_pc;
|
|
retval = arm_simulate_step(target, &next_pc);
|
|
if (retval != ERROR_OK) {
|
|
uint32_t current_opcode;
|
|
target_read_u32(target, current_pc, ¤t_opcode);
|
|
LOG_ERROR(
|
|
"Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
|
|
current_opcode);
|
|
return retval;
|
|
}
|
|
|
|
LOG_DEBUG("enable single-step");
|
|
arm7_9->enable_single_step(target, next_pc);
|
|
|
|
target->debug_reason = DBG_REASON_SINGLESTEP;
|
|
|
|
retval = arm7_9_restore_context(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (arm->core_state == ARM_STATE_ARM)
|
|
arm7_9->branch_resume(target);
|
|
else if (arm->core_state == ARM_STATE_THUMB)
|
|
arm7_9->branch_resume_thumb(target);
|
|
else {
|
|
LOG_ERROR("unhandled core state");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
|
|
embeddedice_write_reg(dbg_ctrl,
|
|
buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
|
|
err = arm7_9_execute_sys_speed(target);
|
|
|
|
LOG_DEBUG("disable single-step");
|
|
arm7_9->disable_single_step(target);
|
|
|
|
if (err != ERROR_OK) {
|
|
retval = arm7_9_set_breakpoint(target, breakpoint);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
target->state = TARGET_UNKNOWN;
|
|
return err;
|
|
}
|
|
|
|
retval = arm7_9_debug_entry(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
|
|
buf_get_u32(arm->pc->value, 0, 32));
|
|
|
|
LOG_DEBUG("set breakpoint at 0x%8.8" TARGET_PRIxADDR "", breakpoint->address);
|
|
retval = arm7_9_set_breakpoint(target, breakpoint);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
/* enable any pending breakpoints and watchpoints */
|
|
arm7_9_enable_breakpoints(target);
|
|
arm7_9_enable_watchpoints(target);
|
|
|
|
retval = arm7_9_restore_context(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (arm->core_state == ARM_STATE_ARM)
|
|
arm7_9->branch_resume(target);
|
|
else if (arm->core_state == ARM_STATE_THUMB)
|
|
arm7_9->branch_resume_thumb(target);
|
|
else {
|
|
LOG_ERROR("unhandled core state");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/* deassert DBGACK and INTDIS */
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
|
|
/* INTDIS only when we really resume, not during debug execution */
|
|
if (!debug_execution)
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
|
|
embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
|
|
|
|
retval = arm7_9_restart_core(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
target->debug_reason = DBG_REASON_NOTHALTED;
|
|
|
|
if (!debug_execution) {
|
|
/* registers are now invalid */
|
|
register_cache_invalidate(arm->core_cache);
|
|
target->state = TARGET_RUNNING;
|
|
retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
} else {
|
|
target->state = TARGET_DEBUG_RUNNING;
|
|
retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
LOG_DEBUG("target resumed");
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
uint32_t current_pc;
|
|
current_pc = buf_get_u32(arm->pc->value, 0, 32);
|
|
|
|
if (next_pc != current_pc) {
|
|
/* setup an inverse breakpoint on the current PC
|
|
* - comparator 1 matches the current address
|
|
* - rangeout from comparator 1 is connected to comparator 0 rangein
|
|
* - comparator 0 matches any address, as long as rangein is low */
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
|
|
EICE_W_CTRL_ENABLE);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
|
|
~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
|
|
current_pc);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
|
|
~EICE_W_CTRL_nOPC & 0xff);
|
|
} else {
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
|
|
EICE_W_CTRL_ENABLE);
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
|
|
~EICE_W_CTRL_nOPC & 0xff);
|
|
}
|
|
}
|
|
|
|
void arm7_9_disable_eice_step(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
|
|
embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
|
|
}
|
|
|
|
int arm7_9_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
struct breakpoint *breakpoint = NULL;
|
|
int err, retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
/* current = 1: continue on current pc, otherwise continue at <address> */
|
|
if (!current)
|
|
buf_set_u32(arm->pc->value, 0, 32, address);
|
|
|
|
uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
|
|
|
|
/* the front-end may request us not to handle breakpoints */
|
|
if (handle_breakpoints)
|
|
breakpoint = breakpoint_find(target, current_pc);
|
|
if (breakpoint != NULL) {
|
|
retval = arm7_9_unset_breakpoint(target, breakpoint);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
target->debug_reason = DBG_REASON_SINGLESTEP;
|
|
|
|
/* calculate PC of next instruction */
|
|
uint32_t next_pc;
|
|
retval = arm_simulate_step(target, &next_pc);
|
|
if (retval != ERROR_OK) {
|
|
uint32_t current_opcode;
|
|
target_read_u32(target, current_pc, ¤t_opcode);
|
|
LOG_ERROR(
|
|
"Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
|
|
current_opcode);
|
|
return retval;
|
|
}
|
|
|
|
retval = arm7_9_restore_context(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
arm7_9->enable_single_step(target, next_pc);
|
|
|
|
if (arm->core_state == ARM_STATE_ARM)
|
|
arm7_9->branch_resume(target);
|
|
else if (arm->core_state == ARM_STATE_THUMB)
|
|
arm7_9->branch_resume_thumb(target);
|
|
else {
|
|
LOG_ERROR("unhandled core state");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
err = arm7_9_execute_sys_speed(target);
|
|
arm7_9->disable_single_step(target);
|
|
|
|
/* registers are now invalid */
|
|
register_cache_invalidate(arm->core_cache);
|
|
|
|
if (err != ERROR_OK)
|
|
target->state = TARGET_UNKNOWN;
|
|
else {
|
|
retval = arm7_9_debug_entry(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_DEBUG("target stepped");
|
|
}
|
|
|
|
if (breakpoint) {
|
|
retval = arm7_9_set_breakpoint(target, breakpoint);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int arm7_9_read_core_reg(struct target *target, struct reg *r,
|
|
int num, enum arm_mode mode)
|
|
{
|
|
uint32_t *reg_p[16];
|
|
int retval;
|
|
struct arm_reg *areg = r->arch_info;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
|
|
if (!is_arm_mode(arm->core_mode))
|
|
return ERROR_FAIL;
|
|
if ((num < 0) || (num > 16))
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
|
|
&& (areg->mode != ARM_MODE_ANY)) {
|
|
uint32_t tmp_cpsr;
|
|
|
|
/* change processor mode (mask T bit) */
|
|
tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
|
|
tmp_cpsr |= mode;
|
|
tmp_cpsr &= ~0x20;
|
|
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
|
|
}
|
|
|
|
uint32_t value = 0;
|
|
if ((num >= 0) && (num <= 15)) {
|
|
/* read a normal core register */
|
|
reg_p[num] = &value;
|
|
|
|
arm7_9->read_core_regs(target, 1 << num, reg_p);
|
|
} else {
|
|
/* read a program status register
|
|
* if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
|
|
*/
|
|
arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
|
|
}
|
|
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
r->valid = 1;
|
|
r->dirty = 0;
|
|
buf_set_u32(r->value, 0, 32, value);
|
|
|
|
if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
|
|
&& (areg->mode != ARM_MODE_ANY)) {
|
|
/* restore processor mode (mask T bit) */
|
|
arm7_9->write_xpsr_im8(target,
|
|
buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int arm7_9_write_core_reg(struct target *target, struct reg *r,
|
|
int num, enum arm_mode mode, uint8_t *value)
|
|
{
|
|
uint32_t reg[16];
|
|
struct arm_reg *areg = r->arch_info;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
|
|
if (!is_arm_mode(arm->core_mode))
|
|
return ERROR_FAIL;
|
|
if ((num < 0) || (num > 16))
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
|
|
&& (areg->mode != ARM_MODE_ANY)) {
|
|
uint32_t tmp_cpsr;
|
|
|
|
/* change processor mode (mask T bit) */
|
|
tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
|
|
tmp_cpsr |= mode;
|
|
tmp_cpsr &= ~0x20;
|
|
arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
|
|
}
|
|
|
|
if ((num >= 0) && (num <= 15)) {
|
|
/* write a normal core register */
|
|
reg[num] = buf_get_u32(value, 0, 32);
|
|
|
|
arm7_9->write_core_regs(target, 1 << num, reg);
|
|
} else {
|
|
/* write a program status register
|
|
* if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
|
|
*/
|
|
int spsr = (areg->mode != ARM_MODE_ANY);
|
|
|
|
uint32_t t = buf_get_u32(value, 0, 32);
|
|
/* if we're writing the CPSR, mask the T bit */
|
|
if (!spsr)
|
|
t &= ~0x20;
|
|
|
|
arm7_9->write_xpsr(target, t, spsr);
|
|
}
|
|
|
|
r->valid = 1;
|
|
r->dirty = 0;
|
|
|
|
if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
|
|
&& (areg->mode != ARM_MODE_ANY)) {
|
|
/* restore processor mode (mask T bit) */
|
|
arm7_9->write_xpsr_im8(target,
|
|
buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
|
|
}
|
|
|
|
return jtag_execute_queue();
|
|
}
|
|
|
|
int arm7_9_read_memory(struct target *target,
|
|
target_addr_t address,
|
|
uint32_t size,
|
|
uint32_t count,
|
|
uint8_t *buffer)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
uint32_t reg[16];
|
|
uint32_t num_accesses = 0;
|
|
int thisrun_accesses;
|
|
int i;
|
|
uint32_t cpsr;
|
|
int retval;
|
|
int last_reg = 0;
|
|
|
|
LOG_DEBUG("address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "",
|
|
address, size, count);
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
/* sanitize arguments */
|
|
if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
|
|
return ERROR_TARGET_UNALIGNED_ACCESS;
|
|
|
|
/* load the base register with the address of the first word */
|
|
reg[0] = address;
|
|
arm7_9->write_core_regs(target, 0x1, reg);
|
|
|
|
int j = 0;
|
|
|
|
switch (size) {
|
|
case 4:
|
|
while (num_accesses < count) {
|
|
uint32_t reg_list;
|
|
thisrun_accesses =
|
|
((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
|
|
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
|
|
|
|
if (last_reg <= thisrun_accesses)
|
|
last_reg = thisrun_accesses;
|
|
|
|
arm7_9->load_word_regs(target, reg_list);
|
|
|
|
/* fast memory reads are only safe when the target is running
|
|
* from a sufficiently high clock (32 kHz is usually too slow)
|
|
*/
|
|
if (arm7_9->fast_memory_access)
|
|
retval = arm7_9_execute_fast_sys_speed(target);
|
|
else
|
|
retval = arm7_9_execute_sys_speed(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
|
|
|
|
/* advance buffer, count number of accesses */
|
|
buffer += thisrun_accesses * 4;
|
|
num_accesses += thisrun_accesses;
|
|
|
|
if ((j++%1024) == 0)
|
|
keep_alive();
|
|
}
|
|
break;
|
|
case 2:
|
|
while (num_accesses < count) {
|
|
uint32_t reg_list;
|
|
thisrun_accesses =
|
|
((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
|
|
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
|
|
|
|
for (i = 1; i <= thisrun_accesses; i++) {
|
|
if (i > last_reg)
|
|
last_reg = i;
|
|
arm7_9->load_hword_reg(target, i);
|
|
/* fast memory reads are only safe when the target is running
|
|
* from a sufficiently high clock (32 kHz is usually too slow)
|
|
*/
|
|
if (arm7_9->fast_memory_access)
|
|
retval = arm7_9_execute_fast_sys_speed(target);
|
|
else
|
|
retval = arm7_9_execute_sys_speed(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
}
|
|
|
|
arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
|
|
|
|
/* advance buffer, count number of accesses */
|
|
buffer += thisrun_accesses * 2;
|
|
num_accesses += thisrun_accesses;
|
|
|
|
if ((j++%1024) == 0)
|
|
keep_alive();
|
|
}
|
|
break;
|
|
case 1:
|
|
while (num_accesses < count) {
|
|
uint32_t reg_list;
|
|
thisrun_accesses =
|
|
((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
|
|
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
|
|
|
|
for (i = 1; i <= thisrun_accesses; i++) {
|
|
if (i > last_reg)
|
|
last_reg = i;
|
|
arm7_9->load_byte_reg(target, i);
|
|
/* fast memory reads are only safe when the target is running
|
|
* from a sufficiently high clock (32 kHz is usually too slow)
|
|
*/
|
|
if (arm7_9->fast_memory_access)
|
|
retval = arm7_9_execute_fast_sys_speed(target);
|
|
else
|
|
retval = arm7_9_execute_sys_speed(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
|
|
|
|
/* advance buffer, count number of accesses */
|
|
buffer += thisrun_accesses * 1;
|
|
num_accesses += thisrun_accesses;
|
|
|
|
if ((j++%1024) == 0)
|
|
keep_alive();
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!is_arm_mode(arm->core_mode))
|
|
return ERROR_FAIL;
|
|
|
|
for (i = 0; i <= last_reg; i++) {
|
|
struct reg *r = arm_reg_current(arm, i);
|
|
r->dirty = r->valid;
|
|
}
|
|
|
|
arm7_9->read_xpsr(target, &cpsr, 0);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("JTAG error while reading cpsr");
|
|
return ERROR_TARGET_DATA_ABORT;
|
|
}
|
|
|
|
if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
|
|
LOG_WARNING(
|
|
"memory read caused data abort "
|
|
"(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
|
|
address,
|
|
size,
|
|
count);
|
|
|
|
arm7_9->write_xpsr_im8(target,
|
|
buf_get_u32(arm->cpsr->value, 0, 8)
|
|
& ~0x20, 0, 0);
|
|
|
|
return ERROR_TARGET_DATA_ABORT;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int arm7_9_write_memory(struct target *target,
|
|
target_addr_t address,
|
|
uint32_t size,
|
|
uint32_t count,
|
|
const uint8_t *buffer)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
struct arm *arm = &arm7_9->arm;
|
|
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
|
|
|
|
uint32_t reg[16];
|
|
uint32_t num_accesses = 0;
|
|
int thisrun_accesses;
|
|
int i;
|
|
uint32_t cpsr;
|
|
int retval;
|
|
int last_reg = 0;
|
|
|
|
#ifdef _DEBUG_ARM7_9_
|
|
LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
|
|
#endif
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
/* sanitize arguments */
|
|
if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
|
|
return ERROR_TARGET_UNALIGNED_ACCESS;
|
|
|
|
/* load the base register with the address of the first word */
|
|
reg[0] = address;
|
|
arm7_9->write_core_regs(target, 0x1, reg);
|
|
|
|
/* Clear DBGACK, to make sure memory fetches work as expected */
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
|
|
embeddedice_store_reg(dbg_ctrl);
|
|
|
|
switch (size) {
|
|
case 4:
|
|
while (num_accesses < count) {
|
|
uint32_t reg_list;
|
|
thisrun_accesses =
|
|
((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
|
|
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
|
|
|
|
for (i = 1; i <= thisrun_accesses; i++) {
|
|
if (i > last_reg)
|
|
last_reg = i;
|
|
reg[i] = target_buffer_get_u32(target, buffer);
|
|
buffer += 4;
|
|
}
|
|
|
|
arm7_9->write_core_regs(target, reg_list, reg);
|
|
|
|
arm7_9->store_word_regs(target, reg_list);
|
|
|
|
/* fast memory writes are only safe when the target is running
|
|
* from a sufficiently high clock (32 kHz is usually too slow)
|
|
*/
|
|
if (arm7_9->fast_memory_access)
|
|
retval = arm7_9_execute_fast_sys_speed(target);
|
|
else {
|
|
retval = arm7_9_execute_sys_speed(target);
|
|
|
|
/*
|
|
* if memory writes are made when the clock is running slow
|
|
* (i.e. 32 kHz) which is necessary in some scripts to reconfigure
|
|
* processor operations after a "reset halt" or "reset init",
|
|
* need to immediately stroke the keep alive or will end up with
|
|
* gdb "keep alive not sent error message" problem.
|
|
*/
|
|
|
|
keep_alive();
|
|
}
|
|
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
num_accesses += thisrun_accesses;
|
|
}
|
|
break;
|
|
case 2:
|
|
while (num_accesses < count) {
|
|
uint32_t reg_list;
|
|
thisrun_accesses =
|
|
((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
|
|
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
|
|
|
|
for (i = 1; i <= thisrun_accesses; i++) {
|
|
if (i > last_reg)
|
|
last_reg = i;
|
|
reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
|
|
buffer += 2;
|
|
}
|
|
|
|
arm7_9->write_core_regs(target, reg_list, reg);
|
|
|
|
for (i = 1; i <= thisrun_accesses; i++) {
|
|
arm7_9->store_hword_reg(target, i);
|
|
|
|
/* fast memory writes are only safe when the target is running
|
|
* from a sufficiently high clock (32 kHz is usually too slow)
|
|
*/
|
|
if (arm7_9->fast_memory_access)
|
|
retval = arm7_9_execute_fast_sys_speed(target);
|
|
else {
|
|
retval = arm7_9_execute_sys_speed(target);
|
|
|
|
/*
|
|
* if memory writes are made when the clock is running slow
|
|
* (i.e. 32 kHz) which is necessary in some scripts to reconfigure
|
|
* processor operations after a "reset halt" or "reset init",
|
|
* need to immediately stroke the keep alive or will end up with
|
|
* gdb "keep alive not sent error message" problem.
|
|
*/
|
|
|
|
keep_alive();
|
|
}
|
|
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
num_accesses += thisrun_accesses;
|
|
}
|
|
break;
|
|
case 1:
|
|
while (num_accesses < count) {
|
|
uint32_t reg_list;
|
|
thisrun_accesses =
|
|
((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
|
|
reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
|
|
|
|
for (i = 1; i <= thisrun_accesses; i++) {
|
|
if (i > last_reg)
|
|
last_reg = i;
|
|
reg[i] = *buffer++ & 0xff;
|
|
}
|
|
|
|
arm7_9->write_core_regs(target, reg_list, reg);
|
|
|
|
for (i = 1; i <= thisrun_accesses; i++) {
|
|
arm7_9->store_byte_reg(target, i);
|
|
/* fast memory writes are only safe when the target is running
|
|
* from a sufficiently high clock (32 kHz is usually too slow)
|
|
*/
|
|
if (arm7_9->fast_memory_access)
|
|
retval = arm7_9_execute_fast_sys_speed(target);
|
|
else {
|
|
retval = arm7_9_execute_sys_speed(target);
|
|
|
|
/*
|
|
* if memory writes are made when the clock is running slow
|
|
* (i.e. 32 kHz) which is necessary in some scripts to reconfigure
|
|
* processor operations after a "reset halt" or "reset init",
|
|
* need to immediately stroke the keep alive or will end up with
|
|
* gdb "keep alive not sent error message" problem.
|
|
*/
|
|
|
|
keep_alive();
|
|
}
|
|
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
}
|
|
|
|
num_accesses += thisrun_accesses;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Re-Set DBGACK */
|
|
buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
|
|
embeddedice_store_reg(dbg_ctrl);
|
|
|
|
if (!is_arm_mode(arm->core_mode))
|
|
return ERROR_FAIL;
|
|
|
|
for (i = 0; i <= last_reg; i++) {
|
|
struct reg *r = arm_reg_current(arm, i);
|
|
r->dirty = r->valid;
|
|
}
|
|
|
|
arm7_9->read_xpsr(target, &cpsr, 0);
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("JTAG error while reading cpsr");
|
|
return ERROR_TARGET_DATA_ABORT;
|
|
}
|
|
|
|
if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
|
|
LOG_WARNING(
|
|
"memory write caused data abort "
|
|
"(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
|
|
address,
|
|
size,
|
|
count);
|
|
|
|
arm7_9->write_xpsr_im8(target,
|
|
buf_get_u32(arm->cpsr->value, 0, 8)
|
|
& ~0x20, 0, 0);
|
|
|
|
return ERROR_TARGET_DATA_ABORT;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int arm7_9_write_memory_opt(struct target *target,
|
|
target_addr_t address,
|
|
uint32_t size,
|
|
uint32_t count,
|
|
const uint8_t *buffer)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
int retval;
|
|
|
|
if (size == 4 && count > 32 && arm7_9->bulk_write_memory) {
|
|
/* Attempt to do a bulk write */
|
|
retval = arm7_9->bulk_write_memory(target, address, count, buffer);
|
|
|
|
if (retval == ERROR_OK)
|
|
return ERROR_OK;
|
|
}
|
|
|
|
return arm7_9->write_memory(target, address, size, count, buffer);
|
|
}
|
|
|
|
int arm7_9_write_memory_no_opt(struct target *target,
|
|
uint32_t address,
|
|
uint32_t size,
|
|
uint32_t count,
|
|
const uint8_t *buffer)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
return arm7_9->write_memory(target, address, size, count, buffer);
|
|
}
|
|
|
|
static int dcc_count;
|
|
static const uint8_t *dcc_buffer;
|
|
|
|
static int arm7_9_dcc_completion(struct target *target,
|
|
uint32_t exit_point,
|
|
int timeout_ms,
|
|
void *arch_info)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
int little = target->endianness == TARGET_LITTLE_ENDIAN;
|
|
int count = dcc_count;
|
|
const uint8_t *buffer = dcc_buffer;
|
|
if (count > 2) {
|
|
/* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
|
|
* core function repeated. */
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
|
|
fast_target_buffer_get_u32(buffer, little));
|
|
buffer += 4;
|
|
|
|
struct embeddedice_reg *ice_reg =
|
|
arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
|
|
uint8_t reg_addr = ice_reg->addr & 0x1f;
|
|
struct jtag_tap *tap;
|
|
tap = ice_reg->jtag_info->tap;
|
|
|
|
embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
|
|
buffer += (count-2)*4;
|
|
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
|
|
fast_target_buffer_get_u32(buffer, little));
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < count; i++) {
|
|
embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
|
|
fast_target_buffer_get_u32(buffer, little));
|
|
buffer += 4;
|
|
}
|
|
}
|
|
|
|
retval = target_halt(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
return target_wait_state(target, TARGET_HALTED, 500);
|
|
}
|
|
|
|
static const uint32_t dcc_code[] = {
|
|
/* r0 == input, points to memory buffer
|
|
* r1 == scratch
|
|
*/
|
|
|
|
/* spin until DCC control (c0) reports data arrived */
|
|
0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
|
|
0xe3110001, /* tst r1, #1 */
|
|
0x0afffffc, /* bne w */
|
|
|
|
/* read word from DCC (c1), write to memory */
|
|
0xee111e10, /* mrc p14, #0, r1, c1, c0 */
|
|
0xe4801004, /* str r1, [r0], #4 */
|
|
|
|
/* repeat */
|
|
0xeafffff9 /* b w */
|
|
};
|
|
|
|
int arm7_9_bulk_write_memory(struct target *target,
|
|
target_addr_t address,
|
|
uint32_t count,
|
|
const uint8_t *buffer)
|
|
{
|
|
int retval;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (address % 4 != 0)
|
|
return ERROR_TARGET_UNALIGNED_ACCESS;
|
|
|
|
if (!arm7_9->dcc_downloads)
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
/* regrab previously allocated working_area, or allocate a new one */
|
|
if (!arm7_9->dcc_working_area) {
|
|
uint8_t dcc_code_buf[6 * 4];
|
|
|
|
/* make sure we have a working area */
|
|
if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) {
|
|
LOG_INFO("no working area available, falling back to memory writes");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
/* copy target instructions to target endianness */
|
|
target_buffer_set_u32_array(target, dcc_code_buf, ARRAY_SIZE(dcc_code), dcc_code);
|
|
|
|
/* write DCC code to working area, using the non-optimized
|
|
* memory write to avoid ending up here again */
|
|
retval = arm7_9_write_memory_no_opt(target,
|
|
arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
struct arm_algorithm arm_algo;
|
|
struct reg_param reg_params[1];
|
|
|
|
arm_algo.common_magic = ARM_COMMON_MAGIC;
|
|
arm_algo.core_mode = ARM_MODE_SVC;
|
|
arm_algo.core_state = ARM_STATE_ARM;
|
|
|
|
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT);
|
|
|
|
buf_set_u32(reg_params[0].value, 0, 32, address);
|
|
|
|
dcc_count = count;
|
|
dcc_buffer = buffer;
|
|
retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
|
|
arm7_9->dcc_working_area->address,
|
|
arm7_9->dcc_working_area->address + 6*4,
|
|
20*1000, &arm_algo, arm7_9_dcc_completion);
|
|
|
|
if (retval == ERROR_OK) {
|
|
uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
|
|
if (endaddress != (address + count*4)) {
|
|
LOG_ERROR(
|
|
"DCC write failed, expected end address 0x%08" TARGET_PRIxADDR " got 0x%0" PRIx32 "",
|
|
(address + count*4),
|
|
endaddress);
|
|
retval = ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
destroy_reg_param(®_params[0]);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Perform per-target setup that requires JTAG access.
|
|
*/
|
|
int arm7_9_examine(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
int retval;
|
|
|
|
if (!target_was_examined(target)) {
|
|
struct reg_cache *t, **cache_p;
|
|
|
|
t = embeddedice_build_reg_cache(target, arm7_9);
|
|
if (t == NULL)
|
|
return ERROR_FAIL;
|
|
|
|
cache_p = register_get_last_cache_p(&target->reg_cache);
|
|
(*cache_p) = t;
|
|
arm7_9->eice_cache = (*cache_p);
|
|
|
|
if (arm7_9->arm.etm)
|
|
(*cache_p)->next = etm_build_reg_cache(target,
|
|
&arm7_9->jtag_info,
|
|
arm7_9->arm.etm);
|
|
|
|
target_set_examined(target);
|
|
}
|
|
|
|
retval = embeddedice_setup(target);
|
|
if (retval == ERROR_OK)
|
|
retval = arm7_9_setup(target);
|
|
if (retval == ERROR_OK && arm7_9->arm.etm)
|
|
retval = etm_setup(target);
|
|
return retval;
|
|
}
|
|
|
|
|
|
int arm7_9_check_reset(struct target *target)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (get_target_reset_nag() && !arm7_9->dcc_downloads)
|
|
LOG_WARNING(
|
|
"NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
|
|
|
|
if (get_target_reset_nag() && (target->working_area_size == 0))
|
|
LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
|
|
|
|
if (get_target_reset_nag() && !arm7_9->fast_memory_access)
|
|
LOG_WARNING(
|
|
"NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int arm7_9_endianness_callback(jtag_callback_data_t pu8_in,
|
|
jtag_callback_data_t i_size, jtag_callback_data_t i_be,
|
|
jtag_callback_data_t i_flip)
|
|
{
|
|
uint8_t *in = (uint8_t *)pu8_in;
|
|
int size = (int)i_size;
|
|
int be = (int)i_be;
|
|
int flip = (int)i_flip;
|
|
uint32_t readback;
|
|
|
|
switch (size) {
|
|
case 4:
|
|
readback = le_to_h_u32(in);
|
|
if (flip)
|
|
readback = flip_u32(readback, 32);
|
|
if (be)
|
|
h_u32_to_be(in, readback);
|
|
else
|
|
h_u32_to_le(in, readback);
|
|
break;
|
|
case 2:
|
|
readback = le_to_h_u16(in);
|
|
if (flip)
|
|
readback = flip_u32(readback, 16);
|
|
if (be)
|
|
h_u16_to_be(in, readback & 0xffff);
|
|
else
|
|
h_u16_to_le(in, readback & 0xffff);
|
|
break;
|
|
case 1:
|
|
readback = *in;
|
|
if (flip)
|
|
readback = flip_u32(readback, 8);
|
|
*in = readback & 0xff;
|
|
break;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (!is_arm7_9(arm7_9)) {
|
|
command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
|
|
return ERROR_TARGET_INVALID;
|
|
}
|
|
|
|
if (CMD_ARGC > 0)
|
|
COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->use_dbgrq);
|
|
|
|
command_print(CMD_CTX,
|
|
"use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
|
|
(arm7_9->use_dbgrq) ? "enabled" : "disabled");
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (!is_arm7_9(arm7_9)) {
|
|
command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
|
|
return ERROR_TARGET_INVALID;
|
|
}
|
|
|
|
if (CMD_ARGC > 0)
|
|
COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
|
|
|
|
command_print(CMD_CTX,
|
|
"fast memory access is %s",
|
|
(arm7_9->fast_memory_access) ? "enabled" : "disabled");
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (!is_arm7_9(arm7_9)) {
|
|
command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
|
|
return ERROR_TARGET_INVALID;
|
|
}
|
|
|
|
if (CMD_ARGC > 0)
|
|
COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
|
|
|
|
command_print(CMD_CTX,
|
|
"dcc downloads are %s",
|
|
(arm7_9->dcc_downloads) ? "enabled" : "disabled");
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int arm7_9_setup_semihosting(struct target *target, int enable)
|
|
{
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
if (!is_arm7_9(arm7_9)) {
|
|
LOG_USER("current target isn't an ARM7/ARM9 target");
|
|
return ERROR_TARGET_INVALID;
|
|
}
|
|
|
|
if (arm7_9->has_vector_catch) {
|
|
struct reg *vector_catch = &arm7_9->eice_cache
|
|
->reg_list[EICE_VEC_CATCH];
|
|
|
|
if (!vector_catch->valid)
|
|
embeddedice_read_reg(vector_catch);
|
|
buf_set_u32(vector_catch->value, 2, 1, enable);
|
|
embeddedice_store_reg(vector_catch);
|
|
} else {
|
|
/* TODO: allow optional high vectors and/or BKPT_HARD */
|
|
if (enable)
|
|
breakpoint_add(target, 8, 4, BKPT_SOFT);
|
|
else
|
|
breakpoint_remove(target, 8);
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct arm *arm = &arm7_9->arm;
|
|
|
|
arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
|
|
|
|
retval = arm_jtag_setup_connection(&arm7_9->jtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* caller must have allocated via calloc(), so everything's zeroed */
|
|
|
|
arm7_9->wp_available_max = 2;
|
|
|
|
arm7_9->fast_memory_access = false;
|
|
arm7_9->dcc_downloads = false;
|
|
|
|
arm->arch_info = arm7_9;
|
|
arm->core_type = ARM_MODE_ANY;
|
|
arm->read_core_reg = arm7_9_read_core_reg;
|
|
arm->write_core_reg = arm7_9_write_core_reg;
|
|
arm->full_context = arm7_9_full_context;
|
|
arm->setup_semihosting = arm7_9_setup_semihosting;
|
|
|
|
retval = arm_init_arch_info(target, arm);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return target_register_timer_callback(arm7_9_handle_target_request,
|
|
1, 1, target);
|
|
}
|
|
|
|
static const struct command_registration arm7_9_any_command_handlers[] = {
|
|
{
|
|
"dbgrq",
|
|
.handler = handle_arm7_9_dbgrq_command,
|
|
.mode = COMMAND_ANY,
|
|
.usage = "['enable'|'disable']",
|
|
.help = "use EmbeddedICE dbgrq instead of breakpoint "
|
|
"for target halt requests",
|
|
},
|
|
{
|
|
"fast_memory_access",
|
|
.handler = handle_arm7_9_fast_memory_access_command,
|
|
.mode = COMMAND_ANY,
|
|
.usage = "['enable'|'disable']",
|
|
.help = "use fast memory accesses instead of slower "
|
|
"but potentially safer accesses",
|
|
},
|
|
{
|
|
"dcc_downloads",
|
|
.handler = handle_arm7_9_dcc_downloads_command,
|
|
.mode = COMMAND_ANY,
|
|
.usage = "['enable'|'disable']",
|
|
.help = "use DCC downloads for larger memory writes",
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
const struct command_registration arm7_9_command_handlers[] = {
|
|
{
|
|
.chain = arm_command_handlers,
|
|
},
|
|
{
|
|
.chain = etm_command_handlers,
|
|
},
|
|
{
|
|
.name = "arm7_9",
|
|
.mode = COMMAND_ANY,
|
|
.help = "arm7/9 specific commands",
|
|
.usage = "",
|
|
.chain = arm7_9_any_command_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|