637 lines
18 KiB
C
637 lines
18 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2005 by Dominic Rath *
|
|
* Dominic.Rath@gmx.de *
|
|
* *
|
|
* Copyright (C) 2007,2008,2009 Øyvind Harboe *
|
|
* oyvind.harboe@zylin.com *
|
|
* *
|
|
* Copyright (C) 2008 by Spencer Oliver *
|
|
* spen@spen-soft.co.uk *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program; if not, write to the *
|
|
* Free Software Foundation, Inc., *
|
|
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
|
***************************************************************************/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "embeddedice.h"
|
|
#include "register.h"
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
|
|
* module found on scan chain 2 in ARM7, ARM9, and some other families
|
|
* of ARM cores.
|
|
*
|
|
* EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
|
|
* Communications Channel (DCC) used to read or write 32-bit words to
|
|
* OpenOCD-aware code running on the target CPU.
|
|
* Newer modules also include vector catch hardware. Some versions
|
|
* support hardware single-stepping, "monitor mode" debug (which is not
|
|
* currently supported by OpenOCD), or extended reporting on why the
|
|
* core entered debug mode.
|
|
*/
|
|
|
|
/*
|
|
* From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
|
|
*/
|
|
static const struct {
|
|
char *name;
|
|
unsigned short addr;
|
|
unsigned short width;
|
|
} eice_regs[] = {
|
|
[EICE_DBG_CTRL] = {
|
|
.name = "debug_ctrl",
|
|
.addr = 0,
|
|
/* width is assigned based on EICE version */
|
|
},
|
|
[EICE_DBG_STAT] = {
|
|
.name = "debug_status",
|
|
.addr = 1,
|
|
/* width is assigned based on EICE version */
|
|
},
|
|
[EICE_COMMS_CTRL] = {
|
|
.name = "comms_ctrl",
|
|
.addr = 4,
|
|
.width = 6,
|
|
},
|
|
[EICE_COMMS_DATA] = {
|
|
.name = "comms_data",
|
|
.addr = 5,
|
|
.width = 32,
|
|
},
|
|
[EICE_W0_ADDR_VALUE] = {
|
|
.name = "watch_0_addr_value",
|
|
.addr = 8,
|
|
.width = 32,
|
|
},
|
|
[EICE_W0_ADDR_MASK] = {
|
|
.name = "watch_0_addr_mask",
|
|
.addr = 9,
|
|
.width = 32,
|
|
},
|
|
[EICE_W0_DATA_VALUE ] = {
|
|
.name = "watch_0_data_value",
|
|
.addr = 10,
|
|
.width = 32,
|
|
},
|
|
[EICE_W0_DATA_MASK] = {
|
|
.name = "watch_0_data_mask",
|
|
.addr = 11,
|
|
.width = 32,
|
|
},
|
|
[EICE_W0_CONTROL_VALUE] = {
|
|
.name = "watch_0_control_value",
|
|
.addr = 12,
|
|
.width = 9,
|
|
},
|
|
[EICE_W0_CONTROL_MASK] = {
|
|
.name = "watch_0_control_mask",
|
|
.addr = 13,
|
|
.width = 8,
|
|
},
|
|
[EICE_W1_ADDR_VALUE] = {
|
|
.name = "watch_1_addr_value",
|
|
.addr = 16,
|
|
.width = 32,
|
|
},
|
|
[EICE_W1_ADDR_MASK] = {
|
|
.name = "watch_1_addr_mask",
|
|
.addr = 17,
|
|
.width = 32,
|
|
},
|
|
[EICE_W1_DATA_VALUE] = {
|
|
.name = "watch_1_data_value",
|
|
.addr = 18,
|
|
.width = 32,
|
|
},
|
|
[EICE_W1_DATA_MASK] = {
|
|
.name = "watch_1_data_mask",
|
|
.addr = 19,
|
|
.width = 32,
|
|
},
|
|
[EICE_W1_CONTROL_VALUE] = {
|
|
.name = "watch_1_control_value",
|
|
.addr = 20,
|
|
.width = 9,
|
|
},
|
|
[EICE_W1_CONTROL_MASK] = {
|
|
.name = "watch_1_control_mask",
|
|
.addr = 21,
|
|
.width = 8,
|
|
},
|
|
/* vector_catch isn't always present */
|
|
[EICE_VEC_CATCH] = {
|
|
.name = "vector_catch",
|
|
.addr = 2,
|
|
.width = 8,
|
|
},
|
|
};
|
|
|
|
|
|
static int embeddedice_get_reg(struct reg *reg)
|
|
{
|
|
int retval;
|
|
|
|
if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
|
|
LOG_ERROR("error queueing EmbeddedICE register read");
|
|
else if ((retval = jtag_execute_queue()) != ERROR_OK)
|
|
LOG_ERROR("EmbeddedICE register read failed");
|
|
|
|
return retval;
|
|
}
|
|
|
|
static const struct reg_arch_type eice_reg_type = {
|
|
.get = embeddedice_get_reg,
|
|
.set = embeddedice_set_reg_w_exec,
|
|
};
|
|
|
|
/**
|
|
* Probe EmbeddedICE module and set up local records of its registers.
|
|
* Different versions of the modules have different capabilities, such as
|
|
* hardware support for vector_catch, single stepping, and monitor mode.
|
|
*/
|
|
struct reg_cache *
|
|
embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
|
|
{
|
|
int retval;
|
|
struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
|
|
struct reg *reg_list = NULL;
|
|
struct embeddedice_reg *arch_info = NULL;
|
|
struct arm_jtag *jtag_info = &arm7_9->jtag_info;
|
|
int num_regs = ARRAY_SIZE(eice_regs);
|
|
int i;
|
|
int eice_version = 0;
|
|
|
|
/* vector_catch isn't always present */
|
|
if (!arm7_9->has_vector_catch)
|
|
num_regs--;
|
|
|
|
/* the actual registers are kept in two arrays */
|
|
reg_list = calloc(num_regs, sizeof(struct reg));
|
|
arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
|
|
|
|
/* fill in values for the reg cache */
|
|
reg_cache->name = "EmbeddedICE registers";
|
|
reg_cache->next = NULL;
|
|
reg_cache->reg_list = reg_list;
|
|
reg_cache->num_regs = num_regs;
|
|
|
|
/* set up registers */
|
|
for (i = 0; i < num_regs; i++)
|
|
{
|
|
reg_list[i].name = eice_regs[i].name;
|
|
reg_list[i].size = eice_regs[i].width;
|
|
reg_list[i].dirty = 0;
|
|
reg_list[i].valid = 0;
|
|
reg_list[i].value = calloc(1, 4);
|
|
reg_list[i].arch_info = &arch_info[i];
|
|
reg_list[i].type = &eice_reg_type;
|
|
arch_info[i].addr = eice_regs[i].addr;
|
|
arch_info[i].jtag_info = jtag_info;
|
|
}
|
|
|
|
/* identify EmbeddedICE version by reading DCC control register */
|
|
embeddedice_read_reg(®_list[EICE_COMMS_CTRL]);
|
|
if ((retval = jtag_execute_queue()) != ERROR_OK)
|
|
{
|
|
for (i = 0; i < num_regs; i++)
|
|
{
|
|
free(reg_list[i].value);
|
|
}
|
|
free(reg_list);
|
|
free(reg_cache);
|
|
free(arch_info);
|
|
return NULL;
|
|
}
|
|
|
|
eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
|
|
LOG_INFO("Embedded ICE version %d", eice_version);
|
|
|
|
switch (eice_version)
|
|
{
|
|
case 1:
|
|
/* ARM7TDMI r3, ARM7TDMI-S r3
|
|
*
|
|
* REVISIT docs say ARM7TDMI-S r4 uses version 1 but
|
|
* that it has 6-bit CTRL and 5-bit STAT... doc bug?
|
|
* ARM7TDMI r4 docs say EICE v4.
|
|
*/
|
|
reg_list[EICE_DBG_CTRL].size = 3;
|
|
reg_list[EICE_DBG_STAT].size = 5;
|
|
break;
|
|
case 2:
|
|
/* ARM9TDMI */
|
|
reg_list[EICE_DBG_CTRL].size = 4;
|
|
reg_list[EICE_DBG_STAT].size = 5;
|
|
arm7_9->has_single_step = 1;
|
|
break;
|
|
case 3:
|
|
LOG_ERROR("EmbeddedICE v%d handling might be broken",
|
|
eice_version);
|
|
reg_list[EICE_DBG_CTRL].size = 6;
|
|
reg_list[EICE_DBG_STAT].size = 5;
|
|
arm7_9->has_single_step = 1;
|
|
arm7_9->has_monitor_mode = 1;
|
|
break;
|
|
case 4:
|
|
/* ARM7TDMI r4 */
|
|
reg_list[EICE_DBG_CTRL].size = 6;
|
|
reg_list[EICE_DBG_STAT].size = 5;
|
|
arm7_9->has_monitor_mode = 1;
|
|
break;
|
|
case 5:
|
|
/* ARM9E-S rev 1 */
|
|
reg_list[EICE_DBG_CTRL].size = 6;
|
|
reg_list[EICE_DBG_STAT].size = 5;
|
|
arm7_9->has_single_step = 1;
|
|
arm7_9->has_monitor_mode = 1;
|
|
break;
|
|
case 6:
|
|
/* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
|
|
reg_list[EICE_DBG_CTRL].size = 6;
|
|
reg_list[EICE_DBG_STAT].size = 10;
|
|
/* DBG_STAT has MOE bits */
|
|
arm7_9->has_monitor_mode = 1;
|
|
break;
|
|
case 7:
|
|
LOG_ERROR("EmbeddedICE v%d handling might be broken",
|
|
eice_version);
|
|
reg_list[EICE_DBG_CTRL].size = 6;
|
|
reg_list[EICE_DBG_STAT].size = 5;
|
|
arm7_9->has_monitor_mode = 1;
|
|
break;
|
|
default:
|
|
/*
|
|
* The Feroceon implementation has the version number
|
|
* in some unusual bits. Let feroceon.c validate it
|
|
* and do the appropriate setup itself.
|
|
*/
|
|
if (strcmp(target_type_name(target), "feroceon") == 0 ||
|
|
strcmp(target_type_name(target), "dragonite") == 0)
|
|
break;
|
|
LOG_ERROR("unknown EmbeddedICE version "
|
|
"(comms ctrl: 0x%8.8" PRIx32 ")",
|
|
buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
|
|
}
|
|
|
|
LOG_INFO("%s: hardware has 2 breakpoints or watchpoints",
|
|
target_name(target));
|
|
|
|
return reg_cache;
|
|
}
|
|
|
|
/**
|
|
* Initialize EmbeddedICE module, if needed.
|
|
*/
|
|
int embeddedice_setup(struct target *target)
|
|
{
|
|
int retval;
|
|
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
|
|
|
|
/* Explicitly disable monitor mode. For now we only support halting
|
|
* debug ... we don't know how to talk with a resident debug monitor
|
|
* that manages break requests. ARM's "Angel Debug Monitor" is one
|
|
* common example of such code.
|
|
*/
|
|
if (arm7_9->has_monitor_mode)
|
|
{
|
|
struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
|
|
|
|
embeddedice_read_reg(dbg_ctrl);
|
|
if ((retval = jtag_execute_queue()) != ERROR_OK)
|
|
return retval;
|
|
buf_set_u32(dbg_ctrl->value, 4, 1, 0);
|
|
embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
|
|
}
|
|
return jtag_execute_queue();
|
|
}
|
|
|
|
/**
|
|
* Queue a read for an EmbeddedICE register into the register cache,
|
|
* optionally checking the value read.
|
|
* Note that at this level, all registers are 32 bits wide.
|
|
*/
|
|
int embeddedice_read_reg_w_check(struct reg *reg,
|
|
uint8_t *check_value, uint8_t *check_mask)
|
|
{
|
|
struct embeddedice_reg *ice_reg = reg->arch_info;
|
|
uint8_t reg_addr = ice_reg->addr & 0x1f;
|
|
struct scan_field fields[3];
|
|
uint8_t field1_out[1];
|
|
uint8_t field2_out[1];
|
|
|
|
jtag_set_end_state(TAP_IDLE);
|
|
arm_jtag_scann(ice_reg->jtag_info, 0x2);
|
|
|
|
arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
|
|
|
|
/* bits 31:0 -- data (ignored here) */
|
|
fields[0].tap = ice_reg->jtag_info->tap;
|
|
fields[0].num_bits = 32;
|
|
fields[0].out_value = reg->value;
|
|
fields[0].in_value = NULL;
|
|
fields[0].check_value = NULL;
|
|
fields[0].check_mask = NULL;
|
|
|
|
/* bits 36:32 -- register */
|
|
fields[1].tap = ice_reg->jtag_info->tap;
|
|
fields[1].num_bits = 5;
|
|
fields[1].out_value = field1_out;
|
|
fields[1].out_value[0] = reg_addr;
|
|
fields[1].in_value = NULL;
|
|
fields[1].check_value = NULL;
|
|
fields[1].check_mask = NULL;
|
|
|
|
/* bit 37 -- 0/read */
|
|
fields[2].tap = ice_reg->jtag_info->tap;
|
|
fields[2].num_bits = 1;
|
|
fields[2].out_value = field2_out;
|
|
fields[2].out_value[0] = 0;
|
|
fields[2].in_value = NULL;
|
|
fields[2].check_value = NULL;
|
|
fields[2].check_mask = NULL;
|
|
|
|
/* traverse Update-DR, setting address for the next read */
|
|
jtag_add_dr_scan(3, fields, jtag_get_end_state());
|
|
|
|
/* bits 31:0 -- the data we're reading (and maybe checking) */
|
|
fields[0].in_value = reg->value;
|
|
fields[0].check_value = check_value;
|
|
fields[0].check_mask = check_mask;
|
|
|
|
/* when reading the DCC data register, leaving the address field set to
|
|
* EICE_COMMS_DATA would read the register twice
|
|
* reading the control register is safe
|
|
*/
|
|
fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
|
|
|
|
/* traverse Update-DR, reading but with no other side effects */
|
|
jtag_add_dr_scan_check(3, fields, jtag_get_end_state());
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Receive a block of size 32-bit words from the DCC.
|
|
* We assume the target is always going to be fast enough (relative to
|
|
* the JTAG clock) that the debugger won't need to poll the handshake
|
|
* bit. The JTAG clock is usually at least six times slower than the
|
|
* functional clock, so the 50+ JTAG clocks needed to receive the word
|
|
* allow hundreds of instruction cycles (per word) in the target.
|
|
*/
|
|
int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
|
|
{
|
|
struct scan_field fields[3];
|
|
uint8_t field1_out[1];
|
|
uint8_t field2_out[1];
|
|
|
|
jtag_set_end_state(TAP_IDLE);
|
|
arm_jtag_scann(jtag_info, 0x2);
|
|
arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
|
|
|
|
fields[0].tap = jtag_info->tap;
|
|
fields[0].num_bits = 32;
|
|
fields[0].out_value = NULL;
|
|
fields[0].in_value = NULL;
|
|
|
|
fields[1].tap = jtag_info->tap;
|
|
fields[1].num_bits = 5;
|
|
fields[1].out_value = field1_out;
|
|
fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
|
|
fields[1].in_value = NULL;
|
|
|
|
fields[2].tap = jtag_info->tap;
|
|
fields[2].num_bits = 1;
|
|
fields[2].out_value = field2_out;
|
|
fields[2].out_value[0] = 0;
|
|
fields[2].in_value = NULL;
|
|
|
|
jtag_add_dr_scan(3, fields, jtag_get_end_state());
|
|
|
|
while (size > 0)
|
|
{
|
|
/* when reading the last item, set the register address to the DCC control reg,
|
|
* to avoid reading additional data from the DCC data reg
|
|
*/
|
|
if (size == 1)
|
|
fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
|
|
|
|
fields[0].in_value = (uint8_t *)data;
|
|
jtag_add_dr_scan(3, fields, jtag_get_end_state());
|
|
jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
|
|
|
|
data++;
|
|
size--;
|
|
}
|
|
|
|
return jtag_execute_queue();
|
|
}
|
|
|
|
/**
|
|
* Queue a read for an EmbeddedICE register into the register cache,
|
|
* not checking the value read.
|
|
*/
|
|
int embeddedice_read_reg(struct reg *reg)
|
|
{
|
|
return embeddedice_read_reg_w_check(reg, NULL, NULL);
|
|
}
|
|
|
|
/**
|
|
* Queue a write for an EmbeddedICE register, updating the register cache.
|
|
* Uses embeddedice_write_reg().
|
|
*/
|
|
void embeddedice_set_reg(struct reg *reg, uint32_t value)
|
|
{
|
|
embeddedice_write_reg(reg, value);
|
|
|
|
buf_set_u32(reg->value, 0, reg->size, value);
|
|
reg->valid = 1;
|
|
reg->dirty = 0;
|
|
|
|
}
|
|
|
|
/**
|
|
* Write an EmbeddedICE register, updating the register cache.
|
|
* Uses embeddedice_set_reg(); not queued.
|
|
*/
|
|
int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
|
|
{
|
|
int retval;
|
|
|
|
embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
|
|
if ((retval = jtag_execute_queue()) != ERROR_OK)
|
|
LOG_ERROR("register write failed");
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* Queue a write for an EmbeddedICE register, bypassing the register cache.
|
|
*/
|
|
void embeddedice_write_reg(struct reg *reg, uint32_t value)
|
|
{
|
|
struct embeddedice_reg *ice_reg = reg->arch_info;
|
|
|
|
LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
|
|
|
|
jtag_set_end_state(TAP_IDLE);
|
|
arm_jtag_scann(ice_reg->jtag_info, 0x2);
|
|
|
|
arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
|
|
|
|
uint8_t reg_addr = ice_reg->addr & 0x1f;
|
|
embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
|
|
}
|
|
|
|
/**
|
|
* Queue a write for an EmbeddedICE register, using cached value.
|
|
* Uses embeddedice_write_reg().
|
|
*/
|
|
void embeddedice_store_reg(struct reg *reg)
|
|
{
|
|
embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
|
|
}
|
|
|
|
/**
|
|
* Send a block of size 32-bit words to the DCC.
|
|
* We assume the target is always going to be fast enough (relative to
|
|
* the JTAG clock) that the debugger won't need to poll the handshake
|
|
* bit. The JTAG clock is usually at least six times slower than the
|
|
* functional clock, so the 50+ JTAG clocks needed to receive the word
|
|
* allow hundreds of instruction cycles (per word) in the target.
|
|
*/
|
|
int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
|
|
{
|
|
struct scan_field fields[3];
|
|
uint8_t field0_out[4];
|
|
uint8_t field1_out[1];
|
|
uint8_t field2_out[1];
|
|
|
|
jtag_set_end_state(TAP_IDLE);
|
|
arm_jtag_scann(jtag_info, 0x2);
|
|
arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
|
|
|
|
fields[0].tap = jtag_info->tap;
|
|
fields[0].num_bits = 32;
|
|
fields[0].out_value = field0_out;
|
|
fields[0].in_value = NULL;
|
|
|
|
fields[1].tap = jtag_info->tap;
|
|
fields[1].num_bits = 5;
|
|
fields[1].out_value = field1_out;
|
|
fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
|
|
fields[1].in_value = NULL;
|
|
|
|
fields[2].tap = jtag_info->tap;
|
|
fields[2].num_bits = 1;
|
|
fields[2].out_value = field2_out;
|
|
fields[2].out_value[0] = 1;
|
|
|
|
fields[2].in_value = NULL;
|
|
|
|
while (size > 0)
|
|
{
|
|
buf_set_u32(fields[0].out_value, 0, 32, *data);
|
|
jtag_add_dr_scan(3, fields, jtag_get_end_state());
|
|
|
|
data++;
|
|
size--;
|
|
}
|
|
|
|
/* call to jtag_execute_queue() intentionally omitted */
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Poll DCC control register until read or write handshake completes.
|
|
*/
|
|
int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
|
|
{
|
|
struct scan_field fields[3];
|
|
uint8_t field0_in[4];
|
|
uint8_t field1_out[1];
|
|
uint8_t field2_out[1];
|
|
int retval;
|
|
uint32_t hsact;
|
|
struct timeval lap;
|
|
struct timeval now;
|
|
|
|
if (hsbit == EICE_COMM_CTRL_WBIT)
|
|
hsact = 1;
|
|
else if (hsbit == EICE_COMM_CTRL_RBIT)
|
|
hsact = 0;
|
|
else
|
|
return ERROR_INVALID_ARGUMENTS;
|
|
|
|
jtag_set_end_state(TAP_IDLE);
|
|
arm_jtag_scann(jtag_info, 0x2);
|
|
arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
|
|
|
|
fields[0].tap = jtag_info->tap;
|
|
fields[0].num_bits = 32;
|
|
fields[0].out_value = NULL;
|
|
fields[0].in_value = field0_in;
|
|
|
|
fields[1].tap = jtag_info->tap;
|
|
fields[1].num_bits = 5;
|
|
fields[1].out_value = field1_out;
|
|
fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
|
|
fields[1].in_value = NULL;
|
|
|
|
fields[2].tap = jtag_info->tap;
|
|
fields[2].num_bits = 1;
|
|
fields[2].out_value = field2_out;
|
|
fields[2].out_value[0] = 0;
|
|
fields[2].in_value = NULL;
|
|
|
|
jtag_add_dr_scan(3, fields, jtag_get_end_state());
|
|
gettimeofday(&lap, NULL);
|
|
do {
|
|
jtag_add_dr_scan(3, fields, jtag_get_end_state());
|
|
if ((retval = jtag_execute_queue()) != ERROR_OK)
|
|
return retval;
|
|
|
|
if (buf_get_u32(field0_in, hsbit, 1) == hsact)
|
|
return ERROR_OK;
|
|
|
|
gettimeofday(&now, NULL);
|
|
} while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
|
|
+ (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
|
|
|
|
return ERROR_TARGET_TIMEOUT;
|
|
}
|
|
|
|
#ifndef HAVE_JTAG_MINIDRIVER_H
|
|
/**
|
|
* This is an inner loop of the open loop DCC write of data to target
|
|
*/
|
|
void embeddedice_write_dcc(struct jtag_tap *tap,
|
|
int reg_addr, uint8_t *buffer, int little, int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
embeddedice_write_reg_inner(tap, reg_addr,
|
|
fast_target_buffer_get_u32(buffer, little));
|
|
buffer += 4;
|
|
}
|
|
}
|
|
#else
|
|
/* provided by minidriver */
|
|
#endif
|