950 lines
28 KiB
C
950 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
/***************************************************************************
|
|
* Copyright (C) 2009 by Alexei Babich *
|
|
* Rezonans plc., Chelyabinsk, Russia *
|
|
* impatt@mail.ru *
|
|
* *
|
|
* Copyright (C) 2010 by Gaetan CARLIER *
|
|
* Trump s.a., Belgium *
|
|
* *
|
|
* Copyright (C) 2011 by Erik Ahlen *
|
|
* Avalon Innovation, Sweden *
|
|
***************************************************************************/
|
|
|
|
/*
|
|
* Freescale iMX OpenOCD NAND Flash controller support.
|
|
* based on Freescale iMX2* and iMX3* OpenOCD NAND Flash controller support.
|
|
*/
|
|
|
|
/*
|
|
* driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @mxc
|
|
* tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #",
|
|
* "nand write # file 0", "nand verify"
|
|
*
|
|
* get_next_halfword_from_sram_buffer() not tested
|
|
* !! all function only tested with 2k page nand device; mxc_write_page
|
|
* writes the 4 MAIN_BUFFER's and is not compatible with < 2k page
|
|
* !! oob must be be used due to NFS bug
|
|
* !! oob must be 64 bytes per 2KiB page
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "imp.h"
|
|
#include "mxc.h"
|
|
#include <target/target.h>
|
|
|
|
#define OOB_SIZE 64
|
|
|
|
#define nfc_is_v1() (mxc_nf_info->mxc_version == MXC_VERSION_MX27 || \
|
|
mxc_nf_info->mxc_version == MXC_VERSION_MX31)
|
|
#define nfc_is_v2() (mxc_nf_info->mxc_version == MXC_VERSION_MX25 || \
|
|
mxc_nf_info->mxc_version == MXC_VERSION_MX35)
|
|
|
|
/* This permits to print (in LOG_INFO) how much bytes
|
|
* has been written after a page read or write.
|
|
* This is useful when OpenOCD is used with a graphical
|
|
* front-end to estimate progression of the global read/write
|
|
*/
|
|
#undef _MXC_PRINT_STAT
|
|
/* #define _MXC_PRINT_STAT */
|
|
|
|
static const char target_not_halted_err_msg[] =
|
|
"target must be halted to use mxc NAND flash controller";
|
|
static const char data_block_size_err_msg[] =
|
|
"minimal granularity is one half-word, %" PRIu32 " is incorrect";
|
|
static const char sram_buffer_bounds_err_msg[] =
|
|
"trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")";
|
|
static const char get_status_register_err_msg[] = "can't get NAND status";
|
|
static uint32_t in_sram_address;
|
|
static unsigned char sign_of_sequental_byte_read;
|
|
|
|
static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr);
|
|
static int initialize_nf_controller(struct nand_device *nand);
|
|
static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value);
|
|
static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value);
|
|
static int poll_for_complete_op(struct nand_device *nand, const char *text);
|
|
static int validate_target_state(struct nand_device *nand);
|
|
static int do_data_output(struct nand_device *nand);
|
|
|
|
static int mxc_command(struct nand_device *nand, uint8_t command);
|
|
static int mxc_address(struct nand_device *nand, uint8_t address);
|
|
|
|
NAND_DEVICE_COMMAND_HANDLER(mxc_nand_device_command)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info;
|
|
int hwecc_needed;
|
|
|
|
mxc_nf_info = malloc(sizeof(struct mxc_nf_controller));
|
|
if (!mxc_nf_info) {
|
|
LOG_ERROR("no memory for nand controller");
|
|
return ERROR_FAIL;
|
|
}
|
|
nand->controller_priv = mxc_nf_info;
|
|
|
|
if (CMD_ARGC < 4) {
|
|
LOG_ERROR("use \"nand device mxc target mx25|mx27|mx31|mx35 noecc|hwecc [biswap]\"");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/*
|
|
* check board type
|
|
*/
|
|
if (strcmp(CMD_ARGV[2], "mx25") == 0) {
|
|
mxc_nf_info->mxc_version = MXC_VERSION_MX25;
|
|
mxc_nf_info->mxc_base_addr = 0xBB000000;
|
|
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
|
|
} else if (strcmp(CMD_ARGV[2], "mx27") == 0) {
|
|
mxc_nf_info->mxc_version = MXC_VERSION_MX27;
|
|
mxc_nf_info->mxc_base_addr = 0xD8000000;
|
|
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
|
|
} else if (strcmp(CMD_ARGV[2], "mx31") == 0) {
|
|
mxc_nf_info->mxc_version = MXC_VERSION_MX31;
|
|
mxc_nf_info->mxc_base_addr = 0xB8000000;
|
|
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
|
|
} else if (strcmp(CMD_ARGV[2], "mx35") == 0) {
|
|
mxc_nf_info->mxc_version = MXC_VERSION_MX35;
|
|
mxc_nf_info->mxc_base_addr = 0xBB000000;
|
|
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
|
|
}
|
|
|
|
/*
|
|
* check hwecc requirements
|
|
*/
|
|
hwecc_needed = strcmp(CMD_ARGV[3], "hwecc");
|
|
if (hwecc_needed == 0)
|
|
mxc_nf_info->flags.hw_ecc_enabled = 1;
|
|
else
|
|
mxc_nf_info->flags.hw_ecc_enabled = 0;
|
|
|
|
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
|
|
mxc_nf_info->fin = MXC_NF_FIN_NONE;
|
|
mxc_nf_info->flags.target_little_endian =
|
|
(nand->target->endianness == TARGET_LITTLE_ENDIAN);
|
|
|
|
/*
|
|
* should factory bad block indicator be swapped
|
|
* as a workaround for how the nfc handles pages.
|
|
*/
|
|
if (CMD_ARGC > 4 && strcmp(CMD_ARGV[4], "biswap") == 0) {
|
|
LOG_DEBUG("BI-swap enabled");
|
|
mxc_nf_info->flags.biswap_enabled = 1;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_mxc_biswap_command)
|
|
{
|
|
struct nand_device *nand = NULL;
|
|
struct mxc_nf_controller *mxc_nf_info = NULL;
|
|
|
|
if (CMD_ARGC < 1 || CMD_ARGC > 2)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &nand);
|
|
if (retval != ERROR_OK) {
|
|
command_print(CMD, "invalid nand device number or name: %s", CMD_ARGV[0]);
|
|
return ERROR_COMMAND_ARGUMENT_INVALID;
|
|
}
|
|
|
|
mxc_nf_info = nand->controller_priv;
|
|
if (CMD_ARGC == 2) {
|
|
if (strcmp(CMD_ARGV[1], "enable") == 0)
|
|
mxc_nf_info->flags.biswap_enabled = true;
|
|
else
|
|
mxc_nf_info->flags.biswap_enabled = false;
|
|
}
|
|
if (mxc_nf_info->flags.biswap_enabled)
|
|
command_print(CMD, "BI-swapping enabled on %s", nand->name);
|
|
else
|
|
command_print(CMD, "BI-swapping disabled on %s", nand->name);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static const struct command_registration mxc_sub_command_handlers[] = {
|
|
{
|
|
.name = "biswap",
|
|
.mode = COMMAND_EXEC,
|
|
.handler = handle_mxc_biswap_command,
|
|
.help = "Turns on/off bad block information swapping from main area, "
|
|
"without parameter query status.",
|
|
.usage = "bank_id ['enable'|'disable']",
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
static const struct command_registration mxc_nand_command_handler[] = {
|
|
{
|
|
.name = "mxc",
|
|
.mode = COMMAND_ANY,
|
|
.help = "MXC NAND flash controller commands",
|
|
.chain = mxc_sub_command_handlers,
|
|
.usage = "",
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
static int mxc_init(struct nand_device *nand)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
|
|
int validate_target_result;
|
|
uint16_t buffsize_register_content;
|
|
uint32_t sreg_content;
|
|
uint32_t sreg = MX2_FMCR;
|
|
uint32_t sel_16bit = MX2_FMCR_NF_16BIT_SEL;
|
|
uint32_t sel_fms = MX2_FMCR_NF_FMS;
|
|
int retval;
|
|
uint16_t nand_status_content;
|
|
/*
|
|
* validate target state
|
|
*/
|
|
validate_target_result = validate_target_state(nand);
|
|
if (validate_target_result != ERROR_OK)
|
|
return validate_target_result;
|
|
|
|
if (nfc_is_v1()) {
|
|
target_read_u16(target, MXC_NF_BUFSIZ, &buffsize_register_content);
|
|
mxc_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
|
|
} else
|
|
mxc_nf_info->flags.one_kb_sram = 0;
|
|
|
|
if (mxc_nf_info->mxc_version == MXC_VERSION_MX31) {
|
|
sreg = MX3_PCSR;
|
|
sel_16bit = MX3_PCSR_NF_16BIT_SEL;
|
|
sel_fms = MX3_PCSR_NF_FMS;
|
|
} else if (mxc_nf_info->mxc_version == MXC_VERSION_MX25) {
|
|
sreg = MX25_RCSR;
|
|
sel_16bit = MX25_RCSR_NF_16BIT_SEL;
|
|
sel_fms = MX25_RCSR_NF_FMS;
|
|
} else if (mxc_nf_info->mxc_version == MXC_VERSION_MX35) {
|
|
sreg = MX35_RCSR;
|
|
sel_16bit = MX35_RCSR_NF_16BIT_SEL;
|
|
sel_fms = MX35_RCSR_NF_FMS;
|
|
}
|
|
|
|
target_read_u32(target, sreg, &sreg_content);
|
|
if (!nand->bus_width) {
|
|
/* bus_width not yet defined. Read it from MXC_FMCR */
|
|
nand->bus_width = (sreg_content & sel_16bit) ? 16 : 8;
|
|
} else {
|
|
/* bus_width forced in soft. Sync it to MXC_FMCR */
|
|
sreg_content |= ((nand->bus_width == 16) ? sel_16bit : 0x00000000);
|
|
target_write_u32(target, sreg, sreg_content);
|
|
}
|
|
if (nand->bus_width == 16)
|
|
LOG_DEBUG("MXC_NF : bus is 16-bit width");
|
|
else
|
|
LOG_DEBUG("MXC_NF : bus is 8-bit width");
|
|
|
|
if (!nand->page_size)
|
|
nand->page_size = (sreg_content & sel_fms) ? 2048 : 512;
|
|
else {
|
|
sreg_content |= ((nand->page_size == 2048) ? sel_fms : 0x00000000);
|
|
target_write_u32(target, sreg, sreg_content);
|
|
}
|
|
if (mxc_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
|
|
LOG_ERROR("NAND controller have only 1 kb SRAM, so "
|
|
"pagesize 2048 is incompatible with it");
|
|
} else
|
|
LOG_DEBUG("MXC_NF : NAND controller can handle pagesize of 2048");
|
|
|
|
if (nfc_is_v2() && sreg_content & MX35_RCSR_NF_4K)
|
|
LOG_ERROR("MXC driver does not have support for 4k pagesize.");
|
|
|
|
initialize_nf_controller(nand);
|
|
|
|
retval = ERROR_OK;
|
|
retval |= mxc_command(nand, NAND_CMD_STATUS);
|
|
retval |= mxc_address(nand, 0x00);
|
|
retval |= do_data_output(nand);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR(get_status_register_err_msg);
|
|
return ERROR_FAIL;
|
|
}
|
|
target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
|
|
if (!(nand_status_content & 0x0080)) {
|
|
LOG_INFO("NAND read-only");
|
|
mxc_nf_info->flags.nand_readonly = 1;
|
|
} else
|
|
mxc_nf_info->flags.nand_readonly = 0;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int mxc_read_data(struct nand_device *nand, void *data)
|
|
{
|
|
int validate_target_result;
|
|
int try_data_output_from_nand_chip;
|
|
/*
|
|
* validate target state
|
|
*/
|
|
validate_target_result = validate_target_state(nand);
|
|
if (validate_target_result != ERROR_OK)
|
|
return validate_target_result;
|
|
|
|
/*
|
|
* get data from nand chip
|
|
*/
|
|
try_data_output_from_nand_chip = do_data_output(nand);
|
|
if (try_data_output_from_nand_chip != ERROR_OK) {
|
|
LOG_ERROR("mxc_read_data : read data failed : '%x'",
|
|
try_data_output_from_nand_chip);
|
|
return try_data_output_from_nand_chip;
|
|
}
|
|
|
|
if (nand->bus_width == 16)
|
|
get_next_halfword_from_sram_buffer(nand, data);
|
|
else
|
|
get_next_byte_from_sram_buffer(nand, data);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int mxc_write_data(struct nand_device *nand, uint16_t data)
|
|
{
|
|
LOG_ERROR("write_data() not implemented");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
static int mxc_reset(struct nand_device *nand)
|
|
{
|
|
/*
|
|
* validate target state
|
|
*/
|
|
int validate_target_result;
|
|
validate_target_result = validate_target_state(nand);
|
|
if (validate_target_result != ERROR_OK)
|
|
return validate_target_result;
|
|
initialize_nf_controller(nand);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int mxc_command(struct nand_device *nand, uint8_t command)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int validate_target_result;
|
|
int poll_result;
|
|
/*
|
|
* validate target state
|
|
*/
|
|
validate_target_result = validate_target_state(nand);
|
|
if (validate_target_result != ERROR_OK)
|
|
return validate_target_result;
|
|
|
|
switch (command) {
|
|
case NAND_CMD_READOOB:
|
|
command = NAND_CMD_READ0;
|
|
/* set read point for data_read() and read_block_data() to
|
|
* spare area in SRAM buffer
|
|
*/
|
|
if (nfc_is_v1())
|
|
in_sram_address = MXC_NF_V1_SPARE_BUFFER0;
|
|
else
|
|
in_sram_address = MXC_NF_V2_SPARE_BUFFER0;
|
|
break;
|
|
case NAND_CMD_READ1:
|
|
command = NAND_CMD_READ0;
|
|
/*
|
|
* offset == one half of page size
|
|
*/
|
|
in_sram_address = MXC_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
|
|
break;
|
|
default:
|
|
in_sram_address = MXC_NF_MAIN_BUFFER0;
|
|
break;
|
|
}
|
|
|
|
target_write_u16(target, MXC_NF_FCMD, command);
|
|
/*
|
|
* start command input operation (set MXC_NF_BIT_OP_DONE==0)
|
|
*/
|
|
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FCI);
|
|
poll_result = poll_for_complete_op(nand, "command");
|
|
if (poll_result != ERROR_OK)
|
|
return poll_result;
|
|
/*
|
|
* reset cursor to begin of the buffer
|
|
*/
|
|
sign_of_sequental_byte_read = 0;
|
|
/* Handle special read command and adjust NF_CFG2(FDO) */
|
|
switch (command) {
|
|
case NAND_CMD_READID:
|
|
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDID;
|
|
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
|
|
break;
|
|
case NAND_CMD_STATUS:
|
|
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
|
|
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
|
|
target_write_u16 (target, MXC_NF_BUFADDR, 0);
|
|
in_sram_address = 0;
|
|
break;
|
|
case NAND_CMD_READ0:
|
|
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
|
|
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
|
|
break;
|
|
default:
|
|
/* Other command use the default 'One page data out' FDO */
|
|
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
|
|
break;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int mxc_address(struct nand_device *nand, uint8_t address)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int validate_target_result;
|
|
int poll_result;
|
|
/*
|
|
* validate target state
|
|
*/
|
|
validate_target_result = validate_target_state(nand);
|
|
if (validate_target_result != ERROR_OK)
|
|
return validate_target_result;
|
|
|
|
target_write_u16(target, MXC_NF_FADDR, address);
|
|
/*
|
|
* start address input operation (set MXC_NF_BIT_OP_DONE==0)
|
|
*/
|
|
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FAI);
|
|
poll_result = poll_for_complete_op(nand, "address");
|
|
if (poll_result != ERROR_OK)
|
|
return poll_result;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int mxc_nand_ready(struct nand_device *nand, int tout)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
uint16_t poll_complete_status;
|
|
int validate_target_result;
|
|
|
|
/*
|
|
* validate target state
|
|
*/
|
|
validate_target_result = validate_target_state(nand);
|
|
if (validate_target_result != ERROR_OK)
|
|
return validate_target_result;
|
|
|
|
do {
|
|
target_read_u16(target, MXC_NF_CFG2, &poll_complete_status);
|
|
if (poll_complete_status & MXC_NF_BIT_OP_DONE)
|
|
return tout;
|
|
|
|
alive_sleep(1);
|
|
} while (tout-- > 0);
|
|
return tout;
|
|
}
|
|
|
|
static int mxc_write_page(struct nand_device *nand, uint32_t page,
|
|
uint8_t *data, uint32_t data_size,
|
|
uint8_t *oob, uint32_t oob_size)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
uint16_t nand_status_content;
|
|
uint16_t swap1, swap2, new_swap1;
|
|
uint8_t bufs;
|
|
int poll_result;
|
|
|
|
if (data_size % 2) {
|
|
LOG_ERROR(data_block_size_err_msg, data_size);
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
if (oob_size % 2) {
|
|
LOG_ERROR(data_block_size_err_msg, oob_size);
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
if (!data) {
|
|
LOG_ERROR("nothing to program");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/*
|
|
* validate target state
|
|
*/
|
|
retval = validate_target_state(nand);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
in_sram_address = MXC_NF_MAIN_BUFFER0;
|
|
sign_of_sequental_byte_read = 0;
|
|
retval = ERROR_OK;
|
|
retval |= mxc_command(nand, NAND_CMD_SEQIN);
|
|
retval |= mxc_address(nand, 0); /* col */
|
|
retval |= mxc_address(nand, 0); /* col */
|
|
retval |= mxc_address(nand, page & 0xff); /* page address */
|
|
retval |= mxc_address(nand, (page >> 8) & 0xff);/* page address */
|
|
retval |= mxc_address(nand, (page >> 16) & 0xff); /* page address */
|
|
|
|
target_write_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
|
|
if (oob) {
|
|
if (mxc_nf_info->flags.hw_ecc_enabled) {
|
|
/*
|
|
* part of spare block will be overridden by hardware
|
|
* ECC generator
|
|
*/
|
|
LOG_DEBUG("part of spare block will be overridden "
|
|
"by hardware ECC generator");
|
|
}
|
|
if (nfc_is_v1())
|
|
target_write_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
|
|
else {
|
|
uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
|
|
while (oob_size > 0) {
|
|
uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
|
|
target_write_buffer(target, addr, len, oob);
|
|
addr = align_address_v2(nand, addr + len);
|
|
oob += len;
|
|
oob_size -= len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
|
|
/* BI-swap - work-around of i.MX NFC for NAND device with page == 2kb*/
|
|
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
|
|
if (oob) {
|
|
LOG_ERROR("Due to NFC Bug, oob is not correctly implemented in mxc driver");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
swap2 = 0xffff; /* Spare buffer unused forced to 0xffff */
|
|
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
|
|
swap2 = (swap1 << 8) | (swap2 & 0xFF);
|
|
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
|
|
if (nfc_is_v1())
|
|
target_write_u16(target, MXC_NF_V1_SPARE_BUFFER3 + 4, swap2);
|
|
else
|
|
target_write_u16(target, MXC_NF_V2_SPARE_BUFFER3, swap2);
|
|
}
|
|
|
|
/*
|
|
* start data input operation (set MXC_NF_BIT_OP_DONE==0)
|
|
*/
|
|
if (nfc_is_v1() && nand->page_size > 512)
|
|
bufs = 4;
|
|
else
|
|
bufs = 1;
|
|
|
|
for (uint8_t i = 0; i < bufs; ++i) {
|
|
target_write_u16(target, MXC_NF_BUFADDR, i);
|
|
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
|
|
poll_result = poll_for_complete_op(nand, "data input");
|
|
if (poll_result != ERROR_OK)
|
|
return poll_result;
|
|
}
|
|
|
|
retval |= mxc_command(nand, NAND_CMD_PAGEPROG);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/*
|
|
* check status register
|
|
*/
|
|
retval = ERROR_OK;
|
|
retval |= mxc_command(nand, NAND_CMD_STATUS);
|
|
target_write_u16 (target, MXC_NF_BUFADDR, 0);
|
|
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
|
|
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
|
|
retval |= do_data_output(nand);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR(get_status_register_err_msg);
|
|
return retval;
|
|
}
|
|
target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
|
|
if (nand_status_content & 0x0001) {
|
|
/*
|
|
* page not correctly written
|
|
*/
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
#ifdef _MXC_PRINT_STAT
|
|
LOG_INFO("%d bytes newly written", data_size);
|
|
#endif
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int mxc_read_page(struct nand_device *nand, uint32_t page,
|
|
uint8_t *data, uint32_t data_size,
|
|
uint8_t *oob, uint32_t oob_size)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
uint8_t bufs;
|
|
uint16_t swap1, swap2, new_swap1;
|
|
|
|
if (data_size % 2) {
|
|
LOG_ERROR(data_block_size_err_msg, data_size);
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
if (oob_size % 2) {
|
|
LOG_ERROR(data_block_size_err_msg, oob_size);
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/*
|
|
* validate target state
|
|
*/
|
|
retval = validate_target_state(nand);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
/* Reset address_cycles before mxc_command ?? */
|
|
retval = mxc_command(nand, NAND_CMD_READ0);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = mxc_address(nand, 0); /* col */
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = mxc_address(nand, 0); /* col */
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = mxc_address(nand, page & 0xff);/* page address */
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = mxc_address(nand, (page >> 8) & 0xff); /* page address */
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = mxc_address(nand, (page >> 16) & 0xff);/* page address */
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
retval = mxc_command(nand, NAND_CMD_READSTART);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (nfc_is_v1() && nand->page_size > 512)
|
|
bufs = 4;
|
|
else
|
|
bufs = 1;
|
|
|
|
for (uint8_t i = 0; i < bufs; ++i) {
|
|
target_write_u16(target, MXC_NF_BUFADDR, i);
|
|
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
|
|
retval = do_data_output(nand);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("MXC_NF : Error reading page %d", i);
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
|
|
uint32_t spare_buffer3;
|
|
/* BI-swap - work-around of mxc NFC for NAND device with page == 2k */
|
|
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
|
|
if (nfc_is_v1())
|
|
spare_buffer3 = MXC_NF_V1_SPARE_BUFFER3 + 4;
|
|
else
|
|
spare_buffer3 = MXC_NF_V2_SPARE_BUFFER3;
|
|
target_read_u16(target, spare_buffer3, &swap2);
|
|
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
|
|
swap2 = (swap1 << 8) | (swap2 & 0xFF);
|
|
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
|
|
target_write_u16(target, spare_buffer3, swap2);
|
|
}
|
|
|
|
if (data)
|
|
target_read_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
|
|
if (oob) {
|
|
if (nfc_is_v1())
|
|
target_read_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
|
|
else {
|
|
uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
|
|
while (oob_size > 0) {
|
|
uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
|
|
target_read_buffer(target, addr, len, oob);
|
|
addr = align_address_v2(nand, addr + len);
|
|
oob += len;
|
|
oob_size -= len;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef _MXC_PRINT_STAT
|
|
if (data_size > 0) {
|
|
/* When Operation Status is read (when page is erased),
|
|
* this function is used but data_size is null.
|
|
*/
|
|
LOG_INFO("%d bytes newly read", data_size);
|
|
}
|
|
#endif
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
uint32_t ret = addr;
|
|
if (addr > MXC_NF_V2_SPARE_BUFFER0 &&
|
|
(addr & 0x1F) == MXC_NF_SPARE_BUFFER_LEN)
|
|
ret += MXC_NF_SPARE_BUFFER_MAX - MXC_NF_SPARE_BUFFER_LEN;
|
|
else if (addr >= (mxc_nf_info->mxc_base_addr + (uint32_t)nand->page_size))
|
|
ret = MXC_NF_V2_SPARE_BUFFER0;
|
|
return ret;
|
|
}
|
|
|
|
static int initialize_nf_controller(struct nand_device *nand)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
uint16_t work_mode = 0;
|
|
uint16_t temp;
|
|
/*
|
|
* resets NAND flash controller in zero time ? I don't know.
|
|
*/
|
|
target_write_u16(target, MXC_NF_CFG1, MXC_NF_BIT_RESET_EN);
|
|
if (mxc_nf_info->mxc_version == MXC_VERSION_MX27)
|
|
work_mode = MXC_NF_BIT_INT_DIS; /* disable interrupt */
|
|
|
|
if (target->endianness == TARGET_BIG_ENDIAN) {
|
|
LOG_DEBUG("MXC_NF : work in Big Endian mode");
|
|
work_mode |= MXC_NF_BIT_BE_EN;
|
|
} else
|
|
LOG_DEBUG("MXC_NF : work in Little Endian mode");
|
|
if (mxc_nf_info->flags.hw_ecc_enabled) {
|
|
LOG_DEBUG("MXC_NF : work with ECC mode");
|
|
work_mode |= MXC_NF_BIT_ECC_EN;
|
|
} else
|
|
LOG_DEBUG("MXC_NF : work without ECC mode");
|
|
if (nfc_is_v2()) {
|
|
target_write_u16(target, MXC_NF_V2_SPAS, OOB_SIZE / 2);
|
|
if (nand->page_size) {
|
|
uint16_t pages_per_block = nand->erase_size / nand->page_size;
|
|
work_mode |= MXC_NF_V2_CFG1_PPB(ffs(pages_per_block) - 6);
|
|
}
|
|
work_mode |= MXC_NF_BIT_ECC_4BIT;
|
|
}
|
|
target_write_u16(target, MXC_NF_CFG1, work_mode);
|
|
|
|
/*
|
|
* unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
|
|
*/
|
|
target_write_u16(target, MXC_NF_BUFCFG, 2);
|
|
target_read_u16(target, MXC_NF_FWP, &temp);
|
|
if ((temp & 0x0007) == 1) {
|
|
LOG_ERROR("NAND flash is tight-locked, reset needed");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/*
|
|
* unlock NAND flash for write
|
|
*/
|
|
if (nfc_is_v1()) {
|
|
target_write_u16(target, MXC_NF_V1_UNLOCKSTART, 0x0000);
|
|
target_write_u16(target, MXC_NF_V1_UNLOCKEND, 0xFFFF);
|
|
} else {
|
|
target_write_u16(target, MXC_NF_V2_UNLOCKSTART0, 0x0000);
|
|
target_write_u16(target, MXC_NF_V2_UNLOCKSTART1, 0x0000);
|
|
target_write_u16(target, MXC_NF_V2_UNLOCKSTART2, 0x0000);
|
|
target_write_u16(target, MXC_NF_V2_UNLOCKSTART3, 0x0000);
|
|
target_write_u16(target, MXC_NF_V2_UNLOCKEND0, 0xFFFF);
|
|
target_write_u16(target, MXC_NF_V2_UNLOCKEND1, 0xFFFF);
|
|
target_write_u16(target, MXC_NF_V2_UNLOCKEND2, 0xFFFF);
|
|
target_write_u16(target, MXC_NF_V2_UNLOCKEND3, 0xFFFF);
|
|
}
|
|
target_write_u16(target, MXC_NF_FWP, 4);
|
|
|
|
/*
|
|
* 0x0000 means that first SRAM buffer @base_addr will be used
|
|
*/
|
|
target_write_u16(target, MXC_NF_BUFADDR, 0x0000);
|
|
/*
|
|
* address of SRAM buffer
|
|
*/
|
|
in_sram_address = MXC_NF_MAIN_BUFFER0;
|
|
sign_of_sequental_byte_read = 0;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
static uint8_t even_byte;
|
|
uint16_t temp;
|
|
/*
|
|
* host-big_endian ??
|
|
*/
|
|
if (sign_of_sequental_byte_read == 0)
|
|
even_byte = 0;
|
|
|
|
if (in_sram_address > (nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
|
|
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
|
|
*value = 0;
|
|
sign_of_sequental_byte_read = 0;
|
|
even_byte = 0;
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else {
|
|
if (nfc_is_v2())
|
|
in_sram_address = align_address_v2(nand, in_sram_address);
|
|
|
|
target_read_u16(target, in_sram_address, &temp);
|
|
if (even_byte) {
|
|
*value = temp >> 8;
|
|
even_byte = 0;
|
|
in_sram_address += 2;
|
|
} else {
|
|
*value = temp & 0xff;
|
|
even_byte = 1;
|
|
}
|
|
}
|
|
sign_of_sequental_byte_read = 1;
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
|
|
if (in_sram_address > (nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
|
|
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
|
|
*value = 0;
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else {
|
|
if (nfc_is_v2())
|
|
in_sram_address = align_address_v2(nand, in_sram_address);
|
|
|
|
target_read_u16(target, in_sram_address, value);
|
|
in_sram_address += 2;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int poll_for_complete_op(struct nand_device *nand, const char *text)
|
|
{
|
|
if (mxc_nand_ready(nand, 1000) == -1) {
|
|
LOG_ERROR("%s sending timeout", text);
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int validate_target_state(struct nand_device *nand)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR(target_not_halted_err_msg);
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (mxc_nf_info->flags.target_little_endian !=
|
|
(target->endianness == TARGET_LITTLE_ENDIAN)) {
|
|
/*
|
|
* endianness changed after NAND controller probed
|
|
*/
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int ecc_status_v1(struct nand_device *nand)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
uint16_t ecc_status;
|
|
|
|
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
|
|
switch (ecc_status & 0x000c) {
|
|
case 1 << 2:
|
|
LOG_INFO("main area read with 1 (correctable) error");
|
|
break;
|
|
case 2 << 2:
|
|
LOG_INFO("main area read with more than 1 (incorrectable) error");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
switch (ecc_status & 0x0003) {
|
|
case 1:
|
|
LOG_INFO("spare area read with 1 (correctable) error");
|
|
break;
|
|
case 2:
|
|
LOG_INFO("main area read with more than 1 (incorrectable) error");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int ecc_status_v2(struct nand_device *nand)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
uint16_t ecc_status;
|
|
uint8_t no_subpages;
|
|
uint8_t err;
|
|
|
|
no_subpages = nand->page_size >> 9;
|
|
|
|
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
|
|
do {
|
|
err = ecc_status & 0xF;
|
|
if (err > 4) {
|
|
LOG_INFO("UnCorrectable RS-ECC Error");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (err > 0)
|
|
LOG_INFO("%d Symbol Correctable RS-ECC Error", err);
|
|
ecc_status >>= 4;
|
|
} while (--no_subpages);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int do_data_output(struct nand_device *nand)
|
|
{
|
|
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int poll_result;
|
|
switch (mxc_nf_info->fin) {
|
|
case MXC_NF_FIN_DATAOUT:
|
|
/*
|
|
* start data output operation (set MXC_NF_BIT_OP_DONE==0)
|
|
*/
|
|
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_DATAOUT_TYPE(mxc_nf_info->optype));
|
|
poll_result = poll_for_complete_op(nand, "data output");
|
|
if (poll_result != ERROR_OK)
|
|
return poll_result;
|
|
|
|
mxc_nf_info->fin = MXC_NF_FIN_NONE;
|
|
/*
|
|
* ECC stuff
|
|
*/
|
|
if (mxc_nf_info->optype == MXC_NF_DATAOUT_PAGE && mxc_nf_info->flags.hw_ecc_enabled) {
|
|
int ecc_status;
|
|
if (nfc_is_v1())
|
|
ecc_status = ecc_status_v1(nand);
|
|
else
|
|
ecc_status = ecc_status_v2(nand);
|
|
if (ecc_status != ERROR_OK)
|
|
return ecc_status;
|
|
}
|
|
break;
|
|
case MXC_NF_FIN_NONE:
|
|
break;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
struct nand_flash_controller mxc_nand_flash_controller = {
|
|
.name = "mxc",
|
|
.nand_device_command = &mxc_nand_device_command,
|
|
.commands = mxc_nand_command_handler,
|
|
.init = &mxc_init,
|
|
.reset = &mxc_reset,
|
|
.command = &mxc_command,
|
|
.address = &mxc_address,
|
|
.write_data = &mxc_write_data,
|
|
.read_data = &mxc_read_data,
|
|
.write_page = &mxc_write_page,
|
|
.read_page = &mxc_read_page,
|
|
.nand_ready = &mxc_nand_ready,
|
|
};
|