781 lines
22 KiB
C
781 lines
22 KiB
C
/***************************************************************************
|
||
* Copyright (C) 2013 by Andrey Yurovsky *
|
||
* Andrey Yurovsky <yurovsky@gmail.com> *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License for more details. *
|
||
* *
|
||
* You should have received a copy of the GNU General Public License *
|
||
* along with this program; if not, write to the *
|
||
* Free Software Foundation, Inc., *
|
||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
|
||
***************************************************************************/
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
#include "config.h"
|
||
#endif
|
||
|
||
#include "imp.h"
|
||
|
||
#define SAMD_NUM_SECTORS 16
|
||
|
||
#define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
|
||
#define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
|
||
#define SAMD_DSU 0x41002000 /* Device Service Unit */
|
||
#define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
|
||
|
||
#define SAMD_DSU_DID 0x18 /* Device ID register */
|
||
|
||
#define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
|
||
#define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
|
||
#define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
|
||
#define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interupt Flag Status & Clear */
|
||
#define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
|
||
#define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
|
||
#define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
|
||
|
||
#define SAMD_CMDEX_KEY 0xA5UL
|
||
#define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
|
||
|
||
/* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
|
||
#define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
|
||
#define SAMD_NVM_CMD_WP 0x04 /* Write Page */
|
||
#define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxilary Row */
|
||
#define SAMD_NVM_CMD_WAP 0x06 /* Write Auxilary Page */
|
||
#define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
|
||
#define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
|
||
#define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
|
||
#define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
|
||
#define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
|
||
#define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
|
||
#define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
|
||
|
||
/* Known identifiers */
|
||
#define SAMD_PROCESSOR_M0 0x01
|
||
#define SAMD_FAMILY_D 0x00
|
||
#define SAMD_SERIES_20 0x00
|
||
#define SAMD_SERIES_21 0x01
|
||
#define SAMD_SERIES_10 0x02
|
||
#define SAMD_SERIES_11 0x03
|
||
|
||
struct samd_part {
|
||
uint8_t id;
|
||
const char *name;
|
||
uint32_t flash_kb;
|
||
uint32_t ram_kb;
|
||
};
|
||
|
||
/* Known SAMD10 parts */
|
||
static const struct samd_part samd10_parts[] = {
|
||
{ 0x0, "SAMD10D14AMU", 16, 4 },
|
||
{ 0x1, "SAMD10D13AMU", 8, 4 },
|
||
{ 0x2, "SAMD10D12AMU", 4, 4 },
|
||
{ 0x3, "SAMD10D14ASU", 16, 4 },
|
||
{ 0x4, "SAMD10D13ASU", 8, 4 },
|
||
{ 0x5, "SAMD10D12ASU", 4, 4 },
|
||
{ 0x6, "SAMD10C14A", 16, 4 },
|
||
{ 0x7, "SAMD10C13A", 8, 4 },
|
||
{ 0x8, "SAMD10C12A", 4, 4 },
|
||
};
|
||
|
||
/* Known SAMD11 parts */
|
||
static const struct samd_part samd11_parts[] = {
|
||
{ 0x0, "SAMD11D14AMU", 16, 4 },
|
||
{ 0x1, "SAMD11D13AMU", 8, 4 },
|
||
{ 0x2, "SAMD11D12AMU", 4, 4 },
|
||
{ 0x3, "SAMD11D14ASU", 16, 4 },
|
||
{ 0x4, "SAMD11D13ASU", 8, 4 },
|
||
{ 0x5, "SAMD11D12ASU", 4, 4 },
|
||
{ 0x6, "SAMD11C14A", 16, 4 },
|
||
{ 0x7, "SAMD11C13A", 8, 4 },
|
||
{ 0x8, "SAMD11C12A", 4, 4 },
|
||
};
|
||
|
||
/* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
|
||
static const struct samd_part samd20_parts[] = {
|
||
{ 0x0, "SAMD20J18A", 256, 32 },
|
||
{ 0x1, "SAMD20J17A", 128, 16 },
|
||
{ 0x2, "SAMD20J16A", 64, 8 },
|
||
{ 0x3, "SAMD20J15A", 32, 4 },
|
||
{ 0x4, "SAMD20J14A", 16, 2 },
|
||
{ 0x5, "SAMD20G18A", 256, 32 },
|
||
{ 0x6, "SAMD20G17A", 128, 16 },
|
||
{ 0x7, "SAMD20G16A", 64, 8 },
|
||
{ 0x8, "SAMD20G15A", 32, 4 },
|
||
{ 0x9, "SAMD20G14A", 16, 2 },
|
||
{ 0xA, "SAMD20E18A", 256, 32 },
|
||
{ 0xB, "SAMD20E17A", 128, 16 },
|
||
{ 0xC, "SAMD20E16A", 64, 8 },
|
||
{ 0xD, "SAMD20E15A", 32, 4 },
|
||
{ 0xE, "SAMD20E14A", 16, 2 },
|
||
};
|
||
|
||
/* Known SAMD21 parts. */
|
||
static const struct samd_part samd21_parts[] = {
|
||
{ 0x0, "SAMD21J18A", 256, 32 },
|
||
{ 0x1, "SAMD21J17A", 128, 16 },
|
||
{ 0x2, "SAMD21J16A", 64, 8 },
|
||
{ 0x3, "SAMD21J15A", 32, 4 },
|
||
{ 0x4, "SAMD21J14A", 16, 2 },
|
||
{ 0x5, "SAMD21G18A", 256, 32 },
|
||
{ 0x6, "SAMD21G17A", 128, 16 },
|
||
{ 0x7, "SAMD21G16A", 64, 8 },
|
||
{ 0x8, "SAMD21G15A", 32, 4 },
|
||
{ 0x9, "SAMD21G14A", 16, 2 },
|
||
{ 0xA, "SAMD21E18A", 256, 32 },
|
||
{ 0xB, "SAMD21E17A", 128, 16 },
|
||
{ 0xC, "SAMD21E16A", 64, 8 },
|
||
{ 0xD, "SAMD21E15A", 32, 4 },
|
||
{ 0xE, "SAMD21E14A", 16, 2 },
|
||
};
|
||
|
||
/* Known SAMR21 parts. */
|
||
static const struct samd_part samr21_parts[] = {
|
||
{ 0x19, "SAMR21G18A", 256, 32 },
|
||
{ 0x1A, "SAMR21G17A", 128, 32 },
|
||
{ 0x1B, "SAMR21G16A", 64, 32 },
|
||
{ 0x1C, "SAMR21E18A", 256, 32 },
|
||
{ 0x1D, "SAMR21E17A", 128, 32 },
|
||
{ 0x1E, "SAMR21E16A", 64, 32 },
|
||
};
|
||
|
||
|
||
/* Each family of parts contains a parts table in the DEVSEL field of DID. The
|
||
* processor ID, family ID, and series ID are used to determine which exact
|
||
* family this is and then we can use the corresponding table. */
|
||
struct samd_family {
|
||
uint8_t processor;
|
||
uint8_t family;
|
||
uint8_t series;
|
||
const struct samd_part *parts;
|
||
size_t num_parts;
|
||
};
|
||
|
||
/* Known SAMD families */
|
||
static const struct samd_family samd_families[] = {
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
|
||
samd20_parts, ARRAY_SIZE(samd20_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
|
||
samd21_parts, ARRAY_SIZE(samd21_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
|
||
samr21_parts, ARRAY_SIZE(samr21_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
|
||
samd10_parts, ARRAY_SIZE(samd10_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
|
||
samd11_parts, ARRAY_SIZE(samd11_parts) },
|
||
};
|
||
|
||
struct samd_info {
|
||
uint32_t page_size;
|
||
int num_pages;
|
||
int sector_size;
|
||
|
||
bool probed;
|
||
struct target *target;
|
||
struct samd_info *next;
|
||
};
|
||
|
||
static struct samd_info *samd_chips;
|
||
|
||
static const struct samd_part *samd_find_part(uint32_t id)
|
||
{
|
||
uint8_t processor = (id >> 28);
|
||
uint8_t family = (id >> 24) & 0x0F;
|
||
uint8_t series = (id >> 16) & 0xFF;
|
||
uint8_t devsel = id & 0xFF;
|
||
|
||
for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
|
||
if (samd_families[i].processor == processor &&
|
||
samd_families[i].series == series &&
|
||
samd_families[i].family == family) {
|
||
for (unsigned j = 0; j < samd_families[i].num_parts; j++) {
|
||
if (samd_families[i].parts[j].id == devsel)
|
||
return &samd_families[i].parts[j];
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static int samd_protect_check(struct flash_bank *bank)
|
||
{
|
||
int res;
|
||
uint16_t lock;
|
||
|
||
res = target_read_u16(bank->target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
/* Lock bits are active-low */
|
||
for (int i = 0; i < bank->num_sectors; i++)
|
||
bank->sectors[i].is_protected = !(lock & (1<<i));
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int samd_probe(struct flash_bank *bank)
|
||
{
|
||
uint32_t id, param;
|
||
int res;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
const struct samd_part *part;
|
||
|
||
if (chip->probed)
|
||
return ERROR_OK;
|
||
|
||
res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Couldn't read Device ID register");
|
||
return res;
|
||
}
|
||
|
||
part = samd_find_part(id);
|
||
if (part == NULL) {
|
||
LOG_ERROR("Couldn't find part correspoding to DID %08" PRIx32, id);
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
res = target_read_u32(bank->target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, ¶m);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Couldn't read NVM Parameters register");
|
||
return res;
|
||
}
|
||
|
||
bank->size = part->flash_kb * 1024;
|
||
|
||
chip->sector_size = bank->size / SAMD_NUM_SECTORS;
|
||
|
||
/* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n) so
|
||
* 0 is 8KB and 7 is 1024KB. */
|
||
chip->page_size = (8 << ((param >> 16) & 0x7));
|
||
/* The NVMP field (bits 15:0) indicates the total number of pages */
|
||
chip->num_pages = param & 0xFFFF;
|
||
|
||
/* Sanity check: the total flash size in the DSU should match the page size
|
||
* multiplied by the number of pages. */
|
||
if (bank->size != chip->num_pages * chip->page_size) {
|
||
LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
|
||
"Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
|
||
part->flash_kb, chip->num_pages, chip->page_size);
|
||
}
|
||
|
||
/* Allocate the sector table */
|
||
bank->num_sectors = SAMD_NUM_SECTORS;
|
||
bank->sectors = calloc(bank->num_sectors, sizeof((bank->sectors)[0]));
|
||
if (!bank->sectors)
|
||
return ERROR_FAIL;
|
||
|
||
/* Fill out the sector information: all SAMD sectors are the same size and
|
||
* there is always a fixed number of them. */
|
||
for (int i = 0; i < bank->num_sectors; i++) {
|
||
bank->sectors[i].size = chip->sector_size;
|
||
bank->sectors[i].offset = i * chip->sector_size;
|
||
/* mark as unknown */
|
||
bank->sectors[i].is_erased = -1;
|
||
bank->sectors[i].is_protected = -1;
|
||
}
|
||
|
||
samd_protect_check(bank);
|
||
|
||
/* Done */
|
||
chip->probed = true;
|
||
|
||
LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
|
||
part->flash_kb, part->ram_kb);
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static bool samd_check_error(struct target *target)
|
||
{
|
||
int ret;
|
||
bool error;
|
||
uint16_t status;
|
||
|
||
ret = target_read_u16(target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
|
||
if (ret != ERROR_OK) {
|
||
LOG_ERROR("Can't read NVM status");
|
||
return true;
|
||
}
|
||
|
||
if (status & 0x001C) {
|
||
if (status & (1 << 4)) /* NVME */
|
||
LOG_ERROR("SAMD: NVM Error");
|
||
if (status & (1 << 3)) /* LOCKE */
|
||
LOG_ERROR("SAMD: NVM lock error");
|
||
if (status & (1 << 2)) /* PROGE */
|
||
LOG_ERROR("SAMD: NVM programming error");
|
||
|
||
error = true;
|
||
} else {
|
||
error = false;
|
||
}
|
||
|
||
/* Clear the error conditions by writing a one to them */
|
||
ret = target_write_u16(target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
|
||
if (ret != ERROR_OK)
|
||
LOG_ERROR("Can't clear NVM error conditions");
|
||
|
||
return error;
|
||
}
|
||
|
||
static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
|
||
{
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
/* Read current configuration. */
|
||
uint16_t tmp = 0;
|
||
int res = target_read_u16(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB,
|
||
&tmp);
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
/* Set cache disable. */
|
||
res = target_write_u16(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB,
|
||
tmp | (1<<18));
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
/* Issue the NVM command */
|
||
int res_cmd = target_write_u16(target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
|
||
|
||
/* Try to restore configuration, regardless of NVM command write
|
||
* status. */
|
||
res = target_write_u16(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, tmp);
|
||
|
||
if (res_cmd != ERROR_OK)
|
||
return res_cmd;
|
||
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
/* Check to see if the NVM command resulted in an error condition. */
|
||
if (samd_check_error(target))
|
||
return ERROR_FAIL;
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int samd_protect(struct flash_bank *bank, int set, int first, int last)
|
||
{
|
||
int res;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
|
||
res = ERROR_OK;
|
||
|
||
for (int s = first; s <= last; s++) {
|
||
if (set != bank->sectors[s].is_protected) {
|
||
/* Load an address that is within this sector (we use offset 0) */
|
||
res = target_write_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
|
||
s * chip->sector_size);
|
||
if (res != ERROR_OK)
|
||
goto exit;
|
||
|
||
/* Tell the controller to lock that sector */
|
||
res = samd_issue_nvmctrl_command(bank->target,
|
||
set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
|
||
if (res != ERROR_OK)
|
||
goto exit;
|
||
}
|
||
}
|
||
exit:
|
||
samd_protect_check(bank);
|
||
|
||
return res;
|
||
}
|
||
|
||
static int samd_erase_row(struct flash_bank *bank, uint32_t address)
|
||
{
|
||
int res;
|
||
|
||
/* Set an address contained in the row to be erased */
|
||
res = target_write_u32(bank->target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
|
||
|
||
/* Issue the Erase Row command to erase that row */
|
||
if (res == ERROR_OK)
|
||
res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_ER);
|
||
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int samd_erase(struct flash_bank *bank, int first, int last)
|
||
{
|
||
int res;
|
||
int rows_in_sector;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
|
||
if (bank->target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
if (!chip->probed) {
|
||
if (samd_probe(bank) != ERROR_OK)
|
||
return ERROR_FLASH_BANK_NOT_PROBED;
|
||
}
|
||
|
||
/* The SAMD NVM has row erase granularity. There are four pages in a row
|
||
* and the number of rows in a sector depends on the sector size, which in
|
||
* turn depends on the Flash capacity as there is a fixed number of
|
||
* sectors. */
|
||
rows_in_sector = chip->sector_size / (chip->page_size * 4);
|
||
|
||
/* For each sector to be erased */
|
||
for (int s = first; s <= last; s++) {
|
||
if (bank->sectors[s].is_protected) {
|
||
LOG_ERROR("SAMD: failed to erase sector %d. That sector is write-protected", s);
|
||
return ERROR_FLASH_OPERATION_FAILED;
|
||
}
|
||
|
||
if (!bank->sectors[s].is_erased) {
|
||
/* For each row in that sector */
|
||
for (int r = s * rows_in_sector; r < (s + 1) * rows_in_sector; r++) {
|
||
res = samd_erase_row(bank, r * chip->page_size * 4);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("SAMD: failed to erase sector %d", s);
|
||
return res;
|
||
}
|
||
}
|
||
|
||
bank->sectors[s].is_erased = 1;
|
||
}
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static struct flash_sector *samd_find_sector_by_address(struct flash_bank *bank, uint32_t address)
|
||
{
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
|
||
for (int i = 0; i < bank->num_sectors; i++) {
|
||
if (bank->sectors[i].offset <= address &&
|
||
address < bank->sectors[i].offset + chip->sector_size)
|
||
return &bank->sectors[i];
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Write an entire row (four pages) from host buffer 'buf' to row-aligned
|
||
* 'address' in the Flash. */
|
||
static int samd_write_row(struct flash_bank *bank, uint32_t address,
|
||
const uint8_t *buf)
|
||
{
|
||
int res;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
|
||
struct flash_sector *sector = samd_find_sector_by_address(bank, address);
|
||
|
||
if (!sector) {
|
||
LOG_ERROR("Can't find sector corresponding to address 0x%08" PRIx32, address);
|
||
return ERROR_FLASH_OPERATION_FAILED;
|
||
}
|
||
|
||
if (sector->is_protected) {
|
||
LOG_ERROR("Trying to write to a protected sector at 0x%08" PRIx32, address);
|
||
return ERROR_FLASH_OPERATION_FAILED;
|
||
}
|
||
|
||
/* Erase the row that we'll be writing to */
|
||
res = samd_erase_row(bank, address);
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
/* Now write the pages in this row. */
|
||
for (unsigned int i = 0; i < 4; i++) {
|
||
bool error;
|
||
|
||
/* Write the page contents to the target's page buffer. A page write
|
||
* is issued automatically once the last location is written in the
|
||
* page buffer (ie: a complete page has been written out). */
|
||
res = target_write_memory(bank->target, address, 4,
|
||
chip->page_size / 4, buf);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("%s: %d", __func__, __LINE__);
|
||
return res;
|
||
}
|
||
|
||
error = samd_check_error(bank->target);
|
||
if (error)
|
||
return ERROR_FAIL;
|
||
|
||
/* Next page */
|
||
address += chip->page_size;
|
||
buf += chip->page_size;
|
||
}
|
||
|
||
sector->is_erased = 0;
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Write partial contents into row-aligned 'address' on the Flash from host
|
||
* buffer 'buf' by writing 'nb' of 'buf' at 'row_offset' into the Flash row. */
|
||
static int samd_write_row_partial(struct flash_bank *bank, uint32_t address,
|
||
const uint8_t *buf, uint32_t row_offset, uint32_t nb)
|
||
{
|
||
int res;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
uint32_t row_size = chip->page_size * 4;
|
||
uint8_t *rb = malloc(row_size);
|
||
if (!rb)
|
||
return ERROR_FAIL;
|
||
|
||
assert(row_offset + nb < row_size);
|
||
assert((address % row_size) == 0);
|
||
|
||
/* Retrieve the full row contents from Flash */
|
||
res = target_read_memory(bank->target, address, 4, row_size / 4, rb);
|
||
if (res != ERROR_OK) {
|
||
free(rb);
|
||
return res;
|
||
}
|
||
|
||
/* Insert our partial row over the data from Flash */
|
||
memcpy(rb + (row_offset % row_size), buf, nb);
|
||
|
||
/* Write the row back out */
|
||
res = samd_write_row(bank, address, rb);
|
||
free(rb);
|
||
|
||
return res;
|
||
}
|
||
|
||
static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
|
||
uint32_t offset, uint32_t count)
|
||
{
|
||
int res;
|
||
uint32_t address;
|
||
uint32_t nb = 0;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
uint32_t row_size = chip->page_size * 4;
|
||
|
||
if (bank->target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
if (!chip->probed) {
|
||
if (samd_probe(bank) != ERROR_OK)
|
||
return ERROR_FLASH_BANK_NOT_PROBED;
|
||
}
|
||
|
||
if (offset % row_size) {
|
||
/* We're starting at an unaligned offset so we'll write a partial row
|
||
* comprising that offset and up to the end of that row. */
|
||
nb = row_size - (offset % row_size);
|
||
if (nb > count)
|
||
nb = count;
|
||
} else if (count < row_size) {
|
||
/* We're writing an aligned but partial row. */
|
||
nb = count;
|
||
}
|
||
|
||
address = (offset / row_size) * row_size + bank->base;
|
||
|
||
if (nb > 0) {
|
||
res = samd_write_row_partial(bank, address, buffer,
|
||
offset % row_size, nb);
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
/* We're done with the row contents */
|
||
count -= nb;
|
||
offset += nb;
|
||
buffer += row_size;
|
||
}
|
||
|
||
/* There's at least one aligned row to write out. */
|
||
if (count >= row_size) {
|
||
int nr = count / row_size + ((count % row_size) ? 1 : 0);
|
||
unsigned int r = 0;
|
||
|
||
for (unsigned int i = address / row_size;
|
||
(i < (address / row_size) + nr) && count > 0; i++) {
|
||
address = (i * row_size) + bank->base;
|
||
|
||
if (count >= row_size) {
|
||
res = samd_write_row(bank, address, buffer + (r * row_size));
|
||
/* Advance one row */
|
||
offset += row_size;
|
||
count -= row_size;
|
||
} else {
|
||
res = samd_write_row_partial(bank, address,
|
||
buffer + (r * row_size), 0, count);
|
||
/* We're done after this. */
|
||
offset += count;
|
||
count = 0;
|
||
}
|
||
|
||
r++;
|
||
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
}
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
|
||
{
|
||
struct samd_info *chip = samd_chips;
|
||
|
||
while (chip) {
|
||
if (chip->target == bank->target)
|
||
break;
|
||
chip = chip->next;
|
||
}
|
||
|
||
if (!chip) {
|
||
/* Create a new chip */
|
||
chip = calloc(1, sizeof(*chip));
|
||
if (!chip)
|
||
return ERROR_FAIL;
|
||
|
||
chip->target = bank->target;
|
||
chip->probed = false;
|
||
|
||
bank->driver_priv = chip;
|
||
|
||
/* Insert it into the chips list (at head) */
|
||
chip->next = samd_chips;
|
||
samd_chips = chip;
|
||
}
|
||
|
||
if (bank->base != SAMD_FLASH) {
|
||
LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
|
||
"[at91samd series] )",
|
||
bank->base, SAMD_FLASH);
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
COMMAND_HANDLER(samd_handle_info_command)
|
||
{
|
||
return ERROR_OK;
|
||
}
|
||
|
||
COMMAND_HANDLER(samd_handle_chip_erase_command)
|
||
{
|
||
struct target *target = get_current_target(CMD_CTX);
|
||
|
||
if (target) {
|
||
/* Enable access to the DSU by disabling the write protect bit */
|
||
target_write_u32(target, SAMD_PAC1, (1<<1));
|
||
/* Tell the DSU to perform a full chip erase. It takes about 240ms to
|
||
* perform the erase. */
|
||
target_write_u8(target, SAMD_DSU, (1<<4));
|
||
|
||
command_print(CMD_CTX, "chip erased");
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
COMMAND_HANDLER(samd_handle_set_security_command)
|
||
{
|
||
int res = ERROR_OK;
|
||
struct target *target = get_current_target(CMD_CTX);
|
||
|
||
if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
|
||
command_print(CMD_CTX, "supply the \"enable\" argument to proceed.");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
|
||
if (target) {
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
|
||
|
||
/* Check (and clear) error conditions */
|
||
if (res == ERROR_OK)
|
||
command_print(CMD_CTX, "chip secured on next power-cycle");
|
||
else
|
||
command_print(CMD_CTX, "failed to secure chip");
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
static const struct command_registration at91samd_exec_command_handlers[] = {
|
||
{
|
||
.name = "info",
|
||
.handler = samd_handle_info_command,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "Print information about the current at91samd chip"
|
||
"and its flash configuration.",
|
||
},
|
||
{
|
||
.name = "chip-erase",
|
||
.handler = samd_handle_chip_erase_command,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "Erase the entire Flash by using the Chip"
|
||
"Erase feature in the Device Service Unit (DSU).",
|
||
},
|
||
{
|
||
.name = "set-security",
|
||
.handler = samd_handle_set_security_command,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "Secure the chip's Flash by setting the Security Bit."
|
||
"This makes it impossible to read the Flash contents."
|
||
"The only way to undo this is to issue the chip-erase"
|
||
"command.",
|
||
},
|
||
COMMAND_REGISTRATION_DONE
|
||
};
|
||
|
||
static const struct command_registration at91samd_command_handlers[] = {
|
||
{
|
||
.name = "at91samd",
|
||
.mode = COMMAND_ANY,
|
||
.help = "at91samd flash command group",
|
||
.usage = "",
|
||
.chain = at91samd_exec_command_handlers,
|
||
},
|
||
COMMAND_REGISTRATION_DONE
|
||
};
|
||
|
||
struct flash_driver at91samd_flash = {
|
||
.name = "at91samd",
|
||
.commands = at91samd_command_handlers,
|
||
.flash_bank_command = samd_flash_bank_command,
|
||
.erase = samd_erase,
|
||
.protect = samd_protect,
|
||
.write = samd_write,
|
||
.read = default_flash_read,
|
||
.probe = samd_probe,
|
||
.auto_probe = samd_probe,
|
||
.erase_check = default_flash_blank_check,
|
||
.protect_check = samd_protect_check,
|
||
};
|