2832 lines
77 KiB
C
2832 lines
77 KiB
C
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "target.h"
|
|
#include "target/algorithm.h"
|
|
#include "target_type.h"
|
|
#include "log.h"
|
|
#include "jtag/jtag.h"
|
|
#include "opcodes.h"
|
|
#include "register.h"
|
|
#include "breakpoints.h"
|
|
#include "helper/time_support.h"
|
|
|
|
/**
|
|
* Since almost everything can be accomplish by scanning the dbus register, all
|
|
* functions here assume dbus is already selected. The exception are functions
|
|
* called directly by OpenOCD, which can't assume anything about what's
|
|
* currently in IR. They should set IR to dbus explicitly.
|
|
*/
|
|
|
|
/**
|
|
* Code structure
|
|
*
|
|
* At the bottom of the stack are the OpenOCD JTAG functions:
|
|
* jtag_add_[id]r_scan
|
|
* jtag_execute_query
|
|
* jtag_add_runtest
|
|
*
|
|
* There are a few functions to just instantly shift a register and get its
|
|
* value:
|
|
* dtmcontrol_scan
|
|
* idcode_scan
|
|
* dbus_scan
|
|
*
|
|
* Because doing one scan and waiting for the result is slow, most functions
|
|
* batch up a bunch of dbus writes and then execute them all at once. They use
|
|
* the scans "class" for this:
|
|
* scans_new
|
|
* scans_delete
|
|
* scans_execute
|
|
* scans_add_...
|
|
* Usually you new(), call a bunch of add functions, then execute() and look
|
|
* at the results by calling scans_get...()
|
|
*
|
|
* Optimized functions will directly use the scans class above, but slightly
|
|
* lazier code will use the cache functions that in turn use the scans
|
|
* functions:
|
|
* cache_get...
|
|
* cache_set...
|
|
* cache_write
|
|
* cache_set... update a local structure, which is then synced to the target
|
|
* with cache_write(). Only Debug RAM words that are actually changed are sent
|
|
* to the target. Afterwards use cache_get... to read results.
|
|
*/
|
|
|
|
#define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1)))
|
|
#define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask)))
|
|
|
|
#define DIM(x) (sizeof(x)/sizeof(*x))
|
|
|
|
// Constants for legacy SiFive hardware breakpoints.
|
|
#define CSR_BPCONTROL_X (1<<0)
|
|
#define CSR_BPCONTROL_W (1<<1)
|
|
#define CSR_BPCONTROL_R (1<<2)
|
|
#define CSR_BPCONTROL_U (1<<3)
|
|
#define CSR_BPCONTROL_S (1<<4)
|
|
#define CSR_BPCONTROL_H (1<<5)
|
|
#define CSR_BPCONTROL_M (1<<6)
|
|
#define CSR_BPCONTROL_BPMATCH (0xf<<7)
|
|
#define CSR_BPCONTROL_BPACTION (0xff<<11)
|
|
|
|
#define DEBUG_ROM_START 0x800
|
|
#define DEBUG_ROM_RESUME (DEBUG_ROM_START + 4)
|
|
#define DEBUG_ROM_EXCEPTION (DEBUG_ROM_START + 8)
|
|
#define DEBUG_RAM_START 0x400
|
|
|
|
#define SETHALTNOT 0x10c
|
|
|
|
/*** JTAG registers. ***/
|
|
|
|
#define DTMCONTROL 0x10
|
|
#define DTMCONTROL_DBUS_RESET (1<<16)
|
|
#define DTMCONTROL_IDLE (7<<10)
|
|
#define DTMCONTROL_ADDRBITS (0xf<<4)
|
|
#define DTMCONTROL_VERSION (0xf)
|
|
|
|
#define DBUS 0x11
|
|
#define DBUS_OP_START 0
|
|
#define DBUS_OP_SIZE 2
|
|
typedef enum {
|
|
DBUS_OP_NOP = 0,
|
|
DBUS_OP_READ = 1,
|
|
DBUS_OP_WRITE = 2
|
|
} dbus_op_t;
|
|
typedef enum {
|
|
DBUS_STATUS_SUCCESS = 0,
|
|
DBUS_STATUS_FAILED = 2,
|
|
DBUS_STATUS_BUSY = 3
|
|
} dbus_status_t;
|
|
#define DBUS_DATA_START 2
|
|
#define DBUS_DATA_SIZE 34
|
|
#define DBUS_ADDRESS_START 36
|
|
|
|
typedef enum {
|
|
RE_OK,
|
|
RE_FAIL,
|
|
RE_AGAIN
|
|
} riscv_error_t;
|
|
|
|
typedef enum slot {
|
|
SLOT0,
|
|
SLOT1,
|
|
SLOT_LAST,
|
|
} slot_t;
|
|
|
|
/*** Debug Bus registers. ***/
|
|
|
|
#define DMCONTROL 0x10
|
|
#define DMCONTROL_INTERRUPT (((uint64_t)1)<<33)
|
|
#define DMCONTROL_HALTNOT (((uint64_t)1)<<32)
|
|
#define DMCONTROL_BUSERROR (7<<19)
|
|
#define DMCONTROL_SERIAL (3<<16)
|
|
#define DMCONTROL_AUTOINCREMENT (1<<15)
|
|
#define DMCONTROL_ACCESS (7<<12)
|
|
#define DMCONTROL_HARTID (0x3ff<<2)
|
|
#define DMCONTROL_NDRESET (1<<1)
|
|
#define DMCONTROL_FULLRESET 1
|
|
|
|
#define DMINFO 0x11
|
|
#define DMINFO_ABUSSIZE (0x7fU<<25)
|
|
#define DMINFO_SERIALCOUNT (0xf<<21)
|
|
#define DMINFO_ACCESS128 (1<<20)
|
|
#define DMINFO_ACCESS64 (1<<19)
|
|
#define DMINFO_ACCESS32 (1<<18)
|
|
#define DMINFO_ACCESS16 (1<<17)
|
|
#define DMINFO_ACCESS8 (1<<16)
|
|
#define DMINFO_DRAMSIZE (0x3f<<10)
|
|
#define DMINFO_AUTHENTICATED (1<<5)
|
|
#define DMINFO_AUTHBUSY (1<<4)
|
|
#define DMINFO_AUTHTYPE (3<<2)
|
|
#define DMINFO_VERSION 3
|
|
|
|
/*** Info about the core being debugged. ***/
|
|
|
|
#define DBUS_ADDRESS_UNKNOWN 0xffff
|
|
#define WALL_CLOCK_TIMEOUT 2
|
|
|
|
// gdb's register list is defined in riscv_gdb_reg_names gdb/riscv-tdep.c in
|
|
// its source tree. We must interpret the numbers the same here.
|
|
enum {
|
|
REG_XPR0 = 0,
|
|
REG_XPR31 = 31,
|
|
REG_PC = 32,
|
|
REG_FPR0 = 33,
|
|
REG_FPR31 = 64,
|
|
REG_CSR0 = 65,
|
|
REG_MSTATUS = CSR_MSTATUS + REG_CSR0,
|
|
REG_CSR4095 = 4160,
|
|
REG_PRIV = 4161,
|
|
REG_COUNT
|
|
};
|
|
|
|
#define MAX_HWBPS 16
|
|
#define DRAM_CACHE_SIZE 16
|
|
|
|
struct trigger {
|
|
uint64_t address;
|
|
uint32_t length;
|
|
uint64_t mask;
|
|
uint64_t value;
|
|
bool read, write, execute;
|
|
int unique_id;
|
|
};
|
|
|
|
struct memory_cache_line {
|
|
uint32_t data;
|
|
bool valid;
|
|
bool dirty;
|
|
};
|
|
|
|
typedef struct {
|
|
/* Number of address bits in the dbus register. */
|
|
uint8_t addrbits;
|
|
/* Width of a GPR (and many other things) in bits. */
|
|
uint8_t xlen;
|
|
/* Number of words in Debug RAM. */
|
|
unsigned int dramsize;
|
|
uint64_t dcsr;
|
|
uint64_t dpc;
|
|
uint64_t misa;
|
|
uint64_t tselect;
|
|
bool tselect_dirty;
|
|
/* The value that mstatus actually has on the target right now. This is not
|
|
* the value we present to the user. That one may be stored in the
|
|
* reg_cache. */
|
|
uint64_t mstatus_actual;
|
|
|
|
struct memory_cache_line dram_cache[DRAM_CACHE_SIZE];
|
|
|
|
/* Single buffer that contains all register names, instead of calling
|
|
* malloc for each register. Needs to be freed when reg_list is freed. */
|
|
char *reg_names;
|
|
/* Single buffer that contains all register values. */
|
|
void *reg_values;
|
|
|
|
// For each physical trigger, contains -1 if the hwbp is available, or the
|
|
// unique_id of the breakpoint/watchpoint that is using it.
|
|
int trigger_unique_id[MAX_HWBPS];
|
|
|
|
unsigned int trigger_count;
|
|
|
|
// Number of run-test/idle cycles the target requests we do after each dbus
|
|
// access.
|
|
unsigned int dtmcontrol_idle;
|
|
|
|
// This value is incremented every time a dbus access comes back as "busy".
|
|
// It's used to determine how many run-test/idle cycles to feed the target
|
|
// in between accesses.
|
|
unsigned int dbus_busy_delay;
|
|
|
|
// This value is incremented every time we read the debug interrupt as
|
|
// high. It's used to add extra run-test/idle cycles after setting debug
|
|
// interrupt high, so ideally we never have to perform a whole extra scan
|
|
// before the interrupt is cleared.
|
|
unsigned int interrupt_high_delay;
|
|
|
|
bool need_strict_step;
|
|
bool never_halted;
|
|
} riscv_info_t;
|
|
|
|
typedef struct {
|
|
bool haltnot;
|
|
bool interrupt;
|
|
} bits_t;
|
|
|
|
/*** Necessary prototypes. ***/
|
|
|
|
static int riscv_poll(struct target *target);
|
|
static int poll_target(struct target *target, bool announce);
|
|
static int register_get(struct reg *reg);
|
|
|
|
/*** Utility functions. ***/
|
|
|
|
static uint8_t ir_dtmcontrol[1] = {DTMCONTROL};
|
|
static struct scan_field select_dtmcontrol = {
|
|
.in_value = NULL,
|
|
.out_value = ir_dtmcontrol
|
|
};
|
|
static uint8_t ir_dbus[1] = {DBUS};
|
|
static struct scan_field select_dbus = {
|
|
.in_value = NULL,
|
|
.out_value = ir_dbus
|
|
};
|
|
static uint8_t ir_idcode[1] = {0x1};
|
|
static struct scan_field select_idcode = {
|
|
.in_value = NULL,
|
|
.out_value = ir_idcode
|
|
};
|
|
#define DEBUG_LENGTH 264
|
|
|
|
static uint32_t load(const struct target *target, unsigned int rd,
|
|
unsigned int base, uint16_t offset)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
switch (info->xlen) {
|
|
case 32:
|
|
return lw(rd, base, offset);
|
|
case 64:
|
|
return ld(rd, base, offset);
|
|
}
|
|
assert(0);
|
|
}
|
|
|
|
static uint32_t store(const struct target *target, unsigned int src,
|
|
unsigned int base, uint16_t offset)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
switch (info->xlen) {
|
|
case 32:
|
|
return sw(src, base, offset);
|
|
case 64:
|
|
return sd(src, base, offset);
|
|
}
|
|
assert(0);
|
|
}
|
|
|
|
static unsigned int slot_offset(const struct target *target, slot_t slot)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
switch (info->xlen) {
|
|
case 32:
|
|
switch (slot) {
|
|
case SLOT0: return 4;
|
|
case SLOT1: return 5;
|
|
case SLOT_LAST: return info->dramsize-1;
|
|
}
|
|
case 64:
|
|
switch (slot) {
|
|
case SLOT0: return 4;
|
|
case SLOT1: return 6;
|
|
case SLOT_LAST: return info->dramsize-2;
|
|
}
|
|
}
|
|
LOG_ERROR("slot_offset called with xlen=%d, slot=%d",
|
|
info->xlen, slot);
|
|
assert(0);
|
|
}
|
|
|
|
static uint32_t load_slot(const struct target *target, unsigned int dest,
|
|
slot_t slot)
|
|
{
|
|
unsigned int offset = DEBUG_RAM_START + 4 * slot_offset(target, slot);
|
|
return load(target, dest, ZERO, offset);
|
|
}
|
|
|
|
static uint32_t store_slot(const struct target *target, unsigned int src,
|
|
slot_t slot)
|
|
{
|
|
unsigned int offset = DEBUG_RAM_START + 4 * slot_offset(target, slot);
|
|
return store(target, src, ZERO, offset);
|
|
}
|
|
|
|
static uint16_t dram_address(unsigned int index)
|
|
{
|
|
if (index < 0x10)
|
|
return index;
|
|
else
|
|
return 0x40 + index - 0x10;
|
|
}
|
|
|
|
static uint32_t dtmcontrol_scan(struct target *target, uint32_t out)
|
|
{
|
|
struct scan_field field;
|
|
uint8_t in_value[4];
|
|
uint8_t out_value[4];
|
|
|
|
buf_set_u32(out_value, 0, 32, out);
|
|
|
|
jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);
|
|
|
|
field.num_bits = 32;
|
|
field.out_value = out_value;
|
|
field.in_value = in_value;
|
|
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
|
|
|
|
int retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("failed jtag scan: %d", retval);
|
|
return retval;
|
|
}
|
|
|
|
/* Always return to dbus. */
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
uint32_t in = buf_get_u32(field.in_value, 0, 32);
|
|
LOG_DEBUG("DTMCONTROL: 0x%x -> 0x%x", out, in);
|
|
|
|
return in;
|
|
}
|
|
|
|
static uint32_t idcode_scan(struct target *target)
|
|
{
|
|
struct scan_field field;
|
|
uint8_t in_value[4];
|
|
|
|
jtag_add_ir_scan(target->tap, &select_idcode, TAP_IDLE);
|
|
|
|
field.num_bits = 32;
|
|
field.out_value = NULL;
|
|
field.in_value = in_value;
|
|
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
|
|
|
|
int retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("failed jtag scan: %d", retval);
|
|
return retval;
|
|
}
|
|
|
|
/* Always return to dbus. */
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
uint32_t in = buf_get_u32(field.in_value, 0, 32);
|
|
LOG_DEBUG("IDCODE: 0x0 -> 0x%x", in);
|
|
|
|
return in;
|
|
}
|
|
|
|
static void increase_dbus_busy_delay(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
info->dbus_busy_delay += info->dbus_busy_delay / 10 + 1;
|
|
LOG_INFO("dtmcontrol_idle=%d, dbus_busy_delay=%d, interrupt_high_delay=%d",
|
|
info->dtmcontrol_idle, info->dbus_busy_delay,
|
|
info->interrupt_high_delay);
|
|
|
|
dtmcontrol_scan(target, DTMCONTROL_DBUS_RESET);
|
|
}
|
|
|
|
static void increase_interrupt_high_delay(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
info->interrupt_high_delay += info->interrupt_high_delay / 10 + 1;
|
|
LOG_INFO("dtmcontrol_idle=%d, dbus_busy_delay=%d, interrupt_high_delay=%d",
|
|
info->dtmcontrol_idle, info->dbus_busy_delay,
|
|
info->interrupt_high_delay);
|
|
}
|
|
|
|
static void add_dbus_scan(const struct target *target, struct scan_field *field,
|
|
uint8_t *out_value, uint8_t *in_value, dbus_op_t op,
|
|
uint16_t address, uint64_t data)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
field->num_bits = info->addrbits + DBUS_OP_SIZE + DBUS_DATA_SIZE;
|
|
field->in_value = in_value;
|
|
field->out_value = out_value;
|
|
|
|
buf_set_u64(out_value, DBUS_OP_START, DBUS_OP_SIZE, op);
|
|
buf_set_u64(out_value, DBUS_DATA_START, DBUS_DATA_SIZE, data);
|
|
buf_set_u64(out_value, DBUS_ADDRESS_START, info->addrbits, address);
|
|
|
|
jtag_add_dr_scan(target->tap, 1, field, TAP_IDLE);
|
|
|
|
int idle_count = info->dtmcontrol_idle + info->dbus_busy_delay;
|
|
if (data & DMCONTROL_INTERRUPT) {
|
|
idle_count += info->interrupt_high_delay;
|
|
}
|
|
|
|
if (idle_count) {
|
|
jtag_add_runtest(idle_count, TAP_IDLE);
|
|
}
|
|
}
|
|
|
|
static void dump_field(const struct scan_field *field)
|
|
{
|
|
static const char *op_string[] = {"nop", "r", "w", "?"};
|
|
static const char *status_string[] = {"+", "?", "F", "b"};
|
|
|
|
if (debug_level < LOG_LVL_DEBUG)
|
|
return;
|
|
|
|
uint64_t out = buf_get_u64(field->out_value, 0, field->num_bits);
|
|
unsigned int out_op = (out >> DBUS_OP_START) & ((1 << DBUS_OP_SIZE) - 1);
|
|
char out_interrupt = ((out >> DBUS_DATA_START) & DMCONTROL_INTERRUPT) ? 'i' : '.';
|
|
char out_haltnot = ((out >> DBUS_DATA_START) & DMCONTROL_HALTNOT) ? 'h' : '.';
|
|
unsigned int out_data = out >> 2;
|
|
unsigned int out_address = out >> DBUS_ADDRESS_START;
|
|
uint64_t in = buf_get_u64(field->in_value, 0, field->num_bits);
|
|
unsigned int in_op = (in >> DBUS_OP_START) & ((1 << DBUS_OP_SIZE) - 1);
|
|
char in_interrupt = ((in >> DBUS_DATA_START) & DMCONTROL_INTERRUPT) ? 'i' : '.';
|
|
char in_haltnot = ((in >> DBUS_DATA_START) & DMCONTROL_HALTNOT) ? 'h' : '.';
|
|
unsigned int in_data = in >> 2;
|
|
unsigned int in_address = in >> DBUS_ADDRESS_START;
|
|
|
|
log_printf_lf(LOG_LVL_DEBUG,
|
|
__FILE__, __LINE__, "scan",
|
|
"%db %s %c%c:%08x @%02x -> %s %c%c:%08x @%02x",
|
|
field->num_bits,
|
|
op_string[out_op], out_interrupt, out_haltnot, out_data,
|
|
out_address,
|
|
status_string[in_op], in_interrupt, in_haltnot, in_data,
|
|
in_address);
|
|
}
|
|
|
|
static dbus_status_t dbus_scan(struct target *target, uint16_t *address_in,
|
|
uint64_t *data_in, dbus_op_t op, uint16_t address_out, uint64_t data_out)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
uint8_t in[8] = {0};
|
|
uint8_t out[8];
|
|
struct scan_field field = {
|
|
.num_bits = info->addrbits + DBUS_OP_SIZE + DBUS_DATA_SIZE,
|
|
.out_value = out,
|
|
.in_value = in
|
|
};
|
|
|
|
assert(info->addrbits != 0);
|
|
|
|
buf_set_u64(out, DBUS_OP_START, DBUS_OP_SIZE, op);
|
|
buf_set_u64(out, DBUS_DATA_START, DBUS_DATA_SIZE, data_out);
|
|
buf_set_u64(out, DBUS_ADDRESS_START, info->addrbits, address_out);
|
|
|
|
/* Assume dbus is already selected. */
|
|
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
|
|
|
|
int idle_count = info->dtmcontrol_idle + info->dbus_busy_delay;
|
|
|
|
if (idle_count) {
|
|
jtag_add_runtest(idle_count, TAP_IDLE);
|
|
}
|
|
|
|
int retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("dbus_scan failed jtag scan");
|
|
return retval;
|
|
}
|
|
|
|
if (data_in) {
|
|
*data_in = buf_get_u64(in, DBUS_DATA_START, DBUS_DATA_SIZE);
|
|
}
|
|
|
|
if (address_in) {
|
|
*address_in = buf_get_u32(in, DBUS_ADDRESS_START, info->addrbits);
|
|
}
|
|
|
|
dump_field(&field);
|
|
|
|
return buf_get_u32(in, DBUS_OP_START, DBUS_OP_SIZE);
|
|
}
|
|
|
|
static uint64_t dbus_read(struct target *target, uint16_t address)
|
|
{
|
|
uint64_t value;
|
|
dbus_status_t status;
|
|
uint16_t address_in;
|
|
|
|
unsigned i = 0;
|
|
do {
|
|
status = dbus_scan(target, &address_in, &value, DBUS_OP_READ, address, 0);
|
|
if (status == DBUS_STATUS_BUSY) {
|
|
increase_dbus_busy_delay(target);
|
|
}
|
|
} while (((status == DBUS_STATUS_BUSY) || (address_in != address)) &&
|
|
i++ < 256);
|
|
|
|
if (status != DBUS_STATUS_SUCCESS) {
|
|
LOG_ERROR("failed read from 0x%x; value=0x%" PRIx64 ", status=%d\n", address, value, status);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static void dbus_write(struct target *target, uint16_t address, uint64_t value)
|
|
{
|
|
dbus_status_t status = DBUS_STATUS_BUSY;
|
|
unsigned i = 0;
|
|
while (status == DBUS_STATUS_BUSY && i++ < 256) {
|
|
status = dbus_scan(target, NULL, NULL, DBUS_OP_WRITE, address, value);
|
|
if (status == DBUS_STATUS_BUSY) {
|
|
increase_dbus_busy_delay(target);
|
|
}
|
|
}
|
|
if (status != DBUS_STATUS_SUCCESS) {
|
|
LOG_ERROR("failed to write 0x%" PRIx64 " to 0x%x; status=%d\n", value, address, status);
|
|
}
|
|
}
|
|
|
|
/*** scans "class" ***/
|
|
|
|
typedef struct {
|
|
// Number of scans that space is reserved for.
|
|
unsigned int scan_count;
|
|
// Size reserved in memory for each scan, in bytes.
|
|
unsigned int scan_size;
|
|
unsigned int next_scan;
|
|
uint8_t *in;
|
|
uint8_t *out;
|
|
struct scan_field *field;
|
|
const struct target *target;
|
|
} scans_t;
|
|
|
|
static scans_t *scans_new(struct target *target, unsigned int scan_count)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
scans_t *scans = malloc(sizeof(scans_t));
|
|
scans->scan_count = scan_count;
|
|
// This code also gets called before xlen is detected.
|
|
if (info->xlen)
|
|
scans->scan_size = 2 + info->xlen / 8;
|
|
else
|
|
scans->scan_size = 2 + 128 / 8;
|
|
scans->next_scan = 0;
|
|
scans->in = calloc(scans->scan_size, scans->scan_count);
|
|
scans->out = calloc(scans->scan_size, scans->scan_count);
|
|
scans->field = calloc(scans->scan_count, sizeof(struct scan_field));
|
|
scans->target = target;
|
|
return scans;
|
|
}
|
|
|
|
static scans_t *scans_delete(scans_t *scans)
|
|
{
|
|
assert(scans);
|
|
free(scans->field);
|
|
free(scans->out);
|
|
free(scans->in);
|
|
free(scans);
|
|
return NULL;
|
|
}
|
|
|
|
static void scans_reset(scans_t *scans)
|
|
{
|
|
scans->next_scan = 0;
|
|
}
|
|
|
|
static void scans_dump(scans_t *scans)
|
|
{
|
|
for (unsigned int i = 0; i < scans->next_scan; i++) {
|
|
dump_field(&scans->field[i]);
|
|
}
|
|
}
|
|
|
|
static int scans_execute(scans_t *scans)
|
|
{
|
|
int retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("failed jtag scan: %d", retval);
|
|
return retval;
|
|
}
|
|
|
|
scans_dump(scans);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/** Add a 32-bit dbus write to the scans structure. */
|
|
static void scans_add_write32(scans_t *scans, uint16_t address, uint32_t data,
|
|
bool set_interrupt)
|
|
{
|
|
const unsigned int i = scans->next_scan;
|
|
int data_offset = scans->scan_size * i;
|
|
add_dbus_scan(scans->target, &scans->field[i], scans->out + data_offset,
|
|
scans->in + data_offset, DBUS_OP_WRITE, address,
|
|
(set_interrupt ? DMCONTROL_INTERRUPT : 0) | DMCONTROL_HALTNOT | data);
|
|
scans->next_scan++;
|
|
assert(scans->next_scan <= scans->scan_count);
|
|
}
|
|
|
|
/** Add a 32-bit dbus write for an instruction that jumps to the beginning of
|
|
* debug RAM. */
|
|
static void scans_add_write_jump(scans_t *scans, uint16_t address,
|
|
bool set_interrupt)
|
|
{
|
|
scans_add_write32(scans, address,
|
|
jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*address))),
|
|
set_interrupt);
|
|
}
|
|
|
|
/** Add a 32-bit dbus write for an instruction that loads from the indicated
|
|
* slot. */
|
|
static void scans_add_write_load(scans_t *scans, uint16_t address,
|
|
unsigned int reg, slot_t slot, bool set_interrupt)
|
|
{
|
|
scans_add_write32(scans, address, load_slot(scans->target, reg, slot),
|
|
set_interrupt);
|
|
}
|
|
|
|
/** Add a 32-bit dbus write for an instruction that stores to the indicated
|
|
* slot. */
|
|
static void scans_add_write_store(scans_t *scans, uint16_t address,
|
|
unsigned int reg, slot_t slot, bool set_interrupt)
|
|
{
|
|
scans_add_write32(scans, address, store_slot(scans->target, reg, slot),
|
|
set_interrupt);
|
|
}
|
|
|
|
/** Add a 32-bit dbus read. */
|
|
static void scans_add_read32(scans_t *scans, uint16_t address, bool set_interrupt)
|
|
{
|
|
assert(scans->next_scan < scans->scan_count);
|
|
const unsigned int i = scans->next_scan;
|
|
int data_offset = scans->scan_size * i;
|
|
add_dbus_scan(scans->target, &scans->field[i], scans->out + data_offset,
|
|
scans->in + data_offset, DBUS_OP_READ, address,
|
|
(set_interrupt ? DMCONTROL_INTERRUPT : 0) | DMCONTROL_HALTNOT);
|
|
scans->next_scan++;
|
|
}
|
|
|
|
/** Add one or more scans to read the indicated slot. */
|
|
static void scans_add_read(scans_t *scans, slot_t slot, bool set_interrupt)
|
|
{
|
|
const struct target *target = scans->target;
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
switch (info->xlen) {
|
|
case 32:
|
|
scans_add_read32(scans, slot_offset(target, slot), set_interrupt);
|
|
break;
|
|
case 64:
|
|
scans_add_read32(scans, slot_offset(target, slot), false);
|
|
scans_add_read32(scans, slot_offset(target, slot) + 1, set_interrupt);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint32_t scans_get_u32(scans_t *scans, unsigned int index,
|
|
unsigned first, unsigned num)
|
|
{
|
|
return buf_get_u32(scans->in + scans->scan_size * index, first, num);
|
|
}
|
|
|
|
static uint64_t scans_get_u64(scans_t *scans, unsigned int index,
|
|
unsigned first, unsigned num)
|
|
{
|
|
return buf_get_u64(scans->in + scans->scan_size * index, first, num);
|
|
}
|
|
|
|
/*** end of scans class ***/
|
|
|
|
static uint32_t dram_read32(struct target *target, unsigned int index)
|
|
{
|
|
uint16_t address = dram_address(index);
|
|
uint32_t value = dbus_read(target, address);
|
|
return value;
|
|
}
|
|
|
|
static void dram_write32(struct target *target, unsigned int index, uint32_t value,
|
|
bool set_interrupt)
|
|
{
|
|
uint64_t dbus_value = DMCONTROL_HALTNOT | value;
|
|
if (set_interrupt)
|
|
dbus_value |= DMCONTROL_INTERRUPT;
|
|
dbus_write(target, dram_address(index), dbus_value);
|
|
}
|
|
|
|
/** Read the haltnot and interrupt bits. */
|
|
static bits_t read_bits(struct target *target)
|
|
{
|
|
uint64_t value;
|
|
dbus_status_t status;
|
|
uint16_t address_in;
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
bits_t err_result = {
|
|
.haltnot = 0,
|
|
.interrupt = 0
|
|
};
|
|
|
|
do {
|
|
unsigned i = 0;
|
|
do {
|
|
status = dbus_scan(target, &address_in, &value, DBUS_OP_READ, 0, 0);
|
|
if (status == DBUS_STATUS_BUSY) {
|
|
if (address_in == (1<<info->addrbits) - 1 &&
|
|
value == (1ULL<<DBUS_DATA_SIZE) - 1) {
|
|
LOG_ERROR("TDO seems to be stuck high.");
|
|
return err_result;
|
|
}
|
|
increase_dbus_busy_delay(target);
|
|
}
|
|
} while (status == DBUS_STATUS_BUSY && i++ < 256);
|
|
|
|
if (i >= 256) {
|
|
LOG_ERROR("Failed to read from 0x%x; status=%d", address_in, status);
|
|
return err_result;
|
|
}
|
|
} while (address_in > 0x10 && address_in != DMCONTROL);
|
|
|
|
bits_t result = {
|
|
.haltnot = get_field(value, DMCONTROL_HALTNOT),
|
|
.interrupt = get_field(value, DMCONTROL_INTERRUPT)
|
|
};
|
|
return result;
|
|
}
|
|
|
|
static int wait_for_debugint_clear(struct target *target, bool ignore_first)
|
|
{
|
|
time_t start = time(NULL);
|
|
if (ignore_first) {
|
|
// Throw away the results of the first read, since they'll contain the
|
|
// result of the read that happened just before debugint was set.
|
|
// (Assuming the last scan before calling this function was one that
|
|
// sets debugint.)
|
|
read_bits(target);
|
|
}
|
|
while (1) {
|
|
bits_t bits = read_bits(target);
|
|
if (!bits.interrupt) {
|
|
return ERROR_OK;
|
|
}
|
|
if (time(NULL) - start > WALL_CLOCK_TIMEOUT) {
|
|
LOG_ERROR("Timed out waiting for debug int to clear.");
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int dram_check32(struct target *target, unsigned int index,
|
|
uint32_t expected)
|
|
{
|
|
uint16_t address = dram_address(index);
|
|
uint32_t actual = dbus_read(target, address);
|
|
if (expected != actual) {
|
|
LOG_ERROR("Wrote 0x%x to Debug RAM at %d, but read back 0x%x",
|
|
expected, index, actual);
|
|
return ERROR_FAIL;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static void cache_set32(struct target *target, unsigned int index, uint32_t data)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
if (info->dram_cache[index].valid &&
|
|
info->dram_cache[index].data == data) {
|
|
// This is already preset on the target.
|
|
LOG_DEBUG("cache[0x%x] = 0x%x (hit)", index, data);
|
|
return;
|
|
}
|
|
LOG_DEBUG("cache[0x%x] = 0x%x", index, data);
|
|
info->dram_cache[index].data = data;
|
|
info->dram_cache[index].valid = true;
|
|
info->dram_cache[index].dirty = true;
|
|
}
|
|
|
|
static void cache_set(struct target *target, slot_t slot, uint64_t data)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
unsigned int offset = slot_offset(target, slot);
|
|
cache_set32(target, offset, data);
|
|
if (info->xlen > 32) {
|
|
cache_set32(target, offset + 1, data >> 32);
|
|
}
|
|
}
|
|
|
|
static void cache_set_jump(struct target *target, unsigned int index)
|
|
{
|
|
cache_set32(target, index,
|
|
jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*index))));
|
|
}
|
|
|
|
static void cache_set_load(struct target *target, unsigned int index,
|
|
unsigned int reg, slot_t slot)
|
|
{
|
|
uint16_t offset = DEBUG_RAM_START + 4 * slot_offset(target, slot);
|
|
cache_set32(target, index, load(target, reg, ZERO, offset));
|
|
}
|
|
|
|
static void cache_set_store(struct target *target, unsigned int index,
|
|
unsigned int reg, slot_t slot)
|
|
{
|
|
uint16_t offset = DEBUG_RAM_START + 4 * slot_offset(target, slot);
|
|
cache_set32(target, index, store(target, reg, ZERO, offset));
|
|
}
|
|
|
|
static void dump_debug_ram(struct target *target)
|
|
{
|
|
for (unsigned int i = 0; i < DRAM_CACHE_SIZE; i++) {
|
|
uint32_t value = dram_read32(target, i);
|
|
LOG_ERROR("Debug RAM 0x%x: 0x%08x", i, value);
|
|
}
|
|
}
|
|
|
|
/* Call this if the code you just ran writes to debug RAM entries 0 through 3. */
|
|
static void cache_invalidate(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
for (unsigned int i = 0; i < info->dramsize; i++) {
|
|
info->dram_cache[i].valid = false;
|
|
info->dram_cache[i].dirty = false;
|
|
}
|
|
}
|
|
|
|
/* Called by cache_write() after the program has run. Also call this if you're
|
|
* running programs without calling cache_write(). */
|
|
static void cache_clean(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
for (unsigned int i = 0; i < info->dramsize; i++) {
|
|
if (i >= 4) {
|
|
info->dram_cache[i].valid = false;
|
|
}
|
|
info->dram_cache[i].dirty = false;
|
|
}
|
|
}
|
|
|
|
static int cache_check(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
int error = 0;
|
|
|
|
for (unsigned int i = 0; i < info->dramsize; i++) {
|
|
if (info->dram_cache[i].valid && !info->dram_cache[i].dirty) {
|
|
if (dram_check32(target, i, info->dram_cache[i].data) != ERROR_OK) {
|
|
error++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (error) {
|
|
dump_debug_ram(target);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/** Write cache to the target, and optionally run the program.
|
|
* Then read the value at address into the cache, assuming address < 128. */
|
|
#define CACHE_NO_READ 128
|
|
static int cache_write(struct target *target, unsigned int address, bool run)
|
|
{
|
|
LOG_DEBUG("enter");
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
scans_t *scans = scans_new(target, info->dramsize + 2);
|
|
|
|
unsigned int last = info->dramsize;
|
|
for (unsigned int i = 0; i < info->dramsize; i++) {
|
|
if (info->dram_cache[i].dirty) {
|
|
last = i;
|
|
}
|
|
}
|
|
|
|
if (last == info->dramsize) {
|
|
// Nothing needs to be written to RAM.
|
|
dbus_write(target, DMCONTROL, DMCONTROL_HALTNOT | DMCONTROL_INTERRUPT);
|
|
|
|
} else {
|
|
for (unsigned int i = 0; i < info->dramsize; i++) {
|
|
if (info->dram_cache[i].dirty) {
|
|
bool set_interrupt = (i == last && run);
|
|
scans_add_write32(scans, i, info->dram_cache[i].data,
|
|
set_interrupt);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (run || address < CACHE_NO_READ) {
|
|
// Throw away the results of the first read, since it'll contain the
|
|
// result of the read that happened just before debugint was set.
|
|
scans_add_read32(scans, address, false);
|
|
|
|
// This scan contains the results of the read the caller requested, as
|
|
// well as an interrupt bit worth looking at.
|
|
scans_add_read32(scans, address, false);
|
|
}
|
|
|
|
int retval = scans_execute(scans);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("JTAG execute failed.");
|
|
return retval;
|
|
}
|
|
|
|
int errors = 0;
|
|
for (unsigned int i = 0; i < scans->next_scan; i++) {
|
|
dbus_status_t status = scans_get_u32(scans, i, DBUS_OP_START,
|
|
DBUS_OP_SIZE);
|
|
switch (status) {
|
|
case DBUS_STATUS_SUCCESS:
|
|
break;
|
|
case DBUS_STATUS_FAILED:
|
|
LOG_ERROR("Debug RAM write failed. Hardware error?");
|
|
return ERROR_FAIL;
|
|
case DBUS_STATUS_BUSY:
|
|
errors++;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Got invalid bus access status: %d", status);
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
if (errors) {
|
|
increase_dbus_busy_delay(target);
|
|
|
|
// Try again, using the slow careful code.
|
|
// Write all RAM, just to be extra cautious.
|
|
for (unsigned int i = 0; i < info->dramsize; i++) {
|
|
if (i == last && run) {
|
|
dram_write32(target, last, info->dram_cache[last].data, true);
|
|
} else {
|
|
dram_write32(target, i, info->dram_cache[i].data, false);
|
|
}
|
|
info->dram_cache[i].dirty = false;
|
|
}
|
|
if (run) {
|
|
cache_clean(target);
|
|
}
|
|
|
|
if (wait_for_debugint_clear(target, true) != ERROR_OK) {
|
|
LOG_ERROR("Debug interrupt didn't clear.");
|
|
dump_debug_ram(target);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
} else {
|
|
if (run) {
|
|
cache_clean(target);
|
|
} else {
|
|
for (unsigned int i = 0; i < info->dramsize; i++) {
|
|
info->dram_cache[i].dirty = false;
|
|
}
|
|
}
|
|
|
|
if (run || address < CACHE_NO_READ) {
|
|
int interrupt = scans_get_u32(scans, scans->next_scan-1,
|
|
DBUS_DATA_START + 33, 1);
|
|
if (interrupt) {
|
|
increase_interrupt_high_delay(target);
|
|
// Slow path wait for it to clear.
|
|
if (wait_for_debugint_clear(target, false) != ERROR_OK) {
|
|
LOG_ERROR("Debug interrupt didn't clear.");
|
|
dump_debug_ram(target);
|
|
return ERROR_FAIL;
|
|
}
|
|
} else {
|
|
// We read a useful value in that last scan.
|
|
unsigned int read_addr = scans_get_u32(scans, scans->next_scan-1,
|
|
DBUS_ADDRESS_START, info->addrbits);
|
|
if (read_addr != address) {
|
|
LOG_INFO("Got data from 0x%x but expected it from 0x%x",
|
|
read_addr, address);
|
|
}
|
|
info->dram_cache[read_addr].data =
|
|
scans_get_u32(scans, scans->next_scan-1, DBUS_DATA_START, 32);
|
|
info->dram_cache[read_addr].valid = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
scans_delete(scans);
|
|
LOG_DEBUG("exit");
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
uint32_t cache_get32(struct target *target, unsigned int address)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
if (!info->dram_cache[address].valid) {
|
|
info->dram_cache[address].data = dram_read32(target, address);
|
|
info->dram_cache[address].valid = true;
|
|
}
|
|
return info->dram_cache[address].data;
|
|
}
|
|
|
|
uint64_t cache_get(struct target *target, slot_t slot)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
unsigned int offset = slot_offset(target, slot);
|
|
uint64_t value = cache_get32(target, offset);
|
|
if (info->xlen > 32) {
|
|
value |= ((uint64_t) cache_get32(target, offset + 1)) << 32;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
/* Write instruction that jumps from the specified word in Debug RAM to resume
|
|
* in Debug ROM. */
|
|
static void dram_write_jump(struct target *target, unsigned int index,
|
|
bool set_interrupt)
|
|
{
|
|
dram_write32(target, index,
|
|
jal(0, (uint32_t) (DEBUG_ROM_RESUME - (DEBUG_RAM_START + 4*index))),
|
|
set_interrupt);
|
|
}
|
|
|
|
static int wait_for_state(struct target *target, enum target_state state)
|
|
{
|
|
time_t start = time(NULL);
|
|
while (1) {
|
|
int result = riscv_poll(target);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
if (target->state == state) {
|
|
return ERROR_OK;
|
|
}
|
|
if (time(NULL) - start > WALL_CLOCK_TIMEOUT) {
|
|
LOG_ERROR("Timed out waiting for state %d.", state);
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int read_csr(struct target *target, uint64_t *value, uint32_t csr)
|
|
{
|
|
cache_set32(target, 0, csrr(S0, csr));
|
|
cache_set_store(target, 1, S0, SLOT0);
|
|
cache_set_jump(target, 2);
|
|
if (cache_write(target, 4, true) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
*value = cache_get(target, SLOT0);
|
|
LOG_DEBUG("csr 0x%x = 0x%" PRIx64, csr, *value);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int write_csr(struct target *target, uint32_t csr, uint64_t value)
|
|
{
|
|
LOG_DEBUG("csr 0x%x <- 0x%" PRIx64, csr, value);
|
|
cache_set_load(target, 0, S0, SLOT0);
|
|
cache_set32(target, 1, csrw(S0, csr));
|
|
cache_set_jump(target, 2);
|
|
cache_set(target, SLOT0, value);
|
|
if (cache_write(target, 4, true) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int write_gpr(struct target *target, unsigned int gpr, uint64_t value)
|
|
{
|
|
cache_set_load(target, 0, gpr, SLOT0);
|
|
cache_set_jump(target, 1);
|
|
cache_set(target, SLOT0, value);
|
|
if (cache_write(target, 4, true) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int maybe_read_tselect(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
if (info->tselect_dirty) {
|
|
int result = read_csr(target, &info->tselect, CSR_TSELECT);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
info->tselect_dirty = false;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int maybe_write_tselect(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
if (!info->tselect_dirty) {
|
|
int result = write_csr(target, CSR_TSELECT, info->tselect);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
info->tselect_dirty = true;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int execute_resume(struct target *target, bool step)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
LOG_DEBUG("step=%d", step);
|
|
|
|
maybe_write_tselect(target);
|
|
|
|
// TODO: check if dpc is dirty (which also is true if an exception was hit
|
|
// at any time)
|
|
cache_set_load(target, 0, S0, SLOT0);
|
|
cache_set32(target, 1, csrw(S0, CSR_DPC));
|
|
cache_set_jump(target, 2);
|
|
cache_set(target, SLOT0, info->dpc);
|
|
if (cache_write(target, 4, true) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
struct reg *mstatus_reg = &target->reg_cache->reg_list[REG_MSTATUS];
|
|
if (mstatus_reg->valid) {
|
|
uint64_t mstatus_user = buf_get_u64(mstatus_reg->value, 0, info->xlen);
|
|
if (mstatus_user != info->mstatus_actual) {
|
|
cache_set_load(target, 0, S0, SLOT0);
|
|
cache_set32(target, 1, csrw(S0, CSR_MSTATUS));
|
|
cache_set_jump(target, 2);
|
|
cache_set(target, SLOT0, mstatus_user);
|
|
if (cache_write(target, 4, true) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
info->dcsr |= DCSR_EBREAKM | DCSR_EBREAKH | DCSR_EBREAKS | DCSR_EBREAKU;
|
|
info->dcsr &= ~DCSR_HALT;
|
|
|
|
if (step) {
|
|
info->dcsr |= DCSR_STEP;
|
|
} else {
|
|
info->dcsr &= ~DCSR_STEP;
|
|
}
|
|
|
|
dram_write32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16), false);
|
|
dram_write32(target, 1, csrw(S0, CSR_DCSR), false);
|
|
dram_write32(target, 2, fence_i(), false);
|
|
dram_write_jump(target, 3, false);
|
|
|
|
// Write DCSR value, set interrupt and clear haltnot.
|
|
uint64_t dbus_value = DMCONTROL_INTERRUPT | info->dcsr;
|
|
dbus_write(target, dram_address(4), dbus_value);
|
|
|
|
cache_invalidate(target);
|
|
|
|
if (wait_for_debugint_clear(target, true) != ERROR_OK) {
|
|
LOG_ERROR("Debug interrupt didn't clear.");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
target->state = TARGET_RUNNING;
|
|
register_cache_invalidate(target->reg_cache);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
// Execute a step, and wait for reentry into Debug Mode.
|
|
static int full_step(struct target *target, bool announce)
|
|
{
|
|
int result = execute_resume(target, true);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
time_t start = time(NULL);
|
|
while (1) {
|
|
result = poll_target(target, announce);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
if (target->state != TARGET_DEBUG_RUNNING)
|
|
break;
|
|
if (time(NULL) - start > WALL_CLOCK_TIMEOUT) {
|
|
LOG_ERROR("Timed out waiting for step to complete.");
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int resume(struct target *target, int debug_execution, bool step)
|
|
{
|
|
if (debug_execution) {
|
|
LOG_ERROR("TODO: debug_execution is true");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return execute_resume(target, step);
|
|
}
|
|
|
|
/** Update register sizes based on xlen. */
|
|
static void update_reg_list(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
if (info->reg_values) {
|
|
free(info->reg_values);
|
|
}
|
|
info->reg_values = malloc(REG_COUNT * info->xlen / 4);
|
|
|
|
for (unsigned int i = 0; i < REG_COUNT; i++) {
|
|
struct reg *r = &target->reg_cache->reg_list[i];
|
|
r->value = info->reg_values + i * info->xlen / 4;
|
|
if (r->dirty) {
|
|
LOG_ERROR("Register %d was dirty. Its value is lost.", i);
|
|
}
|
|
if (i == REG_PRIV) {
|
|
r->size = 8;
|
|
} else {
|
|
r->size = info->xlen;
|
|
}
|
|
r->valid = false;
|
|
}
|
|
}
|
|
|
|
static uint64_t reg_cache_get(struct target *target, unsigned int number)
|
|
{
|
|
struct reg *r = &target->reg_cache->reg_list[number];
|
|
if (!r->valid) {
|
|
LOG_ERROR("Register cache entry for %d is invalid!", number);
|
|
assert(r->valid);
|
|
}
|
|
uint64_t value = buf_get_u64(r->value, 0, r->size);
|
|
LOG_DEBUG("%s = 0x%" PRIx64, r->name, value);
|
|
return value;
|
|
}
|
|
|
|
static void reg_cache_set(struct target *target, unsigned int number,
|
|
uint64_t value)
|
|
{
|
|
struct reg *r = &target->reg_cache->reg_list[number];
|
|
LOG_DEBUG("%s <= 0x%" PRIx64, r->name, value);
|
|
r->valid = true;
|
|
buf_set_u64(r->value, 0, r->size, value);
|
|
}
|
|
|
|
static int update_mstatus_actual(struct target *target)
|
|
{
|
|
struct reg *mstatus_reg = &target->reg_cache->reg_list[REG_MSTATUS];
|
|
if (mstatus_reg->valid) {
|
|
// We previously made it valid.
|
|
return ERROR_OK;
|
|
}
|
|
|
|
// Force reading the register. In that process mstatus_actual will be
|
|
// updated.
|
|
return register_get(&target->reg_cache->reg_list[REG_MSTATUS]);
|
|
}
|
|
|
|
/*** OpenOCD target functions. ***/
|
|
|
|
static int register_get(struct reg *reg)
|
|
{
|
|
struct target *target = (struct target *) reg->arch_info;
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
maybe_write_tselect(target);
|
|
|
|
if (reg->number <= REG_XPR31) {
|
|
buf_set_u64(reg->value, 0, info->xlen, reg_cache_get(target, reg->number));
|
|
LOG_DEBUG("%s=0x%" PRIx64, reg->name, reg_cache_get(target, reg->number));
|
|
return ERROR_OK;
|
|
} else if (reg->number == REG_PC) {
|
|
buf_set_u32(reg->value, 0, 32, info->dpc);
|
|
reg->valid = true;
|
|
LOG_DEBUG("%s=0x%" PRIx64 " (cached)", reg->name, info->dpc);
|
|
return ERROR_OK;
|
|
} else if (reg->number >= REG_FPR0 && reg->number <= REG_FPR31) {
|
|
int result = update_mstatus_actual(target);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
unsigned i = 0;
|
|
if ((info->mstatus_actual & MSTATUS_FS) == 0) {
|
|
info->mstatus_actual = set_field(info->mstatus_actual, MSTATUS_FS, 1);
|
|
cache_set_load(target, i++, S0, SLOT1);
|
|
cache_set32(target, i++, csrw(S0, CSR_MSTATUS));
|
|
cache_set(target, SLOT1, info->mstatus_actual);
|
|
}
|
|
|
|
if (info->xlen == 32) {
|
|
cache_set32(target, i++, fsw(reg->number - REG_FPR0, 0, DEBUG_RAM_START + 16));
|
|
} else {
|
|
cache_set32(target, i++, fsd(reg->number - REG_FPR0, 0, DEBUG_RAM_START + 16));
|
|
}
|
|
cache_set_jump(target, i++);
|
|
} else if (reg->number >= REG_CSR0 && reg->number <= REG_CSR4095) {
|
|
cache_set32(target, 0, csrr(S0, reg->number - REG_CSR0));
|
|
cache_set_store(target, 1, S0, SLOT0);
|
|
cache_set_jump(target, 2);
|
|
} else if (reg->number == REG_PRIV) {
|
|
buf_set_u64(reg->value, 0, 8, get_field(info->dcsr, DCSR_PRV));
|
|
LOG_DEBUG("%s=%d (cached)", reg->name,
|
|
(int) get_field(info->dcsr, DCSR_PRV));
|
|
return ERROR_OK;
|
|
} else {
|
|
LOG_ERROR("Don't know how to read register %d (%s)", reg->number, reg->name);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (cache_write(target, 4, true) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
uint32_t exception = cache_get32(target, info->dramsize-1);
|
|
if (exception) {
|
|
LOG_ERROR("Got exception 0x%x when reading register %d", exception,
|
|
reg->number);
|
|
buf_set_u64(reg->value, 0, info->xlen, ~0);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
uint64_t value = cache_get(target, SLOT0);
|
|
LOG_DEBUG("%s=0x%" PRIx64, reg->name, value);
|
|
buf_set_u64(reg->value, 0, info->xlen, value);
|
|
|
|
if (reg->number == REG_MSTATUS) {
|
|
info->mstatus_actual = value;
|
|
reg->valid = true;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int register_write(struct target *target, unsigned int number,
|
|
uint64_t value)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
maybe_write_tselect(target);
|
|
|
|
if (number == S0) {
|
|
cache_set_load(target, 0, S0, SLOT0);
|
|
cache_set32(target, 1, csrw(S0, CSR_DSCRATCH));
|
|
cache_set_jump(target, 2);
|
|
} else if (number == S1) {
|
|
cache_set_load(target, 0, S0, SLOT0);
|
|
cache_set_store(target, 1, S0, SLOT_LAST);
|
|
cache_set_jump(target, 2);
|
|
} else if (number <= REG_XPR31) {
|
|
cache_set_load(target, 0, number - REG_XPR0, SLOT0);
|
|
cache_set_jump(target, 1);
|
|
} else if (number == REG_PC) {
|
|
info->dpc = value;
|
|
return ERROR_OK;
|
|
} else if (number >= REG_FPR0 && number <= REG_FPR31) {
|
|
int result = update_mstatus_actual(target);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
unsigned i = 0;
|
|
if ((info->mstatus_actual & MSTATUS_FS) == 0) {
|
|
info->mstatus_actual = set_field(info->mstatus_actual, MSTATUS_FS, 1);
|
|
cache_set_load(target, i++, S0, SLOT1);
|
|
cache_set32(target, i++, csrw(S0, CSR_MSTATUS));
|
|
cache_set(target, SLOT1, info->mstatus_actual);
|
|
}
|
|
|
|
if (info->xlen == 32) {
|
|
cache_set32(target, i++, flw(number - REG_FPR0, 0, DEBUG_RAM_START + 16));
|
|
} else {
|
|
cache_set32(target, i++, fld(number - REG_FPR0, 0, DEBUG_RAM_START + 16));
|
|
}
|
|
cache_set_jump(target, i++);
|
|
} else if (number >= REG_CSR0 && number <= REG_CSR4095) {
|
|
cache_set_load(target, 0, S0, SLOT0);
|
|
cache_set32(target, 1, csrw(S0, number - REG_CSR0));
|
|
cache_set_jump(target, 2);
|
|
|
|
if (number == REG_MSTATUS) {
|
|
info->mstatus_actual = value;
|
|
}
|
|
} else if (number == REG_PRIV) {
|
|
info->dcsr = set_field(info->dcsr, DCSR_PRV, value);
|
|
return ERROR_OK;
|
|
} else {
|
|
LOG_ERROR("Don't know how to write register %d", number);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
cache_set(target, SLOT0, value);
|
|
if (cache_write(target, info->dramsize - 1, true) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
uint32_t exception = cache_get32(target, info->dramsize-1);
|
|
if (exception) {
|
|
LOG_ERROR("Got exception 0x%x when writing register %d", exception,
|
|
number);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int register_set(struct reg *reg, uint8_t *buf)
|
|
{
|
|
struct target *target = (struct target *) reg->arch_info;
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
uint64_t value = buf_get_u64(buf, 0, info->xlen);
|
|
|
|
LOG_DEBUG("write 0x%" PRIx64 " to %s", value, reg->name);
|
|
struct reg *r = &target->reg_cache->reg_list[reg->number];
|
|
r->valid = true;
|
|
memcpy(r->value, buf, (r->size + 7) / 8);
|
|
|
|
return register_write(target, reg->number, value);
|
|
}
|
|
|
|
static struct reg_arch_type riscv_reg_arch_type = {
|
|
.get = register_get,
|
|
.set = register_set
|
|
};
|
|
|
|
static int riscv_init_target(struct command_context *cmd_ctx,
|
|
struct target *target)
|
|
{
|
|
LOG_DEBUG("riscv_init_target()");
|
|
target->arch_info = calloc(1, sizeof(riscv_info_t));
|
|
if (!target->arch_info)
|
|
return ERROR_FAIL;
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
select_dtmcontrol.num_bits = target->tap->ir_length;
|
|
select_dbus.num_bits = target->tap->ir_length;
|
|
select_idcode.num_bits = target->tap->ir_length;
|
|
|
|
target->reg_cache = calloc(1, sizeof(*target->reg_cache));
|
|
target->reg_cache->name = "RISC-V registers";
|
|
target->reg_cache->num_regs = REG_COUNT;
|
|
|
|
target->reg_cache->reg_list = calloc(REG_COUNT, sizeof(struct reg));
|
|
|
|
const unsigned int max_reg_name_len = 12;
|
|
info->reg_names = calloc(1, REG_COUNT * max_reg_name_len);
|
|
char *reg_name = info->reg_names;
|
|
info->reg_values = NULL;
|
|
|
|
for (unsigned int i = 0; i < REG_COUNT; i++) {
|
|
struct reg *r = &target->reg_cache->reg_list[i];
|
|
r->number = i;
|
|
r->caller_save = true;
|
|
r->dirty = false;
|
|
r->valid = false;
|
|
r->exist = true;
|
|
r->type = &riscv_reg_arch_type;
|
|
r->arch_info = target;
|
|
if (i <= REG_XPR31) {
|
|
sprintf(reg_name, "x%d", i);
|
|
} else if (i == REG_PC) {
|
|
sprintf(reg_name, "pc");
|
|
} else if (i >= REG_FPR0 && i <= REG_FPR31) {
|
|
sprintf(reg_name, "f%d", i - REG_FPR0);
|
|
} else if (i >= REG_CSR0 && i <= REG_CSR4095) {
|
|
sprintf(reg_name, "csr%d", i - REG_CSR0);
|
|
} else if (i == REG_PRIV) {
|
|
sprintf(reg_name, "priv");
|
|
}
|
|
if (reg_name[0]) {
|
|
r->name = reg_name;
|
|
}
|
|
reg_name += strlen(reg_name) + 1;
|
|
assert(reg_name < info->reg_names + REG_COUNT * max_reg_name_len);
|
|
}
|
|
update_reg_list(target);
|
|
|
|
memset(info->trigger_unique_id, 0xff, sizeof(info->trigger_unique_id));
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static void riscv_deinit_target(struct target *target)
|
|
{
|
|
LOG_DEBUG("riscv_deinit_target()");
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
free(info);
|
|
target->arch_info = NULL;
|
|
}
|
|
|
|
static int riscv_halt(struct target *target)
|
|
{
|
|
LOG_DEBUG("riscv_halt()");
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
cache_set32(target, 0, csrsi(CSR_DCSR, DCSR_HALT));
|
|
cache_set32(target, 1, csrr(S0, CSR_MHARTID));
|
|
cache_set32(target, 2, sw(S0, ZERO, SETHALTNOT));
|
|
cache_set_jump(target, 3);
|
|
|
|
if (cache_write(target, 4, true) != ERROR_OK) {
|
|
LOG_ERROR("cache_write() failed.");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int add_trigger(struct target *target, struct trigger *trigger)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
maybe_read_tselect(target);
|
|
|
|
unsigned int i;
|
|
for (i = 0; i < info->trigger_count; i++) {
|
|
if (info->trigger_unique_id[i] != -1) {
|
|
continue;
|
|
}
|
|
|
|
write_csr(target, CSR_TSELECT, i);
|
|
|
|
uint64_t tdata1;
|
|
read_csr(target, &tdata1, CSR_TDATA1);
|
|
int type = get_field(tdata1, MCONTROL_TYPE(info->xlen));
|
|
|
|
if (type != 2) {
|
|
continue;
|
|
}
|
|
|
|
if (tdata1 & (MCONTROL_EXECUTE | MCONTROL_STORE | MCONTROL_LOAD)) {
|
|
// Trigger is already in use, presumably by user code.
|
|
continue;
|
|
}
|
|
|
|
// address/data match trigger
|
|
tdata1 |= MCONTROL_DMODE(info->xlen);
|
|
tdata1 = set_field(tdata1, MCONTROL_ACTION,
|
|
MCONTROL_ACTION_DEBUG_MODE);
|
|
tdata1 = set_field(tdata1, MCONTROL_MATCH, MCONTROL_MATCH_EQUAL);
|
|
tdata1 |= MCONTROL_M;
|
|
if (info->misa & (1 << ('H' - 'A')))
|
|
tdata1 |= MCONTROL_H;
|
|
if (info->misa & (1 << ('S' - 'A')))
|
|
tdata1 |= MCONTROL_S;
|
|
if (info->misa & (1 << ('U' - 'A')))
|
|
tdata1 |= MCONTROL_U;
|
|
|
|
if (trigger->execute)
|
|
tdata1 |= MCONTROL_EXECUTE;
|
|
if (trigger->read)
|
|
tdata1 |= MCONTROL_LOAD;
|
|
if (trigger->write)
|
|
tdata1 |= MCONTROL_STORE;
|
|
|
|
write_csr(target, CSR_TDATA1, tdata1);
|
|
|
|
uint64_t tdata1_rb;
|
|
read_csr(target, &tdata1_rb, CSR_TDATA1);
|
|
LOG_DEBUG("tdata1=0x%" PRIx64, tdata1_rb);
|
|
|
|
if (tdata1 != tdata1_rb) {
|
|
LOG_DEBUG("Trigger %d doesn't support what we need; After writing 0x%"
|
|
PRIx64 " to tdata1 it contains 0x%" PRIx64,
|
|
i, tdata1, tdata1_rb);
|
|
write_csr(target, CSR_TDATA1, 0);
|
|
continue;
|
|
}
|
|
|
|
write_csr(target, CSR_TDATA2, trigger->address);
|
|
|
|
LOG_DEBUG("Using resource %d for bp %d", i,
|
|
trigger->unique_id);
|
|
info->trigger_unique_id[i] = trigger->unique_id;
|
|
break;
|
|
}
|
|
if (i >= info->trigger_count) {
|
|
LOG_ERROR("Couldn't find an available hardware trigger.");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int remove_trigger(struct target *target, struct trigger *trigger)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
maybe_read_tselect(target);
|
|
|
|
unsigned int i;
|
|
for (i = 0; i < info->trigger_count; i++) {
|
|
if (info->trigger_unique_id[i] == trigger->unique_id) {
|
|
break;
|
|
}
|
|
}
|
|
if (i >= info->trigger_count) {
|
|
LOG_ERROR("Couldn't find the hardware resources used by hardware "
|
|
"trigger.");
|
|
return ERROR_FAIL;
|
|
}
|
|
LOG_DEBUG("Stop using resource %d for bp %d", i, trigger->unique_id);
|
|
write_csr(target, CSR_TSELECT, i);
|
|
write_csr(target, CSR_TDATA1, 0);
|
|
info->trigger_unique_id[i] = -1;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static void trigger_from_breakpoint(struct trigger *trigger,
|
|
const struct breakpoint *breakpoint)
|
|
{
|
|
trigger->address = breakpoint->address;
|
|
trigger->length = breakpoint->length;
|
|
trigger->mask = ~0LL;
|
|
trigger->read = false;
|
|
trigger->write = false;
|
|
trigger->execute = true;
|
|
// unique_id is unique across both breakpoints and watchpoints.
|
|
trigger->unique_id = breakpoint->unique_id;
|
|
}
|
|
|
|
static void trigger_from_watchpoint(struct trigger *trigger,
|
|
const struct watchpoint *watchpoint)
|
|
{
|
|
trigger->address = watchpoint->address;
|
|
trigger->length = watchpoint->length;
|
|
trigger->mask = watchpoint->mask;
|
|
trigger->value = watchpoint->value;
|
|
trigger->read = (watchpoint->rw == WPT_READ || watchpoint->rw == WPT_ACCESS);
|
|
trigger->write = (watchpoint->rw == WPT_WRITE || watchpoint->rw == WPT_ACCESS);
|
|
trigger->execute = false;
|
|
// unique_id is unique across both breakpoints and watchpoints.
|
|
trigger->unique_id = watchpoint->unique_id;
|
|
}
|
|
|
|
static int riscv_add_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
if (breakpoint->type == BKPT_SOFT) {
|
|
if (target_read_memory(target, breakpoint->address, breakpoint->length, 1,
|
|
breakpoint->orig_instr) != ERROR_OK) {
|
|
LOG_ERROR("Failed to read original instruction at 0x%x",
|
|
breakpoint->address);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int retval;
|
|
if (breakpoint->length == 4) {
|
|
retval = target_write_u32(target, breakpoint->address, ebreak());
|
|
} else {
|
|
retval = target_write_u16(target, breakpoint->address, ebreak_c());
|
|
}
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Failed to write %d-byte breakpoint instruction at 0x%x",
|
|
breakpoint->length, breakpoint->address);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
} else if (breakpoint->type == BKPT_HARD) {
|
|
struct trigger trigger;
|
|
trigger_from_breakpoint(&trigger, breakpoint);
|
|
int result = add_trigger(target, &trigger);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
|
|
} else {
|
|
LOG_INFO("OpenOCD only supports hardware and software breakpoints.");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
breakpoint->set = true;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_remove_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
if (breakpoint->type == BKPT_SOFT) {
|
|
if (target_write_memory(target, breakpoint->address, breakpoint->length, 1,
|
|
breakpoint->orig_instr) != ERROR_OK) {
|
|
LOG_ERROR("Failed to restore instruction for %d-byte breakpoint at "
|
|
"0x%x", breakpoint->length, breakpoint->address);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
} else if (breakpoint->type == BKPT_HARD) {
|
|
struct trigger trigger;
|
|
trigger_from_breakpoint(&trigger, breakpoint);
|
|
int result = remove_trigger(target, &trigger);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
|
|
} else {
|
|
LOG_INFO("OpenOCD only supports hardware and software breakpoints.");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
breakpoint->set = false;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_add_watchpoint(struct target *target,
|
|
struct watchpoint *watchpoint)
|
|
{
|
|
struct trigger trigger;
|
|
trigger_from_watchpoint(&trigger, watchpoint);
|
|
|
|
int result = add_trigger(target, &trigger);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
watchpoint->set = true;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_remove_watchpoint(struct target *target,
|
|
struct watchpoint *watchpoint)
|
|
{
|
|
struct trigger trigger;
|
|
trigger_from_watchpoint(&trigger, watchpoint);
|
|
|
|
int result = remove_trigger(target, &trigger);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
watchpoint->set = false;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int strict_step(struct target *target, bool announce)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
LOG_DEBUG("enter");
|
|
|
|
struct breakpoint *breakpoint = target->breakpoints;
|
|
while (breakpoint) {
|
|
riscv_remove_breakpoint(target, breakpoint);
|
|
breakpoint = breakpoint->next;
|
|
}
|
|
|
|
struct watchpoint *watchpoint = target->watchpoints;
|
|
while (watchpoint) {
|
|
riscv_remove_watchpoint(target, watchpoint);
|
|
watchpoint = watchpoint->next;
|
|
}
|
|
|
|
int result = full_step(target, announce);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
|
|
breakpoint = target->breakpoints;
|
|
while (breakpoint) {
|
|
riscv_add_breakpoint(target, breakpoint);
|
|
breakpoint = breakpoint->next;
|
|
}
|
|
|
|
watchpoint = target->watchpoints;
|
|
while (watchpoint) {
|
|
riscv_add_watchpoint(target, watchpoint);
|
|
watchpoint = watchpoint->next;
|
|
}
|
|
|
|
info->need_strict_step = false;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_step(struct target *target, int current, uint32_t address,
|
|
int handle_breakpoints)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
if (!current) {
|
|
if (info->xlen > 32) {
|
|
LOG_WARNING("Asked to resume at 32-bit PC on %d-bit target.",
|
|
info->xlen);
|
|
}
|
|
int result = register_write(target, REG_PC, address);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
}
|
|
|
|
if (info->need_strict_step || handle_breakpoints) {
|
|
int result = strict_step(target, true);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
} else {
|
|
return resume(target, 0, true);
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_examine(struct target *target)
|
|
{
|
|
LOG_DEBUG("riscv_examine()");
|
|
if (target_was_examined(target)) {
|
|
return ERROR_OK;
|
|
}
|
|
|
|
// Don't need to select dbus, since the first thing we do is read dtmcontrol.
|
|
|
|
uint32_t dtmcontrol = dtmcontrol_scan(target, 0);
|
|
LOG_DEBUG("dtmcontrol=0x%x", dtmcontrol);
|
|
LOG_DEBUG(" addrbits=%d", get_field(dtmcontrol, DTMCONTROL_ADDRBITS));
|
|
LOG_DEBUG(" version=%d", get_field(dtmcontrol, DTMCONTROL_VERSION));
|
|
LOG_DEBUG(" idle=%d", get_field(dtmcontrol, DTMCONTROL_IDLE));
|
|
if (dtmcontrol == 0) {
|
|
LOG_ERROR("dtmcontrol is 0. Check JTAG connectivity/board power.");
|
|
return ERROR_FAIL;
|
|
}
|
|
if (get_field(dtmcontrol, DTMCONTROL_VERSION) != 0) {
|
|
LOG_ERROR("Unsupported DTM version %d. (dtmcontrol=0x%x)",
|
|
get_field(dtmcontrol, DTMCONTROL_VERSION), dtmcontrol);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
info->addrbits = get_field(dtmcontrol, DTMCONTROL_ADDRBITS);
|
|
info->dtmcontrol_idle = get_field(dtmcontrol, DTMCONTROL_IDLE);
|
|
if (info->dtmcontrol_idle == 0) {
|
|
// Some old SiFive cores don't set idle but need it to be 1.
|
|
uint32_t idcode = idcode_scan(target);
|
|
if (idcode == 0x10e31913)
|
|
info->dtmcontrol_idle = 1;
|
|
}
|
|
|
|
uint32_t dminfo = dbus_read(target, DMINFO);
|
|
LOG_DEBUG("dminfo: 0x%08x", dminfo);
|
|
LOG_DEBUG(" abussize=0x%x", get_field(dminfo, DMINFO_ABUSSIZE));
|
|
LOG_DEBUG(" serialcount=0x%x", get_field(dminfo, DMINFO_SERIALCOUNT));
|
|
LOG_DEBUG(" access128=%d", get_field(dminfo, DMINFO_ACCESS128));
|
|
LOG_DEBUG(" access64=%d", get_field(dminfo, DMINFO_ACCESS64));
|
|
LOG_DEBUG(" access32=%d", get_field(dminfo, DMINFO_ACCESS32));
|
|
LOG_DEBUG(" access16=%d", get_field(dminfo, DMINFO_ACCESS16));
|
|
LOG_DEBUG(" access8=%d", get_field(dminfo, DMINFO_ACCESS8));
|
|
LOG_DEBUG(" dramsize=0x%x", get_field(dminfo, DMINFO_DRAMSIZE));
|
|
LOG_DEBUG(" authenticated=0x%x", get_field(dminfo, DMINFO_AUTHENTICATED));
|
|
LOG_DEBUG(" authbusy=0x%x", get_field(dminfo, DMINFO_AUTHBUSY));
|
|
LOG_DEBUG(" authtype=0x%x", get_field(dminfo, DMINFO_AUTHTYPE));
|
|
LOG_DEBUG(" version=0x%x", get_field(dminfo, DMINFO_VERSION));
|
|
|
|
if (get_field(dminfo, DMINFO_VERSION) != 1) {
|
|
LOG_ERROR("OpenOCD only supports Debug Module version 1, not %d "
|
|
"(dminfo=0x%x)", get_field(dminfo, DMINFO_VERSION), dminfo);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
info->dramsize = get_field(dminfo, DMINFO_DRAMSIZE) + 1;
|
|
|
|
if (get_field(dminfo, DMINFO_AUTHTYPE) != 0) {
|
|
LOG_ERROR("Authentication required by RISC-V core but not "
|
|
"supported by OpenOCD. dminfo=0x%x", dminfo);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
// Figure out XLEN, and test writing all of Debug RAM while we're at it.
|
|
cache_set32(target, 0, xori(S1, ZERO, -1));
|
|
// 0xffffffff 0xffffffff:ffffffff 0xffffffff:ffffffff:ffffffff:ffffffff
|
|
cache_set32(target, 1, srli(S1, S1, 31));
|
|
// 0x00000001 0x00000001:ffffffff 0x00000001:ffffffff:ffffffff:ffffffff
|
|
cache_set32(target, 2, sw(S1, ZERO, DEBUG_RAM_START));
|
|
cache_set32(target, 3, srli(S1, S1, 31));
|
|
// 0x00000000 0x00000000:00000003 0x00000000:00000003:ffffffff:ffffffff
|
|
cache_set32(target, 4, sw(S1, ZERO, DEBUG_RAM_START + 4));
|
|
cache_set_jump(target, 5);
|
|
for (unsigned i = 6; i < info->dramsize; i++) {
|
|
cache_set32(target, i, i * 0x01020304);
|
|
}
|
|
|
|
cache_write(target, 0, false);
|
|
|
|
// Check that we can actually read/write dram.
|
|
if (cache_check(target) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
cache_write(target, 0, true);
|
|
cache_invalidate(target);
|
|
|
|
uint32_t word0 = cache_get32(target, 0);
|
|
uint32_t word1 = cache_get32(target, 1);
|
|
if (word0 == 1 && word1 == 0) {
|
|
info->xlen = 32;
|
|
} else if (word0 == 0xffffffff && word1 == 3) {
|
|
info->xlen = 64;
|
|
} else if (word0 == 0xffffffff && word1 == 0xffffffff) {
|
|
info->xlen = 128;
|
|
} else {
|
|
uint32_t exception = cache_get32(target, info->dramsize-1);
|
|
LOG_ERROR("Failed to discover xlen; word0=0x%x, word1=0x%x, exception=0x%x",
|
|
word0, word1, exception);
|
|
dump_debug_ram(target);
|
|
return ERROR_FAIL;
|
|
}
|
|
LOG_DEBUG("Discovered XLEN is %d", info->xlen);
|
|
|
|
// Update register list to match discovered XLEN.
|
|
update_reg_list(target);
|
|
|
|
if (read_csr(target, &info->misa, CSR_MISA) != ERROR_OK) {
|
|
LOG_ERROR("Failed to read misa.");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
info->never_halted = true;
|
|
|
|
int result = riscv_poll(target);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
|
|
target_set_examined(target);
|
|
LOG_INFO("Examined RISCV core; XLEN=%d, misa=0x%" PRIx64, info->xlen, info->misa);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static riscv_error_t handle_halt_routine(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
scans_t *scans = scans_new(target, 256);
|
|
|
|
// Read all GPRs as fast as we can, because gdb is going to ask for them
|
|
// anyway. Reading them one at a time is much slower.
|
|
|
|
// Write the jump back to address 1.
|
|
scans_add_write_jump(scans, 1, false);
|
|
for (int reg = 1; reg < 32; reg++) {
|
|
if (reg == S0 || reg == S1) {
|
|
continue;
|
|
}
|
|
|
|
// Write store instruction.
|
|
scans_add_write_store(scans, 0, reg, SLOT0, true);
|
|
|
|
// Read value.
|
|
scans_add_read(scans, SLOT0, false);
|
|
}
|
|
|
|
// Write store of s0 at index 1.
|
|
scans_add_write_store(scans, 1, S0, SLOT0, false);
|
|
// Write jump at index 2.
|
|
scans_add_write_jump(scans, 2, false);
|
|
|
|
// Read S1 from debug RAM
|
|
scans_add_write_load(scans, 0, S0, SLOT_LAST, true);
|
|
// Read value.
|
|
scans_add_read(scans, SLOT0, false);
|
|
|
|
// Read S0 from dscratch
|
|
unsigned int csr[] = {CSR_DSCRATCH, CSR_DPC, CSR_DCSR};
|
|
for (unsigned int i = 0; i < DIM(csr); i++) {
|
|
scans_add_write32(scans, 0, csrr(S0, csr[i]), true);
|
|
scans_add_read(scans, SLOT0, false);
|
|
}
|
|
|
|
// Final read to get the last value out.
|
|
scans_add_read32(scans, 4, false);
|
|
|
|
int retval = scans_execute(scans);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("JTAG execute failed: %d", retval);
|
|
goto error;
|
|
}
|
|
|
|
unsigned int dbus_busy = 0;
|
|
unsigned int interrupt_set = 0;
|
|
unsigned result = 0;
|
|
uint64_t value = 0;
|
|
reg_cache_set(target, 0, 0);
|
|
// The first scan result is the result from something old we don't care
|
|
// about.
|
|
for (unsigned int i = 1; i < scans->next_scan && dbus_busy == 0; i++) {
|
|
dbus_status_t status = scans_get_u32(scans, i, DBUS_OP_START,
|
|
DBUS_OP_SIZE);
|
|
uint64_t data = scans_get_u64(scans, i, DBUS_DATA_START, DBUS_DATA_SIZE);
|
|
uint32_t address = scans_get_u32(scans, i, DBUS_ADDRESS_START,
|
|
info->addrbits);
|
|
switch (status) {
|
|
case DBUS_STATUS_SUCCESS:
|
|
break;
|
|
case DBUS_STATUS_FAILED:
|
|
LOG_ERROR("Debug access failed. Hardware error?");
|
|
goto error;
|
|
case DBUS_STATUS_BUSY:
|
|
dbus_busy++;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Got invalid bus access status: %d", status);
|
|
return ERROR_FAIL;
|
|
}
|
|
if (data & DMCONTROL_INTERRUPT) {
|
|
interrupt_set++;
|
|
break;
|
|
}
|
|
if (address == 4 || address == 5) {
|
|
unsigned int reg;
|
|
switch (result) {
|
|
case 0: reg = 1; break;
|
|
case 1: reg = 2; break;
|
|
case 2: reg = 3; break;
|
|
case 3: reg = 4; break;
|
|
case 4: reg = 5; break;
|
|
case 5: reg = 6; break;
|
|
case 6: reg = 7; break;
|
|
// S0
|
|
// S1
|
|
case 7: reg = 10; break;
|
|
case 8: reg = 11; break;
|
|
case 9: reg = 12; break;
|
|
case 10: reg = 13; break;
|
|
case 11: reg = 14; break;
|
|
case 12: reg = 15; break;
|
|
case 13: reg = 16; break;
|
|
case 14: reg = 17; break;
|
|
case 15: reg = 18; break;
|
|
case 16: reg = 19; break;
|
|
case 17: reg = 20; break;
|
|
case 18: reg = 21; break;
|
|
case 19: reg = 22; break;
|
|
case 20: reg = 23; break;
|
|
case 21: reg = 24; break;
|
|
case 22: reg = 25; break;
|
|
case 23: reg = 26; break;
|
|
case 24: reg = 27; break;
|
|
case 25: reg = 28; break;
|
|
case 26: reg = 29; break;
|
|
case 27: reg = 30; break;
|
|
case 28: reg = 31; break;
|
|
case 29: reg = S1; break;
|
|
case 30: reg = S0; break;
|
|
case 31: reg = CSR_DPC; break;
|
|
case 32: reg = CSR_DCSR; break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
if (info->xlen == 32) {
|
|
reg_cache_set(target, reg, data & 0xffffffff);
|
|
result++;
|
|
} else if (info->xlen == 64) {
|
|
if (address == 4) {
|
|
value = data & 0xffffffff;
|
|
} else if (address == 5) {
|
|
reg_cache_set(target, reg, ((data & 0xffffffff) << 32) | value);
|
|
value = 0;
|
|
result++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dbus_busy) {
|
|
increase_dbus_busy_delay(target);
|
|
return RE_AGAIN;
|
|
}
|
|
if (interrupt_set) {
|
|
increase_interrupt_high_delay(target);
|
|
return RE_AGAIN;
|
|
}
|
|
|
|
// TODO: get rid of those 2 variables and talk to the cache directly.
|
|
info->dpc = reg_cache_get(target, CSR_DPC);
|
|
info->dcsr = reg_cache_get(target, CSR_DCSR);
|
|
|
|
scans = scans_delete(scans);
|
|
|
|
cache_invalidate(target);
|
|
|
|
return RE_OK;
|
|
|
|
error:
|
|
scans = scans_delete(scans);
|
|
return RE_FAIL;
|
|
}
|
|
|
|
static int handle_halt(struct target *target, bool announce)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
target->state = TARGET_HALTED;
|
|
|
|
riscv_error_t re;
|
|
do {
|
|
re = handle_halt_routine(target);
|
|
} while (re == RE_AGAIN);
|
|
if (re != RE_OK) {
|
|
LOG_ERROR("handle_halt_routine failed");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int cause = get_field(info->dcsr, DCSR_CAUSE);
|
|
switch (cause) {
|
|
case DCSR_CAUSE_SWBP:
|
|
target->debug_reason = DBG_REASON_BREAKPOINT;
|
|
break;
|
|
case DCSR_CAUSE_HWBP:
|
|
target->debug_reason = DBG_REASON_WPTANDBKPT;
|
|
// If we halted because of a data trigger, gdb doesn't know to do
|
|
// the disable-breakpoints-step-enable-breakpoints dance.
|
|
info->need_strict_step = true;
|
|
break;
|
|
case DCSR_CAUSE_DEBUGINT:
|
|
target->debug_reason = DBG_REASON_DBGRQ;
|
|
break;
|
|
case DCSR_CAUSE_STEP:
|
|
target->debug_reason = DBG_REASON_SINGLESTEP;
|
|
break;
|
|
case DCSR_CAUSE_HALT:
|
|
default:
|
|
LOG_ERROR("Invalid halt cause %d in DCSR (0x%" PRIx64 ")",
|
|
cause, info->dcsr);
|
|
}
|
|
|
|
if (info->never_halted) {
|
|
info->never_halted = false;
|
|
|
|
// Disable any hardware triggers that have dmode set. We can't have set
|
|
// them ourselves. Maybe they're left over from some killed debug
|
|
// session.
|
|
// Count the number of triggers while we're at it.
|
|
|
|
int result = maybe_read_tselect(target);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
for (info->trigger_count = 0; info->trigger_count < MAX_HWBPS; info->trigger_count++) {
|
|
write_csr(target, CSR_TSELECT, info->trigger_count);
|
|
uint64_t tselect_rb;
|
|
read_csr(target, &tselect_rb, CSR_TSELECT);
|
|
if (info->trigger_count != tselect_rb)
|
|
break;
|
|
uint64_t tdata1;
|
|
read_csr(target, &tdata1, CSR_TDATA1);
|
|
if ((tdata1 & MCONTROL_DMODE(info->xlen)) &&
|
|
(tdata1 & (MCONTROL_EXECUTE | MCONTROL_STORE | MCONTROL_LOAD))) {
|
|
write_csr(target, CSR_TDATA1, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (announce) {
|
|
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
|
|
}
|
|
|
|
const char *cause_string[] = {
|
|
"none",
|
|
"software breakpoint",
|
|
"hardware trigger",
|
|
"debug interrupt",
|
|
"step",
|
|
"halt"
|
|
};
|
|
// This is logged to the user so that gdb will show it when a user types
|
|
// 'monitor reset init'. At that time gdb appears to have the pc cached
|
|
// still so if a user manually inspects the pc it will still have the old
|
|
// value.
|
|
LOG_USER("halted at 0x%" PRIx64 " due to %s", info->dpc, cause_string[cause]);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int poll_target(struct target *target, bool announce)
|
|
{
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
// Inhibit debug logging during poll(), which isn't usually interesting and
|
|
// just fills up the screen/logs with clutter.
|
|
int old_debug_level = debug_level;
|
|
if (debug_level >= LOG_LVL_DEBUG) {
|
|
debug_level = LOG_LVL_INFO;
|
|
}
|
|
bits_t bits = read_bits(target);
|
|
debug_level = old_debug_level;
|
|
|
|
if (bits.haltnot && bits.interrupt) {
|
|
target->state = TARGET_DEBUG_RUNNING;
|
|
LOG_DEBUG("debug running");
|
|
} else if (bits.haltnot && !bits.interrupt) {
|
|
if (target->state != TARGET_HALTED) {
|
|
return handle_halt(target, announce);
|
|
}
|
|
} else if (!bits.haltnot && bits.interrupt) {
|
|
// Target is halting. There is no state for that, so don't change anything.
|
|
LOG_DEBUG("halting");
|
|
} else if (!bits.haltnot && !bits.interrupt) {
|
|
target->state = TARGET_RUNNING;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_poll(struct target *target)
|
|
{
|
|
return poll_target(target, true);
|
|
}
|
|
|
|
static int riscv_resume(struct target *target, int current, uint32_t address,
|
|
int handle_breakpoints, int debug_execution)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
if (!current) {
|
|
if (info->xlen > 32) {
|
|
LOG_WARNING("Asked to resume at 32-bit PC on %d-bit target.",
|
|
info->xlen);
|
|
}
|
|
int result = register_write(target, REG_PC, address);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
}
|
|
|
|
if (info->need_strict_step || handle_breakpoints) {
|
|
int result = strict_step(target, false);
|
|
if (result != ERROR_OK)
|
|
return result;
|
|
}
|
|
|
|
return resume(target, debug_execution, false);
|
|
}
|
|
|
|
static int riscv_assert_reset(struct target *target)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
// TODO: Maybe what I implemented here is more like soft_reset_halt()?
|
|
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
// The only assumption we can make is that the TAP was reset.
|
|
if (wait_for_debugint_clear(target, true) != ERROR_OK) {
|
|
LOG_ERROR("Debug interrupt didn't clear.");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
// Not sure what we should do when there are multiple cores.
|
|
// Here just reset the single hart we're talking to.
|
|
info->dcsr |= DCSR_EBREAKM | DCSR_EBREAKH | DCSR_EBREAKS |
|
|
DCSR_EBREAKU | DCSR_HALT;
|
|
if (target->reset_halt) {
|
|
info->dcsr |= DCSR_NDRESET;
|
|
} else {
|
|
info->dcsr |= DCSR_FULLRESET;
|
|
}
|
|
dram_write32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16), false);
|
|
dram_write32(target, 1, csrw(S0, CSR_DCSR), false);
|
|
// We shouldn't actually need the jump because a reset should happen.
|
|
dram_write_jump(target, 2, false);
|
|
dram_write32(target, 4, info->dcsr, true);
|
|
cache_invalidate(target);
|
|
|
|
target->state = TARGET_RESET;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_deassert_reset(struct target *target)
|
|
{
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
if (target->reset_halt) {
|
|
return wait_for_state(target, TARGET_HALTED);
|
|
} else {
|
|
return wait_for_state(target, TARGET_RUNNING);
|
|
}
|
|
}
|
|
|
|
static int riscv_read_memory(struct target *target, uint32_t address,
|
|
uint32_t size, uint32_t count, uint8_t *buffer)
|
|
{
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
cache_set32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
|
|
switch (size) {
|
|
case 1:
|
|
cache_set32(target, 1, lb(S1, S0, 0));
|
|
cache_set32(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16));
|
|
break;
|
|
case 2:
|
|
cache_set32(target, 1, lh(S1, S0, 0));
|
|
cache_set32(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16));
|
|
break;
|
|
case 4:
|
|
cache_set32(target, 1, lw(S1, S0, 0));
|
|
cache_set32(target, 2, sw(S1, ZERO, DEBUG_RAM_START + 16));
|
|
break;
|
|
default:
|
|
LOG_ERROR("Unsupported size: %d", size);
|
|
return ERROR_FAIL;
|
|
}
|
|
cache_set_jump(target, 3);
|
|
cache_write(target, CACHE_NO_READ, false);
|
|
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
const int max_batch_size = 256;
|
|
scans_t *scans = scans_new(target, max_batch_size);
|
|
|
|
uint32_t result_value = 0x777;
|
|
uint32_t i = 0;
|
|
while (i < count + 3) {
|
|
unsigned int batch_size = MIN(count + 3 - i, max_batch_size);
|
|
scans_reset(scans);
|
|
|
|
for (unsigned int j = 0; j < batch_size; j++) {
|
|
if (i + j == count) {
|
|
// Just insert a read so we can scan out the last value.
|
|
scans_add_read32(scans, 4, false);
|
|
} else if (i + j >= count + 1) {
|
|
// And check for errors.
|
|
scans_add_read32(scans, info->dramsize-1, false);
|
|
} else {
|
|
// Write the next address and set interrupt.
|
|
uint32_t offset = size * (i + j);
|
|
scans_add_write32(scans, 4, address + offset, true);
|
|
}
|
|
}
|
|
|
|
int retval = scans_execute(scans);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("JTAG execute failed: %d", retval);
|
|
goto error;
|
|
}
|
|
|
|
int dbus_busy = 0;
|
|
int execute_busy = 0;
|
|
for (unsigned int j = 0; j < batch_size; j++) {
|
|
dbus_status_t status = scans_get_u32(scans, j, DBUS_OP_START,
|
|
DBUS_OP_SIZE);
|
|
switch (status) {
|
|
case DBUS_STATUS_SUCCESS:
|
|
break;
|
|
case DBUS_STATUS_FAILED:
|
|
LOG_ERROR("Debug RAM write failed. Hardware error?");
|
|
goto error;
|
|
case DBUS_STATUS_BUSY:
|
|
dbus_busy++;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Got invalid bus access status: %d", status);
|
|
return ERROR_FAIL;
|
|
}
|
|
uint64_t data = scans_get_u64(scans, j, DBUS_DATA_START,
|
|
DBUS_DATA_SIZE);
|
|
if (data & DMCONTROL_INTERRUPT) {
|
|
execute_busy++;
|
|
}
|
|
if (i + j == count + 2) {
|
|
result_value = data;
|
|
} else if (i + j > 1) {
|
|
uint32_t offset = size * (i + j - 2);
|
|
switch (size) {
|
|
case 1:
|
|
buffer[offset] = data;
|
|
break;
|
|
case 2:
|
|
buffer[offset] = data;
|
|
buffer[offset+1] = data >> 8;
|
|
break;
|
|
case 4:
|
|
buffer[offset] = data;
|
|
buffer[offset+1] = data >> 8;
|
|
buffer[offset+2] = data >> 16;
|
|
buffer[offset+3] = data >> 24;
|
|
break;
|
|
}
|
|
}
|
|
LOG_DEBUG("j=%d status=%d data=%09" PRIx64, j, status, data);
|
|
}
|
|
if (dbus_busy) {
|
|
increase_dbus_busy_delay(target);
|
|
}
|
|
if (execute_busy) {
|
|
increase_interrupt_high_delay(target);
|
|
}
|
|
if (dbus_busy || execute_busy) {
|
|
wait_for_debugint_clear(target, false);
|
|
|
|
// Retry.
|
|
LOG_INFO("Retrying memory read starting from 0x%x with more delays",
|
|
address + size * i);
|
|
} else {
|
|
i += batch_size;
|
|
}
|
|
}
|
|
|
|
if (result_value != 0) {
|
|
LOG_USER("Core got an exception (0x%x) while reading from 0x%x",
|
|
result_value, address + size * (count-1));
|
|
if (count > 1) {
|
|
LOG_USER("(It may have failed between 0x%x and 0x%x as well, but we "
|
|
"didn't check then.)",
|
|
address, address + size * (count-2) + size - 1);
|
|
}
|
|
goto error;
|
|
}
|
|
|
|
scans_delete(scans);
|
|
cache_clean(target);
|
|
return ERROR_OK;
|
|
|
|
error:
|
|
scans_delete(scans);
|
|
cache_clean(target);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
static int setup_write_memory(struct target *target, uint32_t size)
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
cache_set32(target, 0, lb(S0, ZERO, DEBUG_RAM_START + 16));
|
|
cache_set32(target, 1, sb(S0, T0, 0));
|
|
break;
|
|
case 2:
|
|
cache_set32(target, 0, lh(S0, ZERO, DEBUG_RAM_START + 16));
|
|
cache_set32(target, 1, sh(S0, T0, 0));
|
|
break;
|
|
case 4:
|
|
cache_set32(target, 0, lw(S0, ZERO, DEBUG_RAM_START + 16));
|
|
cache_set32(target, 1, sw(S0, T0, 0));
|
|
break;
|
|
default:
|
|
LOG_ERROR("Unsupported size: %d", size);
|
|
return ERROR_FAIL;
|
|
}
|
|
cache_set32(target, 2, addi(T0, T0, size));
|
|
cache_set_jump(target, 3);
|
|
cache_write(target, 4, false);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_write_memory(struct target *target, uint32_t address,
|
|
uint32_t size, uint32_t count, const uint8_t *buffer)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
|
|
|
|
// Set up the address.
|
|
cache_set_store(target, 0, T0, SLOT1);
|
|
cache_set_load(target, 1, T0, SLOT0);
|
|
cache_set_jump(target, 2);
|
|
cache_set(target, SLOT0, address);
|
|
if (cache_write(target, 5, true) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
uint64_t t0 = cache_get(target, SLOT1);
|
|
LOG_DEBUG("t0 is 0x%" PRIx64, t0);
|
|
|
|
if (setup_write_memory(target, size) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
const int max_batch_size = 256;
|
|
scans_t *scans = scans_new(target, max_batch_size);
|
|
|
|
uint32_t result_value = 0x777;
|
|
uint32_t i = 0;
|
|
while (i < count + 2) {
|
|
unsigned int batch_size = MIN(count + 2 - i, max_batch_size);
|
|
scans_reset(scans);
|
|
|
|
for (unsigned int j = 0; j < batch_size; j++) {
|
|
if (i + j >= count) {
|
|
// Check for an exception.
|
|
scans_add_read32(scans, info->dramsize-1, false);
|
|
} else {
|
|
// Write the next value and set interrupt.
|
|
uint32_t value;
|
|
uint32_t offset = size * (i + j);
|
|
switch (size) {
|
|
case 1:
|
|
value = buffer[offset];
|
|
break;
|
|
case 2:
|
|
value = buffer[offset] |
|
|
(buffer[offset+1] << 8);
|
|
break;
|
|
case 4:
|
|
value = buffer[offset] |
|
|
((uint32_t) buffer[offset+1] << 8) |
|
|
((uint32_t) buffer[offset+2] << 16) |
|
|
((uint32_t) buffer[offset+3] << 24);
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
|
|
scans_add_write32(scans, 4, value, true);
|
|
}
|
|
}
|
|
|
|
int retval = scans_execute(scans);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("JTAG execute failed: %d", retval);
|
|
goto error;
|
|
}
|
|
|
|
int dbus_busy = 0;
|
|
int execute_busy = 0;
|
|
for (unsigned int j = 0; j < batch_size; j++) {
|
|
dbus_status_t status = scans_get_u32(scans, j, DBUS_OP_START,
|
|
DBUS_OP_SIZE);
|
|
switch (status) {
|
|
case DBUS_STATUS_SUCCESS:
|
|
break;
|
|
case DBUS_STATUS_FAILED:
|
|
LOG_ERROR("Debug RAM write failed. Hardware error?");
|
|
goto error;
|
|
case DBUS_STATUS_BUSY:
|
|
dbus_busy++;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Got invalid bus access status: %d", status);
|
|
return ERROR_FAIL;
|
|
}
|
|
int interrupt = scans_get_u32(scans, j, DBUS_DATA_START + 33, 1);
|
|
if (interrupt) {
|
|
execute_busy++;
|
|
}
|
|
if (i + j == count + 1) {
|
|
result_value = scans_get_u32(scans, j, DBUS_DATA_START, 32);
|
|
}
|
|
}
|
|
if (dbus_busy) {
|
|
increase_dbus_busy_delay(target);
|
|
}
|
|
if (execute_busy) {
|
|
increase_interrupt_high_delay(target);
|
|
}
|
|
if (dbus_busy || execute_busy) {
|
|
wait_for_debugint_clear(target, false);
|
|
|
|
// Retry.
|
|
// Set t0 back to what it should have been at the beginning of this
|
|
// batch.
|
|
LOG_INFO("Retrying memory write starting from 0x%x with more delays",
|
|
address + size * i);
|
|
|
|
cache_clean(target);
|
|
|
|
if (write_gpr(target, T0, address + size * i) != ERROR_OK) {
|
|
goto error;
|
|
}
|
|
|
|
if (setup_write_memory(target, size) != ERROR_OK) {
|
|
goto error;
|
|
}
|
|
} else {
|
|
i += batch_size;
|
|
}
|
|
}
|
|
|
|
if (result_value != 0) {
|
|
LOG_ERROR("Core got an exception (0x%x) while writing to 0x%x",
|
|
result_value, address + size * (count-1));
|
|
if (count > 1) {
|
|
LOG_ERROR("(It may have failed between 0x%x and 0x%x as well, but we "
|
|
"didn't check then.)",
|
|
address, address + size * (count-2) + size - 1);
|
|
}
|
|
goto error;
|
|
}
|
|
|
|
cache_clean(target);
|
|
return register_write(target, T0, t0);
|
|
|
|
error:
|
|
scans_delete(scans);
|
|
cache_clean(target);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
static int riscv_get_gdb_reg_list(struct target *target,
|
|
struct reg **reg_list[], int *reg_list_size,
|
|
enum target_register_class reg_class)
|
|
{
|
|
LOG_DEBUG("reg_class=%d", reg_class);
|
|
|
|
switch (reg_class) {
|
|
case REG_CLASS_GENERAL:
|
|
*reg_list_size = 32;
|
|
break;
|
|
case REG_CLASS_ALL:
|
|
*reg_list_size = REG_COUNT;
|
|
break;
|
|
default:
|
|
LOG_ERROR("Unsupported reg_class: %d", reg_class);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
*reg_list = calloc(*reg_list_size, sizeof(struct reg *));
|
|
if (!*reg_list) {
|
|
return ERROR_FAIL;
|
|
}
|
|
for (int i = 0; i < *reg_list_size; i++) {
|
|
(*reg_list)[i] = &target->reg_cache->reg_list[i];
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int riscv_arch_state(struct target *target)
|
|
{
|
|
return ERROR_OK;
|
|
}
|
|
|
|
// Algorithm must end with a software breakpoint instruction.
|
|
static int riscv_run_algorithm(struct target *target, int num_mem_params,
|
|
struct mem_param *mem_params, int num_reg_params,
|
|
struct reg_param *reg_params, uint32_t entry_point,
|
|
uint32_t exit_point, int timeout_ms, void *arch_info)
|
|
{
|
|
riscv_info_t *info = (riscv_info_t *) target->arch_info;
|
|
|
|
if (num_mem_params > 0) {
|
|
LOG_ERROR("Memory parameters are not supported for RISC-V algorithms.");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
/// Save registers
|
|
if (register_get(&target->reg_cache->reg_list[REG_PC]) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
uint64_t saved_pc = reg_cache_get(target, REG_PC);
|
|
|
|
uint64_t saved_regs[32];
|
|
for (int i = 0; i < num_reg_params; i++) {
|
|
LOG_DEBUG("save %s", reg_params[i].reg_name);
|
|
struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, 0);
|
|
if (!r) {
|
|
LOG_ERROR("Couldn't find register named '%s'", reg_params[i].reg_name);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (r->size != reg_params[i].size) {
|
|
LOG_ERROR("Register %s is %d bits instead of %d bits.",
|
|
reg_params[i].reg_name, r->size, reg_params[i].size);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (r->number > REG_XPR31) {
|
|
LOG_ERROR("Only GPRs can be use as argument registers.");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (register_get(r) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
saved_regs[r->number] = buf_get_u64(r->value, 0, info->xlen);
|
|
if (register_set(r, reg_params[i].value) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
|
|
// Disable Interrupts before attempting to run the algorithm.
|
|
uint64_t current_mstatus;
|
|
uint8_t mstatus_bytes[8];
|
|
|
|
LOG_DEBUG("Disabling Interrupts");
|
|
register_get(&target->reg_cache->reg_list[REG_MSTATUS]);
|
|
current_mstatus = buf_get_u64(target->reg_cache->reg_list[REG_MSTATUS].value, 0, info->xlen);
|
|
uint64_t ie_mask = MSTATUS_MIE | MSTATUS_HIE | MSTATUS_SIE | MSTATUS_UIE;
|
|
buf_set_u64(mstatus_bytes, 0, info->xlen, set_field(current_mstatus, ie_mask, 0));
|
|
|
|
register_set(&target->reg_cache->reg_list[REG_MSTATUS], mstatus_bytes);
|
|
|
|
/// Run algorithm
|
|
LOG_DEBUG("resume at 0x%x", entry_point);
|
|
if (riscv_resume(target, 0, entry_point, 0, 0) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
int64_t start = timeval_ms();
|
|
while (target->state != TARGET_HALTED) {
|
|
LOG_DEBUG("poll()");
|
|
int64_t now = timeval_ms();
|
|
if (now - start > timeout_ms) {
|
|
LOG_ERROR("Algorithm timed out after %d ms.", timeout_ms);
|
|
riscv_halt(target);
|
|
riscv_poll(target);
|
|
return ERROR_TARGET_TIMEOUT;
|
|
}
|
|
|
|
int result = riscv_poll(target);
|
|
if (result != ERROR_OK) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
if (register_get(&target->reg_cache->reg_list[REG_PC]) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
uint64_t final_pc = reg_cache_get(target, REG_PC);
|
|
if (final_pc != exit_point) {
|
|
LOG_ERROR("PC ended up at 0x%" PRIx64 " instead of 0x%" PRIx32,
|
|
final_pc, exit_point);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
// Restore Interrupts
|
|
LOG_DEBUG("Restoring Interrupts");
|
|
buf_set_u64(mstatus_bytes, 0, info->xlen, current_mstatus);
|
|
register_set(&target->reg_cache->reg_list[REG_MSTATUS], mstatus_bytes);
|
|
|
|
/// Restore registers
|
|
uint8_t buf[8];
|
|
buf_set_u64(buf, 0, info->xlen, saved_pc);
|
|
if (register_set(&target->reg_cache->reg_list[REG_PC], buf) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
for (int i = 0; i < num_reg_params; i++) {
|
|
LOG_DEBUG("restore %s", reg_params[i].reg_name);
|
|
struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, 0);
|
|
buf_set_u64(buf, 0, info->xlen, saved_regs[r->number]);
|
|
if (register_set(r, buf) != ERROR_OK) {
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* Should run code on the target to perform CRC of
|
|
memory. Not yet implemented.
|
|
*/
|
|
|
|
int riscv_checksum_memory(struct target *target,
|
|
uint32_t address, uint32_t count,
|
|
uint32_t* checksum) {
|
|
*checksum = 0xFFFFFFFF;
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
}
|
|
|
|
/* Should run code on the target to check whether a memory
|
|
block holds all-ones (because this is generally called on
|
|
NOR flash which is 1 when "blank")
|
|
Not yet implemented.
|
|
*/
|
|
|
|
int riscv_blank_check_memory(struct target * target,
|
|
uint32_t address,
|
|
uint32_t count,
|
|
uint32_t * blank) {
|
|
*blank = 0;
|
|
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
struct target_type riscv_target =
|
|
{
|
|
.name = "riscv",
|
|
|
|
.init_target = riscv_init_target,
|
|
.deinit_target = riscv_deinit_target,
|
|
.examine = riscv_examine,
|
|
|
|
/* poll current target status */
|
|
.poll = riscv_poll,
|
|
|
|
.halt = riscv_halt,
|
|
.resume = riscv_resume,
|
|
.step = riscv_step,
|
|
|
|
.assert_reset = riscv_assert_reset,
|
|
.deassert_reset = riscv_deassert_reset,
|
|
|
|
.read_memory = riscv_read_memory,
|
|
.write_memory = riscv_write_memory,
|
|
|
|
.blank_check_memory = riscv_blank_check_memory,
|
|
.checksum_memory = riscv_checksum_memory,
|
|
|
|
.get_gdb_reg_list = riscv_get_gdb_reg_list,
|
|
|
|
.add_breakpoint = riscv_add_breakpoint,
|
|
.remove_breakpoint = riscv_remove_breakpoint,
|
|
|
|
.add_watchpoint = riscv_add_watchpoint,
|
|
.remove_watchpoint = riscv_remove_watchpoint,
|
|
|
|
.arch_state = riscv_arch_state,
|
|
|
|
.run_algorithm = riscv_run_algorithm,
|
|
};
|