3263 lines
95 KiB
C
3263 lines
95 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2005 by Dominic Rath *
|
|
* Dominic.Rath@gmx.de *
|
|
* *
|
|
* Copyright (C) 2006 by Magnus Lundin *
|
|
* lundin@mlu.mine.nu *
|
|
* *
|
|
* Copyright (C) 2008 by Spencer Oliver *
|
|
* spen@spen-soft.co.uk *
|
|
* *
|
|
* Copyright (C) 2009 by Dirk Behme *
|
|
* dirk.behme@gmail.com - copy from cortex_m3 *
|
|
* *
|
|
* Copyright (C) 2010 Øyvind Harboe *
|
|
* oyvind.harboe@zylin.com *
|
|
* *
|
|
* Copyright (C) ST-Ericsson SA 2011 *
|
|
* michel.jaouen@stericsson.com : smp minimum support *
|
|
* *
|
|
* Copyright (C) Broadcom 2012 *
|
|
* ehunter@broadcom.com : Cortex-R4 support *
|
|
* *
|
|
* Copyright (C) 2013 Kamal Dasu *
|
|
* kdasu.kdev@gmail.com *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
* *
|
|
* Cortex-A8(tm) TRM, ARM DDI 0344H *
|
|
* Cortex-A9(tm) TRM, ARM DDI 0407F *
|
|
* Cortex-A4(tm) TRM, ARM DDI 0363E *
|
|
* Cortex-A15(tm)TRM, ARM DDI 0438C *
|
|
* *
|
|
***************************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "breakpoints.h"
|
|
#include "cortex_a.h"
|
|
#include "register.h"
|
|
#include "armv7a_mmu.h"
|
|
#include "target_request.h"
|
|
#include "target_type.h"
|
|
#include "arm_opcodes.h"
|
|
#include "arm_semihosting.h"
|
|
#include "jtag/interface.h"
|
|
#include "transport/transport.h"
|
|
#include "smp.h"
|
|
#include <helper/time_support.h>
|
|
|
|
static int cortex_a_poll(struct target *target);
|
|
static int cortex_a_debug_entry(struct target *target);
|
|
static int cortex_a_restore_context(struct target *target, bool bpwp);
|
|
static int cortex_a_set_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint, uint8_t matchmode);
|
|
static int cortex_a_set_context_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint, uint8_t matchmode);
|
|
static int cortex_a_set_hybrid_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint);
|
|
static int cortex_a_unset_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint);
|
|
static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
|
|
uint32_t value, uint32_t *dscr);
|
|
static int cortex_a_mmu(struct target *target, int *enabled);
|
|
static int cortex_a_mmu_modify(struct target *target, int enable);
|
|
static int cortex_a_virt2phys(struct target *target,
|
|
target_addr_t virt, target_addr_t *phys);
|
|
static int cortex_a_read_cpu_memory(struct target *target,
|
|
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
|
|
|
|
|
|
/* restore cp15_control_reg at resume */
|
|
static int cortex_a_restore_cp15_control_reg(struct target *target)
|
|
{
|
|
int retval = ERROR_OK;
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
|
|
cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
|
|
/* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
|
|
retval = armv7a->arm.mcr(target, 15,
|
|
0, 0, /* op1, op2 */
|
|
1, 0, /* CRn, CRm */
|
|
cortex_a->cp15_control_reg);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Set up ARM core for memory access.
|
|
* If !phys_access, switch to SVC mode and make sure MMU is on
|
|
* If phys_access, switch off mmu
|
|
*/
|
|
static int cortex_a_prep_memaccess(struct target *target, int phys_access)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
int mmu_enabled = 0;
|
|
|
|
if (phys_access == 0) {
|
|
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
|
|
cortex_a_mmu(target, &mmu_enabled);
|
|
if (mmu_enabled)
|
|
cortex_a_mmu_modify(target, 1);
|
|
if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
|
|
/* overwrite DACR to all-manager */
|
|
armv7a->arm.mcr(target, 15,
|
|
0, 0, 3, 0,
|
|
0xFFFFFFFF);
|
|
}
|
|
} else {
|
|
cortex_a_mmu(target, &mmu_enabled);
|
|
if (mmu_enabled)
|
|
cortex_a_mmu_modify(target, 0);
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/*
|
|
* Restore ARM core after memory access.
|
|
* If !phys_access, switch to previous mode
|
|
* If phys_access, restore MMU setting
|
|
*/
|
|
static int cortex_a_post_memaccess(struct target *target, int phys_access)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
|
|
if (phys_access == 0) {
|
|
if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
|
|
/* restore */
|
|
armv7a->arm.mcr(target, 15,
|
|
0, 0, 3, 0,
|
|
cortex_a->cp15_dacr_reg);
|
|
}
|
|
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
|
|
} else {
|
|
int mmu_enabled = 0;
|
|
cortex_a_mmu(target, &mmu_enabled);
|
|
if (mmu_enabled)
|
|
cortex_a_mmu_modify(target, 1);
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
|
|
/* modify cp15_control_reg in order to enable or disable mmu for :
|
|
* - virt2phys address conversion
|
|
* - read or write memory in phys or virt address */
|
|
static int cortex_a_mmu_modify(struct target *target, int enable)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
int retval = ERROR_OK;
|
|
int need_write = 0;
|
|
|
|
if (enable) {
|
|
/* if mmu enabled at target stop and mmu not enable */
|
|
if (!(cortex_a->cp15_control_reg & 0x1U)) {
|
|
LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
|
|
return ERROR_FAIL;
|
|
}
|
|
if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
|
|
cortex_a->cp15_control_reg_curr |= 0x1U;
|
|
need_write = 1;
|
|
}
|
|
} else {
|
|
if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
|
|
cortex_a->cp15_control_reg_curr &= ~0x1U;
|
|
need_write = 1;
|
|
}
|
|
}
|
|
|
|
if (need_write) {
|
|
LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
|
|
enable ? "enable mmu" : "disable mmu",
|
|
cortex_a->cp15_control_reg_curr);
|
|
|
|
retval = armv7a->arm.mcr(target, 15,
|
|
0, 0, /* op1, op2 */
|
|
1, 0, /* CRn, CRm */
|
|
cortex_a->cp15_control_reg_curr);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Cortex-A Basic debug access, very low level assumes state is saved
|
|
*/
|
|
static int cortex_a_init_debug_access(struct target *target)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
uint32_t dscr;
|
|
int retval;
|
|
|
|
/* lock memory-mapped access to debug registers to prevent
|
|
* software interference */
|
|
retval = mem_ap_write_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Disable cacheline fills and force cache write-through in debug state */
|
|
retval = mem_ap_write_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCCR, 0);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Disable TLB lookup and refill/eviction in debug state */
|
|
retval = mem_ap_write_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSMCR, 0);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = dap_run(armv7a->debug_ap->dap);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Enabling of instruction execution in debug mode is done in debug_entry code */
|
|
|
|
/* Resync breakpoint registers */
|
|
|
|
/* Enable halt for breakpoint, watchpoint and vector catch */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Since this is likely called from init or reset, update target state information*/
|
|
return cortex_a_poll(target);
|
|
}
|
|
|
|
static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
|
|
{
|
|
/* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
|
|
* Writes final value of DSCR into *dscr. Pass force to force always
|
|
* reading DSCR at least once. */
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
int retval;
|
|
|
|
if (force) {
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, dscr);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Could not read DSCR register");
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
|
|
if (retval != ERROR_OK)
|
|
LOG_ERROR("Error waiting for InstrCompl=1");
|
|
return retval;
|
|
}
|
|
|
|
/* To reduce needless round-trips, pass in a pointer to the current
|
|
* DSCR value. Initialize it to zero if you just need to know the
|
|
* value on return from this function; or DSCR_INSTR_COMP if you
|
|
* happen to know that no instruction is pending.
|
|
*/
|
|
static int cortex_a_exec_opcode(struct target *target,
|
|
uint32_t opcode, uint32_t *dscr_p)
|
|
{
|
|
uint32_t dscr;
|
|
int retval;
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
dscr = dscr_p ? *dscr_p : 0;
|
|
|
|
LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
|
|
|
|
/* Wait for InstrCompl bit to be set */
|
|
retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = mem_ap_write_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_ITR, opcode);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Wait for InstrCompl bit to be set */
|
|
retval = cortex_a_wait_instrcmpl(target, &dscr, true);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Error waiting for cortex_a_exec_opcode");
|
|
return retval;
|
|
}
|
|
|
|
if (dscr_p)
|
|
*dscr_p = dscr;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Write to memory mapped registers directly with no cache or mmu handling */
|
|
static int cortex_a_dap_write_memap_register_u32(struct target *target,
|
|
uint32_t address,
|
|
uint32_t value)
|
|
{
|
|
int retval;
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Cortex-A implementation of Debug Programmer's Model
|
|
*
|
|
* NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
|
|
* so there's no need to poll for it before executing an instruction.
|
|
*
|
|
* NOTE that in several of these cases the "stall" mode might be useful.
|
|
* It'd let us queue a few operations together... prepare/finish might
|
|
* be the places to enable/disable that mode.
|
|
*/
|
|
|
|
static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
|
|
{
|
|
return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
|
|
}
|
|
|
|
static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
|
|
{
|
|
LOG_DEBUG("write DCC 0x%08" PRIx32, data);
|
|
return mem_ap_write_u32(a->armv7a_common.debug_ap,
|
|
a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
|
|
}
|
|
|
|
static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
|
|
uint32_t *dscr_p)
|
|
{
|
|
uint32_t dscr = DSCR_INSTR_COMP;
|
|
int retval;
|
|
|
|
if (dscr_p)
|
|
dscr = *dscr_p;
|
|
|
|
/* Wait for DTRRXfull */
|
|
retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
|
|
DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Error waiting for read dcc");
|
|
return retval;
|
|
}
|
|
|
|
retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
|
|
a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
/* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
|
|
|
|
if (dscr_p)
|
|
*dscr_p = dscr;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
uint32_t dscr;
|
|
int retval;
|
|
|
|
/* set up invariant: INSTR_COMP is set after ever DPM operation */
|
|
retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Error waiting for dpm prepare");
|
|
return retval;
|
|
}
|
|
|
|
/* this "should never happen" ... */
|
|
if (dscr & DSCR_DTR_RX_FULL) {
|
|
LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
|
|
/* Clear DCCRX */
|
|
retval = cortex_a_exec_opcode(
|
|
a->armv7a_common.arm.target,
|
|
ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
|
|
&dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_dpm_finish(struct arm_dpm *dpm)
|
|
{
|
|
/* REVISIT what could be done here? */
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
|
|
uint32_t opcode, uint32_t data)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
int retval;
|
|
uint32_t dscr = DSCR_INSTR_COMP;
|
|
|
|
retval = cortex_a_write_dcc(a, data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return cortex_a_exec_opcode(
|
|
a->armv7a_common.arm.target,
|
|
opcode,
|
|
&dscr);
|
|
}
|
|
|
|
static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
|
|
uint8_t rt, uint32_t data)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
uint32_t dscr = DSCR_INSTR_COMP;
|
|
int retval;
|
|
|
|
if (rt > 15)
|
|
return ERROR_TARGET_INVALID;
|
|
|
|
retval = cortex_a_write_dcc(a, data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
|
|
return cortex_a_exec_opcode(
|
|
a->armv7a_common.arm.target,
|
|
ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
|
|
&dscr);
|
|
}
|
|
|
|
static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
|
|
uint32_t opcode, uint32_t data)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
uint32_t dscr = DSCR_INSTR_COMP;
|
|
int retval;
|
|
|
|
retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* then the opcode, taking data from R0 */
|
|
retval = cortex_a_exec_opcode(
|
|
a->armv7a_common.arm.target,
|
|
opcode,
|
|
&dscr);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
|
|
{
|
|
struct target *target = dpm->arm->target;
|
|
uint32_t dscr = DSCR_INSTR_COMP;
|
|
|
|
/* "Prefetch flush" after modifying execution status in CPSR */
|
|
return cortex_a_exec_opcode(target,
|
|
ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
|
|
&dscr);
|
|
}
|
|
|
|
static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
|
|
uint32_t opcode, uint32_t *data)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
int retval;
|
|
uint32_t dscr = DSCR_INSTR_COMP;
|
|
|
|
/* the opcode, writing data to DCC */
|
|
retval = cortex_a_exec_opcode(
|
|
a->armv7a_common.arm.target,
|
|
opcode,
|
|
&dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return cortex_a_read_dcc(a, data, &dscr);
|
|
}
|
|
|
|
static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
|
|
uint8_t rt, uint32_t *data)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
uint32_t dscr = DSCR_INSTR_COMP;
|
|
int retval;
|
|
|
|
if (rt > 15)
|
|
return ERROR_TARGET_INVALID;
|
|
|
|
retval = cortex_a_exec_opcode(
|
|
a->armv7a_common.arm.target,
|
|
ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
|
|
&dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return cortex_a_read_dcc(a, data, &dscr);
|
|
}
|
|
|
|
static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
|
|
uint32_t opcode, uint32_t *data)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
uint32_t dscr = DSCR_INSTR_COMP;
|
|
int retval;
|
|
|
|
/* the opcode, writing data to R0 */
|
|
retval = cortex_a_exec_opcode(
|
|
a->armv7a_common.arm.target,
|
|
opcode,
|
|
&dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* write R0 to DCC */
|
|
return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
|
|
}
|
|
|
|
static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
|
|
uint32_t addr, uint32_t control)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
uint32_t vr = a->armv7a_common.debug_base;
|
|
uint32_t cr = a->armv7a_common.debug_base;
|
|
int retval;
|
|
|
|
switch (index_t) {
|
|
case 0 ... 15: /* breakpoints */
|
|
vr += CPUDBG_BVR_BASE;
|
|
cr += CPUDBG_BCR_BASE;
|
|
break;
|
|
case 16 ... 31: /* watchpoints */
|
|
vr += CPUDBG_WVR_BASE;
|
|
cr += CPUDBG_WCR_BASE;
|
|
index_t -= 16;
|
|
break;
|
|
default:
|
|
return ERROR_FAIL;
|
|
}
|
|
vr += 4 * index_t;
|
|
cr += 4 * index_t;
|
|
|
|
LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
|
|
(unsigned) vr, (unsigned) cr);
|
|
|
|
retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
|
|
vr, addr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
|
|
cr, control);
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
|
|
{
|
|
struct cortex_a_common *a = dpm_to_a(dpm);
|
|
uint32_t cr;
|
|
|
|
switch (index_t) {
|
|
case 0 ... 15:
|
|
cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
|
|
break;
|
|
case 16 ... 31:
|
|
cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
|
|
index_t -= 16;
|
|
break;
|
|
default:
|
|
return ERROR_FAIL;
|
|
}
|
|
cr += 4 * index_t;
|
|
|
|
LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
|
|
|
|
/* clear control register */
|
|
return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
|
|
}
|
|
|
|
static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
|
|
{
|
|
struct arm_dpm *dpm = &a->armv7a_common.dpm;
|
|
int retval;
|
|
|
|
dpm->arm = &a->armv7a_common.arm;
|
|
dpm->didr = didr;
|
|
|
|
dpm->prepare = cortex_a_dpm_prepare;
|
|
dpm->finish = cortex_a_dpm_finish;
|
|
|
|
dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
|
|
dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
|
|
dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
|
|
|
|
dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
|
|
dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
|
|
|
|
dpm->bpwp_enable = cortex_a_bpwp_enable;
|
|
dpm->bpwp_disable = cortex_a_bpwp_disable;
|
|
|
|
retval = arm_dpm_setup(dpm);
|
|
if (retval == ERROR_OK)
|
|
retval = arm_dpm_initialize(dpm);
|
|
|
|
return retval;
|
|
}
|
|
static struct target *get_cortex_a(struct target *target, int32_t coreid)
|
|
{
|
|
struct target_list *head;
|
|
struct target *curr;
|
|
|
|
head = target->head;
|
|
while (head != (struct target_list *)NULL) {
|
|
curr = head->target;
|
|
if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
|
|
return curr;
|
|
head = head->next;
|
|
}
|
|
return target;
|
|
}
|
|
static int cortex_a_halt(struct target *target);
|
|
|
|
static int cortex_a_halt_smp(struct target *target)
|
|
{
|
|
int retval = 0;
|
|
struct target_list *head;
|
|
struct target *curr;
|
|
head = target->head;
|
|
while (head != (struct target_list *)NULL) {
|
|
curr = head->target;
|
|
if ((curr != target) && (curr->state != TARGET_HALTED)
|
|
&& target_was_examined(curr))
|
|
retval += cortex_a_halt(curr);
|
|
head = head->next;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static int update_halt_gdb(struct target *target)
|
|
{
|
|
struct target *gdb_target = NULL;
|
|
struct target_list *head;
|
|
struct target *curr;
|
|
int retval = 0;
|
|
|
|
if (target->gdb_service && target->gdb_service->core[0] == -1) {
|
|
target->gdb_service->target = target;
|
|
target->gdb_service->core[0] = target->coreid;
|
|
retval += cortex_a_halt_smp(target);
|
|
}
|
|
|
|
if (target->gdb_service)
|
|
gdb_target = target->gdb_service->target;
|
|
|
|
foreach_smp_target(head, target->head) {
|
|
curr = head->target;
|
|
/* skip calling context */
|
|
if (curr == target)
|
|
continue;
|
|
if (!target_was_examined(curr))
|
|
continue;
|
|
/* skip targets that were already halted */
|
|
if (curr->state == TARGET_HALTED)
|
|
continue;
|
|
/* Skip gdb_target; it alerts GDB so has to be polled as last one */
|
|
if (curr == gdb_target)
|
|
continue;
|
|
|
|
/* avoid recursion in cortex_a_poll() */
|
|
curr->smp = 0;
|
|
cortex_a_poll(curr);
|
|
curr->smp = 1;
|
|
}
|
|
|
|
/* after all targets were updated, poll the gdb serving target */
|
|
if (gdb_target != NULL && gdb_target != target)
|
|
cortex_a_poll(gdb_target);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Cortex-A Run control
|
|
*/
|
|
|
|
static int cortex_a_poll(struct target *target)
|
|
{
|
|
int retval = ERROR_OK;
|
|
uint32_t dscr;
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
enum target_state prev_target_state = target->state;
|
|
/* toggle to another core is done by gdb as follow */
|
|
/* maint packet J core_id */
|
|
/* continue */
|
|
/* the next polling trigger an halt event sent to gdb */
|
|
if ((target->state == TARGET_HALTED) && (target->smp) &&
|
|
(target->gdb_service) &&
|
|
(target->gdb_service->target == NULL)) {
|
|
target->gdb_service->target =
|
|
get_cortex_a(target, target->gdb_service->core[1]);
|
|
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
|
|
return retval;
|
|
}
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
cortex_a->cpudbg_dscr = dscr;
|
|
|
|
if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
|
|
if (prev_target_state != TARGET_HALTED) {
|
|
/* We have a halting debug event */
|
|
LOG_DEBUG("Target halted");
|
|
target->state = TARGET_HALTED;
|
|
|
|
retval = cortex_a_debug_entry(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (target->smp) {
|
|
retval = update_halt_gdb(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
if (prev_target_state == TARGET_DEBUG_RUNNING) {
|
|
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
|
|
} else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
|
|
if (arm_semihosting(target, &retval) != 0)
|
|
return retval;
|
|
|
|
target_call_event_callbacks(target,
|
|
TARGET_EVENT_HALTED);
|
|
}
|
|
}
|
|
} else
|
|
target->state = TARGET_RUNNING;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_halt(struct target *target)
|
|
{
|
|
int retval;
|
|
uint32_t dscr;
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
/*
|
|
* Tell the core to be halted by writing DRCR with 0x1
|
|
* and then wait for the core to be halted.
|
|
*/
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
dscr = 0; /* force read of dscr */
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
|
|
DSCR_CORE_HALTED, &dscr);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Error waiting for halt");
|
|
return retval;
|
|
}
|
|
|
|
target->debug_reason = DBG_REASON_DBGRQ;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_internal_restore(struct target *target, int current,
|
|
target_addr_t *address, int handle_breakpoints, int debug_execution)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct arm *arm = &armv7a->arm;
|
|
int retval;
|
|
uint32_t resume_pc;
|
|
|
|
if (!debug_execution)
|
|
target_free_all_working_areas(target);
|
|
|
|
#if 0
|
|
if (debug_execution) {
|
|
/* Disable interrupts */
|
|
/* We disable interrupts in the PRIMASK register instead of
|
|
* masking with C_MASKINTS,
|
|
* This is probably the same issue as Cortex-M3 Errata 377493:
|
|
* C_MASKINTS in parallel with disabled interrupts can cause
|
|
* local faults to not be taken. */
|
|
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
|
|
armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
|
|
armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
|
|
|
|
/* Make sure we are in Thumb mode */
|
|
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
|
|
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
|
|
32) | (1 << 24));
|
|
armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
|
|
armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
|
|
}
|
|
#endif
|
|
|
|
/* current = 1: continue on current pc, otherwise continue at <address> */
|
|
resume_pc = buf_get_u32(arm->pc->value, 0, 32);
|
|
if (!current)
|
|
resume_pc = *address;
|
|
else
|
|
*address = resume_pc;
|
|
|
|
/* Make sure that the Armv7 gdb thumb fixups does not
|
|
* kill the return address
|
|
*/
|
|
switch (arm->core_state) {
|
|
case ARM_STATE_ARM:
|
|
resume_pc &= 0xFFFFFFFC;
|
|
break;
|
|
case ARM_STATE_THUMB:
|
|
case ARM_STATE_THUMB_EE:
|
|
/* When the return address is loaded into PC
|
|
* bit 0 must be 1 to stay in Thumb state
|
|
*/
|
|
resume_pc |= 0x1;
|
|
break;
|
|
case ARM_STATE_JAZELLE:
|
|
LOG_ERROR("How do I resume into Jazelle state??");
|
|
return ERROR_FAIL;
|
|
case ARM_STATE_AARCH64:
|
|
LOG_ERROR("Shoudn't be in AARCH64 state");
|
|
return ERROR_FAIL;
|
|
}
|
|
LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
|
|
buf_set_u32(arm->pc->value, 0, 32, resume_pc);
|
|
arm->pc->dirty = true;
|
|
arm->pc->valid = true;
|
|
|
|
/* restore dpm_mode at system halt */
|
|
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
|
|
/* called it now before restoring context because it uses cpu
|
|
* register r0 for restoring cp15 control register */
|
|
retval = cortex_a_restore_cp15_control_reg(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_restore_context(target, handle_breakpoints);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
target->debug_reason = DBG_REASON_NOTHALTED;
|
|
target->state = TARGET_RUNNING;
|
|
|
|
/* registers are now invalid */
|
|
register_cache_invalidate(arm->core_cache);
|
|
|
|
#if 0
|
|
/* the front-end may request us not to handle breakpoints */
|
|
if (handle_breakpoints) {
|
|
/* Single step past breakpoint at current address */
|
|
breakpoint = breakpoint_find(target, resume_pc);
|
|
if (breakpoint) {
|
|
LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
|
|
cortex_m3_unset_breakpoint(target, breakpoint);
|
|
cortex_m3_single_step_core(target);
|
|
cortex_m3_set_breakpoint(target, breakpoint);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_internal_restart(struct target *target)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct arm *arm = &armv7a->arm;
|
|
int retval;
|
|
uint32_t dscr;
|
|
/*
|
|
* * Restart core and wait for it to be started. Clear ITRen and sticky
|
|
* * exception flags: see ARMv7 ARM, C5.9.
|
|
*
|
|
* REVISIT: for single stepping, we probably want to
|
|
* disable IRQs by default, with optional override...
|
|
*/
|
|
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if ((dscr & DSCR_INSTR_COMP) == 0)
|
|
LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
|
|
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
|
|
DRCR_CLEAR_EXCEPTIONS);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
dscr = 0; /* force read of dscr */
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
|
|
DSCR_CORE_RESTARTED, &dscr);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Error waiting for resume");
|
|
return retval;
|
|
}
|
|
|
|
target->debug_reason = DBG_REASON_NOTHALTED;
|
|
target->state = TARGET_RUNNING;
|
|
|
|
/* registers are now invalid */
|
|
register_cache_invalidate(arm->core_cache);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
|
|
{
|
|
int retval = 0;
|
|
struct target_list *head;
|
|
struct target *curr;
|
|
target_addr_t address;
|
|
head = target->head;
|
|
while (head != (struct target_list *)NULL) {
|
|
curr = head->target;
|
|
if ((curr != target) && (curr->state != TARGET_RUNNING)
|
|
&& target_was_examined(curr)) {
|
|
/* resume current address , not in step mode */
|
|
retval += cortex_a_internal_restore(curr, 1, &address,
|
|
handle_breakpoints, 0);
|
|
retval += cortex_a_internal_restart(curr);
|
|
}
|
|
head = head->next;
|
|
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_resume(struct target *target, int current,
|
|
target_addr_t address, int handle_breakpoints, int debug_execution)
|
|
{
|
|
int retval = 0;
|
|
/* dummy resume for smp toggle in order to reduce gdb impact */
|
|
if ((target->smp) && (target->gdb_service->core[1] != -1)) {
|
|
/* simulate a start and halt of target */
|
|
target->gdb_service->target = NULL;
|
|
target->gdb_service->core[0] = target->gdb_service->core[1];
|
|
/* fake resume at next poll we play the target core[1], see poll*/
|
|
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
|
|
return 0;
|
|
}
|
|
cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
|
|
if (target->smp) {
|
|
target->gdb_service->core[0] = -1;
|
|
retval = cortex_a_restore_smp(target, handle_breakpoints);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
cortex_a_internal_restart(target);
|
|
|
|
if (!debug_execution) {
|
|
target->state = TARGET_RUNNING;
|
|
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
|
|
LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
|
|
} else {
|
|
target->state = TARGET_DEBUG_RUNNING;
|
|
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
|
|
LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_debug_entry(struct target *target)
|
|
{
|
|
uint32_t dscr;
|
|
int retval = ERROR_OK;
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct arm *arm = &armv7a->arm;
|
|
|
|
LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
|
|
|
|
/* REVISIT surely we should not re-read DSCR !! */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
|
|
* imprecise data aborts get discarded by issuing a Data
|
|
* Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
|
|
*/
|
|
|
|
/* Enable the ITR execution once we are in debug mode */
|
|
dscr |= DSCR_ITR_EN;
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Examine debug reason */
|
|
arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
|
|
|
|
/* save address of instruction that triggered the watchpoint? */
|
|
if (target->debug_reason == DBG_REASON_WATCHPOINT) {
|
|
uint32_t wfar;
|
|
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_WFAR,
|
|
&wfar);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
arm_dpm_report_wfar(&armv7a->dpm, wfar);
|
|
}
|
|
|
|
/* First load register accessible through core debug port */
|
|
retval = arm_dpm_read_current_registers(&armv7a->dpm);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (arm->spsr) {
|
|
/* read SPSR */
|
|
retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
#if 0
|
|
/* TODO, Move this */
|
|
uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
|
|
cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
|
|
LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
|
|
|
|
cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
|
|
LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
|
|
|
|
cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
|
|
LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
|
|
#endif
|
|
|
|
/* Are we in an exception handler */
|
|
/* armv4_5->exception_number = 0; */
|
|
if (armv7a->post_debug_entry) {
|
|
retval = armv7a->post_debug_entry(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_post_debug_entry(struct target *target)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
int retval;
|
|
|
|
/* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
|
|
retval = armv7a->arm.mrc(target, 15,
|
|
0, 0, /* op1, op2 */
|
|
1, 0, /* CRn, CRm */
|
|
&cortex_a->cp15_control_reg);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
|
|
cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
|
|
|
|
if (!armv7a->is_armv7r)
|
|
armv7a_read_ttbcr(target);
|
|
|
|
if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
|
|
armv7a_identify_cache(target);
|
|
|
|
if (armv7a->is_armv7r) {
|
|
armv7a->armv7a_mmu.mmu_enabled = 0;
|
|
} else {
|
|
armv7a->armv7a_mmu.mmu_enabled =
|
|
(cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
|
|
}
|
|
armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
|
|
(cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
|
|
armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
|
|
(cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
|
|
cortex_a->curr_mode = armv7a->arm.core_mode;
|
|
|
|
/* switch to SVC mode to read DACR */
|
|
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
|
|
armv7a->arm.mrc(target, 15,
|
|
0, 0, 3, 0,
|
|
&cortex_a->cp15_dacr_reg);
|
|
|
|
LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
|
|
cortex_a->cp15_dacr_reg);
|
|
|
|
arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
uint32_t dscr;
|
|
|
|
/* Read DSCR */
|
|
int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
|
|
/* clear bitfield */
|
|
dscr &= ~bit_mask;
|
|
/* put new value */
|
|
dscr |= value & bit_mask;
|
|
|
|
/* write new DSCR */
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, dscr);
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_step(struct target *target, int current, target_addr_t address,
|
|
int handle_breakpoints)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct arm *arm = &armv7a->arm;
|
|
struct breakpoint *breakpoint = NULL;
|
|
struct breakpoint stepbreakpoint;
|
|
struct reg *r;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
/* current = 1: continue on current pc, otherwise continue at <address> */
|
|
r = arm->pc;
|
|
if (!current)
|
|
buf_set_u32(r->value, 0, 32, address);
|
|
else
|
|
address = buf_get_u32(r->value, 0, 32);
|
|
|
|
/* The front-end may request us not to handle breakpoints.
|
|
* But since Cortex-A uses breakpoint for single step,
|
|
* we MUST handle breakpoints.
|
|
*/
|
|
handle_breakpoints = 1;
|
|
if (handle_breakpoints) {
|
|
breakpoint = breakpoint_find(target, address);
|
|
if (breakpoint)
|
|
cortex_a_unset_breakpoint(target, breakpoint);
|
|
}
|
|
|
|
/* Setup single step breakpoint */
|
|
stepbreakpoint.address = address;
|
|
stepbreakpoint.asid = 0;
|
|
stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
|
|
? 2 : 4;
|
|
stepbreakpoint.type = BKPT_HARD;
|
|
stepbreakpoint.set = 0;
|
|
|
|
/* Disable interrupts during single step if requested */
|
|
if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
|
|
retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
}
|
|
|
|
/* Break on IVA mismatch */
|
|
cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
|
|
|
|
target->debug_reason = DBG_REASON_SINGLESTEP;
|
|
|
|
retval = cortex_a_resume(target, 1, address, 0, 0);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
int64_t then = timeval_ms();
|
|
while (target->state != TARGET_HALTED) {
|
|
retval = cortex_a_poll(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
if (target->state == TARGET_HALTED)
|
|
break;
|
|
if (timeval_ms() > then + 1000) {
|
|
LOG_ERROR("timeout waiting for target halt");
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
cortex_a_unset_breakpoint(target, &stepbreakpoint);
|
|
|
|
/* Re-enable interrupts if they were disabled */
|
|
if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
|
|
retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
|
|
if (ERROR_OK != retval)
|
|
return retval;
|
|
}
|
|
|
|
|
|
target->debug_reason = DBG_REASON_BREAKPOINT;
|
|
|
|
if (breakpoint)
|
|
cortex_a_set_breakpoint(target, breakpoint, 0);
|
|
|
|
if (target->state != TARGET_HALTED)
|
|
LOG_DEBUG("target stepped");
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_restore_context(struct target *target, bool bpwp)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
LOG_DEBUG(" ");
|
|
|
|
if (armv7a->pre_restore_context)
|
|
armv7a->pre_restore_context(target);
|
|
|
|
return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
|
|
}
|
|
|
|
/*
|
|
* Cortex-A Breakpoint and watchpoint functions
|
|
*/
|
|
|
|
/* Setup hardware Breakpoint Register Pair */
|
|
static int cortex_a_set_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint, uint8_t matchmode)
|
|
{
|
|
int retval;
|
|
int brp_i = 0;
|
|
uint32_t control;
|
|
uint8_t byte_addr_select = 0x0F;
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
struct cortex_a_brp *brp_list = cortex_a->brp_list;
|
|
|
|
if (breakpoint->set) {
|
|
LOG_WARNING("breakpoint already set");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
if (breakpoint->type == BKPT_HARD) {
|
|
while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
|
|
brp_i++;
|
|
if (brp_i >= cortex_a->brp_num) {
|
|
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
breakpoint->set = brp_i + 1;
|
|
if (breakpoint->length == 2)
|
|
byte_addr_select = (3 << (breakpoint->address & 0x02));
|
|
control = ((matchmode & 0x7) << 20)
|
|
| (byte_addr_select << 5)
|
|
| (3 << 1) | 1;
|
|
brp_list[brp_i].used = 1;
|
|
brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
|
|
brp_list[brp_i].control = control;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
|
|
brp_list[brp_i].value);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
|
|
brp_list[brp_i].control);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
|
|
brp_list[brp_i].control,
|
|
brp_list[brp_i].value);
|
|
} else if (breakpoint->type == BKPT_SOFT) {
|
|
uint8_t code[4];
|
|
/* length == 2: Thumb breakpoint */
|
|
if (breakpoint->length == 2)
|
|
buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
|
|
else
|
|
/* length == 3: Thumb-2 breakpoint, actual encoding is
|
|
* a regular Thumb BKPT instruction but we replace a
|
|
* 32bit Thumb-2 instruction, so fix-up the breakpoint
|
|
* length
|
|
*/
|
|
if (breakpoint->length == 3) {
|
|
buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
|
|
breakpoint->length = 4;
|
|
} else
|
|
/* length == 4, normal ARM breakpoint */
|
|
buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
|
|
|
|
retval = target_read_memory(target,
|
|
breakpoint->address & 0xFFFFFFFE,
|
|
breakpoint->length, 1,
|
|
breakpoint->orig_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* make sure data cache is cleaned & invalidated down to PoC */
|
|
if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
|
|
armv7a_cache_flush_virt(target, breakpoint->address,
|
|
breakpoint->length);
|
|
}
|
|
|
|
retval = target_write_memory(target,
|
|
breakpoint->address & 0xFFFFFFFE,
|
|
breakpoint->length, 1, code);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* update i-cache at breakpoint location */
|
|
armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
|
|
breakpoint->length);
|
|
armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
|
|
breakpoint->length);
|
|
|
|
breakpoint->set = 0x11; /* Any nice value but 0 */
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_set_context_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint, uint8_t matchmode)
|
|
{
|
|
int retval = ERROR_FAIL;
|
|
int brp_i = 0;
|
|
uint32_t control;
|
|
uint8_t byte_addr_select = 0x0F;
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
struct cortex_a_brp *brp_list = cortex_a->brp_list;
|
|
|
|
if (breakpoint->set) {
|
|
LOG_WARNING("breakpoint already set");
|
|
return retval;
|
|
}
|
|
/*check available context BRPs*/
|
|
while ((brp_list[brp_i].used ||
|
|
(brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
|
|
brp_i++;
|
|
|
|
if (brp_i >= cortex_a->brp_num) {
|
|
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
breakpoint->set = brp_i + 1;
|
|
control = ((matchmode & 0x7) << 20)
|
|
| (byte_addr_select << 5)
|
|
| (3 << 1) | 1;
|
|
brp_list[brp_i].used = 1;
|
|
brp_list[brp_i].value = (breakpoint->asid);
|
|
brp_list[brp_i].control = control;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
|
|
brp_list[brp_i].value);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
|
|
brp_list[brp_i].control);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
|
|
brp_list[brp_i].control,
|
|
brp_list[brp_i].value);
|
|
return ERROR_OK;
|
|
|
|
}
|
|
|
|
static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
|
|
{
|
|
int retval = ERROR_FAIL;
|
|
int brp_1 = 0; /* holds the contextID pair */
|
|
int brp_2 = 0; /* holds the IVA pair */
|
|
uint32_t control_CTX, control_IVA;
|
|
uint8_t CTX_byte_addr_select = 0x0F;
|
|
uint8_t IVA_byte_addr_select = 0x0F;
|
|
uint8_t CTX_machmode = 0x03;
|
|
uint8_t IVA_machmode = 0x01;
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
struct cortex_a_brp *brp_list = cortex_a->brp_list;
|
|
|
|
if (breakpoint->set) {
|
|
LOG_WARNING("breakpoint already set");
|
|
return retval;
|
|
}
|
|
/*check available context BRPs*/
|
|
while ((brp_list[brp_1].used ||
|
|
(brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
|
|
brp_1++;
|
|
|
|
printf("brp(CTX) found num: %d\n", brp_1);
|
|
if (brp_1 >= cortex_a->brp_num) {
|
|
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
while ((brp_list[brp_2].used ||
|
|
(brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
|
|
brp_2++;
|
|
|
|
printf("brp(IVA) found num: %d\n", brp_2);
|
|
if (brp_2 >= cortex_a->brp_num) {
|
|
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
breakpoint->set = brp_1 + 1;
|
|
breakpoint->linked_BRP = brp_2;
|
|
control_CTX = ((CTX_machmode & 0x7) << 20)
|
|
| (brp_2 << 16)
|
|
| (0 << 14)
|
|
| (CTX_byte_addr_select << 5)
|
|
| (3 << 1) | 1;
|
|
brp_list[brp_1].used = 1;
|
|
brp_list[brp_1].value = (breakpoint->asid);
|
|
brp_list[brp_1].control = control_CTX;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
|
|
brp_list[brp_1].value);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
|
|
brp_list[brp_1].control);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
control_IVA = ((IVA_machmode & 0x7) << 20)
|
|
| (brp_1 << 16)
|
|
| (IVA_byte_addr_select << 5)
|
|
| (3 << 1) | 1;
|
|
brp_list[brp_2].used = 1;
|
|
brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
|
|
brp_list[brp_2].control = control_IVA;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
|
|
brp_list[brp_2].value);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
|
|
brp_list[brp_2].control);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
|
|
{
|
|
int retval;
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
struct cortex_a_brp *brp_list = cortex_a->brp_list;
|
|
|
|
if (!breakpoint->set) {
|
|
LOG_WARNING("breakpoint not set");
|
|
return ERROR_OK;
|
|
}
|
|
|
|
if (breakpoint->type == BKPT_HARD) {
|
|
if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
|
|
int brp_i = breakpoint->set - 1;
|
|
int brp_j = breakpoint->linked_BRP;
|
|
if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
|
|
LOG_DEBUG("Invalid BRP number in breakpoint");
|
|
return ERROR_OK;
|
|
}
|
|
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
|
|
brp_list[brp_i].control, brp_list[brp_i].value);
|
|
brp_list[brp_i].used = 0;
|
|
brp_list[brp_i].value = 0;
|
|
brp_list[brp_i].control = 0;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
|
|
brp_list[brp_i].control);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
|
|
brp_list[brp_i].value);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
|
|
LOG_DEBUG("Invalid BRP number in breakpoint");
|
|
return ERROR_OK;
|
|
}
|
|
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
|
|
brp_list[brp_j].control, brp_list[brp_j].value);
|
|
brp_list[brp_j].used = 0;
|
|
brp_list[brp_j].value = 0;
|
|
brp_list[brp_j].control = 0;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
|
|
brp_list[brp_j].control);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
|
|
brp_list[brp_j].value);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
breakpoint->linked_BRP = 0;
|
|
breakpoint->set = 0;
|
|
return ERROR_OK;
|
|
|
|
} else {
|
|
int brp_i = breakpoint->set - 1;
|
|
if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
|
|
LOG_DEBUG("Invalid BRP number in breakpoint");
|
|
return ERROR_OK;
|
|
}
|
|
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
|
|
brp_list[brp_i].control, brp_list[brp_i].value);
|
|
brp_list[brp_i].used = 0;
|
|
brp_list[brp_i].value = 0;
|
|
brp_list[brp_i].control = 0;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
|
|
brp_list[brp_i].control);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
|
|
+ CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
|
|
brp_list[brp_i].value);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
breakpoint->set = 0;
|
|
return ERROR_OK;
|
|
}
|
|
} else {
|
|
|
|
/* make sure data cache is cleaned & invalidated down to PoC */
|
|
if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
|
|
armv7a_cache_flush_virt(target, breakpoint->address,
|
|
breakpoint->length);
|
|
}
|
|
|
|
/* restore original instruction (kept in target endianness) */
|
|
if (breakpoint->length == 4) {
|
|
retval = target_write_memory(target,
|
|
breakpoint->address & 0xFFFFFFFE,
|
|
4, 1, breakpoint->orig_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
} else {
|
|
retval = target_write_memory(target,
|
|
breakpoint->address & 0xFFFFFFFE,
|
|
2, 1, breakpoint->orig_instr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
/* update i-cache at breakpoint location */
|
|
armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
|
|
breakpoint->length);
|
|
armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
|
|
breakpoint->length);
|
|
}
|
|
breakpoint->set = 0;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_add_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
|
|
if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
|
|
LOG_INFO("no hardware breakpoint available");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
if (breakpoint->type == BKPT_HARD)
|
|
cortex_a->brp_num_available--;
|
|
|
|
return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
|
|
}
|
|
|
|
static int cortex_a_add_context_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
|
|
if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
|
|
LOG_INFO("no hardware breakpoint available");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
if (breakpoint->type == BKPT_HARD)
|
|
cortex_a->brp_num_available--;
|
|
|
|
return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
|
|
}
|
|
|
|
static int cortex_a_add_hybrid_breakpoint(struct target *target,
|
|
struct breakpoint *breakpoint)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
|
|
if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
|
|
LOG_INFO("no hardware breakpoint available");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
if (breakpoint->type == BKPT_HARD)
|
|
cortex_a->brp_num_available--;
|
|
|
|
return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
|
|
}
|
|
|
|
|
|
static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
|
|
#if 0
|
|
/* It is perfectly possible to remove breakpoints while the target is running */
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
#endif
|
|
|
|
if (breakpoint->set) {
|
|
cortex_a_unset_breakpoint(target, breakpoint);
|
|
if (breakpoint->type == BKPT_HARD)
|
|
cortex_a->brp_num_available++;
|
|
}
|
|
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/*
|
|
* Cortex-A Reset functions
|
|
*/
|
|
|
|
static int cortex_a_assert_reset(struct target *target)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
LOG_DEBUG(" ");
|
|
|
|
/* FIXME when halt is requested, make it work somehow... */
|
|
|
|
/* This function can be called in "target not examined" state */
|
|
|
|
/* Issue some kind of warm reset. */
|
|
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
|
|
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
|
|
else if (jtag_get_reset_config() & RESET_HAS_SRST) {
|
|
/* REVISIT handle "pulls" cases, if there's
|
|
* hardware that needs them to work.
|
|
*/
|
|
|
|
/*
|
|
* FIXME: fix reset when transport is SWD. This is a temporary
|
|
* work-around for release v0.10 that is not intended to stay!
|
|
*/
|
|
if (transport_is_swd() ||
|
|
(target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
|
|
adapter_assert_reset();
|
|
|
|
} else {
|
|
LOG_ERROR("%s: how to reset?", target_name(target));
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/* registers are now invalid */
|
|
if (target_was_examined(target))
|
|
register_cache_invalidate(armv7a->arm.core_cache);
|
|
|
|
target->state = TARGET_RESET;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_deassert_reset(struct target *target)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
int retval;
|
|
|
|
LOG_DEBUG(" ");
|
|
|
|
/* be certain SRST is off */
|
|
adapter_deassert_reset();
|
|
|
|
if (target_was_examined(target)) {
|
|
retval = cortex_a_poll(target);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
if (target->reset_halt) {
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("%s: ran after reset and before halt ...",
|
|
target_name(target));
|
|
if (target_was_examined(target)) {
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
} else
|
|
target->state = TARGET_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
|
|
{
|
|
/* Changes the mode of the DCC between non-blocking, stall, and fast mode.
|
|
* New desired mode must be in mode. Current value of DSCR must be in
|
|
* *dscr, which is updated with new value.
|
|
*
|
|
* This function elides actually sending the mode-change over the debug
|
|
* interface if the mode is already set as desired.
|
|
*/
|
|
uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
|
|
if (new_dscr != *dscr) {
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, new_dscr);
|
|
if (retval == ERROR_OK)
|
|
*dscr = new_dscr;
|
|
return retval;
|
|
} else {
|
|
return ERROR_OK;
|
|
}
|
|
}
|
|
|
|
static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
|
|
uint32_t value, uint32_t *dscr)
|
|
{
|
|
/* Waits until the specified bit(s) of DSCR take on a specified value. */
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
int64_t then;
|
|
int retval;
|
|
|
|
if ((*dscr & mask) == value)
|
|
return ERROR_OK;
|
|
|
|
then = timeval_ms();
|
|
while (1) {
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, dscr);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Could not read DSCR register");
|
|
return retval;
|
|
}
|
|
if ((*dscr & mask) == value)
|
|
break;
|
|
if (timeval_ms() > then + 1000) {
|
|
LOG_ERROR("timeout waiting for DSCR bit change");
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_read_copro(struct target *target, uint32_t opcode,
|
|
uint32_t *data, uint32_t *dscr)
|
|
{
|
|
int retval;
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
/* Move from coprocessor to R0. */
|
|
retval = cortex_a_exec_opcode(target, opcode, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Move from R0 to DTRTX. */
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Wait until DTRTX is full (according to ARMv7-A/-R architecture
|
|
* manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
|
|
* must also check TXfull_l). Most of the time this will be free
|
|
* because TXfull_l will be set immediately and cached in dscr. */
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
|
|
DSCR_DTRTX_FULL_LATCHED, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Read the value transferred to DTRTX. */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRTX, data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
|
|
uint32_t *dfsr, uint32_t *dscr)
|
|
{
|
|
int retval;
|
|
|
|
if (dfar) {
|
|
retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
if (dfsr) {
|
|
retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_write_copro(struct target *target, uint32_t opcode,
|
|
uint32_t data, uint32_t *dscr)
|
|
{
|
|
int retval;
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
/* Write the value into DTRRX. */
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRRX, data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Move from DTRRX to R0. */
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Move from R0 to coprocessor. */
|
|
retval = cortex_a_exec_opcode(target, opcode, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
|
|
* section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
|
|
* check RXfull_l). Most of the time this will be free because RXfull_l
|
|
* will be cleared immediately and cached in dscr. */
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
|
|
uint32_t dfsr, uint32_t *dscr)
|
|
{
|
|
int retval;
|
|
|
|
retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
|
|
{
|
|
uint32_t status, upper4;
|
|
|
|
if (dfsr & (1 << 9)) {
|
|
/* LPAE format. */
|
|
status = dfsr & 0x3f;
|
|
upper4 = status >> 2;
|
|
if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
|
|
return ERROR_TARGET_TRANSLATION_FAULT;
|
|
else if (status == 33)
|
|
return ERROR_TARGET_UNALIGNED_ACCESS;
|
|
else
|
|
return ERROR_TARGET_DATA_ABORT;
|
|
} else {
|
|
/* Normal format. */
|
|
status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
|
|
if (status == 1)
|
|
return ERROR_TARGET_UNALIGNED_ACCESS;
|
|
else if (status == 5 || status == 7 || status == 3 || status == 6 ||
|
|
status == 9 || status == 11 || status == 13 || status == 15)
|
|
return ERROR_TARGET_TRANSLATION_FAULT;
|
|
else
|
|
return ERROR_TARGET_DATA_ABORT;
|
|
}
|
|
}
|
|
|
|
static int cortex_a_write_cpu_memory_slow(struct target *target,
|
|
uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
|
|
{
|
|
/* Writes count objects of size size from *buffer. Old value of DSCR must
|
|
* be in *dscr; updated to new value. This is slow because it works for
|
|
* non-word-sized objects. Avoid unaligned accesses as they do not work
|
|
* on memory address space without "Normal" attribute. If size == 4 and
|
|
* the address is aligned, cortex_a_write_cpu_memory_fast should be
|
|
* preferred.
|
|
* Preconditions:
|
|
* - Address is in R0.
|
|
* - R0 is marked dirty.
|
|
*/
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct arm *arm = &armv7a->arm;
|
|
int retval;
|
|
|
|
/* Mark register R1 as dirty, to use for transferring data. */
|
|
arm_reg_current(arm, 1)->dirty = true;
|
|
|
|
/* Switch to non-blocking mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Go through the objects. */
|
|
while (count) {
|
|
/* Write the value to store into DTRRX. */
|
|
uint32_t data, opcode;
|
|
if (size == 1)
|
|
data = *buffer;
|
|
else if (size == 2)
|
|
data = target_buffer_get_u16(target, buffer);
|
|
else
|
|
data = target_buffer_get_u32(target, buffer);
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRRX, data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Transfer the value from DTRRX to R1. */
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Write the value transferred to R1 into memory. */
|
|
if (size == 1)
|
|
opcode = ARMV4_5_STRB_IP(1, 0);
|
|
else if (size == 2)
|
|
opcode = ARMV4_5_STRH_IP(1, 0);
|
|
else
|
|
opcode = ARMV4_5_STRW_IP(1, 0);
|
|
retval = cortex_a_exec_opcode(target, opcode, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Check for faults and return early. */
|
|
if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
|
|
return ERROR_OK; /* A data fault is not considered a system failure. */
|
|
|
|
/* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
|
|
* manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
|
|
* must also check RXfull_l). Most of the time this will be free
|
|
* because RXfull_l will be cleared immediately and cached in dscr. */
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Advance. */
|
|
buffer += size;
|
|
--count;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_write_cpu_memory_fast(struct target *target,
|
|
uint32_t count, const uint8_t *buffer, uint32_t *dscr)
|
|
{
|
|
/* Writes count objects of size 4 from *buffer. Old value of DSCR must be
|
|
* in *dscr; updated to new value. This is fast but only works for
|
|
* word-sized objects at aligned addresses.
|
|
* Preconditions:
|
|
* - Address is in R0 and must be a multiple of 4.
|
|
* - R0 is marked dirty.
|
|
*/
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
int retval;
|
|
|
|
/* Switch to fast mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Latch STC instruction. */
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Transfer all the data and issue all the instructions. */
|
|
return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
|
|
4, count, armv7a->debug_base + CPUDBG_DTRRX);
|
|
}
|
|
|
|
static int cortex_a_write_cpu_memory(struct target *target,
|
|
uint32_t address, uint32_t size,
|
|
uint32_t count, const uint8_t *buffer)
|
|
{
|
|
/* Write memory through the CPU. */
|
|
int retval, final_retval;
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct arm *arm = &armv7a->arm;
|
|
uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
|
|
|
|
LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
|
|
address, size, count);
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (!count)
|
|
return ERROR_OK;
|
|
|
|
/* Clear any abort. */
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Read DSCR. */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Switch to non-blocking mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
|
|
if (retval != ERROR_OK)
|
|
goto out;
|
|
|
|
/* Mark R0 as dirty. */
|
|
arm_reg_current(arm, 0)->dirty = true;
|
|
|
|
/* Read DFAR and DFSR, as they will be modified in the event of a fault. */
|
|
retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
|
|
if (retval != ERROR_OK)
|
|
goto out;
|
|
|
|
/* Get the memory address into R0. */
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRRX, address);
|
|
if (retval != ERROR_OK)
|
|
goto out;
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
|
|
if (retval != ERROR_OK)
|
|
goto out;
|
|
|
|
if (size == 4 && (address % 4) == 0) {
|
|
/* We are doing a word-aligned transfer, so use fast mode. */
|
|
retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
|
|
} else {
|
|
/* Use slow path. Adjust size for aligned accesses */
|
|
switch (address % 4) {
|
|
case 1:
|
|
case 3:
|
|
count *= size;
|
|
size = 1;
|
|
break;
|
|
case 2:
|
|
if (size == 4) {
|
|
count *= 2;
|
|
size = 2;
|
|
}
|
|
case 0:
|
|
default:
|
|
break;
|
|
}
|
|
retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
|
|
}
|
|
|
|
out:
|
|
final_retval = retval;
|
|
|
|
/* Switch to non-blocking mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
|
|
if (final_retval == ERROR_OK)
|
|
final_retval = retval;
|
|
|
|
/* Wait for last issued instruction to complete. */
|
|
retval = cortex_a_wait_instrcmpl(target, &dscr, true);
|
|
if (final_retval == ERROR_OK)
|
|
final_retval = retval;
|
|
|
|
/* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
|
|
* section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
|
|
* check RXfull_l). Most of the time this will be free because RXfull_l
|
|
* will be cleared immediately and cached in dscr. However, don't do this
|
|
* if there is fault, because then the instruction might not have completed
|
|
* successfully. */
|
|
if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
/* If there were any sticky abort flags, clear them. */
|
|
if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
|
|
fault_dscr = dscr;
|
|
mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
|
|
dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
|
|
} else {
|
|
fault_dscr = 0;
|
|
}
|
|
|
|
/* Handle synchronous data faults. */
|
|
if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
|
|
if (final_retval == ERROR_OK) {
|
|
/* Final return value will reflect cause of fault. */
|
|
retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
|
|
if (retval == ERROR_OK) {
|
|
LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
|
|
final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
|
|
} else
|
|
final_retval = retval;
|
|
}
|
|
/* Fault destroyed DFAR/DFSR; restore them. */
|
|
retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
|
|
if (retval != ERROR_OK)
|
|
LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
|
|
}
|
|
|
|
/* Handle asynchronous data faults. */
|
|
if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
|
|
if (final_retval == ERROR_OK)
|
|
/* No other error has been recorded so far, so keep this one. */
|
|
final_retval = ERROR_TARGET_DATA_ABORT;
|
|
}
|
|
|
|
/* If the DCC is nonempty, clear it. */
|
|
if (dscr & DSCR_DTRTX_FULL_LATCHED) {
|
|
uint32_t dummy;
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRTX, &dummy);
|
|
if (final_retval == ERROR_OK)
|
|
final_retval = retval;
|
|
}
|
|
if (dscr & DSCR_DTRRX_FULL_LATCHED) {
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
|
|
if (final_retval == ERROR_OK)
|
|
final_retval = retval;
|
|
}
|
|
|
|
/* Done. */
|
|
return final_retval;
|
|
}
|
|
|
|
static int cortex_a_read_cpu_memory_slow(struct target *target,
|
|
uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
|
|
{
|
|
/* Reads count objects of size size into *buffer. Old value of DSCR must be
|
|
* in *dscr; updated to new value. This is slow because it works for
|
|
* non-word-sized objects. Avoid unaligned accesses as they do not work
|
|
* on memory address space without "Normal" attribute. If size == 4 and
|
|
* the address is aligned, cortex_a_read_cpu_memory_fast should be
|
|
* preferred.
|
|
* Preconditions:
|
|
* - Address is in R0.
|
|
* - R0 is marked dirty.
|
|
*/
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct arm *arm = &armv7a->arm;
|
|
int retval;
|
|
|
|
/* Mark register R1 as dirty, to use for transferring data. */
|
|
arm_reg_current(arm, 1)->dirty = true;
|
|
|
|
/* Switch to non-blocking mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Go through the objects. */
|
|
while (count) {
|
|
/* Issue a load of the appropriate size to R1. */
|
|
uint32_t opcode, data;
|
|
if (size == 1)
|
|
opcode = ARMV4_5_LDRB_IP(1, 0);
|
|
else if (size == 2)
|
|
opcode = ARMV4_5_LDRH_IP(1, 0);
|
|
else
|
|
opcode = ARMV4_5_LDRW_IP(1, 0);
|
|
retval = cortex_a_exec_opcode(target, opcode, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Issue a write of R1 to DTRTX. */
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Check for faults and return early. */
|
|
if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
|
|
return ERROR_OK; /* A data fault is not considered a system failure. */
|
|
|
|
/* Wait until DTRTX is full (according to ARMv7-A/-R architecture
|
|
* manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
|
|
* must also check TXfull_l). Most of the time this will be free
|
|
* because TXfull_l will be set immediately and cached in dscr. */
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
|
|
DSCR_DTRTX_FULL_LATCHED, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Read the value transferred to DTRTX into the buffer. */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRTX, &data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
if (size == 1)
|
|
*buffer = (uint8_t) data;
|
|
else if (size == 2)
|
|
target_buffer_set_u16(target, buffer, (uint16_t) data);
|
|
else
|
|
target_buffer_set_u32(target, buffer, data);
|
|
|
|
/* Advance. */
|
|
buffer += size;
|
|
--count;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_read_cpu_memory_fast(struct target *target,
|
|
uint32_t count, uint8_t *buffer, uint32_t *dscr)
|
|
{
|
|
/* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
|
|
* *dscr; updated to new value. This is fast but only works for word-sized
|
|
* objects at aligned addresses.
|
|
* Preconditions:
|
|
* - Address is in R0 and must be a multiple of 4.
|
|
* - R0 is marked dirty.
|
|
*/
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
uint32_t u32;
|
|
int retval;
|
|
|
|
/* Switch to non-blocking mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Issue the LDC instruction via a write to ITR. */
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
count--;
|
|
|
|
if (count > 0) {
|
|
/* Switch to fast mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Latch LDC instruction. */
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Read the value transferred to DTRTX into the buffer. Due to fast
|
|
* mode rules, this blocks until the instruction finishes executing and
|
|
* then reissues the read instruction to read the next word from
|
|
* memory. The last read of DTRTX in this call reads the second-to-last
|
|
* word from memory and issues the read instruction for the last word.
|
|
*/
|
|
retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
|
|
4, count, armv7a->debug_base + CPUDBG_DTRTX);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Advance. */
|
|
buffer += count * 4;
|
|
}
|
|
|
|
/* Wait for last issued instruction to complete. */
|
|
retval = cortex_a_wait_instrcmpl(target, dscr, false);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Switch to non-blocking mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Check for faults and return early. */
|
|
if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
|
|
return ERROR_OK; /* A data fault is not considered a system failure. */
|
|
|
|
/* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
|
|
* section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
|
|
* check TXfull_l). Most of the time this will be free because TXfull_l
|
|
* will be set immediately and cached in dscr. */
|
|
retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
|
|
DSCR_DTRTX_FULL_LATCHED, dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Read the value transferred to DTRTX into the buffer. This is the last
|
|
* word. */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRTX, &u32);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
target_buffer_set_u32(target, buffer, u32);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_read_cpu_memory(struct target *target,
|
|
uint32_t address, uint32_t size,
|
|
uint32_t count, uint8_t *buffer)
|
|
{
|
|
/* Read memory through the CPU. */
|
|
int retval, final_retval;
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
struct arm *arm = &armv7a->arm;
|
|
uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
|
|
|
|
LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
|
|
address, size, count);
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_WARNING("target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (!count)
|
|
return ERROR_OK;
|
|
|
|
/* Clear any abort. */
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Read DSCR */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Switch to non-blocking mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
|
|
if (retval != ERROR_OK)
|
|
goto out;
|
|
|
|
/* Mark R0 as dirty. */
|
|
arm_reg_current(arm, 0)->dirty = true;
|
|
|
|
/* Read DFAR and DFSR, as they will be modified in the event of a fault. */
|
|
retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
|
|
if (retval != ERROR_OK)
|
|
goto out;
|
|
|
|
/* Get the memory address into R0. */
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRRX, address);
|
|
if (retval != ERROR_OK)
|
|
goto out;
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
|
|
if (retval != ERROR_OK)
|
|
goto out;
|
|
|
|
if (size == 4 && (address % 4) == 0) {
|
|
/* We are doing a word-aligned transfer, so use fast mode. */
|
|
retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
|
|
} else {
|
|
/* Use slow path. Adjust size for aligned accesses */
|
|
switch (address % 4) {
|
|
case 1:
|
|
case 3:
|
|
count *= size;
|
|
size = 1;
|
|
break;
|
|
case 2:
|
|
if (size == 4) {
|
|
count *= 2;
|
|
size = 2;
|
|
}
|
|
break;
|
|
case 0:
|
|
default:
|
|
break;
|
|
}
|
|
retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
|
|
}
|
|
|
|
out:
|
|
final_retval = retval;
|
|
|
|
/* Switch to non-blocking mode if not already in that mode. */
|
|
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
|
|
if (final_retval == ERROR_OK)
|
|
final_retval = retval;
|
|
|
|
/* Wait for last issued instruction to complete. */
|
|
retval = cortex_a_wait_instrcmpl(target, &dscr, true);
|
|
if (final_retval == ERROR_OK)
|
|
final_retval = retval;
|
|
|
|
/* If there were any sticky abort flags, clear them. */
|
|
if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
|
|
fault_dscr = dscr;
|
|
mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
|
|
dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
|
|
} else {
|
|
fault_dscr = 0;
|
|
}
|
|
|
|
/* Handle synchronous data faults. */
|
|
if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
|
|
if (final_retval == ERROR_OK) {
|
|
/* Final return value will reflect cause of fault. */
|
|
retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
|
|
if (retval == ERROR_OK) {
|
|
LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
|
|
final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
|
|
} else
|
|
final_retval = retval;
|
|
}
|
|
/* Fault destroyed DFAR/DFSR; restore them. */
|
|
retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
|
|
if (retval != ERROR_OK)
|
|
LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
|
|
}
|
|
|
|
/* Handle asynchronous data faults. */
|
|
if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
|
|
if (final_retval == ERROR_OK)
|
|
/* No other error has been recorded so far, so keep this one. */
|
|
final_retval = ERROR_TARGET_DATA_ABORT;
|
|
}
|
|
|
|
/* If the DCC is nonempty, clear it. */
|
|
if (dscr & DSCR_DTRTX_FULL_LATCHED) {
|
|
uint32_t dummy;
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRTX, &dummy);
|
|
if (final_retval == ERROR_OK)
|
|
final_retval = retval;
|
|
}
|
|
if (dscr & DSCR_DTRRX_FULL_LATCHED) {
|
|
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
|
|
if (final_retval == ERROR_OK)
|
|
final_retval = retval;
|
|
}
|
|
|
|
/* Done. */
|
|
return final_retval;
|
|
}
|
|
|
|
|
|
/*
|
|
* Cortex-A Memory access
|
|
*
|
|
* This is same Cortex-M3 but we must also use the correct
|
|
* ap number for every access.
|
|
*/
|
|
|
|
static int cortex_a_read_phys_memory(struct target *target,
|
|
target_addr_t address, uint32_t size,
|
|
uint32_t count, uint8_t *buffer)
|
|
{
|
|
int retval;
|
|
|
|
if (!count || !buffer)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
|
|
address, size, count);
|
|
|
|
/* read memory through the CPU */
|
|
cortex_a_prep_memaccess(target, 1);
|
|
retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
|
|
cortex_a_post_memaccess(target, 1);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_read_memory(struct target *target, target_addr_t address,
|
|
uint32_t size, uint32_t count, uint8_t *buffer)
|
|
{
|
|
int retval;
|
|
|
|
/* cortex_a handles unaligned memory access */
|
|
LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
|
|
address, size, count);
|
|
|
|
cortex_a_prep_memaccess(target, 0);
|
|
retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
|
|
cortex_a_post_memaccess(target, 0);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_write_phys_memory(struct target *target,
|
|
target_addr_t address, uint32_t size,
|
|
uint32_t count, const uint8_t *buffer)
|
|
{
|
|
int retval;
|
|
|
|
if (!count || !buffer)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
|
|
address, size, count);
|
|
|
|
/* write memory through the CPU */
|
|
cortex_a_prep_memaccess(target, 1);
|
|
retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
|
|
cortex_a_post_memaccess(target, 1);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_write_memory(struct target *target, target_addr_t address,
|
|
uint32_t size, uint32_t count, const uint8_t *buffer)
|
|
{
|
|
int retval;
|
|
|
|
/* cortex_a handles unaligned memory access */
|
|
LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
|
|
address, size, count);
|
|
|
|
/* memory writes bypass the caches, must flush before writing */
|
|
armv7a_cache_auto_flush_on_write(target, address, size * count);
|
|
|
|
cortex_a_prep_memaccess(target, 0);
|
|
retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
|
|
cortex_a_post_memaccess(target, 0);
|
|
return retval;
|
|
}
|
|
|
|
static int cortex_a_read_buffer(struct target *target, target_addr_t address,
|
|
uint32_t count, uint8_t *buffer)
|
|
{
|
|
uint32_t size;
|
|
|
|
/* Align up to maximum 4 bytes. The loop condition makes sure the next pass
|
|
* will have something to do with the size we leave to it. */
|
|
for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
|
|
if (address & size) {
|
|
int retval = target_read_memory(target, address, size, 1, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
address += size;
|
|
count -= size;
|
|
buffer += size;
|
|
}
|
|
}
|
|
|
|
/* Read the data with as large access size as possible. */
|
|
for (; size > 0; size /= 2) {
|
|
uint32_t aligned = count - count % size;
|
|
if (aligned > 0) {
|
|
int retval = target_read_memory(target, address, size, aligned / size, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
address += aligned;
|
|
count -= aligned;
|
|
buffer += aligned;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_write_buffer(struct target *target, target_addr_t address,
|
|
uint32_t count, const uint8_t *buffer)
|
|
{
|
|
uint32_t size;
|
|
|
|
/* Align up to maximum 4 bytes. The loop condition makes sure the next pass
|
|
* will have something to do with the size we leave to it. */
|
|
for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
|
|
if (address & size) {
|
|
int retval = target_write_memory(target, address, size, 1, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
address += size;
|
|
count -= size;
|
|
buffer += size;
|
|
}
|
|
}
|
|
|
|
/* Write the data with as large access size as possible. */
|
|
for (; size > 0; size /= 2) {
|
|
uint32_t aligned = count - count % size;
|
|
if (aligned > 0) {
|
|
int retval = target_write_memory(target, address, size, aligned / size, buffer);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
address += aligned;
|
|
count -= aligned;
|
|
buffer += aligned;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_handle_target_request(void *priv)
|
|
{
|
|
struct target *target = priv;
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
int retval;
|
|
|
|
if (!target_was_examined(target))
|
|
return ERROR_OK;
|
|
if (!target->dbg_msg_enabled)
|
|
return ERROR_OK;
|
|
|
|
if (target->state == TARGET_RUNNING) {
|
|
uint32_t request;
|
|
uint32_t dscr;
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
|
|
/* check if we have data */
|
|
int64_t then = timeval_ms();
|
|
while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DTRTX, &request);
|
|
if (retval == ERROR_OK) {
|
|
target_request(target, request);
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
}
|
|
if (timeval_ms() > then + 1000) {
|
|
LOG_ERROR("Timeout waiting for dtr tx full");
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/*
|
|
* Cortex-A target information and configuration
|
|
*/
|
|
|
|
static int cortex_a_examine_first(struct target *target)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
struct adiv5_dap *swjdp = armv7a->arm.dap;
|
|
|
|
int i;
|
|
int retval = ERROR_OK;
|
|
uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
|
|
|
|
/* Search for the APB-AP - it is needed for access to debug registers */
|
|
retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Could not find APB-AP for debug access");
|
|
return retval;
|
|
}
|
|
|
|
retval = mem_ap_init(armv7a->debug_ap);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Could not initialize the APB-AP");
|
|
return retval;
|
|
}
|
|
|
|
armv7a->debug_ap->memaccess_tck = 80;
|
|
|
|
if (!target->dbgbase_set) {
|
|
uint32_t dbgbase;
|
|
/* Get ROM Table base */
|
|
uint32_t apid;
|
|
int32_t coreidx = target->coreid;
|
|
LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
|
|
target->cmd_name);
|
|
retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
/* Lookup 0x15 -- Processor DAP */
|
|
retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
|
|
&armv7a->debug_base, &coreidx);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
|
|
target->cmd_name);
|
|
return retval;
|
|
}
|
|
LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
|
|
target->coreid, armv7a->debug_base);
|
|
} else
|
|
armv7a->debug_base = target->dbgbase;
|
|
|
|
if ((armv7a->debug_base & (1UL<<31)) == 0)
|
|
LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
|
|
"Please fix the target configuration.", target_name(target));
|
|
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DIDR, &didr);
|
|
if (retval != ERROR_OK) {
|
|
LOG_DEBUG("Examine %s failed", "DIDR");
|
|
return retval;
|
|
}
|
|
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_CPUID, &cpuid);
|
|
if (retval != ERROR_OK) {
|
|
LOG_DEBUG("Examine %s failed", "CPUID");
|
|
return retval;
|
|
}
|
|
|
|
LOG_DEBUG("didr = 0x%08" PRIx32, didr);
|
|
LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
|
|
|
|
cortex_a->didr = didr;
|
|
cortex_a->cpuid = cpuid;
|
|
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
|
|
|
|
if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
|
|
LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
|
|
target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
|
|
return ERROR_TARGET_INIT_FAILED;
|
|
}
|
|
|
|
if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
|
|
LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
|
|
|
|
/* Read DBGOSLSR and check if OSLK is implemented */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
|
|
|
|
/* check if OS Lock is implemented */
|
|
if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
|
|
/* check if OS Lock is set */
|
|
if (dbg_osreg & OSLSR_OSLK) {
|
|
LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
|
|
|
|
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_OSLAR,
|
|
0);
|
|
if (retval == ERROR_OK)
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
|
|
|
|
/* if we fail to access the register or cannot reset the OSLK bit, bail out */
|
|
if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
|
|
LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
|
|
target->coreid);
|
|
target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
|
|
return ERROR_TARGET_INIT_FAILED;
|
|
}
|
|
}
|
|
}
|
|
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (dbg_idpfr1 & 0x000000f0) {
|
|
LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
|
|
target->coreid);
|
|
armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
|
|
}
|
|
if (dbg_idpfr1 & 0x0000f000) {
|
|
LOG_DEBUG("target->coreid %" PRId32 " has virtualization extensions",
|
|
target->coreid);
|
|
/*
|
|
* overwrite and simplify the checks.
|
|
* virtualization extensions require implementation of security extension
|
|
*/
|
|
armv7a->arm.core_type = ARM_CORE_TYPE_VIRT_EXT;
|
|
}
|
|
|
|
/* Avoid recreating the registers cache */
|
|
if (!target_was_examined(target)) {
|
|
retval = cortex_a_dpm_setup(cortex_a, didr);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
}
|
|
|
|
/* Setup Breakpoint Register Pairs */
|
|
cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
|
|
cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
|
|
cortex_a->brp_num_available = cortex_a->brp_num;
|
|
free(cortex_a->brp_list);
|
|
cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
|
|
/* cortex_a->brb_enabled = ????; */
|
|
for (i = 0; i < cortex_a->brp_num; i++) {
|
|
cortex_a->brp_list[i].used = 0;
|
|
if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
|
|
cortex_a->brp_list[i].type = BRP_NORMAL;
|
|
else
|
|
cortex_a->brp_list[i].type = BRP_CONTEXT;
|
|
cortex_a->brp_list[i].value = 0;
|
|
cortex_a->brp_list[i].control = 0;
|
|
cortex_a->brp_list[i].BRPn = i;
|
|
}
|
|
|
|
LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
|
|
|
|
/* select debug_ap as default */
|
|
swjdp->apsel = armv7a->debug_ap->ap_num;
|
|
|
|
target_set_examined(target);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_examine(struct target *target)
|
|
{
|
|
int retval = ERROR_OK;
|
|
|
|
/* Reestablish communication after target reset */
|
|
retval = cortex_a_examine_first(target);
|
|
|
|
/* Configure core debug access */
|
|
if (retval == ERROR_OK)
|
|
retval = cortex_a_init_debug_access(target);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Cortex-A target creation and initialization
|
|
*/
|
|
|
|
static int cortex_a_init_target(struct command_context *cmd_ctx,
|
|
struct target *target)
|
|
{
|
|
/* examine_first() does a bunch of this */
|
|
arm_semihosting_init(target);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_init_arch_info(struct target *target,
|
|
struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
|
|
{
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
|
|
/* Setup struct cortex_a_common */
|
|
cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
|
|
armv7a->arm.dap = dap;
|
|
|
|
/* register arch-specific functions */
|
|
armv7a->examine_debug_reason = NULL;
|
|
|
|
armv7a->post_debug_entry = cortex_a_post_debug_entry;
|
|
|
|
armv7a->pre_restore_context = NULL;
|
|
|
|
armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
|
|
|
|
|
|
/* arm7_9->handle_target_request = cortex_a_handle_target_request; */
|
|
|
|
/* REVISIT v7a setup should be in a v7a-specific routine */
|
|
armv7a_init_arch_info(target, armv7a);
|
|
target_register_timer_callback(cortex_a_handle_target_request, 1,
|
|
TARGET_TIMER_TYPE_PERIODIC, target);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
|
|
{
|
|
struct cortex_a_common *cortex_a;
|
|
struct adiv5_private_config *pc;
|
|
|
|
if (target->private_config == NULL)
|
|
return ERROR_FAIL;
|
|
|
|
pc = (struct adiv5_private_config *)target->private_config;
|
|
|
|
cortex_a = calloc(1, sizeof(struct cortex_a_common));
|
|
if (cortex_a == NULL) {
|
|
LOG_ERROR("Out of memory");
|
|
return ERROR_FAIL;
|
|
}
|
|
cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
|
|
cortex_a->armv7a_common.is_armv7r = false;
|
|
cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
|
|
|
|
return cortex_a_init_arch_info(target, cortex_a, pc->dap);
|
|
}
|
|
|
|
static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
|
|
{
|
|
struct cortex_a_common *cortex_a;
|
|
struct adiv5_private_config *pc;
|
|
|
|
pc = (struct adiv5_private_config *)target->private_config;
|
|
if (adiv5_verify_config(pc) != ERROR_OK)
|
|
return ERROR_FAIL;
|
|
|
|
cortex_a = calloc(1, sizeof(struct cortex_a_common));
|
|
if (cortex_a == NULL) {
|
|
LOG_ERROR("Out of memory");
|
|
return ERROR_FAIL;
|
|
}
|
|
cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
|
|
cortex_a->armv7a_common.is_armv7r = true;
|
|
|
|
return cortex_a_init_arch_info(target, cortex_a, pc->dap);
|
|
}
|
|
|
|
static void cortex_a_deinit_target(struct target *target)
|
|
{
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
struct armv7a_common *armv7a = &cortex_a->armv7a_common;
|
|
struct arm_dpm *dpm = &armv7a->dpm;
|
|
uint32_t dscr;
|
|
int retval;
|
|
|
|
if (target_was_examined(target)) {
|
|
/* Disable halt for breakpoint, watchpoint and vector catch */
|
|
retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR, &dscr);
|
|
if (retval == ERROR_OK)
|
|
mem_ap_write_atomic_u32(armv7a->debug_ap,
|
|
armv7a->debug_base + CPUDBG_DSCR,
|
|
dscr & ~DSCR_HALT_DBG_MODE);
|
|
}
|
|
|
|
free(cortex_a->brp_list);
|
|
arm_free_reg_cache(dpm->arm);
|
|
free(dpm->dbp);
|
|
free(dpm->dwp);
|
|
free(target->private_config);
|
|
free(cortex_a);
|
|
}
|
|
|
|
static int cortex_a_mmu(struct target *target, int *enabled)
|
|
{
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("%s: target not halted", __func__);
|
|
return ERROR_TARGET_INVALID;
|
|
}
|
|
|
|
if (armv7a->is_armv7r)
|
|
*enabled = 0;
|
|
else
|
|
*enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int cortex_a_virt2phys(struct target *target,
|
|
target_addr_t virt, target_addr_t *phys)
|
|
{
|
|
int retval;
|
|
int mmu_enabled = 0;
|
|
|
|
/*
|
|
* If the MMU was not enabled at debug entry, there is no
|
|
* way of knowing if there was ever a valid configuration
|
|
* for it and thus it's not safe to enable it. In this case,
|
|
* just return the virtual address as physical.
|
|
*/
|
|
cortex_a_mmu(target, &mmu_enabled);
|
|
if (!mmu_enabled) {
|
|
*phys = virt;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* mmu must be enable in order to get a correct translation */
|
|
retval = cortex_a_mmu_modify(target, 1);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
|
|
phys, 1);
|
|
}
|
|
|
|
COMMAND_HANDLER(cortex_a_handle_cache_info_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct armv7a_common *armv7a = target_to_armv7a(target);
|
|
|
|
return armv7a_handle_cache_info_command(CMD,
|
|
&armv7a->armv7a_mmu.armv7a_cache);
|
|
}
|
|
|
|
|
|
COMMAND_HANDLER(cortex_a_handle_dbginit_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
if (!target_was_examined(target)) {
|
|
LOG_ERROR("target not examined yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
return cortex_a_init_debug_access(target);
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
|
|
static const Jim_Nvp nvp_maskisr_modes[] = {
|
|
{ .name = "off", .value = CORTEX_A_ISRMASK_OFF },
|
|
{ .name = "on", .value = CORTEX_A_ISRMASK_ON },
|
|
{ .name = NULL, .value = -1 },
|
|
};
|
|
const Jim_Nvp *n;
|
|
|
|
if (CMD_ARGC > 0) {
|
|
n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
|
|
if (n->name == NULL) {
|
|
LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
cortex_a->isrmasking_mode = n->value;
|
|
}
|
|
|
|
n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
|
|
command_print(CMD, "cortex_a interrupt mask %s", n->name);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
|
|
{
|
|
struct target *target = get_current_target(CMD_CTX);
|
|
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
|
|
|
|
static const Jim_Nvp nvp_dacrfixup_modes[] = {
|
|
{ .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
|
|
{ .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
|
|
{ .name = NULL, .value = -1 },
|
|
};
|
|
const Jim_Nvp *n;
|
|
|
|
if (CMD_ARGC > 0) {
|
|
n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
|
|
if (n->name == NULL)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
cortex_a->dacrfixup_mode = n->value;
|
|
|
|
}
|
|
|
|
n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
|
|
command_print(CMD, "cortex_a domain access control fixup %s", n->name);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static const struct command_registration cortex_a_exec_command_handlers[] = {
|
|
{
|
|
.name = "cache_info",
|
|
.handler = cortex_a_handle_cache_info_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "display information about target caches",
|
|
.usage = "",
|
|
},
|
|
{
|
|
.name = "dbginit",
|
|
.handler = cortex_a_handle_dbginit_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "Initialize core debug",
|
|
.usage = "",
|
|
},
|
|
{
|
|
.name = "maskisr",
|
|
.handler = handle_cortex_a_mask_interrupts_command,
|
|
.mode = COMMAND_ANY,
|
|
.help = "mask cortex_a interrupts",
|
|
.usage = "['on'|'off']",
|
|
},
|
|
{
|
|
.name = "dacrfixup",
|
|
.handler = handle_cortex_a_dacrfixup_command,
|
|
.mode = COMMAND_ANY,
|
|
.help = "set domain access control (DACR) to all-manager "
|
|
"on memory access",
|
|
.usage = "['on'|'off']",
|
|
},
|
|
{
|
|
.chain = armv7a_mmu_command_handlers,
|
|
},
|
|
{
|
|
.chain = smp_command_handlers,
|
|
},
|
|
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
static const struct command_registration cortex_a_command_handlers[] = {
|
|
{
|
|
.chain = arm_command_handlers,
|
|
},
|
|
{
|
|
.chain = armv7a_command_handlers,
|
|
},
|
|
{
|
|
.name = "cortex_a",
|
|
.mode = COMMAND_ANY,
|
|
.help = "Cortex-A command group",
|
|
.usage = "",
|
|
.chain = cortex_a_exec_command_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
struct target_type cortexa_target = {
|
|
.name = "cortex_a",
|
|
.deprecated_name = "cortex_a8",
|
|
|
|
.poll = cortex_a_poll,
|
|
.arch_state = armv7a_arch_state,
|
|
|
|
.halt = cortex_a_halt,
|
|
.resume = cortex_a_resume,
|
|
.step = cortex_a_step,
|
|
|
|
.assert_reset = cortex_a_assert_reset,
|
|
.deassert_reset = cortex_a_deassert_reset,
|
|
|
|
/* REVISIT allow exporting VFP3 registers ... */
|
|
.get_gdb_arch = arm_get_gdb_arch,
|
|
.get_gdb_reg_list = arm_get_gdb_reg_list,
|
|
|
|
.read_memory = cortex_a_read_memory,
|
|
.write_memory = cortex_a_write_memory,
|
|
|
|
.read_buffer = cortex_a_read_buffer,
|
|
.write_buffer = cortex_a_write_buffer,
|
|
|
|
.checksum_memory = arm_checksum_memory,
|
|
.blank_check_memory = arm_blank_check_memory,
|
|
|
|
.run_algorithm = armv4_5_run_algorithm,
|
|
|
|
.add_breakpoint = cortex_a_add_breakpoint,
|
|
.add_context_breakpoint = cortex_a_add_context_breakpoint,
|
|
.add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
|
|
.remove_breakpoint = cortex_a_remove_breakpoint,
|
|
.add_watchpoint = NULL,
|
|
.remove_watchpoint = NULL,
|
|
|
|
.commands = cortex_a_command_handlers,
|
|
.target_create = cortex_a_target_create,
|
|
.target_jim_configure = adiv5_jim_configure,
|
|
.init_target = cortex_a_init_target,
|
|
.examine = cortex_a_examine,
|
|
.deinit_target = cortex_a_deinit_target,
|
|
|
|
.read_phys_memory = cortex_a_read_phys_memory,
|
|
.write_phys_memory = cortex_a_write_phys_memory,
|
|
.mmu = cortex_a_mmu,
|
|
.virt2phys = cortex_a_virt2phys,
|
|
};
|
|
|
|
static const struct command_registration cortex_r4_exec_command_handlers[] = {
|
|
{
|
|
.name = "dbginit",
|
|
.handler = cortex_a_handle_dbginit_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "Initialize core debug",
|
|
.usage = "",
|
|
},
|
|
{
|
|
.name = "maskisr",
|
|
.handler = handle_cortex_a_mask_interrupts_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "mask cortex_r4 interrupts",
|
|
.usage = "['on'|'off']",
|
|
},
|
|
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
static const struct command_registration cortex_r4_command_handlers[] = {
|
|
{
|
|
.chain = arm_command_handlers,
|
|
},
|
|
{
|
|
.name = "cortex_r4",
|
|
.mode = COMMAND_ANY,
|
|
.help = "Cortex-R4 command group",
|
|
.usage = "",
|
|
.chain = cortex_r4_exec_command_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
struct target_type cortexr4_target = {
|
|
.name = "cortex_r4",
|
|
|
|
.poll = cortex_a_poll,
|
|
.arch_state = armv7a_arch_state,
|
|
|
|
.halt = cortex_a_halt,
|
|
.resume = cortex_a_resume,
|
|
.step = cortex_a_step,
|
|
|
|
.assert_reset = cortex_a_assert_reset,
|
|
.deassert_reset = cortex_a_deassert_reset,
|
|
|
|
/* REVISIT allow exporting VFP3 registers ... */
|
|
.get_gdb_arch = arm_get_gdb_arch,
|
|
.get_gdb_reg_list = arm_get_gdb_reg_list,
|
|
|
|
.read_memory = cortex_a_read_phys_memory,
|
|
.write_memory = cortex_a_write_phys_memory,
|
|
|
|
.checksum_memory = arm_checksum_memory,
|
|
.blank_check_memory = arm_blank_check_memory,
|
|
|
|
.run_algorithm = armv4_5_run_algorithm,
|
|
|
|
.add_breakpoint = cortex_a_add_breakpoint,
|
|
.add_context_breakpoint = cortex_a_add_context_breakpoint,
|
|
.add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
|
|
.remove_breakpoint = cortex_a_remove_breakpoint,
|
|
.add_watchpoint = NULL,
|
|
.remove_watchpoint = NULL,
|
|
|
|
.commands = cortex_r4_command_handlers,
|
|
.target_create = cortex_r4_target_create,
|
|
.target_jim_configure = adiv5_jim_configure,
|
|
.init_target = cortex_a_init_target,
|
|
.examine = cortex_a_examine,
|
|
.deinit_target = cortex_a_deinit_target,
|
|
};
|