907 lines
22 KiB
C
907 lines
22 KiB
C
/*
|
|
* Copyright (C) 2009 by David Brownell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "arm.h"
|
|
#include "arm_dpm.h"
|
|
#include <jtag/jtag.h>
|
|
#include "register.h"
|
|
#include "breakpoints.h"
|
|
#include "target_type.h"
|
|
#include "arm_opcodes.h"
|
|
|
|
|
|
/**
|
|
* @file
|
|
* Implements various ARM DPM operations using architectural debug registers.
|
|
* These routines layer over core-specific communication methods to cope with
|
|
* implementation differences between cores like ARM1136 and Cortex-A8.
|
|
*/
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Coprocessor support
|
|
*/
|
|
|
|
/* Read coprocessor */
|
|
static int dpm_mrc(struct target *target, int cpnum,
|
|
uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm,
|
|
uint32_t *value)
|
|
{
|
|
struct arm *arm = target_to_arm(target);
|
|
struct arm_dpm *dpm = arm->dpm;
|
|
int retval;
|
|
|
|
retval = dpm->prepare(dpm);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
LOG_DEBUG("MRC p%d, %d, r0, c%d, c%d, %d", cpnum,
|
|
(int) op1, (int) CRn,
|
|
(int) CRm, (int) op2);
|
|
|
|
/* read coprocessor register into R0; return via DCC */
|
|
retval = dpm->instr_read_data_r0(dpm,
|
|
ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
|
|
value);
|
|
|
|
/* (void) */ dpm->finish(dpm);
|
|
return retval;
|
|
}
|
|
|
|
static int dpm_mcr(struct target *target, int cpnum,
|
|
uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm,
|
|
uint32_t value)
|
|
{
|
|
struct arm *arm = target_to_arm(target);
|
|
struct arm_dpm *dpm = arm->dpm;
|
|
int retval;
|
|
|
|
retval = dpm->prepare(dpm);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
LOG_DEBUG("MCR p%d, %d, r0, c%d, c%d, %d", cpnum,
|
|
(int) op1, (int) CRn,
|
|
(int) CRm, (int) op2);
|
|
|
|
/* read DCC into r0; then write coprocessor register from R0 */
|
|
retval = dpm->instr_write_data_r0(dpm,
|
|
ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
|
|
value);
|
|
|
|
/* (void) */ dpm->finish(dpm);
|
|
return retval;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Register access utilities
|
|
*/
|
|
|
|
/* Toggles between recorded core mode (USR, SVC, etc) and a temporary one.
|
|
* Routines *must* restore the original mode before returning!!
|
|
*/
|
|
static int dpm_modeswitch(struct arm_dpm *dpm, enum arm_mode mode)
|
|
{
|
|
int retval;
|
|
uint32_t cpsr;
|
|
|
|
/* restore previous mode */
|
|
if (mode == ARM_MODE_ANY)
|
|
cpsr = buf_get_u32(dpm->arm->cpsr->value, 0, 32);
|
|
|
|
/* else force to the specified mode */
|
|
else
|
|
cpsr = mode;
|
|
|
|
retval = dpm->instr_write_data_r0(dpm, ARMV4_5_MSR_GP(0, 0xf, 0), cpsr);
|
|
|
|
if (dpm->instr_cpsr_sync)
|
|
retval = dpm->instr_cpsr_sync(dpm);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* just read the register -- rely on the core mode being right */
|
|
static int dpm_read_reg(struct arm_dpm *dpm, struct reg *r, unsigned regnum)
|
|
{
|
|
uint32_t value;
|
|
int retval;
|
|
|
|
switch (regnum) {
|
|
case 0 ... 14:
|
|
/* return via DCC: "MCR p14, 0, Rnum, c0, c5, 0" */
|
|
retval = dpm->instr_read_data_dcc(dpm,
|
|
ARMV4_5_MCR(14, 0, regnum, 0, 5, 0),
|
|
&value);
|
|
break;
|
|
case 15: /* PC */
|
|
/* "MOV r0, pc"; then return via DCC */
|
|
retval = dpm->instr_read_data_r0(dpm, 0xe1a0000f, &value);
|
|
|
|
/* NOTE: this seems like a slightly awkward place to update
|
|
* this value ... but if the PC gets written (the only way
|
|
* to change what we compute), the arch spec says subsequent
|
|
* reads return values which are "unpredictable". So this
|
|
* is always right except in those broken-by-intent cases.
|
|
*/
|
|
switch (dpm->arm->core_state) {
|
|
case ARM_STATE_ARM:
|
|
value -= 8;
|
|
break;
|
|
case ARM_STATE_THUMB:
|
|
case ARM_STATE_THUMB_EE:
|
|
value -= 4;
|
|
break;
|
|
case ARM_STATE_JAZELLE:
|
|
/* core-specific ... ? */
|
|
LOG_WARNING("Jazelle PC adjustment unknown");
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
/* 16: "MRS r0, CPSR"; then return via DCC
|
|
* 17: "MRS r0, SPSR"; then return via DCC
|
|
*/
|
|
retval = dpm->instr_read_data_r0(dpm,
|
|
ARMV4_5_MRS(0, regnum & 1),
|
|
&value);
|
|
break;
|
|
}
|
|
|
|
if (retval == ERROR_OK) {
|
|
buf_set_u32(r->value, 0, 32, value);
|
|
r->valid = true;
|
|
r->dirty = false;
|
|
LOG_DEBUG("READ: %s, %8.8x", r->name, (unsigned) value);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* just write the register -- rely on the core mode being right */
|
|
static int dpm_write_reg(struct arm_dpm *dpm, struct reg *r, unsigned regnum)
|
|
{
|
|
int retval;
|
|
uint32_t value = buf_get_u32(r->value, 0, 32);
|
|
|
|
switch (regnum) {
|
|
case 0 ... 14:
|
|
/* load register from DCC: "MRC p14, 0, Rnum, c0, c5, 0" */
|
|
retval = dpm->instr_write_data_dcc(dpm,
|
|
ARMV4_5_MRC(14, 0, regnum, 0, 5, 0),
|
|
value);
|
|
break;
|
|
case 15: /* PC */
|
|
/* read r0 from DCC; then "MOV pc, r0" */
|
|
retval = dpm->instr_write_data_r0(dpm, 0xe1a0f000, value);
|
|
break;
|
|
default:
|
|
/* 16: read r0 from DCC, then "MSR r0, CPSR_cxsf"
|
|
* 17: read r0 from DCC, then "MSR r0, SPSR_cxsf"
|
|
*/
|
|
retval = dpm->instr_write_data_r0(dpm,
|
|
ARMV4_5_MSR_GP(0, 0xf, regnum & 1),
|
|
value);
|
|
|
|
if (regnum == 16 && dpm->instr_cpsr_sync)
|
|
retval = dpm->instr_cpsr_sync(dpm);
|
|
|
|
break;
|
|
}
|
|
|
|
if (retval == ERROR_OK) {
|
|
r->dirty = false;
|
|
LOG_DEBUG("WRITE: %s, %8.8x", r->name, (unsigned) value);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Read basic registers of the the current context: R0 to R15, and CPSR;
|
|
* sets the core mode (such as USR or IRQ) and state (such as ARM or Thumb).
|
|
* In normal operation this is called on entry to halting debug state,
|
|
* possibly after some other operations supporting restore of debug state
|
|
* or making sure the CPU is fully idle (drain write buffer, etc).
|
|
*/
|
|
int arm_dpm_read_current_registers(struct arm_dpm *dpm)
|
|
{
|
|
struct arm *arm = dpm->arm;
|
|
uint32_t cpsr;
|
|
int retval;
|
|
struct reg *r;
|
|
|
|
retval = dpm->prepare(dpm);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* read R0 first (it's used for scratch), then CPSR */
|
|
r = arm->core_cache->reg_list + 0;
|
|
if (!r->valid) {
|
|
retval = dpm_read_reg(dpm, r, 0);
|
|
if (retval != ERROR_OK)
|
|
goto fail;
|
|
}
|
|
r->dirty = true;
|
|
|
|
retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRS(0, 0), &cpsr);
|
|
if (retval != ERROR_OK)
|
|
goto fail;
|
|
|
|
/* update core mode and state, plus shadow mapping for R8..R14 */
|
|
arm_set_cpsr(arm, cpsr);
|
|
|
|
/* REVISIT we can probably avoid reading R1..R14, saving time... */
|
|
for (unsigned i = 1; i < 16; i++) {
|
|
r = arm_reg_current(arm, i);
|
|
if (r->valid)
|
|
continue;
|
|
|
|
retval = dpm_read_reg(dpm, r, i);
|
|
if (retval != ERROR_OK)
|
|
goto fail;
|
|
}
|
|
|
|
/* NOTE: SPSR ignored (if it's even relevant). */
|
|
|
|
/* REVISIT the debugger can trigger various exceptions. See the
|
|
* ARMv7A architecture spec, section C5.7, for more info about
|
|
* what defenses are needed; v6 debug has the most issues.
|
|
*/
|
|
|
|
fail:
|
|
/* (void) */ dpm->finish(dpm);
|
|
return retval;
|
|
}
|
|
|
|
/* Avoid needless I/O ... leave breakpoints and watchpoints alone
|
|
* unless they're removed, or need updating because of single-stepping
|
|
* or running debugger code.
|
|
*/
|
|
static int dpm_maybe_update_bpwp(struct arm_dpm *dpm, bool bpwp,
|
|
struct dpm_bpwp *xp, int *set_p)
|
|
{
|
|
int retval = ERROR_OK;
|
|
bool disable;
|
|
|
|
if (!set_p) {
|
|
if (!xp->dirty)
|
|
goto done;
|
|
xp->dirty = false;
|
|
/* removed or startup; we must disable it */
|
|
disable = true;
|
|
} else if (bpwp) {
|
|
if (!xp->dirty)
|
|
goto done;
|
|
/* disabled, but we must set it */
|
|
xp->dirty = disable = false;
|
|
*set_p = true;
|
|
} else {
|
|
if (!*set_p)
|
|
goto done;
|
|
/* set, but we must temporarily disable it */
|
|
xp->dirty = disable = true;
|
|
*set_p = false;
|
|
}
|
|
|
|
if (disable)
|
|
retval = dpm->bpwp_disable(dpm, xp->number);
|
|
else
|
|
retval = dpm->bpwp_enable(dpm, xp->number,
|
|
xp->address, xp->control);
|
|
|
|
if (retval != ERROR_OK)
|
|
LOG_ERROR("%s: can't %s HW bp/wp %d",
|
|
disable ? "disable" : "enable",
|
|
target_name(dpm->arm->target),
|
|
xp->number);
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Writes all modified core registers for all processor modes. In normal
|
|
* operation this is called on exit from halting debug state.
|
|
*
|
|
* @param dpm: represents the processor
|
|
* @param bpwp: true ensures breakpoints and watchpoints are set,
|
|
* false ensures they are cleared
|
|
*/
|
|
int arm_dpm_write_dirty_registers(struct arm_dpm *dpm, bool bpwp)
|
|
{
|
|
struct arm *arm = dpm->arm;
|
|
struct reg_cache *cache = arm->core_cache;
|
|
int retval;
|
|
bool did_write;
|
|
|
|
retval = dpm->prepare(dpm);
|
|
if (retval != ERROR_OK)
|
|
goto done;
|
|
|
|
/* enable/disable hardware breakpoints */
|
|
for (unsigned i = 0; i < dpm->nbp; i++) {
|
|
struct dpm_bp *dbp = dpm->dbp + i;
|
|
struct breakpoint *bp = dbp->bp;
|
|
|
|
retval = dpm_maybe_update_bpwp(dpm, bpwp, &dbp->bpwp,
|
|
bp ? &bp->set : NULL);
|
|
}
|
|
|
|
/* enable/disable watchpoints */
|
|
for (unsigned i = 0; i < dpm->nwp; i++) {
|
|
struct dpm_wp *dwp = dpm->dwp + i;
|
|
struct watchpoint *wp = dwp->wp;
|
|
|
|
retval = dpm_maybe_update_bpwp(dpm, bpwp, &dwp->bpwp,
|
|
wp ? &wp->set : NULL);
|
|
}
|
|
|
|
/* NOTE: writes to breakpoint and watchpoint registers might
|
|
* be queued, and need (efficient/batched) flushing later.
|
|
*/
|
|
|
|
/* Scan the registers until we find one that's both dirty and
|
|
* eligible for flushing. Flush that and everything else that
|
|
* shares the same core mode setting. Typically this won't
|
|
* actually find anything to do...
|
|
*/
|
|
do {
|
|
enum arm_mode mode = ARM_MODE_ANY;
|
|
|
|
did_write = false;
|
|
|
|
/* check everything except our scratch register R0 */
|
|
for (unsigned i = 1; i < cache->num_regs; i++) {
|
|
struct arm_reg *r;
|
|
unsigned regnum;
|
|
|
|
/* also skip PC, CPSR, and non-dirty */
|
|
if (i == 15)
|
|
continue;
|
|
if (arm->cpsr == cache->reg_list + i)
|
|
continue;
|
|
if (!cache->reg_list[i].dirty)
|
|
continue;
|
|
|
|
r = cache->reg_list[i].arch_info;
|
|
regnum = r->num;
|
|
|
|
/* may need to pick and set a mode */
|
|
if (!did_write) {
|
|
enum arm_mode tmode;
|
|
|
|
did_write = true;
|
|
mode = tmode = r->mode;
|
|
|
|
/* cope with special cases */
|
|
switch (regnum) {
|
|
case 8 ... 12:
|
|
/* r8..r12 "anything but FIQ" case;
|
|
* we "know" core mode is accurate
|
|
* since we haven't changed it yet
|
|
*/
|
|
if (arm->core_mode == ARM_MODE_FIQ
|
|
&& ARM_MODE_ANY
|
|
!= mode)
|
|
tmode = ARM_MODE_USR;
|
|
break;
|
|
case 16:
|
|
/* SPSR */
|
|
regnum++;
|
|
break;
|
|
}
|
|
|
|
/* REVISIT error checks */
|
|
if (tmode != ARM_MODE_ANY)
|
|
retval = dpm_modeswitch(dpm, tmode);
|
|
}
|
|
if (r->mode != mode)
|
|
continue;
|
|
|
|
retval = dpm_write_reg(dpm,
|
|
&cache->reg_list[i],
|
|
regnum);
|
|
|
|
}
|
|
|
|
} while (did_write);
|
|
|
|
/* Restore original CPSR ... assuming either that we changed it,
|
|
* or it's dirty. Must write PC to ensure the return address is
|
|
* defined, and must not write it before CPSR.
|
|
*/
|
|
retval = dpm_modeswitch(dpm, ARM_MODE_ANY);
|
|
arm->cpsr->dirty = false;
|
|
|
|
retval = dpm_write_reg(dpm, &cache->reg_list[15], 15);
|
|
cache->reg_list[15].dirty = false;
|
|
|
|
/* flush R0 -- it's *very* dirty by now */
|
|
retval = dpm_write_reg(dpm, &cache->reg_list[0], 0);
|
|
cache->reg_list[0].dirty = false;
|
|
|
|
/* (void) */ dpm->finish(dpm);
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
/* Returns ARM_MODE_ANY or temporary mode to use while reading the
|
|
* specified register ... works around flakiness from ARM core calls.
|
|
* Caller already filtered out SPSR access; mode is never MODE_SYS
|
|
* or MODE_ANY.
|
|
*/
|
|
static enum arm_mode dpm_mapmode(struct arm *arm,
|
|
unsigned num, enum arm_mode mode)
|
|
{
|
|
enum arm_mode amode = arm->core_mode;
|
|
|
|
/* don't switch if the mode is already correct */
|
|
if (amode == ARM_MODE_SYS)
|
|
amode = ARM_MODE_USR;
|
|
if (mode == amode)
|
|
return ARM_MODE_ANY;
|
|
|
|
switch (num) {
|
|
/* don't switch for non-shadowed registers (r0..r7, r15/pc, cpsr) */
|
|
case 0 ... 7:
|
|
case 15:
|
|
case 16:
|
|
break;
|
|
/* r8..r12 aren't shadowed for anything except FIQ */
|
|
case 8 ... 12:
|
|
if (mode == ARM_MODE_FIQ)
|
|
return mode;
|
|
break;
|
|
/* r13/sp, and r14/lr are always shadowed */
|
|
case 13:
|
|
case 14:
|
|
return mode;
|
|
default:
|
|
LOG_WARNING("invalid register #%u", num);
|
|
break;
|
|
}
|
|
return ARM_MODE_ANY;
|
|
}
|
|
|
|
|
|
/*
|
|
* Standard ARM register accessors ... there are three methods
|
|
* in "struct arm", to support individual read/write and bulk read
|
|
* of registers.
|
|
*/
|
|
|
|
static int arm_dpm_read_core_reg(struct target *target, struct reg *r,
|
|
int regnum, enum arm_mode mode)
|
|
{
|
|
struct arm_dpm *dpm = target_to_arm(target)->dpm;
|
|
int retval;
|
|
|
|
if (regnum < 0 || regnum > 16)
|
|
return ERROR_INVALID_ARGUMENTS;
|
|
|
|
if (regnum == 16) {
|
|
if (mode != ARM_MODE_ANY)
|
|
regnum = 17;
|
|
} else
|
|
mode = dpm_mapmode(dpm->arm, regnum, mode);
|
|
|
|
/* REVISIT what happens if we try to read SPSR in a core mode
|
|
* which has no such register?
|
|
*/
|
|
|
|
retval = dpm->prepare(dpm);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (mode != ARM_MODE_ANY) {
|
|
retval = dpm_modeswitch(dpm, mode);
|
|
if (retval != ERROR_OK)
|
|
goto fail;
|
|
}
|
|
|
|
retval = dpm_read_reg(dpm, r, regnum);
|
|
/* always clean up, regardless of error */
|
|
|
|
if (mode != ARM_MODE_ANY)
|
|
/* (void) */ dpm_modeswitch(dpm, ARM_MODE_ANY);
|
|
|
|
fail:
|
|
/* (void) */ dpm->finish(dpm);
|
|
return retval;
|
|
}
|
|
|
|
static int arm_dpm_write_core_reg(struct target *target, struct reg *r,
|
|
int regnum, enum arm_mode mode, uint32_t value)
|
|
{
|
|
struct arm_dpm *dpm = target_to_arm(target)->dpm;
|
|
int retval;
|
|
|
|
|
|
if (regnum < 0 || regnum > 16)
|
|
return ERROR_INVALID_ARGUMENTS;
|
|
|
|
if (regnum == 16) {
|
|
if (mode != ARM_MODE_ANY)
|
|
regnum = 17;
|
|
} else
|
|
mode = dpm_mapmode(dpm->arm, regnum, mode);
|
|
|
|
/* REVISIT what happens if we try to write SPSR in a core mode
|
|
* which has no such register?
|
|
*/
|
|
|
|
retval = dpm->prepare(dpm);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (mode != ARM_MODE_ANY) {
|
|
retval = dpm_modeswitch(dpm, mode);
|
|
if (retval != ERROR_OK)
|
|
goto fail;
|
|
}
|
|
|
|
retval = dpm_write_reg(dpm, r, regnum);
|
|
/* always clean up, regardless of error */
|
|
|
|
if (mode != ARM_MODE_ANY)
|
|
/* (void) */ dpm_modeswitch(dpm, ARM_MODE_ANY);
|
|
|
|
fail:
|
|
/* (void) */ dpm->finish(dpm);
|
|
return retval;
|
|
}
|
|
|
|
static int arm_dpm_full_context(struct target *target)
|
|
{
|
|
struct arm *arm = target_to_arm(target);
|
|
struct arm_dpm *dpm = arm->dpm;
|
|
struct reg_cache *cache = arm->core_cache;
|
|
int retval;
|
|
bool did_read;
|
|
|
|
retval = dpm->prepare(dpm);
|
|
if (retval != ERROR_OK)
|
|
goto done;
|
|
|
|
do {
|
|
enum arm_mode mode = ARM_MODE_ANY;
|
|
|
|
did_read = false;
|
|
|
|
/* We "know" arm_dpm_read_current_registers() was called so
|
|
* the unmapped registers (R0..R7, PC, AND CPSR) and some
|
|
* view of R8..R14 are current. We also "know" oddities of
|
|
* register mapping: special cases for R8..R12 and SPSR.
|
|
*
|
|
* Pick some mode with unread registers and read them all.
|
|
* Repeat until done.
|
|
*/
|
|
for (unsigned i = 0; i < cache->num_regs; i++) {
|
|
struct arm_reg *r;
|
|
|
|
if (cache->reg_list[i].valid)
|
|
continue;
|
|
r = cache->reg_list[i].arch_info;
|
|
|
|
/* may need to pick a mode and set CPSR */
|
|
if (!did_read) {
|
|
did_read = true;
|
|
mode = r->mode;
|
|
|
|
/* For R8..R12 when we've entered debug
|
|
* state in FIQ mode... patch mode.
|
|
*/
|
|
if (mode == ARM_MODE_ANY)
|
|
mode = ARM_MODE_USR;
|
|
|
|
/* REVISIT error checks */
|
|
retval = dpm_modeswitch(dpm, mode);
|
|
}
|
|
if (r->mode != mode)
|
|
continue;
|
|
|
|
/* CPSR was read, so "R16" must mean SPSR */
|
|
retval = dpm_read_reg(dpm,
|
|
&cache->reg_list[i],
|
|
(r->num == 16) ? 17 : r->num);
|
|
|
|
}
|
|
|
|
} while (did_read);
|
|
|
|
retval = dpm_modeswitch(dpm, ARM_MODE_ANY);
|
|
/* (void) */ dpm->finish(dpm);
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Breakpoint and Watchpoint support.
|
|
*
|
|
* Hardware {break,watch}points are usually left active, to minimize
|
|
* debug entry/exit costs. When they are set or cleared, it's done in
|
|
* batches. Also, DPM-conformant hardware can update debug registers
|
|
* regardless of whether the CPU is running or halted ... though that
|
|
* fact isn't currently leveraged.
|
|
*/
|
|
|
|
static int dpm_watchpoint_setup(struct arm_dpm *dpm, unsigned index,
|
|
struct watchpoint *wp)
|
|
{
|
|
uint32_t addr = wp->address;
|
|
uint32_t control;
|
|
|
|
/* this hardware doesn't support data value matching or masking */
|
|
if (wp->value || wp->mask != ~(uint32_t)0) {
|
|
LOG_DEBUG("watchpoint values and masking not supported");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
control = (1 << 0) /* enable */
|
|
| (3 << 1); /* both user and privileged access */
|
|
|
|
switch (wp->rw) {
|
|
case WPT_READ:
|
|
control |= 1 << 3;
|
|
break;
|
|
case WPT_WRITE:
|
|
control |= 2 << 3;
|
|
break;
|
|
case WPT_ACCESS:
|
|
control |= 3 << 3;
|
|
break;
|
|
}
|
|
|
|
/* Match 1, 2, or all 4 byte addresses in this word.
|
|
*
|
|
* FIXME: v7 hardware allows lengths up to 2 GB, and has eight
|
|
* byte address select bits. Support larger wp->length, if addr
|
|
* is suitably aligned.
|
|
*/
|
|
switch (wp->length) {
|
|
case 1:
|
|
control |= (1 << (addr & 3)) << 5;
|
|
addr &= ~3;
|
|
break;
|
|
case 2:
|
|
/* require 2-byte alignment */
|
|
if (!(addr & 1)) {
|
|
control |= (3 << (addr & 2)) << 5;
|
|
break;
|
|
}
|
|
/* FALL THROUGH */
|
|
case 4:
|
|
/* require 4-byte alignment */
|
|
if (!(addr & 3)) {
|
|
control |= 0xf << 5;
|
|
break;
|
|
}
|
|
/* FALL THROUGH */
|
|
default:
|
|
LOG_DEBUG("bad watchpoint length or alignment");
|
|
return ERROR_INVALID_ARGUMENTS;
|
|
}
|
|
|
|
/* other control bits:
|
|
* bits 9:12 == 0 ... only checking up to four byte addresses (v7 only)
|
|
* bits 15:14 == 0 ... both secure and nonsecure states (v6.1+ only)
|
|
* bit 20 == 0 ... not linked to a context ID
|
|
* bit 28:24 == 0 ... not ignoring N LSBs (v7 only)
|
|
*/
|
|
|
|
dpm->dwp[index].wp = wp;
|
|
dpm->dwp[index].bpwp.address = addr & ~3;
|
|
dpm->dwp[index].bpwp.control = control;
|
|
dpm->dwp[index].bpwp.dirty = true;
|
|
|
|
/* hardware is updated in write_dirty_registers() */
|
|
return ERROR_OK;
|
|
}
|
|
|
|
|
|
static int dpm_add_watchpoint(struct target *target, struct watchpoint *wp)
|
|
{
|
|
struct arm *arm = target_to_arm(target);
|
|
struct arm_dpm *dpm = arm->dpm;
|
|
int retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
if (dpm->bpwp_enable) {
|
|
for (unsigned i = 0; i < dpm->nwp; i++) {
|
|
if (!dpm->dwp[i].wp) {
|
|
retval = dpm_watchpoint_setup(dpm, i, wp);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int dpm_remove_watchpoint(struct target *target, struct watchpoint *wp)
|
|
{
|
|
struct arm *arm = target_to_arm(target);
|
|
struct arm_dpm *dpm = arm->dpm;
|
|
int retval = ERROR_INVALID_ARGUMENTS;
|
|
|
|
for (unsigned i = 0; i < dpm->nwp; i++) {
|
|
if (dpm->dwp[i].wp == wp) {
|
|
dpm->dwp[i].wp = NULL;
|
|
dpm->dwp[i].bpwp.dirty = true;
|
|
|
|
/* hardware is updated in write_dirty_registers() */
|
|
retval = ERROR_OK;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
void arm_dpm_report_wfar(struct arm_dpm *dpm, uint32_t addr)
|
|
{
|
|
switch (dpm->arm->core_state) {
|
|
case ARM_STATE_ARM:
|
|
addr -= 8;
|
|
break;
|
|
case ARM_STATE_THUMB:
|
|
case ARM_STATE_THUMB_EE:
|
|
addr -= 4;
|
|
break;
|
|
case ARM_STATE_JAZELLE:
|
|
/* ?? */
|
|
break;
|
|
}
|
|
dpm->wp_pc = addr;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Other debug and support utilities
|
|
*/
|
|
|
|
void arm_dpm_report_dscr(struct arm_dpm *dpm, uint32_t dscr)
|
|
{
|
|
struct target *target = dpm->arm->target;
|
|
|
|
dpm->dscr = dscr;
|
|
|
|
/* Examine debug reason */
|
|
switch (DSCR_ENTRY(dscr)) {
|
|
case 6: /* Data abort (v6 only) */
|
|
case 7: /* Prefetch abort (v6 only) */
|
|
/* FALL THROUGH -- assume a v6 core in abort mode */
|
|
case 0: /* HALT request from debugger */
|
|
case 4: /* EDBGRQ */
|
|
target->debug_reason = DBG_REASON_DBGRQ;
|
|
break;
|
|
case 1: /* HW breakpoint */
|
|
case 3: /* SW BKPT */
|
|
case 5: /* vector catch */
|
|
target->debug_reason = DBG_REASON_BREAKPOINT;
|
|
break;
|
|
case 2: /* asynch watchpoint */
|
|
case 10: /* precise watchpoint */
|
|
target->debug_reason = DBG_REASON_WATCHPOINT;
|
|
break;
|
|
default:
|
|
target->debug_reason = DBG_REASON_UNDEFINED;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Setup and management support.
|
|
*/
|
|
|
|
/**
|
|
* Hooks up this DPM to its associated target; call only once.
|
|
* Initially this only covers the register cache.
|
|
*
|
|
* Oh, and watchpoints. Yeah.
|
|
*/
|
|
int arm_dpm_setup(struct arm_dpm *dpm)
|
|
{
|
|
struct arm *arm = dpm->arm;
|
|
struct target *target = arm->target;
|
|
struct reg_cache *cache;
|
|
|
|
arm->dpm = dpm;
|
|
|
|
/* register access setup */
|
|
arm->full_context = arm_dpm_full_context;
|
|
arm->read_core_reg = arm_dpm_read_core_reg;
|
|
arm->write_core_reg = arm_dpm_write_core_reg;
|
|
|
|
cache = arm_build_reg_cache(target, arm);
|
|
if (!cache)
|
|
return ERROR_FAIL;
|
|
|
|
*register_get_last_cache_p(&target->reg_cache) = cache;
|
|
|
|
/* coprocessor access setup */
|
|
arm->mrc = dpm_mrc;
|
|
arm->mcr = dpm_mcr;
|
|
|
|
/* breakpoint and watchpoint setup */
|
|
target->type->add_watchpoint = dpm_add_watchpoint;
|
|
target->type->remove_watchpoint = dpm_remove_watchpoint;
|
|
|
|
/* FIXME add breakpoint support */
|
|
/* FIXME add vector catch support */
|
|
|
|
dpm->nbp = 1 + ((dpm->didr >> 24) & 0xf);
|
|
dpm->dbp = calloc(dpm->nbp, sizeof *dpm->dbp);
|
|
|
|
dpm->nwp = 1 + ((dpm->didr >> 28) & 0xf);
|
|
dpm->dwp = calloc(dpm->nwp, sizeof *dpm->dwp);
|
|
|
|
if (!dpm->dbp || !dpm->dwp) {
|
|
free(dpm->dbp);
|
|
free(dpm->dwp);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
|
|
target_name(target), dpm->nbp, dpm->nwp);
|
|
|
|
/* REVISIT ... and some of those breakpoints could match
|
|
* execution context IDs...
|
|
*/
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Reinitializes DPM state at the beginning of a new debug session
|
|
* or after a reset which may have affected the debug module.
|
|
*/
|
|
int arm_dpm_initialize(struct arm_dpm *dpm)
|
|
{
|
|
/* Disable all breakpoints and watchpoints at startup. */
|
|
if (dpm->bpwp_disable) {
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dpm->nbp; i++) {
|
|
dpm->dbp[i].bpwp.number = i;
|
|
(void) dpm->bpwp_disable(dpm, i);
|
|
}
|
|
for (i = 0; i < dpm->nwp; i++) {
|
|
dpm->dwp[i].bpwp.number = 16 + i;
|
|
(void) dpm->bpwp_disable(dpm, 16 + i);
|
|
}
|
|
} else
|
|
LOG_WARNING("%s: can't disable breakpoints and watchpoints",
|
|
target_name(dpm->arm->target));
|
|
|
|
return ERROR_OK;
|
|
}
|