riscv-openocd/src/target/riscv/riscv.c

756 lines
20 KiB
C

#include <assert.h>
#include <time.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target.h"
#include "target_type.h"
#include "log.h"
#include "jtag/jtag.h"
#include "opcodes.h"
#include "register.h"
#define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1)))
#define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask)))
#define DEBUG_ROM_START 0x800
#define DEBUG_ROM_RESUME (DEBUG_ROM_START + 4)
#define DEBUG_ROM_EXCEPTION (DEBUG_ROM_START + 8)
#define DEBUG_RAM_START 0x400
/*** JTAG registers. ***/
#define DTMINFO 0x10
#define DTMINFO_ADDRBITS (0xf<<4)
#define DTMINFO_VERSION (0xf)
#define DBUS 0x11
#define DBUS_OP_START 0
#define DBUS_OP_SIZE 2
typedef enum {
DBUS_OP_NOP = 0,
DBUS_OP_READ = 1,
DBUS_OP_WRITE = 2,
DBUS_OP_CONDITIONAL_WRITE = 3
} dbus_op_t;
typedef enum {
DBUS_STATUS_SUCCESS = 0,
DBUS_STATUS_NO_WRITE = 1,
DBUS_STATUS_FAILED = 2,
DBUS_STATUS_BUSY = 3
} dbus_status_t;
#define DBUS_DATA_START 2
#define DBUS_DATA_SIZE 34
#define DBUS_ADDRESS_START 36
/*** Debug Bus registers. ***/
#define DMCONTROL 0x10
#define DMCONTROL_INTERRUPT (1L<<33)
#define DMCONTROL_HALTNOT (1L<<32)
#define DMCONTROL_BUSERROR (7<<19)
#define DMCONTROL_SERIAL (3<<16)
#define DMCONTROL_AUTOINCREMENT (1<<15)
#define DMCONTROL_ACCESS (7<<12)
#define DMCONTROL_HARTID (0x3ff<<2)
#define DMCONTROL_NDRESET (1<<1)
#define DMCONTROL_FULLRESET 1
#define DMINFO 0x11
#define DMINFO_ABUSSIZE (0x7f<<25)
#define DMINFO_SERIALCOUNT (0xf<<21)
#define DMINFO_ACCESS128 (1<<20)
#define DMINFO_ACCESS64 (1<<19)
#define DMINFO_ACCESS32 (1<<18)
#define DMINFO_ACCESS16 (1<<17)
#define DMINFO_ACCESS8 (1<<16)
#define DMINFO_DRAMSIZE (0x3f<<10)
#define DMINFO_AUTHENTICATED (1<<5)
#define DMINFO_AUTHBUSY (1<<4)
#define DMINFO_AUTHTYPE (3<<2)
#define DMINFO_VERSION 3
/*** Info about the core being debugged. ***/
#define DBUS_ADDRESS_UNKNOWN 0xffff
// gdb's register list is defined in riscv_gdb_reg_names gdb/riscv-tdep.c in
// its source tree. We must interpret the numbers the same here.
enum {
REG_XPR0 = 0,
REG_XPR31 = 31,
REG_PC = 32,
REG_FPR0 = 33,
REG_FPR31 = 64,
REG_CSR0 = 65,
REG_CSR4095 = 4160,
REG_END = 4161,
REG_COUNT
};
typedef struct {
/* Number of address bits in the dbus register. */
uint8_t addrbits;
/* Width of a GPR (and many other things) in bits. */
uint8_t xlen;
/* Last value we wrote to DBUS_ADDRESS (eg. the address of the register
* whose value will be read the next time we scan dbus). */
uint16_t dbus_address;
/* Last op we wrote to dbus. */
dbus_op_t dbus_op;
/* Number of words in Debug RAM. */
unsigned int dramsize;
/* Our local copy of Debug RAM. */
uint32_t *dram;
/* One bit for every word in dram. If the bit is set, then we're
* confident that the value we have matches the one in actual Debug
* RAM. */
uint64_t dram_valid;
uint32_t dcsr;
struct reg *reg_list;
/* Single buffer that contains all register names, instead of calling
* malloc for each register. Needs to be freed when reg_list is freed. */
char *reg_names;
} riscv_info_t;
typedef struct {
bool haltnot;
bool interrupt;
} bits_t;
/*** Necessary prototypes. ***/
static int riscv_poll(struct target *target);
/*** Utility functions. ***/
static uint8_t ir_dtminfo[1] = {DTMINFO};
static struct scan_field select_dtminfo = {
.in_value = NULL,
.out_value = ir_dtminfo
};
static uint8_t ir_dbus[1] = {DBUS};
static struct scan_field select_dbus = {
.in_value = NULL,
.out_value = ir_dbus
};
static uint16_t dram_address(unsigned int index)
{
if (index < 0x10)
return index;
else
return 0x40 + index - 0x10;
}
static dbus_status_t dbus_scan(struct target *target, uint64_t *data_in,
dbus_op_t op, uint16_t address, uint64_t data_out)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
struct scan_field field;
uint8_t in[8] = {0};
uint8_t out[8];
assert(info->addrbits != 0);
field.num_bits = info->addrbits + DBUS_OP_SIZE + DBUS_DATA_SIZE;
field.out_value = out;
field.in_value = in;
buf_set_u64(out, DBUS_OP_START, DBUS_OP_SIZE, op);
buf_set_u64(out, DBUS_DATA_START, DBUS_DATA_SIZE, data_out);
buf_set_u64(out, DBUS_ADDRESS_START, info->addrbits, address);
/* Assume dbus is already selected. */
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
info->dbus_address = address;
info->dbus_op = op;
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("dbus_scan failed jtag scan");
return retval;
}
if (data_in) {
*data_in = buf_get_u64(in, DBUS_DATA_START, DBUS_DATA_SIZE);
}
return buf_get_u64(in, DBUS_OP_START, DBUS_OP_SIZE);
}
static uint64_t dbus_read(struct target *target, uint16_t address, uint16_t next_address)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
uint64_t value;
dbus_status_t status = DBUS_STATUS_BUSY;
if (address != info->dbus_address || info->dbus_op == DBUS_OP_NOP) {
while (status == DBUS_STATUS_BUSY) {
status = dbus_scan(target, NULL, DBUS_OP_READ, address, 0);
}
}
status = DBUS_STATUS_BUSY;
while (status == DBUS_STATUS_BUSY) {
status = dbus_scan(target, &value, DBUS_OP_READ, next_address, 0);
}
if (status != DBUS_STATUS_SUCCESS) {
LOG_ERROR("dbus_read failed read at 0x%x; status=%d\n", address, status);
}
LOG_DEBUG("address=0x%x, value=0x%01x:%08x", address,
(uint32_t) (value >> 32), (uint32_t) value);
return value;
}
static void dbus_write(struct target *target, uint16_t address, uint64_t value)
{
LOG_DEBUG("address=0x%x, value=0x%01x:%08x", address,
(uint32_t) (value >> 32), (uint32_t) value);
dbus_status_t status = DBUS_STATUS_BUSY;
while (status == DBUS_STATUS_BUSY) {
status = dbus_scan(target, NULL, DBUS_OP_WRITE, address, value);
}
if (status != DBUS_STATUS_SUCCESS) {
LOG_ERROR("dbus_write failed write 0x%lx to 0x%x; status=%d\n", value,
address, status);
}
}
static uint32_t dtminfo_read(struct target *target)
{
struct scan_field field;
uint8_t in[4];
jtag_add_ir_scan(target->tap, &select_dtminfo, TAP_IDLE);
field.num_bits = 32;
field.out_value = NULL;
field.in_value = in;
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("dtminfo_read failed jtag scan");
return retval;
}
/* Always return to dbus. */
/* TODO: Can we rely on IR not being messed with between calls into
* RISCV code? Eg. what happens if there are multiple cores and some
* other core is accessed? */
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
return buf_get_u32(field.in_value, 0, 32);
}
static uint32_t dram_read32(struct target *target, unsigned int index,
bool set_interrupt)
{
// TODO: check cache to see if this even needs doing.
uint16_t address = dram_address(index);
return dbus_read(target, address, address);
}
static void dram_write32(struct target *target, unsigned int index, uint32_t value,
bool set_interrupt)
{
// TODO: check cache to see if this even needs doing.
uint64_t dbus_value = DMCONTROL_HALTNOT | value;
if (set_interrupt)
dbus_value |= DMCONTROL_INTERRUPT;
dbus_write(target, dram_address(index), dbus_value);
}
static void dram_check32(struct target *target, unsigned int index,
uint32_t expected)
{
uint32_t actual = dram_read32(target, index, false);
if (expected != actual) {
LOG_ERROR("Wrote 0x%x to Debug RAM at %d, but read back 0x%x",
expected, index, actual);
}
}
/* Read the haltnot and interrupt bits. */
static bits_t read_bits(struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
uint64_t value;
if (info->dbus_address < 0x10 || info->dbus_address == DMCONTROL) {
value = dbus_read(target, info->dbus_address, 0);
} else {
value = dbus_read(target, 0, 0);
}
bits_t result = {
.haltnot = get_field(value, DMCONTROL_HALTNOT),
.interrupt = get_field(value, DMCONTROL_INTERRUPT)
};
return result;
}
/* Write instruction that jumps from the specified word in Debug RAM to resume
* in Debug ROM. */
static void dram_write_jump(struct target *target, unsigned int index, bool set_interrupt)
{
dram_write32(target, index,
jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*index))),
set_interrupt);
}
static int wait_for_state(struct target *target, enum target_state state)
{
time_t start = time(NULL);
while (1) {
int result = riscv_poll(target);
if (result != ERROR_OK) {
return result;
}
if (target->state == state) {
return ERROR_OK;
}
if (time(NULL) - start > 2) {
LOG_ERROR("Timed out waiting for state %d.", state);
return ERROR_FAIL;
}
}
}
static int wait_for_debugint_clear(struct target *target)
{
time_t start = time(NULL);
while (1) {
bits_t bits = read_bits(target);
if (!bits.interrupt) {
return ERROR_OK;
}
if (time(NULL) - start > 2) {
LOG_ERROR("Timed out waiting for debug int to clear.");
return ERROR_FAIL;
}
}
}
static int resume(struct target *target, int current, uint32_t address,
int handle_breakpoints, int debug_execution, bool step)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (!current) {
if (info->xlen > 32) {
LOG_WARNING("Asked to resume at 32-bit PC on %d-bit target.",
info->xlen);
}
LOG_ERROR("TODO: current is false");
return ERROR_FAIL;
}
if (handle_breakpoints) {
LOG_ERROR("TODO: handle_breakpoints is true");
return ERROR_FAIL;
}
if (debug_execution) {
LOG_ERROR("TODO: debug_execution is true");
return ERROR_FAIL;
}
dram_write32(target, 0, csrsi(CSR_DCSR, DCSR_HALT), false);
if (step) {
dram_write32(target, 1, csrsi(CSR_DCSR, DCSR_STEP), false);
} else {
dram_write32(target, 1, csrci(CSR_DCSR, DCSR_STEP), false);
}
dram_write_jump(target, 2, true);
return ERROR_OK;
}
/*** OpenOCD target functions. ***/
static int riscv_init_target(struct command_context *cmd_ctx,
struct target *target)
{
LOG_DEBUG("riscv_init_target()");
target->arch_info = calloc(1, sizeof(riscv_info_t));
if (!target->arch_info)
return ERROR_FAIL;
riscv_info_t *info = (riscv_info_t *) target->arch_info;
info->dbus_address = DBUS_ADDRESS_UNKNOWN;
info->dbus_op = DBUS_OP_NOP;
select_dtminfo.num_bits = target->tap->ir_length;
select_dbus.num_bits = target->tap->ir_length;
const unsigned int max_reg_name_len = 12;
info->reg_list = calloc(REG_COUNT, sizeof(struct reg));
info->reg_names = malloc(REG_COUNT * max_reg_name_len);
char *reg_name = info->reg_names;
// TODO TODO
for (unsigned int i = 0; i < REG_COUNT; i++) {
struct reg *r = &info->reg_list[i];
r->number = i;
r->caller_save = true;
if (i <= REG_XPR31) {
sprintf(reg_name, "x%d", i);
r->name = reg_name;
// TODO r->feature = "general";
}
reg_name += strlen(reg_name) + 1;
assert(reg_name < info->reg_names + REG_COUNT * max_reg_name_len);
}
return ERROR_OK;
}
static void riscv_deinit_target(struct target *target)
{
LOG_DEBUG("riscv_deinit_target()");
riscv_info_t *info = (riscv_info_t *) target->arch_info;
if (info->dram) {
free(info->dram);
}
free(info);
target->arch_info = NULL;
}
static int riscv_examine(struct target *target)
{
LOG_DEBUG("riscv_examine()");
if (target_was_examined(target)) {
return ERROR_OK;
}
uint32_t dtminfo = dtminfo_read(target);
riscv_info_t *info = (riscv_info_t *) target->arch_info;
info->addrbits = get_field(dtminfo, DTMINFO_ADDRBITS);
uint32_t dminfo = dbus_read(target, DMINFO, 0);
info->dramsize = get_field(dminfo, DMINFO_DRAMSIZE) + 1;
info->dram = malloc(info->dramsize * 4);
if (!info->dram)
return ERROR_FAIL;
info->dram_valid = 0;
if (get_field(dminfo, DMINFO_AUTHTYPE) != 0) {
LOG_ERROR("Authentication required by RISC-V core but not "
"supported by OpenOCD. dminfo=0x%x", dminfo);
return ERROR_FAIL;
}
// Figure out XLEN.
dram_write32(target, 0, xori(S1, ZERO, -1), false);
// 0xffffffff 0xffffffff:ffffffff 0xffffffff:ffffffff:ffffffff:ffffffff
dram_write32(target, 1, srli(S1, S1, 31), false);
// 0x00000001 0x00000001:ffffffff 0x00000001:ffffffff:ffffffff:ffffffff
dram_write32(target, 2, sw(S1, ZERO, DEBUG_RAM_START), false);
dram_write32(target, 3, srli(S1, S1, 31), false);
// 0x00000000 0x00000000:00000003 0x00000000:00000003:ffffffff:ffffffff
dram_write32(target, 4, sw(S1, ZERO, DEBUG_RAM_START + 4), false);
// Check that we can actually read/write dram.
dram_check32(target, 0, xori(S1, ZERO, -1));
dram_check32(target, 1, srli(S1, S1, 31));
dram_check32(target, 2, sw(S1, ZERO, DEBUG_RAM_START));
dram_check32(target, 3, srli(S1, S1, 31));
dram_check32(target, 4, sw(S1, ZERO, DEBUG_RAM_START + 4));
// Execute.
dram_write_jump(target, 5, true);
if (wait_for_debugint_clear(target) != ERROR_OK) {
LOG_ERROR("Debug interrupt didn't clear.");
return ERROR_FAIL;
}
uint32_t word0 = dram_read32(target, 0, false);
uint32_t word1 = dram_read32(target, 1, false);
if (word0 == 1 && word1 == 0) {
info->xlen = 32;
} else if (word0 == 0xffffffff && word1 == 3) {
info->xlen = 64;
} else if (word0 == 0xffffffff && word1 == 0xffffffff) {
info->xlen = 128;
} else {
LOG_ERROR("Failed to discover xlen; word0=0x%x, word1=0x%x",
word0, word1);
return ERROR_FAIL;
}
target_set_examined(target);
return ERROR_OK;
}
static int riscv_poll(struct target *target)
{
bits_t bits = read_bits(target);
if (bits.haltnot && bits.interrupt) {
target->state = TARGET_DEBUG_RUNNING;
} else if (bits.haltnot && !bits.interrupt) {
target->state = TARGET_HALTED;
} else if (!bits.haltnot && bits.interrupt) {
// Target is halting. There is no state for that, so don't change anything.
} else if (!bits.haltnot && !bits.interrupt) {
target->state = TARGET_RUNNING;
}
return ERROR_OK;
}
static int riscv_halt(struct target *target)
{
LOG_DEBUG("riscv_halt()");
dram_write32(target, 0, csrsi(CSR_DCSR, DCSR_HALT), false);
dram_write_jump(target, 1, true);
return ERROR_OK;
}
static int riscv_resume(struct target *target, int current, uint32_t address,
int handle_breakpoints, int debug_execution)
{
return resume(target, current, address, handle_breakpoints,
debug_execution, false);
}
static int riscv_step(struct target *target, int current, uint32_t address,
int handle_breakpoints)
{
return resume(target, current, address, handle_breakpoints, 0, true);
}
static int riscv_assert_reset(struct target *target)
{
// TODO: Maybe what I implemented here is more like soft_reset_halt()?
// The only assumption we can make is that the TAP was reset.
if (wait_for_debugint_clear(target) != ERROR_OK) {
LOG_ERROR("Debug interrupt didn't clear.");
return ERROR_FAIL;
}
// Not sure what we should do when there are multiple cores.
// Here just reset the single hart we're talking to.
uint32_t dcsr = DCSR_EBREAKM | DCSR_EBREAKH | DCSR_EBREAKS |
DCSR_EBREAKU | DCSR_HALT;
if (target->reset_halt) {
dcsr |= DCSR_NDRESET;
} else {
dcsr |= DCSR_FULLRESET;
}
dram_write32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16), false);
dram_write32(target, 1, csrw(S0, CSR_DCSR), false);
// We shouldn't actually need the jump because a reset should happen.
dram_write_jump(target, 2, false);
dram_write32(target, 4, dcsr, true);
target->state = TARGET_RESET;
return ERROR_OK;
}
static int riscv_deassert_reset(struct target *target)
{
if (target->reset_halt) {
return wait_for_state(target, TARGET_HALTED);
} else {
return wait_for_state(target, TARGET_RUNNING);
}
}
static int riscv_read_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
// Plain implementation, where we write the address each time.
dram_write32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16), false);
switch (size) {
case 1:
dram_write32(target, 1, lb(S1, S0, 0), false);
dram_write32(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16), false);
break;
case 2:
dram_write32(target, 1, lh(S1, S0, 0), false);
dram_write32(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16), false);
break;
case 4:
dram_write32(target, 1, lw(S1, S0, 0), false);
dram_write32(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16), false);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
return ERROR_FAIL;
}
dram_write_jump(target, 3, false);
uint32_t i = 0;
while (i <= count) {
uint64_t scan_result;
// Write the next address, set interrupt, and read the previous value.
uint64_t interrupt = 0;
if (i < count) {
interrupt = DMCONTROL_INTERRUPT;
}
dbus_status_t status = dbus_scan(target, &scan_result, DBUS_OP_CONDITIONAL_WRITE,
4, DMCONTROL_HALTNOT | interrupt | (address + i * size));
if (status == DBUS_STATUS_SUCCESS) {
if (i > 0) {
uint32_t offset = size * (i-1);
switch (size) {
case 1:
buffer[offset] = scan_result & 0xff;
break;
case 2:
buffer[offset] = scan_result & 0xff;
buffer[offset + 1] = (scan_result >> 8) & 0xff;
break;
case 4:
buffer[offset] = scan_result & 0xff;
buffer[offset + 1] = (scan_result >> 8) & 0xff;
buffer[offset + 2] = (scan_result >> 16) & 0xff;
buffer[offset + 3] = (scan_result >> 24) & 0xff;
break;
}
}
i++;
} else if (status == DBUS_STATUS_NO_WRITE || status == DBUS_STATUS_BUSY) {
// Need to retry the access that failed, which was the previous one.
} else if (status == DBUS_STATUS_FAILED) {
LOG_ERROR("dbus write failed!");
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int riscv_write_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
// TODO: save/restore T0
// Set up the address.
dram_write32(target, 0, lw(T0, ZERO, DEBUG_RAM_START + 16), false);
dram_write_jump(target, 1, false);
dram_write32(target, 4, address, true);
if (wait_for_debugint_clear(target) != ERROR_OK) {
LOG_ERROR("Debug interrupt didn't clear.");
return ERROR_FAIL;
}
switch (size) {
case 1:
dram_write32(target, 0, lb(S0, ZERO, DEBUG_RAM_START + 16), false);
dram_write32(target, 1, sb(S0, T0, 0), false);
break;
case 2:
dram_write32(target, 0, lh(S0, ZERO, DEBUG_RAM_START + 16), false);
dram_write32(target, 1, sh(S0, T0, 0), false);
break;
case 4:
dram_write32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16), false);
dram_write32(target, 1, sw(S0, T0, 0), false);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
return ERROR_FAIL;
}
dram_write32(target, 2, addi(T0, T0, size), false);
dram_write_jump(target, 3, false);
uint32_t i = 0;
while (i < count) {
// Write the next value and set interrupt.
uint32_t value;
uint32_t offset = size * i;
switch (size) {
case 1:
value = buffer[offset];
break;
case 2:
value = buffer[offset] |
(buffer[offset+1] << 8);
break;
case 4:
value = buffer[offset] |
((uint32_t) buffer[offset+1] << 8) |
((uint32_t) buffer[offset+2] << 16) |
((uint32_t) buffer[offset+3] << 24);
break;
default:
return ERROR_FAIL;
}
dbus_status_t status = dbus_scan(target, NULL, DBUS_OP_CONDITIONAL_WRITE,
4, DMCONTROL_HALTNOT | DMCONTROL_INTERRUPT | value);
if (status == DBUS_STATUS_SUCCESS) {
i++;
} else if (status == DBUS_STATUS_NO_WRITE) {
// Need to retry the access that failed, which was the previous one.
i--;
} else if (status == DBUS_STATUS_BUSY) {
// This operation may still complete. Retry the current access.
} else if (status == DBUS_STATUS_FAILED) {
LOG_ERROR("dbus write failed!");
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int riscv_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
LOG_DEBUG("reg_class=%d", reg_class);
switch (reg_class) {
case REG_CLASS_GENERAL:
*reg_list_size = 32;
break;
case REG_CLASS_ALL:
*reg_list_size = REG_COUNT;
break;
default:
LOG_ERROR("Unsupported reg_class: %d", reg_class);
return ERROR_FAIL;
}
*reg_list = calloc(*reg_list_size, sizeof(struct reg *));
memcpy(reg_list, info->reg_list, *reg_list_size * sizeof(struct reg *));
return ERROR_OK;
}
struct target_type riscv_target = {
.name = "riscv",
.init_target = riscv_init_target,
.deinit_target = riscv_deinit_target,
.examine = riscv_examine,
/* poll current target status */
.poll = riscv_poll,
.halt = riscv_halt,
.resume = riscv_resume,
.step = riscv_step,
.assert_reset = riscv_assert_reset,
.deassert_reset = riscv_deassert_reset,
.read_memory = riscv_read_memory,
.write_memory = riscv_write_memory,
.get_gdb_reg_list = riscv_get_gdb_reg_list,
};