riscv-openocd/src/target/mips32.c

1876 lines
62 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by David T.L. Wong *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2011 by Drasko DRASKOVIC *
* drasko.draskovic@gmail.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mips32.h"
#include "mips_cpu.h"
#include "breakpoints.h"
#include "algorithm.h"
#include "register.h"
static const char *mips_isa_strings[] = {
"MIPS32", "MIPS16", "", "MICRO MIPS32",
};
#define MIPS32_GDB_FP_REG 1
/*
* GDB registers
* based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
*/
static const struct {
unsigned id;
const char *name;
enum reg_type type;
const char *group;
const char *feature;
int size;
} mips32_regs[] = {
{ 0, "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 1, "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 2, "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 3, "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 4, "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 5, "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 6, "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 7, "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 8, "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 9, "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 32, "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 33, "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ MIPS32_REGLIST_FP_INDEX + 0, "f0", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 1, "f1", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 2, "f2", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 3, "f3", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 4, "f4", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 5, "f5", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 6, "f6", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 7, "f7", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 8, "f8", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 9, "f9", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 10, "f10", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 11, "f11", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 12, "f12", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 13, "f13", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 14, "f14", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 15, "f15", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 16, "f16", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 17, "f17", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 18, "f18", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 19, "f19", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 20, "f20", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 21, "f21", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 22, "f22", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 23, "f23", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 24, "f24", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 25, "f25", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 26, "f26", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 27, "f27", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 28, "f28", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 29, "f29", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 30, "f30", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FP_INDEX + 31, "f31", REG_TYPE_IEEE_DOUBLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_FP_REG },
{ MIPS32_REGLIST_FPC_INDEX + 0, "fcsr", REG_TYPE_INT, "float",
"org.gnu.gdb.mips.fpu", 0 },
{ MIPS32_REGLIST_FPC_INDEX + 1, "fir", REG_TYPE_INT, "float",
"org.gnu.gdb.mips.fpu", 0 },
{ MIPS32_REGLIST_C0_STATUS_INDEX, "status", REG_TYPE_INT, NULL,
"org.gnu.gdb.mips.cp0", 0 },
{ MIPS32_REGLIST_C0_BADVADDR_INDEX, "badvaddr", REG_TYPE_INT, NULL,
"org.gnu.gdb.mips.cp0", 0 },
{ MIPS32_REGLIST_C0_CAUSE_INDEX, "cause", REG_TYPE_INT, NULL,
"org.gnu.gdb.mips.cp0", 0 },
{ MIPS32_REGLIST_C0_PC_INDEX, "pc", REG_TYPE_INT, NULL,
"org.gnu.gdb.mips.cpu", 0 },
{ MIPS32_REGLIST_C0_GUESTCTL1_INDEX, "guestCtl1", REG_TYPE_INT, NULL,
"org.gnu.gdb.mips.cp0", 0 },
};
#define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
static int mips32_get_core_reg(struct reg *reg)
{
int retval;
struct mips32_core_reg *mips32_reg = reg->arch_info;
struct target *target = mips32_reg->target;
struct mips32_common *mips32_target = target_to_mips32(target);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = mips32_target->read_core_reg(target, mips32_reg->num);
return retval;
}
static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct mips32_core_reg *mips32_reg = reg->arch_info;
struct target *target = mips32_reg->target;
uint64_t value;
if (reg->size == 64)
value = buf_get_u64(buf, 0, 64);
else
value = buf_get_u32(buf, 0, 32);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
if (reg->size == 64)
buf_set_u64(reg->value, 0, 64, value);
else
buf_set_u32(reg->value, 0, 32, value);
reg->dirty = true;
reg->valid = true;
return ERROR_OK;
}
static int mips32_read_core_reg(struct target *target, unsigned int num)
{
unsigned int cnum;
uint64_t reg_value = 0;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
if (num >= MIPS32_NUM_REGS)
return ERROR_COMMAND_SYNTAX_ERROR;
if (num >= MIPS32_REGLIST_C0_INDEX) {
/* CP0 */
cnum = num - MIPS32_REGLIST_C0_INDEX;
reg_value = mips32->core_regs.cp0[cnum];
buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
} else if (num >= MIPS32_REGLIST_FPC_INDEX) {
/* FPCR */
cnum = num - MIPS32_REGLIST_FPC_INDEX;
reg_value = mips32->core_regs.fpcr[cnum];
buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
} else if (num >= MIPS32_REGLIST_FP_INDEX) {
/* FPR */
cnum = num - MIPS32_REGLIST_FP_INDEX;
reg_value = mips32->core_regs.fpr[cnum];
buf_set_u64(mips32->core_cache->reg_list[num].value, 0, 64, reg_value);
} else {
/* GPR */
cnum = num - MIPS32_REGLIST_GP_INDEX;
reg_value = mips32->core_regs.gpr[cnum];
buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
}
mips32->core_cache->reg_list[num].valid = true;
mips32->core_cache->reg_list[num].dirty = false;
LOG_DEBUG("read core reg %i value 0x%" PRIx64 "", num, reg_value);
return ERROR_OK;
}
static int mips32_write_core_reg(struct target *target, unsigned int num)
{
unsigned int cnum;
uint64_t reg_value;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
if (num >= MIPS32_NUM_REGS)
return ERROR_COMMAND_SYNTAX_ERROR;
if (num >= MIPS32_REGLIST_C0_INDEX) {
/* CP0 */
cnum = num - MIPS32_REGLIST_C0_INDEX;
reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
mips32->core_regs.cp0[cnum] = (uint32_t)reg_value;
} else if (num >= MIPS32_REGLIST_FPC_INDEX) {
/* FPCR */
cnum = num - MIPS32_REGLIST_FPC_INDEX;
reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
mips32->core_regs.fpcr[cnum] = (uint32_t)reg_value;
} else if (num >= MIPS32_REGLIST_FP_INDEX) {
/* FPR */
cnum = num - MIPS32_REGLIST_FP_INDEX;
reg_value = buf_get_u64(mips32->core_cache->reg_list[num].value, 0, 64);
mips32->core_regs.fpr[cnum] = reg_value;
} else {
/* GPR */
cnum = num - MIPS32_REGLIST_GP_INDEX;
reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
mips32->core_regs.gpr[cnum] = (uint32_t)reg_value;
}
LOG_DEBUG("write core reg %i value 0x%" PRIx64 "", num, reg_value);
mips32->core_cache->reg_list[num].valid = true;
mips32->core_cache->reg_list[num].dirty = false;
return ERROR_OK;
}
int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
unsigned int i;
/* include floating point registers */
*reg_list_size = MIPS32_NUM_REGS;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < MIPS32_NUM_REGS; i++)
(*reg_list)[i] = &mips32->core_cache->reg_list[i];
return ERROR_OK;
}
int mips32_save_context(struct target *target)
{
unsigned int i;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
/* read core registers */
int retval = mips32_pracc_read_regs(mips32);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read core registers from target");
return retval;
}
for (i = 0; i < MIPS32_NUM_REGS; i++) {
if (!mips32->core_cache->reg_list[i].valid)
mips32->read_core_reg(target, i);
}
return ERROR_OK;
}
int mips32_restore_context(struct target *target)
{
unsigned int i;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
for (i = 0; i < MIPS32_NUM_REGS; i++) {
if (mips32->core_cache->reg_list[i].dirty)
mips32->write_core_reg(target, i);
}
/* write core regs */
return mips32_pracc_write_regs(mips32);
}
int mips32_arch_state(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
mips_isa_strings[mips32->isa_mode],
debug_reason_name(target),
buf_get_u32(mips32->core_cache->reg_list[MIPS32_REGLIST_C0_PC_INDEX].value, 0, 32));
return ERROR_OK;
}
static const struct reg_arch_type mips32_reg_type = {
.get = mips32_get_core_reg,
.set = mips32_set_core_reg,
};
struct reg_cache *mips32_build_reg_cache(struct target *target)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
int num_regs = MIPS32_NUM_REGS;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
struct reg_feature *feature;
int i;
/* Build the process context cache */
cache->name = "mips32 registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
mips32->core_cache = cache;
for (i = 0; i < num_regs; i++) {
arch_info[i].num = mips32_regs[i].id;
arch_info[i].target = target;
arch_info[i].mips32_common = mips32;
reg_list[i].name = mips32_regs[i].name;
reg_list[i].size = mips32_regs[i].size ? 64 : 32;
reg_list[i].value = mips32_regs[i].size ? calloc(1, 8) : calloc(1, 4);
reg_list[i].valid = false;
reg_list[i].type = &mips32_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type)
reg_list[i].reg_data_type->type = mips32_regs[i].type;
else
LOG_ERROR("unable to allocate reg type list");
reg_list[i].dirty = false;
reg_list[i].group = mips32_regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true; /* gdb defaults to true */
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = mips32_regs[i].feature;
reg_list[i].feature = feature;
} else
LOG_ERROR("unable to allocate feature list");
}
return cache;
}
int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
{
target->arch_info = mips32;
mips32->common_magic = MIPS32_COMMON_MAGIC;
mips32->fast_data_area = NULL;
mips32->isa_imp = MIPS32_ONLY; /* default */
/* has breakpoint/watchpoint unit been scanned */
mips32->bp_scanned = 0;
mips32->data_break_list = NULL;
mips32->ejtag_info.tap = tap;
mips32->read_core_reg = mips32_read_core_reg;
mips32->write_core_reg = mips32_write_core_reg;
/* if unknown endianness defaults to little endian, 1 */
mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
mips32->ejtag_info.mode = 0; /* Initial default value */
mips32->ejtag_info.isa = 0; /* isa on debug mips32, updated by poll function */
mips32->ejtag_info.config_regs = 0; /* no config register read */
return ERROR_OK;
}
/* run to exit point. return error if exit point was not reached. */
static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
unsigned int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
{
uint32_t pc;
int retval;
/* This code relies on the target specific resume() and poll()->debug_entry()
* sequence to write register values to the processor and the read them back */
retval = target_resume(target, 0, entry_point, 0, 1);
if (retval != ERROR_OK)
return retval;
retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
/* If the target fails to halt due to the breakpoint, force a halt */
if (retval != ERROR_OK || target->state != TARGET_HALTED) {
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
retval = target_wait_state(target, TARGET_HALTED, 500);
if (retval != ERROR_OK)
return retval;
return ERROR_TARGET_TIMEOUT;
}
pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_REGLIST_C0_PC_INDEX].value, 0, 32);
if (exit_point && (pc != exit_point)) {
LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
return ERROR_TARGET_TIMEOUT;
}
return ERROR_OK;
}
int mips32_run_algorithm(struct target *target, int num_mem_params,
struct mem_param *mem_params, int num_reg_params,
struct reg_param *reg_params, target_addr_t entry_point,
target_addr_t exit_point, unsigned int timeout_ms, void *arch_info)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips32_algorithm *mips32_algorithm_info = arch_info;
enum mips32_isa_mode isa_mode = mips32->isa_mode;
uint32_t context[MIPS32_NUM_REGS];
int retval = ERROR_OK;
LOG_DEBUG("Running algorithm");
/* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
* at the exit point */
if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
LOG_ERROR("current target isn't a MIPS32 target");
return ERROR_TARGET_INVALID;
}
if (target->state != TARGET_HALTED) {
LOG_TARGET_ERROR(target, "not halted (run target algo)");
return ERROR_TARGET_NOT_HALTED;
}
/* refresh core register cache */
for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
if (!mips32->core_cache->reg_list[i].valid)
mips32->read_core_reg(target, i);
context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
}
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction == PARAM_IN)
continue;
retval = target_write_buffer(target, mem_params[i].address,
mem_params[i].size, mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction == PARAM_IN)
continue;
struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, false);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
mips32_set_core_reg(reg, reg_params[i].value);
}
mips32->isa_mode = mips32_algorithm_info->isa_mode;
retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
if (retval != ERROR_OK)
return retval;
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction != PARAM_OUT) {
retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
}
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction != PARAM_OUT) {
struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, false);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
}
}
/* restore everything we saved before */
for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
uint32_t regvalue;
regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
if (regvalue != context[i]) {
LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
mips32->core_cache->reg_list[i].name, context[i]);
buf_set_u32(mips32->core_cache->reg_list[i].value,
0, 32, context[i]);
mips32->core_cache->reg_list[i].valid = true;
mips32->core_cache->reg_list[i].dirty = true;
}
}
mips32->isa_mode = isa_mode;
return ERROR_OK;
}
int mips32_examine(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
if (!target_was_examined(target)) {
target_set_examined(target);
/* we will configure later */
mips32->bp_scanned = 0;
mips32->num_inst_bpoints = 0;
mips32->num_data_bpoints = 0;
mips32->num_inst_bpoints_avail = 0;
mips32->num_data_bpoints_avail = 0;
}
return ERROR_OK;
}
static int mips32_configure_ibs(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int retval, i;
uint32_t bpinfo;
/* get number of inst breakpoints */
retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
if (retval != ERROR_OK)
return retval;
mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
sizeof(struct mips32_comparator));
for (i = 0; i < mips32->num_inst_bpoints; i++)
mips32->inst_break_list[i].reg_address =
ejtag_info->ejtag_iba0_addr +
(ejtag_info->ejtag_iba_step_size * i);
/* clear IBIS reg */
retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
return retval;
}
static int mips32_configure_dbs(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int retval, i;
uint32_t bpinfo;
/* get number of data breakpoints */
retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
if (retval != ERROR_OK)
return retval;
mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
mips32->data_break_list = calloc(mips32->num_data_bpoints,
sizeof(struct mips32_comparator));
for (i = 0; i < mips32->num_data_bpoints; i++)
mips32->data_break_list[i].reg_address =
ejtag_info->ejtag_dba0_addr +
(ejtag_info->ejtag_dba_step_size * i);
/* clear DBIS reg */
retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
return retval;
}
int mips32_configure_break_unit(struct target *target)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int retval;
uint32_t dcr;
if (mips32->bp_scanned)
return ERROR_OK;
/* get info about breakpoint support */
retval = target_read_u32(target, EJTAG_DCR, &dcr);
if (retval != ERROR_OK)
return retval;
/* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
ejtag_info->debug_caps |= EJTAG_DCR_IB;
if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
ejtag_info->debug_caps |= EJTAG_DCR_DB;
} else
/* keep debug caps for later use */
ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
| EJTAG_DCR_IB | EJTAG_DCR_DB);
if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
retval = mips32_configure_ibs(target);
if (retval != ERROR_OK)
return retval;
}
if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
retval = mips32_configure_dbs(target);
if (retval != ERROR_OK)
return retval;
}
/* check if target endianness settings matches debug control register */
if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
&& (target->endianness == TARGET_LITTLE_ENDIAN)) ||
(!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
&& (target->endianness == TARGET_BIG_ENDIAN)))
LOG_WARNING("DCR endianness settings does not match target settings");
LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
mips32->num_data_bpoints);
mips32->bp_scanned = 1;
return ERROR_OK;
}
int mips32_enable_interrupts(struct target *target, int enable)
{
int retval;
int update = 0;
uint32_t dcr;
/* read debug control register */
retval = target_read_u32(target, EJTAG_DCR, &dcr);
if (retval != ERROR_OK)
return retval;
if (enable) {
if (!(dcr & EJTAG_DCR_INTE)) {
/* enable interrupts */
dcr |= EJTAG_DCR_INTE;
update = 1;
}
} else {
if (dcr & EJTAG_DCR_INTE) {
/* disable interrupts */
dcr &= ~EJTAG_DCR_INTE;
update = 1;
}
}
if (update) {
retval = target_write_u32(target, EJTAG_DCR, dcr);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
/* read processor identification cp0 register */
static int mips32_read_c0_prid(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int retval;
retval = mips32_cp0_read(ejtag_info, &mips32->prid, 15, 0);
if (retval != ERROR_OK) {
LOG_ERROR("processor id not available, failed to read cp0 PRId register");
mips32->prid = 0;
}
return retval;
}
/**
* mips32_find_cpu_by_prid - Find CPU information by processor ID.
* @param[in] prid: Processor ID of the CPU.
*
* @brief This function looks up the CPU entry in the mips32_cpu_entry array based on the provided
* processor ID. It also handles special cases like AMD/Alchemy CPUs that use Company Options
* instead of Processor IDs.
*
* @return Pointer to the corresponding cpu_entry struct, or the 'unknown' entry if not found.
*/
static const struct cpu_entry *mips32_find_cpu_by_prid(uint32_t prid)
{
/* AMD/Alchemy CPU uses Company Options instead of Processor ID.
* Therefore an extra transform step for prid to map it to an assigned ID,
*/
if ((prid & PRID_COMP_MASK) == PRID_COMP_ALCHEMY) {
/* Clears Processor ID field, then put Company Option field to its place */
prid = (prid & 0xFFFF00FF) | ((prid & 0xFF000000) >> 16);
}
/* Mask out Company Option */
prid &= 0x00FFFFFF;
for (unsigned int i = 0; i < MIPS32_NUM_CPU_ENTRIES; i++) {
const struct cpu_entry *entry = &mips32_cpu_entry[i];
if ((entry->prid & MIPS32_CORE_MASK) <= prid && prid <= entry->prid)
return entry;
}
/* If nothing matched, then return unknown entry */
return &mips32_cpu_entry[MIPS32_NUM_CPU_ENTRIES - 1];
}
static bool mips32_cpu_is_lexra(struct mips_ejtag *ejtag_info)
{
return (ejtag_info->prid & PRID_COMP_MASK) == PRID_COMP_LEXRA;
}
static int mips32_cpu_get_release(struct mips_ejtag *ejtag_info)
{
return (ejtag_info->config[0] & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
}
/**
* mips32_cpu_support_sync - Checks CPU supports ordering
* @param[in] ejtag_info: MIPS EJTAG information structure.
*
* @brief MIPS ISA implemented on Lexra CPUs is MIPS-I, similar to R3000,
* which does not have the SYNC instruction alone with unaligned
* load/store instructions.
*
* @returns true if current CPU supports sync instruction(CPU is not Lexra)
*/
bool mips32_cpu_support_sync(struct mips_ejtag *ejtag_info)
{
return !mips32_cpu_is_lexra(ejtag_info);
}
/**
* mips32_cpu_support_hazard_barrier - Checks CPU supports hazard barrier
* @param[in] ejtag_info: MIPS EJTAG information structure.
*
* @brief hazard barrier instructions EHB and *.HB was introduced to MIPS from release 2.
*
* @returns true if current CPU supports hazard barrier(release > 1)
*/
bool mips32_cpu_support_hazard_barrier(struct mips_ejtag *ejtag_info)
{
return mips32_cpu_get_release(ejtag_info) > MIPS32_RELEASE_1;
}
/**
* mips32_cpu_probe - Detects processor type and applies necessary quirks.
* @param[in] target: The target CPU to probe.
*
* @brief This function probes the CPU, reads its PRID (Processor ID), and determines the CPU type.
* It applies any quirks necessary for specific processor types.
*
* NOTE: The proper detection of certain CPUs can become quite complicated.
* Please consult the following Linux kernel code when adding new CPUs:
* arch/mips/include/asm/cpu.h
* arch/mips/kernel/cpu-probe.c
*
* @return ERROR_OK on success; error code on failure.
*/
int mips32_cpu_probe(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
int retval;
if (mips32->prid)
return ERROR_OK; /* Already probed once, return early. */
retval = mips32_read_c0_prid(target);
if (retval != ERROR_OK)
return retval;
const struct cpu_entry *entry = mips32_find_cpu_by_prid(mips32->prid);
switch (mips32->prid & PRID_COMP_MASK) {
case PRID_COMP_INGENIC_E1:
switch (mips32->prid & PRID_IMP_MASK) {
case PRID_IMP_XBURST_REV1:
mips32->cpu_quirks |= EJTAG_QUIRK_PAD_DRET;
break;
default:
break;
}
break;
/* Determine which CP0 registers are available in the current processor core */
case PRID_COMP_MTI:
switch (entry->prid & PRID_IMP_MASK) {
case PRID_IMP_MAPTIV_UC:
mips32->cp0_mask = MIPS_CP0_MAPTIV_UC;
break;
case PRID_IMP_MAPTIV_UP:
case PRID_IMP_M5150:
mips32->cp0_mask = MIPS_CP0_MAPTIV_UP;
break;
case PRID_IMP_IAPTIV:
case PRID_IMP_IAPTIV_CM:
mips32->cp0_mask = MIPS_CP0_IAPTIV;
break;
default:
/* CP0 mask should be the same as MK4 by default */
mips32->cp0_mask = MIPS_CP0_MK4;
break;
}
default:
break;
}
mips32->cpu_info = entry;
LOG_DEBUG("CPU: %s (PRId %08x)", entry->cpu_name, mips32->prid);
return ERROR_OK;
}
/* reads dsp implementation info from CP0 Config3 register {DSPP, DSPREV}*/
static void mips32_read_config_dsp(struct mips32_common *mips32, struct mips_ejtag *ejtag_info)
{
uint32_t dsp_present = ((ejtag_info->config[3] & MIPS32_CONFIG3_DSPP_MASK) >> MIPS32_CONFIG3_DSPP_SHIFT);
if (dsp_present) {
mips32->dsp_imp = ((ejtag_info->config[3] & MIPS32_CONFIG3_DSPREV_MASK) >> MIPS32_CONFIG3_DSPREV_SHIFT) + 1;
LOG_USER("DSP implemented: %s, rev %d", "yes", mips32->dsp_imp);
} else {
LOG_USER("DSP implemented: %s", "no");
}
}
/* read fpu implementation info from CP0 Config1 register {CU1, FP}*/
static int mips32_read_config_fpu(struct mips32_common *mips32, struct mips_ejtag *ejtag_info)
{
int retval;
uint32_t fp_imp = (ejtag_info->config[1] & MIPS32_CONFIG1_FP_MASK) >> MIPS32_CONFIG1_FP_SHIFT;
char buf[60] = {0};
if (!fp_imp) {
LOG_USER("FPU implemented: %s", "no");
mips32->fp_imp = MIPS32_FP_IMP_NONE;
return ERROR_OK;
}
uint32_t status_value;
bool status_fr, status_cu1;
retval = mips32_cp0_read(ejtag_info, &status_value, MIPS32_C0_STATUS, 0);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to read cp0 status register");
return retval;
}
status_fr = (status_value >> MIPS32_CP0_STATUS_FR_SHIFT) & 0x1;
status_cu1 = (status_value >> MIPS32_CP0_STATUS_CU1_SHIFT) & 0x1;
if (status_cu1) {
/* TODO: read fpu(cp1) config register for current operating mode.
* Now its set to 32 bits by default. */
snprintf(buf, sizeof(buf), "yes");
fp_imp = MIPS32_FP_IMP_32;
} else {
snprintf(buf, sizeof(buf), "yes, disabled");
fp_imp = MIPS32_FP_IMP_UNKNOWN;
}
mips32->fpu_in_64bit = status_fr;
mips32->fpu_enabled = status_cu1;
LOG_USER("FPU implemented: %s", buf);
mips32->fp_imp = fp_imp;
return ERROR_OK;
}
/**
* mips32_read_config_fdc - Read Fast Debug Channel configuration
* @param[in,out] mips32: MIPS32 common structure
* @param[in] ejtag_info: EJTAG information structure
* @param[in] dcr: Device Configuration Register value
*
* @brief Checks if the current target implements the Common Device Memory Map (CDMM) and Fast Debug Channel (FDC).
*
* This function examines the configuration registers and the Device Configuration Register (DCR) to determine
* if the current MIPS32 target supports the Common Device Memory Map (CDMM) and the Fast Debug Channel (FDC).
* If supported, it sets the corresponding flags in the MIPS32 common structure. \n
*
* NOTE:These are defined on MD00090, page 67 and MD00047F, page 82, respectively.
* MIPS Documents are pretty much all available online,
* it should pop up first when you search "MDxxxxx"
*/
static void mips32_read_config_fdc(struct mips32_common *mips32, struct mips_ejtag *ejtag_info, uint32_t dcr)
{
if (((ejtag_info->config[3] & MIPS32_CONFIG3_CDMM_MASK) != 0) && ((dcr & EJTAG_DCR_FDC) != 0)) {
mips32->fdc = 1;
mips32->semihosting = 1;
} else {
mips32->fdc = 0;
mips32->semihosting = 0;
}
}
/* read config to config3 cp0 registers and log isa implementation */
int mips32_read_config_regs(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
char buf[60] = {0};
int retval;
if (ejtag_info->config_regs == 0)
for (int i = 0; i != 4; i++) {
retval = mips32_cp0_read(ejtag_info, &ejtag_info->config[i], 16, i);
if (retval != ERROR_OK) {
LOG_ERROR("isa info not available, failed to read cp0 config register: %" PRId32, i);
ejtag_info->config_regs = 0;
return retval;
}
ejtag_info->config_regs = i + 1;
if ((ejtag_info->config[i] & (1 << 31)) == 0)
break; /* no more config registers implemented */
}
else
return ERROR_OK; /* already successfully read */
LOG_DEBUG("read %"PRIu32" config registers", ejtag_info->config_regs);
mips32->isa_rel = (ejtag_info->config[0] & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
snprintf(buf, sizeof(buf), ", release %s(AR=%d)",
mips32->isa_rel == MIPS32_RELEASE_1 ? "1"
: mips32->isa_rel == MIPS32_RELEASE_2 ? "2"
: mips32->isa_rel == MIPS32_RELEASE_6 ? "6"
: "unknown", mips32->isa_rel);
if (ejtag_info->impcode & EJTAG_IMP_MIPS16) {
mips32->isa_imp = MIPS32_MIPS16;
LOG_USER("ISA implemented: %s%s", "MIPS32, MIPS16", buf);
} else if (ejtag_info->config_regs >= 4) { /* config3 implemented */
unsigned isa_imp = (ejtag_info->config[3] & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT;
if (isa_imp == 1) {
mips32->isa_imp = MMIPS32_ONLY;
LOG_USER("ISA implemented: %s%s", "microMIPS32", buf);
} else if (isa_imp != 0) {
mips32->isa_imp = MIPS32_MMIPS32;
LOG_USER("ISA implemented: %s%s", "MIPS32, microMIPS32", buf);
}
} else if (mips32->isa_imp == MIPS32_ONLY) {
/* initial default value */
LOG_USER("ISA implemented: %s%s", "MIPS32", buf);
}
/* Retrieve DSP info */
mips32_read_config_dsp(mips32, ejtag_info);
/* Retrieve if Float Point CoProcessor Implemented */
retval = mips32_read_config_fpu(mips32, ejtag_info);
if (retval != ERROR_OK) {
LOG_ERROR("fpu info is not available, error while reading cp0 status");
mips32->fp_imp = MIPS32_FP_IMP_NONE;
return retval;
}
uint32_t dcr;
retval = target_read_u32(target, EJTAG_DCR, &dcr);
if (retval != ERROR_OK) {
LOG_ERROR("failed to read EJTAG_DCR register");
return retval;
}
/* Determine if FDC and CDMM are implemented for this core */
mips32_read_config_fdc(mips32, ejtag_info, dcr);
return ERROR_OK;
}
int mips32_checksum_memory(struct target *target, target_addr_t address,
uint32_t count, uint32_t *checksum)
{
struct working_area *crc_algorithm;
struct reg_param reg_params[2];
struct mips32_algorithm mips32_info;
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
/* see contrib/loaders/checksum/mips32.s for src */
uint32_t isa = ejtag_info->isa ? 1 : 0;
uint32_t mips_crc_code[] = {
MIPS32_ADDIU(isa, 12, 4, 0), /* addiu $t4, $a0, 0 */
MIPS32_ADDIU(isa, 10, 5, 0), /* addiu $t2, $a1, 0 */
MIPS32_ADDIU(isa, 4, 0, 0xFFFF), /* addiu $a0, $zero, 0xffff */
MIPS32_BEQ(isa, 0, 0, 0x10 << isa), /* beq $zero, $zero, ncomp */
MIPS32_ADDIU(isa, 11, 0, 0), /* addiu $t3, $zero, 0 */
/* nbyte: */
MIPS32_LB(isa, 5, 0, 12), /* lb $a1, ($t4) */
MIPS32_ADDI(isa, 12, 12, 1), /* addi $t4, $t4, 1 */
MIPS32_SLL(isa, 5, 5, 24), /* sll $a1, $a1, 24 */
MIPS32_LUI(isa, 2, 0x04c1), /* lui $v0, 0x04c1 */
MIPS32_XOR(isa, 4, 4, 5), /* xor $a0, $a0, $a1 */
MIPS32_ORI(isa, 7, 2, 0x1db7), /* ori $a3, $v0, 0x1db7 */
MIPS32_ADDU(isa, 6, 0, 0), /* addu $a2, $zero, $zero */
/* loop */
MIPS32_SLL(isa, 8, 4, 1), /* sll $t0, $a0, 1 */
MIPS32_ADDIU(isa, 6, 6, 1), /* addiu $a2, $a2, 1 */
MIPS32_SLTI(isa, 4, 4, 0), /* slti $a0, $a0, 0 */
MIPS32_XOR(isa, 9, 8, 7), /* xor $t1, $t0, $a3 */
MIPS32_MOVN(isa, 8, 9, 4), /* movn $t0, $t1, $a0 */
MIPS32_SLTI(isa, 3, 6, 8), /* slti $v1, $a2, 8 */
MIPS32_BNE(isa, 3, 0, NEG16(7 << isa)), /* bne $v1, $zero, loop */
MIPS32_ADDU(isa, 4, 8, 0), /* addu $a0, $t0, $zero */
/* ncomp */
MIPS32_BNE(isa, 10, 11, NEG16(16 << isa)), /* bne $t2, $t3, nbyte */
MIPS32_ADDIU(isa, 11, 11, 1), /* addiu $t3, $t3, 1 */
MIPS32_SDBBP(isa),
};
/* make sure we have a working area */
if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
pracc_swap16_array(ejtag_info, mips_crc_code, ARRAY_SIZE(mips_crc_code));
/* convert mips crc code into a buffer in target endianness */
uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
target_buffer_set_u32_array(target, mips_crc_code_8,
ARRAY_SIZE(mips_crc_code), mips_crc_code);
int retval = target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
if (retval != ERROR_OK)
return retval;
mips32_info.common_magic = MIPS32_COMMON_MAGIC;
mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32; /* run isa as in debug mode */
init_reg_param(&reg_params[0], "r4", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, count);
unsigned int timeout = 20000 * (1 + (count / (1024 * 1024)));
retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout, &mips32_info);
if (retval == ERROR_OK)
*checksum = buf_get_u32(reg_params[0].value, 0, 32);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
target_free_working_area(target, crc_algorithm);
return retval;
}
/** Checks whether a memory region is erased. */
int mips32_blank_check_memory(struct target *target,
struct target_memory_check_block *blocks, int num_blocks,
uint8_t erased_value)
{
struct working_area *erase_check_algorithm;
struct reg_param reg_params[3];
struct mips32_algorithm mips32_info;
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
if (erased_value != 0xff) {
LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
erased_value);
return ERROR_FAIL;
}
uint32_t isa = ejtag_info->isa ? 1 : 0;
uint32_t erase_check_code[] = {
/* nbyte: */
MIPS32_LB(isa, 8, 0, 4), /* lb $t0, ($a0) */
MIPS32_AND(isa, 6, 6, 8), /* and $a2, $a2, $t0 */
MIPS32_ADDIU(isa, 5, 5, NEG16(1)), /* addiu $a1, $a1, -1 */
MIPS32_BNE(isa, 5, 0, NEG16(4 << isa)), /* bne $a1, $zero, nbyte */
MIPS32_ADDIU(isa, 4, 4, 1), /* addiu $a0, $a0, 1 */
MIPS32_SDBBP(isa) /* sdbbp */
};
/* make sure we have a working area */
if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
pracc_swap16_array(ejtag_info, erase_check_code, ARRAY_SIZE(erase_check_code));
/* convert erase check code into a buffer in target endianness */
uint8_t erase_check_code_8[sizeof(erase_check_code)];
target_buffer_set_u32_array(target, erase_check_code_8,
ARRAY_SIZE(erase_check_code), erase_check_code);
int retval = target_write_buffer(target, erase_check_algorithm->address,
sizeof(erase_check_code), erase_check_code_8);
if (retval != ERROR_OK)
goto cleanup;
mips32_info.common_magic = MIPS32_COMMON_MAGIC;
mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;
init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
init_reg_param(&reg_params[2], "r6", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[2].value, 0, 32, erased_value);
retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address,
erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &mips32_info);
if (retval == ERROR_OK)
blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
cleanup:
target_free_working_area(target, erase_check_algorithm);
if (retval != ERROR_OK)
return retval;
return 1; /* only one block has been checked */
}
static int mips32_verify_pointer(struct command_invocation *cmd,
struct mips32_common *mips32)
{
if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
command_print(cmd, "target is not an MIPS32");
return ERROR_TARGET_INVALID;
}
return ERROR_OK;
}
/**
* mips32_read_config_mmu - Reads MMU configuration and logs relevant information.
* @param[in] ejtag_info: EJTAG interface information.
*
* @brief Reads the MMU configuration from the CP0 register and calculates the number of TLB entries,
* ways, and sets. Handles different MMU types like VTLB only, root RPU/Fixed, and VTLB and FTLB.
*
* @return ERROR_OK on success; error code on failure.
*/
static int mips32_read_config_mmu(struct mips_ejtag *ejtag_info)
{
uint32_t config4, tlb_entries = 0, ways = 0, sets = 0;
uint32_t config0 = ejtag_info->config[0];
uint32_t config1 = ejtag_info->config[1];
uint32_t config3 = ejtag_info->config[3];
uint32_t mmu_type = (config0 >> 7) & 7;
uint32_t vz_present = (config3 & BIT(23));
int retval = mips32_cp0_read(ejtag_info, &config4, 16, 4);
if (retval != ERROR_OK)
return retval;
/* mmu type = 1: VTLB only (Note: Does not account for Config4.ExtVTLB)
* mmu type = 3: root RPU/Fixed (Note: Only valid with VZ ASE)
* mmu type = 4: VTLB and FTLB
*/
if ((mmu_type == 1 || mmu_type == 4) || (mmu_type == 3 && vz_present)) {
tlb_entries = (uint32_t)(((config1 >> 25) & 0x3f) + 1);
if (mmu_type == 4) {
/* Release 6 definition for Config4[0:15] (MD01251, page 243) */
/* The FTLB ways field is defined as [2, 3, 4, 5, 6, 7, 8, ...0 (reserved)] */
int index = ((config4 >> 4) & 0xf);
ways = index > 6 ? 0 : index + 2;
/* The FTLB sets field is defined as [1, 2, 4, 8, ..., 16384, 32768] (powers of 2) */
index = (config4 & 0xf);
sets = 1 << index;
tlb_entries = tlb_entries + (ways * sets);
}
}
LOG_USER("TLB Entries: %d (%d ways, %d sets per way)", tlb_entries, ways, sets);
return ERROR_OK;
}
/**
* mips32_cp0_find_register_by_name - Find CP0 register by its name.
* @param[in] cp0_mask: Mask to filter out irrelevant registers.
* @param[in] reg_name: Name of the register to find.
*
* @brief This function iterates through mips32_cp0_regs to find a register
* matching reg_name, considering cp0_mask to filter out registers
* not relevant for the current core.
*
* @return Pointer to the found register, or NULL if not found.
*/
static const struct mips32_cp0 *mips32_cp0_find_register_by_name(uint32_t cp0_mask, const char *reg_name)
{
if (reg_name)
for (unsigned int i = 0; i < MIPS32NUMCP0REGS; i++) {
if ((mips32_cp0_regs[i].core & cp0_mask) == 0)
continue;
if (strcmp(mips32_cp0_regs[i].name, reg_name) == 0)
return &mips32_cp0_regs[i];
}
return NULL;
}
/**
* mips32_cp0_get_all_regs - Print all CP0 registers and their values.
* @param[in] cmd: Command invocation context.
* @param[in] ejtag_info: EJTAG interface information.
* @param[in] cp0_mask: Mask to identify relevant registers.
*
* @brief Iterates over all CP0 registers, reads their values, and prints them.
* Only considers registers relevant to the current core, as defined by cp0_mask.
*
* @return ERROR_OK on success; error code on failure.
*/
static int mips32_cp0_get_all_regs(struct command_invocation *cmd, struct mips_ejtag *ejtag_info, uint32_t cp0_mask)
{
uint32_t value;
for (unsigned int i = 0; i < MIPS32NUMCP0REGS; i++) {
/* Register name not valid for this core */
if ((mips32_cp0_regs[i].core & cp0_mask) == 0)
continue;
int retval = mips32_cp0_read(ejtag_info, &value, mips32_cp0_regs[i].reg, mips32_cp0_regs[i].sel);
if (retval != ERROR_OK) {
command_print(CMD, "Error: couldn't access reg %s", mips32_cp0_regs[i].name);
return retval;
}
command_print(CMD, "%*s: 0x%8.8" PRIx32, 14, mips32_cp0_regs[i].name, value);
}
return ERROR_OK;
}
/**
* mips32_cp0_get_reg_by_name - Read and print a CP0 register's value by name.
* @param[in] cmd: Command invocation context.
* @param[in] ejtag_info: EJTAG interface information.
* @param[in] cp0_mask: Mask to identify relevant registers.
*
* @brief Finds a CP0 register by name, reads its value, and prints it.
* Handles error scenarios like register not found or read failure.
*
* @return ERROR_OK on success; error code on failure.
*/
static int mips32_cp0_get_reg_by_name(struct command_invocation *cmd, struct mips_ejtag *ejtag_info, uint32_t cp0_mask)
{
const struct mips32_cp0 *cp0_regs = mips32_cp0_find_register_by_name(cp0_mask, CMD_ARGV[0]);
if (!cp0_regs) {
command_print(CMD, "Error: Register '%s' not found", CMD_ARGV[0]);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
uint32_t value;
int retval = mips32_cp0_read(ejtag_info, &value, cp0_regs->reg, cp0_regs->sel);
if (retval != ERROR_OK) {
command_print(CMD, "Error: Encounter an Error while reading cp0 reg %d sel %d",
cp0_regs->reg, cp0_regs->sel);
return retval;
}
command_print(CMD, "0x%8.8" PRIx32, value);
return ERROR_OK;
}
/**
* mips32_cp0_get_reg_by_number - Read and print a CP0 register's value by number.
* @param[in] cmd: Command invocation context.
* @param[in] ejtag_info: EJTAG interface information.
*
* @brief Reads a specific CP0 register (identified by number and selection) and prints its value.
* The register number and selection are parsed from the command arguments.
*
* @return ERROR_OK on success; error code on failure.
*/
static int mips32_cp0_get_reg_by_number(struct command_invocation *cmd, struct mips_ejtag *ejtag_info)
{
uint32_t cp0_reg, cp0_sel, value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
int retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
if (retval != ERROR_OK) {
command_print(CMD,
"Error: couldn't access reg %" PRIu32,
cp0_reg);
return retval;
}
command_print(CMD, "cp0 reg %" PRIu32 ", select %" PRIu32 ": %8.8" PRIx32,
cp0_reg, cp0_sel, value);
return ERROR_OK;
}
/**
* mips32_cp0_set_reg_by_name - Write to a CP0 register identified by name.
* @param[in] cmd: Command invocation context.
* @param[in] mips32: Common MIPS32 data structure.
* @param[in] ejtag_info: EJTAG interface information.
*
* @brief Writes a value to a CP0 register specified by name. Updates internal
* cache if specific registers (STATUS, CAUSE, DEPC, GUESTCTL1) are modified.
*
* @return ERROR_OK on success; error code on failure.
*/
static int mips32_cp0_set_reg_by_name(struct command_invocation *cmd,
struct mips32_common *mips32, struct mips_ejtag *ejtag_info)
{
const struct mips32_cp0 *cp0_regs = mips32_cp0_find_register_by_name(mips32->cp0_mask, CMD_ARGV[0]);
if (!cp0_regs) {
command_print(CMD, "Error: Register '%s' not found", CMD_ARGV[0]);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
if (cp0_regs->reg == MIPS32_C0_STATUS && cp0_regs->sel == 0) {
/* Update cached Status register if user is writing to Status */
mips32->core_regs.cp0[MIPS32_REG_C0_STATUS_INDEX] = value;
mips32->core_cache->reg_list[MIPS32_REGLIST_C0_STATUS_INDEX].dirty = 1;
} else if (cp0_regs->reg == MIPS32_C0_CAUSE && cp0_regs->sel == 0) {
/* Update register cache with new value if its Cause */
mips32->core_regs.cp0[MIPS32_REG_C0_CAUSE_INDEX] = value;
mips32->core_cache->reg_list[MIPS32_REGLIST_C0_CAUSE_INDEX].dirty = 1;
} else if (cp0_regs->reg == MIPS32_C0_DEPC && cp0_regs->sel == 0) {
/* Update cached PC if its DEPC */
mips32->core_regs.cp0[MIPS32_REG_C0_PC_INDEX] = value;
mips32->core_cache->reg_list[MIPS32_REGLIST_C0_PC_INDEX].dirty = 1;
} else if (cp0_regs->reg == MIPS32_C0_GUESTCTL1 && cp0_regs->sel == 4) {
/* Update cached guestCtl1 */
mips32->core_regs.cp0[MIPS32_REG_C0_GUESTCTL1_INDEX] = value;
mips32->core_cache->reg_list[MIPS32_REGLIST_C0_GUESTCTL1_INDEX].dirty = 1;
}
int retval = mips32_cp0_write(ejtag_info, value,
cp0_regs->reg,
cp0_regs->sel);
if (retval != ERROR_OK) {
command_print(CMD, "Error: Encounter an Error while writing to cp0 reg %d, sel %d",
cp0_regs->reg, cp0_regs->sel);
return retval;
}
command_print(CMD, "cp0 reg %s (%u, select %u: %8.8" PRIx32 ")",
CMD_ARGV[0], cp0_regs->reg, cp0_regs->sel, value);
return ERROR_OK;
}
/**
* mips32_cp0_set_reg_by_number - Write to a CP0 register identified by number.
* @param[in] cmd: Command invocation context.
* @param[in] mips32: Common MIPS32 data structure.
* @param[in] ejtag_info: EJTAG interface information.
*
* @brief Writes a value to a CP0 register specified by number and selection.
* Handles special cases like updating the internal cache for certain registers.
*
* @return ERROR_OK on success; error code on failure.
*/
static int mips32_cp0_set_reg_by_number(struct command_invocation *cmd,
struct mips32_common *mips32, struct mips_ejtag *ejtag_info)
{
uint32_t cp0_reg, cp0_sel, value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
if (cp0_reg == MIPS32_C0_STATUS && cp0_sel == 0) {
/* Update cached status register if user is writing to Status register */
mips32->core_regs.cp0[MIPS32_REG_C0_STATUS_INDEX] = value;
mips32->core_cache->reg_list[MIPS32_REGLIST_C0_STATUS_INDEX].dirty = 1;
} else if (cp0_reg == MIPS32_C0_CAUSE && cp0_sel == 0) {
/* Update register cache with new value if its Cause register */
mips32->core_regs.cp0[MIPS32_REG_C0_CAUSE_INDEX] = value;
mips32->core_cache->reg_list[MIPS32_REGLIST_C0_CAUSE_INDEX].dirty = 1;
} else if (cp0_reg == MIPS32_C0_DEPC && cp0_sel == 0) {
/* Update cached PC if its DEPC */
mips32->core_regs.cp0[MIPS32_REG_C0_PC_INDEX] = value;
mips32->core_cache->reg_list[MIPS32_REGLIST_C0_PC_INDEX].dirty = 1;
} else if (cp0_reg == MIPS32_C0_GUESTCTL1 && cp0_sel == 4) {
/* Update cached guestCtl1, too */
mips32->core_regs.cp0[MIPS32_REG_C0_GUESTCTL1_INDEX] = value;
mips32->core_cache->reg_list[MIPS32_REGLIST_C0_GUESTCTL1_INDEX].dirty = 1;
}
int retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
if (retval != ERROR_OK) {
command_print(CMD,
"Error: couldn't access cp0 reg %" PRIu32 ", select %" PRIu32,
cp0_reg, cp0_sel);
return retval;
}
command_print(CMD, "cp0 reg %" PRIu32 ", select %" PRIu32 ": %8.8" PRIx32,
cp0_reg, cp0_sel, value);
return ERROR_OK;
}
/**
* mips32_handle_cp0_command - Handle commands related to CP0 registers.
* @cmd: Command invocation context.
*
* Orchestrates different operations on CP0 registers based on the command arguments.
* Supports operations like reading all registers, reading/writing a specific register
* by name or number.
*
* Return: ERROR_OK on success; error code on failure.
*/
COMMAND_HANDLER(mips32_handle_cp0_command)
{
int retval, tmp;
struct target *target = get_current_target(CMD_CTX);
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
retval = mips32_verify_pointer(CMD, mips32);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD, "Error: target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_TARGET_NOT_HALTED;
}
switch (CMD_ARGC) {
case 0: /* No arg => print out all cp0 regs */
retval = mips32_cp0_get_all_regs(CMD, ejtag_info, mips32->cp0_mask);
break;
case 1: /* 1 arg => get cp0 #reg/#sel value by name */
retval = mips32_cp0_get_reg_by_name(CMD, ejtag_info, mips32->cp0_mask);
break;
case 2: /* 2 args => get cp0 reg/sel value or set value by name */
tmp = *CMD_ARGV[0];
if (isdigit(tmp)) /* starts from number then args are #reg and #sel */
retval = mips32_cp0_get_reg_by_number(CMD, ejtag_info);
else /* or set value by register name */
retval = mips32_cp0_set_reg_by_name(CMD, mips32, ejtag_info);
break;
case 3: /* 3 args => set cp0 reg/sel value*/
retval = mips32_cp0_set_reg_by_number(CMD, mips32, ejtag_info);
break;
default: /* Other argc => err */
retval = ERROR_COMMAND_SYNTAX_ERROR;
break;
}
return retval;
}
/**
* mips32_handle_cpuinfo_command - Handles the 'cpuinfo' command.
* @param[in] cmd: Command invocation context.
*
* @brief Executes the 'cpuinfo' command which displays detailed information about the current CPU core.
* This includes core type, vendor, instruction set, cache size, and other relevant details.
*
* @return ERROR_OK on success; error code on failure.
*/
COMMAND_HANDLER(mips32_handle_cpuinfo_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
uint32_t prid = mips32->prid; /* cp0 PRID - 15, 0 */
uint32_t config0 = ejtag_info->config[0]; /* cp0 config - 16, 0 */
uint32_t config1 = ejtag_info->config[1]; /* cp0 config - 16, 1 */
uint32_t config3 = ejtag_info->config[3]; /* cp0 config - 16, 3 */
/* Following configs are not read during probe */
uint32_t config5; /* cp0 config - 16, 5 */
/* No args for now */
if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (target->state != TARGET_HALTED) {
command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_TARGET_NOT_HALTED;
}
retval = mips32_cp0_read(ejtag_info, &config5, 16, 5);
if (retval != ERROR_OK)
return retval;
/* Determine Core info */
const struct cpu_entry *entry = mips32->cpu_info;
/* Display Core Type info */
command_print(CMD, "CPU Core: %s", entry->cpu_name);
/* Display Core Vendor ID if it's unknown */
if (entry == &mips32_cpu_entry[MIPS32_NUM_CPU_ENTRIES - 1])
command_print(CMD, "Vendor: Unknown CPU vendor code %x.", ((prid & 0x00ffff00) >> 16));
else
command_print(CMD, "Vendor: %s", entry->vendor);
/* If MIPS release 2 or above, then get exception base info */
enum mips32_isa_rel ar = mips32->isa_rel;
if (ar > MIPS32_RELEASE_1) { /* release 2 and above */
uint32_t ebase;
retval = mips32_cp0_read(ejtag_info, &ebase, 15, 1);
if (retval != ERROR_OK)
return retval;
command_print(CMD, "Current CPU ID: %d", (ebase & 0x1ff));
} else {
command_print(CMD, "Current CPU ID: 0");
}
char *instr;
switch ((config3 & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT) {
case 0:
instr = "MIPS32";
break;
case 1:
instr = "microMIPS";
break;
case 2:
instr = "MIPS32 (at reset) and microMIPS";
break;
case 3:
instr = "microMIPS (at reset) and MIPS32";
break;
}
/* Display Instruction Set Info */
command_print(CMD, "Instr set: %s", instr);
command_print(CMD, "Instr rel: %s",
ar == MIPS32_RELEASE_1 ? "1"
: ar == MIPS32_RELEASE_2 ? "2"
: ar == MIPS32_RELEASE_6 ? "6"
: "unknown");
command_print(CMD, "PRId: %x", prid);
/* Some of MIPS CPU Revisions(for M74K) can be seen on MD00541, page 26 */
uint32_t rev = prid & 0x000000ff;
command_print(CMD, "RTL Rev: %d.%d.%d", (rev & 0xE0), (rev & 0x1C), (rev & 0x3));
command_print(CMD, "Max Number of Instr Breakpoints: %d", mips32->num_inst_bpoints);
command_print(CMD, "Max Number of Data Breakpoints: %d", mips32->num_data_bpoints);
/* MMU Support */
uint32_t mmu_type = (config0 >> 7) & 7; /* MMU Type Info */
char *mmu;
switch (mmu_type) {
case MIPS32_MMU_TLB:
mmu = "TLB";
break;
case MIPS32_MMU_BAT:
mmu = "BAT";
break;
case MIPS32_MMU_FIXED:
mmu = "FIXED";
break;
case MIPS32_MMU_DUAL_VTLB_FTLB:
mmu = "DUAL VAR/FIXED";
break;
default:
mmu = "Unknown";
}
command_print(CMD, "MMU Type: %s", mmu);
retval = mips32_read_config_mmu(ejtag_info);
if (retval != ERROR_OK)
return retval;
/* Definitions of I/D Cache Sizes are available on MD01251, page 224~226 */
int index;
uint32_t ways, sets, bpl;
/* Determine Instr Cache Size */
/* Ways mapping = [1, 2, 3, 4, 5, 6, 7, 8] */
ways = ((config1 >> MIPS32_CFG1_IASHIFT) & 7);
/* Sets per way = [64, 128, 256, 512, 1024, 2048, 4096, 32] */
index = ((config1 >> MIPS32_CFG1_ISSHIFT) & 7);
sets = index == 7 ? 32 : 32 << (index + 1);
/* Bytes per line = [0, 4, 8, 16, 32, 64, 128, Reserved] */
index = ((config1 >> MIPS32_CFG1_ILSHIFT) & 7);
bpl = index == 0 ? 0 : 4 << (index - 1);
command_print(CMD, "Instr Cache: %d (%d ways, %d lines, %d byte per line)", ways * sets * bpl, ways, sets, bpl);
/* Determine data cache size, same as above */
ways = ((config1 >> MIPS32_CFG1_DASHIFT) & 7);
index = ((config1 >> MIPS32_CFG1_DSSHIFT) & 7);
sets = index == 7 ? 32 : 32 << (index + 1);
index = ((config1 >> MIPS32_CFG1_DLSHIFT) & 7);
bpl = index == 0 ? 0 : 4 << (index - 1);
command_print(CMD, " Data Cache: %d (%d ways, %d lines, %d byte per line)", ways * sets * bpl, ways, sets, bpl);
/* does the core hava FPU*/
mips32_read_config_fpu(mips32, ejtag_info);
/* does the core support a DSP */
mips32_read_config_dsp(mips32, ejtag_info);
/* VZ module */
uint32_t vzase = (config3 & BIT(23));
if (vzase)
command_print(CMD, "VZ implemented: yes");
else
command_print(CMD, "VZ implemented: no");
/* multithreading */
uint32_t mtase = (config3 & BIT(2));
if (mtase) {
command_print(CMD, "MT implemented: yes");
/* Get VPE and Thread info */
uint32_t tcbind;
uint32_t mvpconf0;
/* Read tcbind register */
retval = mips32_cp0_read(ejtag_info, &tcbind, 2, 2);
if (retval != ERROR_OK)
return retval;
command_print(CMD, " | Current VPE: %d", (tcbind & 0xf));
command_print(CMD, " | Current TC: %d", ((tcbind >> 21) & 0xff));
/* Read mvpconf0 register */
retval = mips32_cp0_read(ejtag_info, &mvpconf0, 0, 2);
if (retval != ERROR_OK)
return retval;
command_print(CMD, " | Total TC: %d", (mvpconf0 & 0xf) + 1);
command_print(CMD, " | Total VPE: %d", ((mvpconf0 >> 10) & 0xf) + 1);
} else {
command_print(CMD, "MT implemented: no");
}
/* MIPS SIMD Architecture (MSA) */
uint32_t msa = (config3 & BIT(28));
command_print(CMD, "MSA implemented: %s", msa ? "yes" : "no");
/* Move To/From High COP0 (MTHC0/MFHC0) instructions are implemented.
* Implicates current ISA release >= 5.*/
uint32_t mvh = (config5 & BIT(5));
command_print(CMD, "MVH implemented: %s", mvh ? "yes" : "no");
/* Common Device Memory Map implemented? */
uint32_t cdmm = (config3 & BIT(3));
command_print(CMD, "CDMM implemented: %s", cdmm ? "yes" : "no");
return ERROR_OK;
}
/**
* mips32_handle_ejtag_reg_command - Handler commands related to EJTAG
* @param[in] cmd: Command invocation context
*
* @brief Prints all EJTAG Registers including DCR features.
*
* @return ERROR_OK on success; error code on failure.
*/
COMMAND_HANDLER(mips32_handle_ejtag_reg_command)
{
struct target *target = get_current_target(CMD_CTX);
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
uint32_t ejtag_ctrl;
uint32_t dcr;
int retval;
retval = mips_ejtag_get_idcode(ejtag_info);
if (retval != ERROR_OK)
command_print(CMD, "Error: Encounter an Error while getting idcode");
else
command_print(CMD, " idcode: 0x%8.8" PRIx32, ejtag_info->idcode);
retval = mips_ejtag_get_impcode(ejtag_info);
if (retval != ERROR_OK)
command_print(CMD, "Error: Encounter an Error while getting impcode");
else
command_print(CMD, " impcode: 0x%8.8" PRIx32, ejtag_info->impcode);
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
ejtag_ctrl = ejtag_info->ejtag_ctrl;
retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
command_print(CMD, "Error: Encounter an Error while executing drscan reading EJTAG Control register");
else
command_print(CMD, "ejtag control: 0x%8.8" PRIx32, ejtag_ctrl);
ejtag_main_print_imp(ejtag_info);
/* Display current DCR */
retval = target_read_u32(target, EJTAG_DCR, &dcr);
if (retval != ERROR_OK)
command_print(CMD, "Error: Encounter an Error while reading Debug Control Register");
else
command_print(CMD, " DCR: 0x%8.8" PRIx32, dcr);
for (unsigned int i = 0; i < EJTAG_DCR_ENTRIES; i++) {
if (dcr & BIT(dcr_features[i].bit))
command_print(CMD, "%s supported", dcr_features[i].name);
}
return ERROR_OK;
}
/**
* mips32_handle_scan_delay_command - Handler command for changing scan delay
* @param[in] cmd: Command invocation context
*
* @brief Changes current scan mode between legacy and fast queued mode.
*
* @return ERROR_OK on success; error code on failure.
*/
COMMAND_HANDLER(mips32_handle_scan_delay_command)
{
struct target *target = get_current_target(CMD_CTX);
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
if (CMD_ARGC == 1)
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
else if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD, "scan delay: %d nsec", ejtag_info->scan_delay);
if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
ejtag_info->mode = 0;
command_print(CMD, "running in legacy mode");
} else {
ejtag_info->mode = 1;
command_print(CMD, "running in fast queued mode");
}
return ERROR_OK;
}
static const struct command_registration mips32_exec_command_handlers[] = {
{
.name = "cp0",
.handler = mips32_handle_cp0_command,
.mode = COMMAND_EXEC,
.usage = "[[reg_name|regnum select] [value]]",
.help = "display/modify cp0 register",
},
{
.name = "cpuinfo",
.handler = mips32_handle_cpuinfo_command,
.mode = COMMAND_EXEC,
.help = "display CPU information",
.usage = "",
},
{
.name = "scan_delay",
.handler = mips32_handle_scan_delay_command,
.mode = COMMAND_ANY,
.help = "display/set scan delay in nano seconds",
.usage = "[value]",
},
{
.name = "ejtag_reg",
.handler = mips32_handle_ejtag_reg_command,
.mode = COMMAND_ANY,
.help = "read ejtag registers",
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration mips32_command_handlers[] = {
{
.name = "mips32",
.mode = COMMAND_ANY,
.help = "mips32 command group",
.usage = "",
.chain = mips32_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};