1829 lines
53 KiB
C
1829 lines
53 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2007 by Dominic Rath *
|
|
* Dominic.Rath@gmx.de *
|
|
* *
|
|
* Copyright (C) 2011 Bjarne Steinsbo <bsteinsbo@gmail.com> *
|
|
* Copyright (C) 2010 richard vegh <vegh.ricsi@gmail.com> *
|
|
* Copyright (C) 2010 Oyvind Harboe <oyvind.harboe@zylin.com> *
|
|
* *
|
|
* Based on a combination of the lpc3180 driver and code from *
|
|
* uboot-2009.03-lpc32xx by Kevin Wells. *
|
|
* Any bugs are mine. --BSt *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program; if not, write to the *
|
|
* Free Software Foundation, Inc., *
|
|
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
|
***************************************************************************/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "imp.h"
|
|
#include "lpc32xx.h"
|
|
#include <target/target.h>
|
|
|
|
static int lpc32xx_reset(struct nand_device *nand);
|
|
static int lpc32xx_controller_ready(struct nand_device *nand, int timeout);
|
|
static int lpc32xx_tc_ready(struct nand_device *nand, int timeout);
|
|
extern int nand_correct_data(struct nand_device *nand, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc);
|
|
|
|
/* These are offset with the working area in IRAM when using DMA to
|
|
* read/write data to the SLC controller.
|
|
* - DMA descriptors will be put at start of working area,
|
|
* - Hardware generated ECC will be stored at ECC_OFFS
|
|
* - OOB wil be read/written from/to SPARE_OFFS
|
|
* - Actual page data will be read from/to DATA_OFFS
|
|
* There are unused holes between the used areas.
|
|
*/
|
|
#define ECC_OFFS 0x120
|
|
#define SPARE_OFFS 0x140
|
|
#define DATA_OFFS 0x200
|
|
|
|
static int sp_ooblayout[] = {
|
|
10, 11, 12, 13, 14, 15
|
|
};
|
|
static int lp_ooblayout[] = {
|
|
40, 41, 42, 43, 44, 45,
|
|
46, 47, 48, 49, 50, 51,
|
|
52, 53, 54, 55, 56, 57,
|
|
58, 59, 60, 61, 62, 63
|
|
};
|
|
|
|
typedef struct {
|
|
volatile uint32_t dma_src;
|
|
volatile uint32_t dma_dest;
|
|
volatile uint32_t next_lli;
|
|
volatile uint32_t next_ctrl;
|
|
} dmac_ll_t;
|
|
|
|
static dmac_ll_t dmalist[(2048/256) * 2 + 1];
|
|
|
|
/* nand device lpc32xx <target#> <oscillator_frequency>
|
|
*/
|
|
NAND_DEVICE_COMMAND_HANDLER(lpc32xx_nand_device_command)
|
|
{
|
|
if (CMD_ARGC < 3) {
|
|
LOG_WARNING("incomplete 'lpc32xx' nand flash configuration");
|
|
return ERROR_FLASH_BANK_INVALID;
|
|
}
|
|
|
|
uint32_t osc_freq;
|
|
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], osc_freq);
|
|
|
|
struct lpc32xx_nand_controller *lpc32xx_info;
|
|
lpc32xx_info = malloc(sizeof(struct lpc32xx_nand_controller));
|
|
nand->controller_priv = lpc32xx_info;
|
|
|
|
lpc32xx_info->osc_freq = osc_freq;
|
|
|
|
if ((lpc32xx_info->osc_freq < 1000) || (lpc32xx_info->osc_freq > 20000))
|
|
LOG_WARNING("LPC32xx oscillator frequency should be between "
|
|
"1000 and 20000 kHz, was %i",
|
|
lpc32xx_info->osc_freq);
|
|
|
|
lpc32xx_info->selected_controller = LPC32xx_NO_CONTROLLER;
|
|
lpc32xx_info->sw_write_protection = 0;
|
|
lpc32xx_info->sw_wp_lower_bound = 0x0;
|
|
lpc32xx_info->sw_wp_upper_bound = 0x0;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_pll(int fclkin, uint32_t pll_ctrl)
|
|
{
|
|
int bypass = (pll_ctrl & 0x8000) >> 15;
|
|
int direct = (pll_ctrl & 0x4000) >> 14;
|
|
int feedback = (pll_ctrl & 0x2000) >> 13;
|
|
int p = (1 << ((pll_ctrl & 0x1800) >> 11) * 2);
|
|
int n = ((pll_ctrl & 0x0600) >> 9) + 1;
|
|
int m = ((pll_ctrl & 0x01fe) >> 1) + 1;
|
|
int lock = (pll_ctrl & 0x1);
|
|
|
|
if (!lock)
|
|
LOG_WARNING("PLL is not locked");
|
|
|
|
if (!bypass && direct) /* direct mode */
|
|
return (m * fclkin) / n;
|
|
|
|
if (bypass && !direct) /* bypass mode */
|
|
return fclkin / (2 * p);
|
|
|
|
if (bypass & direct) /* direct bypass mode */
|
|
return fclkin;
|
|
|
|
if (feedback) /* integer mode */
|
|
return m * (fclkin / n);
|
|
else /* non-integer mode */
|
|
return (m / (2 * p)) * (fclkin / n);
|
|
}
|
|
|
|
static float lpc32xx_cycle_time(struct nand_device *nand)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
uint32_t sysclk_ctrl, pwr_ctrl, hclkdiv_ctrl, hclkpll_ctrl;
|
|
int sysclk;
|
|
int hclk;
|
|
int hclk_pll;
|
|
float cycle;
|
|
int retval;
|
|
|
|
/* calculate timings */
|
|
|
|
/* determine current SYSCLK (13'MHz or main oscillator) */
|
|
retval = target_read_u32(target, 0x40004050, &sysclk_ctrl);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read SYSCLK_CTRL");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if ((sysclk_ctrl & 1) == 0)
|
|
sysclk = lpc32xx_info->osc_freq;
|
|
else
|
|
sysclk = 13000;
|
|
|
|
/* determine selected HCLK source */
|
|
retval = target_read_u32(target, 0x40004044, &pwr_ctrl);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read HCLK_CTRL");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if ((pwr_ctrl & (1 << 2)) == 0) { /* DIRECT RUN mode */
|
|
hclk = sysclk;
|
|
} else {
|
|
retval = target_read_u32(target, 0x40004058, &hclkpll_ctrl);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read HCLKPLL_CTRL");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
hclk_pll = lpc32xx_pll(sysclk, hclkpll_ctrl);
|
|
|
|
retval = target_read_u32(target, 0x40004040, &hclkdiv_ctrl);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read CLKDIV_CTRL");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (pwr_ctrl & (1 << 10)) /* ARM_CLK and HCLK use PERIPH_CLK */
|
|
hclk = hclk_pll / (((hclkdiv_ctrl & 0x7c) >> 2) + 1);
|
|
else /* HCLK uses HCLK_PLL */
|
|
hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3));
|
|
}
|
|
|
|
LOG_DEBUG("LPC32xx HCLK currently clocked at %i kHz", hclk);
|
|
|
|
cycle = (1.0 / hclk) * 1000000.0;
|
|
|
|
return cycle;
|
|
}
|
|
|
|
static int lpc32xx_init(struct nand_device *nand)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int bus_width = nand->bus_width ? : 8;
|
|
int address_cycles = nand->address_cycles ? : 3;
|
|
int page_size = nand->page_size ? : 512;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use LPC32xx "
|
|
"NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* sanitize arguments */
|
|
if (bus_width != 8) {
|
|
LOG_ERROR("LPC32xx doesn't support %i", bus_width);
|
|
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
|
|
/* inform calling code about selected bus width */
|
|
nand->bus_width = bus_width;
|
|
|
|
if ((address_cycles != 3) && (address_cycles != 4)) {
|
|
LOG_ERROR("LPC32xx driver doesn't support %i address cycles", address_cycles);
|
|
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
|
|
if ((page_size != 512) && (page_size != 2048)) {
|
|
LOG_ERROR("LPC32xx doesn't support page size %i", page_size);
|
|
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
|
|
/* select MLC controller if none is currently selected */
|
|
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
|
|
LOG_DEBUG("no LPC32xx NAND flash controller selected, "
|
|
"using default 'slc'");
|
|
lpc32xx_info->selected_controller = LPC32xx_SLC_CONTROLLER;
|
|
}
|
|
|
|
if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
uint32_t mlc_icr_value = 0x0;
|
|
float cycle;
|
|
int twp, twh, trp, treh, trhz, trbwb, tcea;
|
|
|
|
/* FLASHCLK_CTRL = 0x22 (enable clk for MLC) */
|
|
retval = target_write_u32(target, 0x400040c8, 0x22);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set FLASHCLK_CTRL");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_CEH = 0x0 (Force nCE assert) */
|
|
retval = target_write_u32(target, 0x200b804c, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_CEH");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_LOCK = 0xa25e (unlock protected registers) */
|
|
retval = target_write_u32(target, 0x200b8044, 0xa25e);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_LOCK");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_ICR = configuration */
|
|
if (lpc32xx_info->sw_write_protection)
|
|
mlc_icr_value |= 0x8;
|
|
if (page_size == 2048)
|
|
mlc_icr_value |= 0x4;
|
|
if (address_cycles == 4)
|
|
mlc_icr_value |= 0x2;
|
|
if (bus_width == 16)
|
|
mlc_icr_value |= 0x1;
|
|
retval = target_write_u32(target, 0x200b8030, mlc_icr_value);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ICR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* calculate NAND controller timings */
|
|
cycle = lpc32xx_cycle_time(nand);
|
|
|
|
twp = ((40 / cycle) + 1);
|
|
twh = ((20 / cycle) + 1);
|
|
trp = ((30 / cycle) + 1);
|
|
treh = ((15 / cycle) + 1);
|
|
trhz = ((30 / cycle) + 1);
|
|
trbwb = ((100 / cycle) + 1);
|
|
tcea = ((45 / cycle) + 1);
|
|
|
|
/* MLC_LOCK = 0xa25e (unlock protected registers) */
|
|
retval = target_write_u32(target, 0x200b8044, 0xa25e);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_LOCK");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_TIME_REG */
|
|
retval = target_write_u32(target, 0x200b8034,
|
|
(twp & 0xf)
|
|
| ((twh & 0xf) << 4)
|
|
| ((trp & 0xf) << 8)
|
|
| ((treh & 0xf) << 12)
|
|
| ((trhz & 0x7) << 16)
|
|
| ((trbwb & 0x1f) << 19)
|
|
| ((tcea & 0x3) << 24));
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_TIME_REG");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
retval = lpc32xx_reset(nand);
|
|
if (ERROR_OK != retval)
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
float cycle;
|
|
int r_setup, r_hold, r_width, r_rdy;
|
|
int w_setup, w_hold, w_width, w_rdy;
|
|
|
|
/* FLASHCLK_CTRL = 0x05 (enable clk for SLC) */
|
|
retval = target_write_u32(target, 0x400040c8, 0x05);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set FLASHCLK_CTRL");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* after reset set other registers of SLC,
|
|
* so reset calling is here at the begining
|
|
*/
|
|
retval = lpc32xx_reset(nand);
|
|
if (ERROR_OK != retval)
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
|
|
/* SLC_CFG =
|
|
Force nCE assert,
|
|
DMA ECC enabled,
|
|
ECC enabled,
|
|
DMA burst enabled,
|
|
DMA read from SLC,
|
|
WIDTH = bus_width)
|
|
*/
|
|
retval = target_write_u32(target, 0x20020014,
|
|
0x3e | (bus_width == 16) ? 1 : 0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set SLC_CFG");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* SLC_IEN = 3 (INT_RDY_EN = 1) ,(INT_TC_STAT = 1) */
|
|
retval = target_write_u32(target, 0x20020020, 0x03);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set SLC_IEN");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* DMA configuration */
|
|
|
|
/* DMACLK_CTRL = 0x01 (enable clock for DMA controller) */
|
|
retval = target_write_u32(target, 0x400040e8, 0x01);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set DMACLK_CTRL");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* DMACConfig = DMA enabled*/
|
|
retval = target_write_u32(target, 0x31000030, 0x01);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set DMACConfig");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* calculate NAND controller timings */
|
|
cycle = lpc32xx_cycle_time(nand);
|
|
|
|
r_setup = w_setup = 0;
|
|
r_hold = w_hold = 10 / cycle;
|
|
r_width = 30 / cycle;
|
|
w_width = 40 / cycle;
|
|
r_rdy = w_rdy = 100 / cycle;
|
|
|
|
/* SLC_TAC: SLC timing arcs register */
|
|
retval = target_write_u32(target, 0x2002002c,
|
|
(r_setup & 0xf)
|
|
| ((r_hold & 0xf) << 4)
|
|
| ((r_width & 0xf) << 8)
|
|
| ((r_rdy & 0xf) << 12)
|
|
| ((w_setup & 0xf) << 16)
|
|
| ((w_hold & 0xf) << 20)
|
|
| ((w_width & 0xf) << 24)
|
|
| ((w_rdy & 0xf) << 28));
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set SLC_TAC");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_reset(struct nand_device *nand)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use "
|
|
"LPC32xx NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
|
|
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
/* MLC_CMD = 0xff (reset controller and NAND device) */
|
|
retval = target_write_u32(target, 0x200b8000, 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_CMD");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (!lpc32xx_controller_ready(nand, 100)) {
|
|
LOG_ERROR("LPC32xx MLC NAND controller timed out "
|
|
"after reset");
|
|
return ERROR_NAND_OPERATION_TIMEOUT;
|
|
}
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
/* SLC_CTRL = 0x6 (ECC_CLEAR, SW_RESET) */
|
|
retval = target_write_u32(target, 0x20020010, 0x6);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set SLC_CTRL");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (!lpc32xx_controller_ready(nand, 100))
|
|
{
|
|
LOG_ERROR("LPC32xx SLC NAND controller timed out "
|
|
"after reset");
|
|
return ERROR_NAND_OPERATION_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_command(struct nand_device *nand, uint8_t command)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use "
|
|
"LPC32xx NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
|
|
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
/* MLC_CMD = command */
|
|
retval = target_write_u32(target, 0x200b8000, command);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_CMD");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
/* SLC_CMD = command */
|
|
retval = target_write_u32(target, 0x20020008, command);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set SLC_CMD");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_address(struct nand_device *nand, uint8_t address)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use "
|
|
"LPC32xx NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
|
|
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
/* MLC_ADDR = address */
|
|
retval = target_write_u32(target, 0x200b8004, address);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
/* SLC_ADDR = address */
|
|
retval = target_write_u32(target, 0x20020004, address);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set SLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_write_data(struct nand_device *nand, uint16_t data)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use "
|
|
"LPC32xx NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
|
|
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
/* MLC_DATA = data */
|
|
retval = target_write_u32(target, 0x200b0000, data);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_DATA");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
/* SLC_DATA = data */
|
|
retval = target_write_u32(target, 0x20020000, data);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set SLC_DATA");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_read_data(struct nand_device *nand, void *data)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use LPC32xx "
|
|
"NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
|
|
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
/* data = MLC_DATA, use sized access */
|
|
if (nand->bus_width == 8) {
|
|
uint8_t *data8 = data;
|
|
retval = target_read_u8(target, 0x200b0000, data8);
|
|
} else {
|
|
LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read MLC_DATA");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
uint32_t data32;
|
|
|
|
/* data = SLC_DATA, must use 32-bit access */
|
|
retval = target_read_u32(target, 0x20020000, &data32);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read SLC_DATA");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (nand->bus_width == 8) {
|
|
uint8_t *data8 = data;
|
|
*data8 = data32 & 0xff;
|
|
} else {
|
|
LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_write_page_mlc(struct nand_device *nand, uint32_t page,
|
|
uint8_t *data, uint32_t data_size,
|
|
uint8_t *oob, uint32_t oob_size)
|
|
{
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
uint8_t status;
|
|
static uint8_t page_buffer[512];
|
|
static uint8_t oob_buffer[6];
|
|
int quarter, num_quarters;
|
|
|
|
/* MLC_CMD = sequential input */
|
|
retval = target_write_u32(target, 0x200b8000, NAND_CMD_SEQIN);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_CMD");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (nand->page_size == 512) {
|
|
/* MLC_ADDR = 0x0 (one column cycle) */
|
|
retval = target_write_u32(target, 0x200b8004, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_ADDR = row */
|
|
retval = target_write_u32(target, 0x200b8004, page & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
retval = target_write_u32(target, 0x200b8004,
|
|
(page >> 8) & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (nand->address_cycles == 4) {
|
|
retval = target_write_u32(target, 0x200b8004,
|
|
(page >> 16) & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
} else {
|
|
/* MLC_ADDR = 0x0 (two column cycles) */
|
|
retval = target_write_u32(target, 0x200b8004, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
retval = target_write_u32(target, 0x200b8004, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_ADDR = row */
|
|
retval = target_write_u32(target, 0x200b8004, page & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
retval = target_write_u32(target, 0x200b8004,
|
|
(page >> 8) & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
/* when using the MLC controller, we have to treat a large page device
|
|
* as being made out of four quarters, each the size of a small page
|
|
* device
|
|
*/
|
|
num_quarters = (nand->page_size == 2048) ? 4 : 1;
|
|
|
|
for (quarter = 0; quarter < num_quarters; quarter++) {
|
|
int thisrun_data_size = (data_size > 512) ? 512 : data_size;
|
|
int thisrun_oob_size = (oob_size > 6) ? 6 : oob_size;
|
|
|
|
memset(page_buffer, 0xff, 512);
|
|
if (data) {
|
|
memcpy(page_buffer, data, thisrun_data_size);
|
|
data_size -= thisrun_data_size;
|
|
data += thisrun_data_size;
|
|
}
|
|
|
|
memset(oob_buffer, 0xff, 6);
|
|
if (oob) {
|
|
memcpy(oob_buffer, oob, thisrun_oob_size);
|
|
oob_size -= thisrun_oob_size;
|
|
oob += thisrun_oob_size;
|
|
}
|
|
|
|
/* write MLC_ECC_ENC_REG to start encode cycle */
|
|
retval = target_write_u32(target, 0x200b8008, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ECC_ENC_REG");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
retval = target_write_memory(target, 0x200a8000,
|
|
4, 128, page_buffer);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_BUF (data)");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
retval = target_write_memory(target, 0x200a8000,
|
|
1, 6, oob_buffer);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_BUF (oob)");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* write MLC_ECC_AUTO_ENC_REG to start auto encode */
|
|
retval = target_write_u32(target, 0x200b8010, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ECC_AUTO_ENC_REG");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (!lpc32xx_controller_ready(nand, 1000)) {
|
|
LOG_ERROR("timeout while waiting for "
|
|
"completion of auto encode cycle");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
/* MLC_CMD = auto program command */
|
|
retval = target_write_u32(target, 0x200b8000, NAND_CMD_PAGEPROG);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_CMD");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if ((retval = nand_read_status(nand, &status)) != ERROR_OK) {
|
|
LOG_ERROR("couldn't read status");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (status & NAND_STATUS_FAIL) {
|
|
LOG_ERROR("write operation didn't pass, status: 0x%2.2x",
|
|
status);
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* SLC controller in !raw mode will use target cpu to read/write nand from/to
|
|
* target internal memory. The transfer to/from flash is done by DMA. This
|
|
* function sets up the dma linked list in host memory for later transfer to
|
|
* target.
|
|
*/
|
|
static int lpc32xx_make_dma_list(uint32_t target_mem_base, uint32_t page_size,
|
|
int do_read)
|
|
{
|
|
uint32_t i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst;
|
|
|
|
/* DMACCxControl =
|
|
TransferSize =64,
|
|
Source burst size =16,
|
|
Destination burst size = 16,
|
|
Source transfer width = 32 bit,
|
|
Destination transfer width = 32 bit,
|
|
Source AHB master select = M0,
|
|
Destination AHB master select = M0,
|
|
Source increment = 0, // set later
|
|
Destination increment = 0, // set later
|
|
Terminal count interrupt enable bit = 0 // set on last
|
|
*/ /*
|
|
* Write Operation Sequence for Small Block NAND
|
|
* ----------------------------------------------------------
|
|
* 1. X'fer 256 bytes of data from Memory to Flash.
|
|
* 2. Copy generated ECC data from Register to Spare Area
|
|
* 3. X'fer next 256 bytes of data from Memory to Flash.
|
|
* 4. Copy generated ECC data from Register to Spare Area.
|
|
* 5. X'fer 16 byets of Spare area from Memory to Flash.
|
|
* Read Operation Sequence for Small Block NAND
|
|
* ----------------------------------------------------------
|
|
* 1. X'fer 256 bytes of data from Flash to Memory.
|
|
* 2. Copy generated ECC data from Register to ECC calc Buffer.
|
|
* 3. X'fer next 256 bytes of data from Flash to Memory.
|
|
* 4. Copy generated ECC data from Register to ECC calc Buffer.
|
|
* 5. X'fer 16 bytes of Spare area from Flash to Memory.
|
|
* Write Operation Sequence for Large Block NAND
|
|
* ----------------------------------------------------------
|
|
* 1. Steps(1-4) of Write Operations repeate for four times
|
|
* which generates 16 DMA descriptors to X'fer 2048 bytes of
|
|
* data & 32 bytes of ECC data.
|
|
* 2. X'fer 64 bytes of Spare area from Memory to Flash.
|
|
* Read Operation Sequence for Large Block NAND
|
|
* ----------------------------------------------------------
|
|
* 1. Steps(1-4) of Read Operations repeate for four times
|
|
* which generates 16 DMA descriptors to X'fer 2048 bytes of
|
|
* data & 32 bytes of ECC data.
|
|
* 2. X'fer 64 bytes of Spare area from Flash to Memory.
|
|
*/
|
|
|
|
ctrl = (0x40 | 3 << 12 | 3 << 15 | 2 << 18 | 2 << 21 | 0 << 24
|
|
| 0 << 25 | 0 << 26 | 0 << 27 | 0 << 31);
|
|
|
|
/* DMACCxControl =
|
|
TransferSize =1,
|
|
Source burst size =4,
|
|
Destination burst size = 4,
|
|
Source transfer width = 32 bit,
|
|
Destination transfer width = 32 bit,
|
|
Source AHB master select = M0,
|
|
Destination AHB master select = M0,
|
|
Source increment = 0,
|
|
Destination increment = 1,
|
|
Terminal count interrupt enable bit = 0
|
|
*/
|
|
ecc_ctrl = 0x01 | 1 << 12 | 1 << 15 | 2 << 18 | 2 << 21 | 0 << 24
|
|
| 0 << 25 | 0 << 26 | 1 << 27 | 0 << 31;
|
|
|
|
/* DMACCxControl =
|
|
TransferSize =16 for lp or 4 for sp,
|
|
Source burst size =16,
|
|
Destination burst size = 16,
|
|
Source transfer width = 32 bit,
|
|
Destination transfer width = 32 bit,
|
|
Source AHB master select = M0,
|
|
Destination AHB master select = M0,
|
|
Source increment = 0, // set later
|
|
Destination increment = 0, // set later
|
|
Terminal count interrupt enable bit = 1 // set on last
|
|
*/
|
|
oob_ctrl = (page_size == 2048 ? 0x10 : 0x04)
|
|
| 3 << 12 | 3 << 15 | 2 << 18 | 2 << 21 | 0 << 24
|
|
| 0 << 25 | 0 << 26 | 0 << 27 | 1 << 31;
|
|
if (do_read) {
|
|
ctrl |= 1 << 27; /* Destination increment = 1 */
|
|
oob_ctrl |= 1 << 27; /* Destination increment = 1 */
|
|
dmasrc = 0x20020038; /* SLC_DMA_DATA */
|
|
dmadst = target_mem_base + DATA_OFFS;
|
|
} else {
|
|
ctrl |= 1 << 26; /* Source increment = 1 */
|
|
oob_ctrl |= 1 << 26; /* Source increment = 1 */
|
|
dmasrc = target_mem_base + DATA_OFFS;
|
|
dmadst = 0x20020038; /* SLC_DMA_DATA */
|
|
}
|
|
/*
|
|
* Write Operation Sequence for Small Block NAND
|
|
* ----------------------------------------------------------
|
|
* 1. X'fer 256 bytes of data from Memory to Flash.
|
|
* 2. Copy generated ECC data from Register to Spare Area
|
|
* 3. X'fer next 256 bytes of data from Memory to Flash.
|
|
* 4. Copy generated ECC data from Register to Spare Area.
|
|
* 5. X'fer 16 byets of Spare area from Memory to Flash.
|
|
* Read Operation Sequence for Small Block NAND
|
|
* ----------------------------------------------------------
|
|
* 1. X'fer 256 bytes of data from Flash to Memory.
|
|
* 2. Copy generated ECC data from Register to ECC calc Buffer.
|
|
* 3. X'fer next 256 bytes of data from Flash to Memory.
|
|
* 4. Copy generated ECC data from Register to ECC calc Buffer.
|
|
* 5. X'fer 16 bytes of Spare area from Flash to Memory.
|
|
* Write Operation Sequence for Large Block NAND
|
|
* ----------------------------------------------------------
|
|
* 1. Steps(1-4) of Write Operations repeate for four times
|
|
* which generates 16 DMA descriptors to X'fer 2048 bytes of
|
|
* data & 32 bytes of ECC data.
|
|
* 2. X'fer 64 bytes of Spare area from Memory to Flash.
|
|
* Read Operation Sequence for Large Block NAND
|
|
* ----------------------------------------------------------
|
|
* 1. Steps(1-4) of Read Operations repeate for four times
|
|
* which generates 16 DMA descriptors to X'fer 2048 bytes of
|
|
* data & 32 bytes of ECC data.
|
|
* 2. X'fer 64 bytes of Spare area from Flash to Memory.
|
|
*/
|
|
for (i = 0; i < page_size/0x100; i++)
|
|
{
|
|
dmalist[i*2].dma_src = (do_read ? dmasrc : (dmasrc + i * 256));
|
|
dmalist[i*2].dma_dest = (do_read ? (dmadst + i * 256) : dmadst);
|
|
dmalist[i*2].next_lli =
|
|
target_mem_base + (i*2 + 1) * sizeof(dmac_ll_t);
|
|
dmalist[i*2].next_ctrl = ctrl;
|
|
|
|
dmalist[(i*2) + 1].dma_src = 0x20020034; /* SLC_ECC */
|
|
dmalist[(i*2) + 1].dma_dest =
|
|
target_mem_base + ECC_OFFS + i * 4;
|
|
dmalist[(i*2) + 1].next_lli =
|
|
target_mem_base + (i*2 + 2) * sizeof(dmac_ll_t);
|
|
dmalist[(i*2) + 1].next_ctrl = ecc_ctrl;
|
|
|
|
}
|
|
if (do_read)
|
|
{
|
|
dmadst = target_mem_base + SPARE_OFFS;
|
|
} else {
|
|
dmasrc = target_mem_base + SPARE_OFFS;
|
|
dmalist[(i*2) - 1].next_lli = 0; /* last link = null on write */
|
|
dmalist[(i*2) - 1].next_ctrl |= (1 << 31); /* Set TC enable */
|
|
}
|
|
dmalist[i*2].dma_src = dmasrc;
|
|
dmalist[i*2].dma_dest = dmadst;
|
|
dmalist[i*2].next_lli = 0;
|
|
dmalist[i*2].next_ctrl = oob_ctrl;
|
|
|
|
return (i*2 + 1); /* Number of descriptors */
|
|
}
|
|
|
|
static int lpc32xx_start_slc_dma(struct nand_device *nand, uint32_t count,
|
|
int do_wait)
|
|
{
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
|
|
/* DMACIntTCClear = ch0 */
|
|
retval = target_write_u32(target, 0x31000008, 1);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not set DMACIntTCClear");
|
|
return retval;
|
|
}
|
|
|
|
/* DMACIntErrClear = ch0 */
|
|
retval = target_write_u32(target, 0x31000010, 1);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not set DMACIntErrClear");
|
|
return retval;
|
|
}
|
|
|
|
/* DMACCxConfig=
|
|
E=1,
|
|
SrcPeripheral = 1 (SLC),
|
|
DestPeripheral = 1 (SLC),
|
|
FlowCntrl = 2 (Pher -> Mem, DMA),
|
|
IE = 0,
|
|
ITC = 0,
|
|
L= 0,
|
|
H=0
|
|
*/
|
|
retval = target_write_u32(target, 0x31000110,
|
|
1 | 1<<1 | 1<<6 | 2<<11 | 0<<14
|
|
| 0<<15 | 0<<16 | 0<<18);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not set DMACC0Config");
|
|
return retval;
|
|
}
|
|
|
|
/* SLC_CTRL = 3 (START DMA), ECC_CLEAR */
|
|
retval = target_write_u32(target, 0x20020010, 0x3);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not set SLC_CTRL");
|
|
return retval;
|
|
}
|
|
|
|
/* SLC_ICR = 2, INT_TC_CLR, clear pending TC*/
|
|
retval = target_write_u32(target, 0x20020028, 2);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not set SLC_ICR");
|
|
return retval;
|
|
}
|
|
|
|
/* SLC_TC */
|
|
retval = target_write_u32(target, 0x20020030, count);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("lpc32xx_start_slc_dma: Could not set SLC_TC");
|
|
return retval;
|
|
}
|
|
|
|
/* Wait finish */
|
|
if (do_wait && !lpc32xx_tc_ready(nand, 100)) {
|
|
LOG_ERROR("timeout while waiting for completion of DMA");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int lpc32xx_dma_ready(struct nand_device *nand, int timeout)
|
|
{
|
|
struct target *target = nand->target;
|
|
|
|
LOG_DEBUG("lpc32xx_dma_ready count start=%d", timeout);
|
|
|
|
do {
|
|
uint32_t tc_stat;
|
|
uint32_t err_stat;
|
|
int retval;
|
|
|
|
/* Read DMACRawIntTCStat */
|
|
retval = target_read_u32(target, 0x31000014, &tc_stat);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not read DMACRawIntTCStat");
|
|
return 0;
|
|
}
|
|
/* Read DMACRawIntErrStat */
|
|
retval = target_read_u32(target, 0x31000018, &err_stat);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not read DMACRawIntErrStat");
|
|
return 0;
|
|
}
|
|
if ((tc_stat | err_stat) & 1) {
|
|
LOG_DEBUG("lpc32xx_dma_ready count=%d",
|
|
timeout);
|
|
if (err_stat & 1) {
|
|
LOG_ERROR("lpc32xx_dma_ready "
|
|
"DMA error, aborted");
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
alive_sleep(1);
|
|
} while (timeout-- > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t slc_ecc_copy_to_buffer(uint8_t * spare,
|
|
const uint32_t * ecc, int count)
|
|
{
|
|
int i;
|
|
for (i = 0; i < (count * 3); i += 3) {
|
|
uint32_t ce = ecc[i/3];
|
|
ce = ~(ce << 2) & 0xFFFFFF;
|
|
spare[i+2] = (uint8_t)(ce & 0xFF); ce >>= 8;
|
|
spare[i+1] = (uint8_t)(ce & 0xFF); ce >>= 8;
|
|
spare[i] = (uint8_t)(ce & 0xFF);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void lpc32xx_dump_oob(uint8_t *oob, uint32_t oob_size)
|
|
{
|
|
int addr = 0;
|
|
while (oob_size > 0) {
|
|
LOG_DEBUG("%02x: %02x %02x %02x %02x %02x %02x %02x %02x", addr,
|
|
oob[0], oob[1], oob[2], oob[3],
|
|
oob[4], oob[5], oob[6], oob[7]);
|
|
oob += 8;
|
|
addr += 8;
|
|
oob_size -= 8;
|
|
}
|
|
}
|
|
|
|
static int lpc32xx_write_page_slc(struct nand_device *nand,
|
|
struct working_area *pworking_area,
|
|
uint32_t page, uint8_t *data,
|
|
uint32_t data_size, uint8_t *oob,
|
|
uint32_t oob_size)
|
|
{
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
uint32_t target_mem_base;
|
|
|
|
LOG_DEBUG("SLC write page %x data=%d, oob=%d, "
|
|
"data_size=%d, oob_size=%d",
|
|
page, data != 0, oob != 0, data_size, oob_size);
|
|
|
|
target_mem_base = pworking_area->address;
|
|
/*
|
|
* Skip writting page which has all 0xFF data as this will
|
|
* generate 0x0 value.
|
|
*/
|
|
if (data && !oob) {
|
|
uint32_t i, all_ff = 1;
|
|
for (i = 0; i < data_size; i++)
|
|
if (data[i] != 0xFF) {
|
|
all_ff = 0;
|
|
break;
|
|
}
|
|
if (all_ff)
|
|
return ERROR_OK;
|
|
}
|
|
/* Make the dma descriptors in local memory */
|
|
int nll = lpc32xx_make_dma_list(target_mem_base, nand->page_size, 0);
|
|
/* Write them to target.
|
|
XXX: Assumes host and target have same byte sex.
|
|
*/
|
|
retval = target_write_memory(target, target_mem_base, 4,
|
|
nll * sizeof(dmac_ll_t) / 4,
|
|
(uint8_t *)dmalist);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not write DMA descriptors to IRAM");
|
|
return retval;
|
|
}
|
|
|
|
retval = nand_page_command(nand, page, NAND_CMD_SEQIN, !data);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("NAND_CMD_SEQIN failed");
|
|
return retval;
|
|
}
|
|
|
|
/* SLC_CFG =
|
|
Force nCE assert,
|
|
DMA ECC enabled,
|
|
ECC enabled,
|
|
DMA burst enabled,
|
|
DMA write to SLC,
|
|
WIDTH = bus_width
|
|
*/
|
|
retval = target_write_u32(target, 0x20020014, 0x3c);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not set SLC_CFG");
|
|
return retval;
|
|
}
|
|
if (data) {
|
|
/* Write data to target */
|
|
static uint8_t fdata[2048];
|
|
memset(fdata, 0xFF, nand->page_size);
|
|
memcpy(fdata, data, data_size);
|
|
retval = target_write_memory(target,
|
|
target_mem_base + DATA_OFFS,
|
|
4, nand->page_size/4, fdata);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not write data to IRAM");
|
|
return retval;
|
|
}
|
|
|
|
/* Write first decriptor to DMA controller */
|
|
retval = target_write_memory(target, 0x31000100, 4,
|
|
sizeof(dmac_ll_t) / 4,
|
|
(uint8_t *)dmalist);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not write DMA descriptor to DMAC");
|
|
return retval;
|
|
}
|
|
|
|
/* Start xfer of data from iram to flash using DMA */
|
|
int tot_size = nand->page_size;
|
|
tot_size += tot_size == 2048 ? 64 : 16;
|
|
retval = lpc32xx_start_slc_dma(nand, tot_size, 0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("DMA failed");
|
|
return retval;
|
|
}
|
|
|
|
/* Wait for DMA to finish. SLC is not finished at this stage */
|
|
if (!lpc32xx_dma_ready(nand, 100)) {
|
|
LOG_ERROR("Data DMA failed during write");
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
} /* data xfer */
|
|
|
|
/* Copy OOB to iram */
|
|
static uint8_t foob[64];
|
|
int foob_size = nand->page_size == 2048 ? 64 : 16;
|
|
memset(foob, 0xFF, foob_size);
|
|
if (oob) { /* Raw mode */
|
|
memcpy(foob, oob, oob_size);
|
|
} else {
|
|
/* Get HW generated ECC, made while writing data */
|
|
int ecc_count = nand->page_size == 2048 ? 8 : 2;
|
|
static uint32_t hw_ecc[8];
|
|
retval = target_read_memory(target, target_mem_base + ECC_OFFS,
|
|
4, ecc_count, (uint8_t *)hw_ecc);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Reading hw generated ECC from IRAM failed");
|
|
return retval;
|
|
}
|
|
/* Copy to oob, at correct offsets */
|
|
static uint8_t ecc[24];
|
|
slc_ecc_copy_to_buffer(ecc, hw_ecc, ecc_count);
|
|
int *layout = nand->page_size == 2048 ? lp_ooblayout : sp_ooblayout;
|
|
int i;
|
|
for (i = 0; i < ecc_count * 3; i++)
|
|
foob[layout[i]] = ecc[i];
|
|
lpc32xx_dump_oob(foob, foob_size);
|
|
}
|
|
retval = target_write_memory(target, target_mem_base + SPARE_OFFS, 4,
|
|
foob_size / 4, foob);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Writing OOB to IRAM failed");
|
|
return retval;
|
|
}
|
|
|
|
/* Write OOB decriptor to DMA controller */
|
|
retval = target_write_memory(target, 0x31000100, 4,
|
|
sizeof(dmac_ll_t) / 4,
|
|
(uint8_t *)(&dmalist[nll-1]));
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not write OOB DMA descriptor to DMAC");
|
|
return retval;
|
|
}
|
|
if (data) {
|
|
/* Only restart DMA with last descriptor,
|
|
* don't setup SLC again */
|
|
|
|
/* DMACIntTCClear = ch0 */
|
|
retval = target_write_u32(target, 0x31000008, 1);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not set DMACIntTCClear");
|
|
return retval;
|
|
}
|
|
/* DMACCxConfig=
|
|
E=1,
|
|
SrcPeripheral = 1 (SLC),
|
|
DestPeripheral = 1 (SLC),
|
|
FlowCntrl = 2 (Pher -> Mem, DMA),
|
|
IE = 0,
|
|
ITC = 0,
|
|
L= 0,
|
|
H=0
|
|
*/
|
|
retval = target_write_u32(target, 0x31000110,
|
|
1 | 1<<1 | 1<<6 | 2<<11 | 0<<14
|
|
| 0<<15 | 0<<16 | 0<<18);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not set DMACC0Config");
|
|
return retval;
|
|
}
|
|
/* Wait finish */
|
|
if (!lpc32xx_tc_ready(nand, 100)) {
|
|
LOG_ERROR("timeout while waiting for "
|
|
"completion of DMA");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
} else {
|
|
/* Start xfer of data from iram to flash using DMA */
|
|
retval = lpc32xx_start_slc_dma(nand, foob_size, 1);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("DMA OOB failed");
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
/* Let NAND start actual writing */
|
|
retval = nand_write_finish(nand);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("nand_write_finish failed");
|
|
return retval;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_write_page(struct nand_device *nand, uint32_t page,
|
|
uint8_t *data, uint32_t data_size,
|
|
uint8_t *oob, uint32_t oob_size)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval = ERROR_OK;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use LPC32xx "
|
|
"NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
|
|
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
if (!data && oob) {
|
|
LOG_ERROR("LPC32xx MLC controller can't write "
|
|
"OOB data only");
|
|
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
|
|
if (oob && (oob_size > 24)) {
|
|
LOG_ERROR("LPC32xx MLC controller can't write more "
|
|
"than 6 bytes for each quarter's OOB data");
|
|
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
|
|
if (data_size > (uint32_t)nand->page_size) {
|
|
LOG_ERROR("data size exceeds page size");
|
|
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
|
|
retval = lpc32xx_write_page_mlc(nand, page, data, data_size,
|
|
oob, oob_size);
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
struct working_area *pworking_area;
|
|
if (!data && oob) {
|
|
/*
|
|
* if oob only mode is active original method is used
|
|
* as SLC controller hangs during DMA interworking. (?)
|
|
* Anyway the code supports the oob only mode below.
|
|
*/
|
|
return nand_write_page_raw(nand, page, data,
|
|
data_size, oob, oob_size);
|
|
}
|
|
retval = target_alloc_working_area(target,
|
|
nand->page_size + DATA_OFFS,
|
|
&pworking_area);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Can't allocate working area in "
|
|
"LPC internal RAM");
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
retval = lpc32xx_write_page_slc(nand, pworking_area, page,
|
|
data, data_size, oob, oob_size);
|
|
target_free_working_area(target, pworking_area);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int lpc32xx_read_page_mlc(struct nand_device *nand, uint32_t page,
|
|
uint8_t *data, uint32_t data_size,
|
|
uint8_t *oob, uint32_t oob_size)
|
|
{
|
|
struct target *target = nand->target;
|
|
static uint8_t page_buffer[2048];
|
|
static uint8_t oob_buffer[64];
|
|
uint32_t page_bytes_done = 0;
|
|
uint32_t oob_bytes_done = 0;
|
|
uint32_t mlc_isr;
|
|
int retval;
|
|
|
|
if (!data && oob) {
|
|
/* MLC_CMD = Read OOB
|
|
* we can use the READOOB command on both small and large page
|
|
* devices, as the controller translates the 0x50 command to
|
|
* a 0x0 with appropriate positioning of the serial buffer
|
|
* read pointer
|
|
*/
|
|
retval = target_write_u32(target, 0x200b8000, NAND_CMD_READOOB);
|
|
} else {
|
|
/* MLC_CMD = Read0 */
|
|
retval = target_write_u32(target, 0x200b8000, NAND_CMD_READ0);
|
|
}
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_CMD");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
if (nand->page_size == 512) {
|
|
/* small page device */
|
|
/* MLC_ADDR = 0x0 (one column cycle) */
|
|
retval = target_write_u32(target, 0x200b8004, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_ADDR = row */
|
|
retval = target_write_u32(target, 0x200b8004, page & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
retval = target_write_u32(target, 0x200b8004,
|
|
(page >> 8) & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (nand->address_cycles == 4) {
|
|
retval = target_write_u32(target, 0x200b8004,
|
|
(page >> 16) & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
} else {
|
|
/* large page device */
|
|
/* MLC_ADDR = 0x0 (two column cycles) */
|
|
retval = target_write_u32(target, 0x200b8004, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
retval = target_write_u32(target, 0x200b8004, 0x0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_ADDR = row */
|
|
retval = target_write_u32(target, 0x200b8004, page & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
retval = target_write_u32(target, 0x200b8004,
|
|
(page >> 8) & 0xff);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ADDR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
/* MLC_CMD = Read Start */
|
|
retval = target_write_u32(target, 0x200b8000,
|
|
NAND_CMD_READSTART);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_CMD");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
while (page_bytes_done < (uint32_t)nand->page_size) {
|
|
/* MLC_ECC_AUTO_DEC_REG = dummy */
|
|
retval = target_write_u32(target, 0x200b8014, 0xaa55aa55);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_ECC_AUTO_DEC_REG");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (!lpc32xx_controller_ready(nand, 1000)) {
|
|
LOG_ERROR("timeout while waiting for "
|
|
"completion of auto decode cycle");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
retval = target_read_u32(target, 0x200b8048, &mlc_isr);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read MLC_ISR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (mlc_isr & 0x8) {
|
|
if (mlc_isr & 0x40) {
|
|
LOG_ERROR("uncorrectable error detected: "
|
|
"0x%2.2x", (unsigned)mlc_isr);
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
LOG_WARNING("%i symbol error detected and corrected",
|
|
((int)(((mlc_isr & 0x30) >> 4) + 1)));
|
|
}
|
|
|
|
if (data) {
|
|
retval = target_read_memory(target, 0x200a8000, 4, 128,
|
|
page_buffer + page_bytes_done);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read MLC_BUF (data)");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
if (oob) {
|
|
retval = target_read_memory(target, 0x200a8000, 4, 4,
|
|
oob_buffer + oob_bytes_done);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read MLC_BUF (oob)");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
}
|
|
|
|
page_bytes_done += 512;
|
|
oob_bytes_done += 16;
|
|
}
|
|
|
|
if (data)
|
|
memcpy(data, page_buffer, data_size);
|
|
|
|
if (oob)
|
|
memcpy(oob, oob_buffer, oob_size);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int lpc32xx_read_page_slc(struct nand_device *nand,
|
|
struct working_area *pworking_area,
|
|
uint32_t page, uint8_t *data,
|
|
uint32_t data_size, uint8_t *oob,
|
|
uint32_t oob_size)
|
|
{
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
uint32_t target_mem_base;
|
|
|
|
LOG_DEBUG("SLC read page %x data=%d, oob=%d",
|
|
page, data_size, oob_size);
|
|
|
|
target_mem_base = pworking_area->address;
|
|
|
|
/* Make the dma descriptors in local memory */
|
|
int nll = lpc32xx_make_dma_list(target_mem_base, nand->page_size, 1);
|
|
/* Write them to target.
|
|
XXX: Assumes host and target have same byte sex.
|
|
*/
|
|
retval = target_write_memory(target, target_mem_base, 4,
|
|
nll * sizeof(dmac_ll_t) / 4,
|
|
(uint8_t *)dmalist);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not write DMA descriptors to IRAM");
|
|
return retval;
|
|
}
|
|
|
|
retval = nand_page_command(nand, page, NAND_CMD_READ0, 0);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("lpc32xx_read_page_slc: NAND_CMD_READ0 failed");
|
|
return retval;
|
|
}
|
|
|
|
/* SLC_CFG =
|
|
Force nCE assert,
|
|
DMA ECC enabled,
|
|
ECC enabled,
|
|
DMA burst enabled,
|
|
DMA read from SLC,
|
|
WIDTH = bus_width
|
|
*/
|
|
retval = target_write_u32(target, 0x20020014, 0x3e);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("lpc32xx_read_page_slc: Could not set SLC_CFG");
|
|
return retval;
|
|
}
|
|
|
|
/* Write first decriptor to DMA controller */
|
|
retval = target_write_memory(target, 0x31000100, 4,
|
|
sizeof(dmac_ll_t) / 4, (uint8_t *)dmalist);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not write DMA descriptor to DMAC");
|
|
return retval;
|
|
}
|
|
|
|
/* Start xfer of data from flash to iram using DMA */
|
|
int tot_size = nand->page_size;
|
|
tot_size += nand->page_size == 2048 ? 64 : 16;
|
|
retval = lpc32xx_start_slc_dma(nand, tot_size, 1);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("lpc32xx_read_page_slc: DMA read failed");
|
|
return retval;
|
|
}
|
|
|
|
/* Copy data from iram */
|
|
if (data) {
|
|
retval = target_read_memory(target, target_mem_base + DATA_OFFS,
|
|
4, data_size/4, data);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not read data from IRAM");
|
|
return retval;
|
|
}
|
|
}
|
|
if (oob) {
|
|
/* No error correction, just return data as read from flash */
|
|
retval = target_read_memory(target,
|
|
target_mem_base + SPARE_OFFS, 4,
|
|
oob_size/4, oob);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not read OOB from IRAM");
|
|
return retval;
|
|
}
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* Copy OOB from flash, stored in IRAM */
|
|
static uint8_t foob[64];
|
|
retval = target_read_memory(target, target_mem_base + SPARE_OFFS,
|
|
4, nand->page_size == 2048 ? 16 : 4, foob);
|
|
lpc32xx_dump_oob(foob, nand->page_size == 2048 ? 64 : 16);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not read OOB from IRAM");
|
|
return retval;
|
|
}
|
|
/* Copy ECC from HW, generated while reading */
|
|
int ecc_count = nand->page_size == 2048 ? 8 : 2;
|
|
static uint32_t hw_ecc[8]; /* max size */
|
|
retval = target_read_memory(target, target_mem_base + ECC_OFFS, 4,
|
|
ecc_count, (uint8_t *)hw_ecc);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not read hw generated ECC from IRAM");
|
|
return retval;
|
|
}
|
|
static uint8_t ecc[24];
|
|
slc_ecc_copy_to_buffer(ecc, hw_ecc, ecc_count);
|
|
/* Copy ECC from flash using correct layout */
|
|
static uint8_t fecc[24]; /* max size */
|
|
int *layout = nand->page_size == 2048 ? lp_ooblayout : sp_ooblayout;
|
|
int i;
|
|
for (i = 0; i < ecc_count * 3; i++)
|
|
fecc[i] = foob[layout[i]];
|
|
/* Compare ECC and possibly correct data */
|
|
for (i = 0; i < ecc_count; i++) {
|
|
retval = nand_correct_data(nand, data + 256*i, &fecc[i * 3],
|
|
&ecc[i * 3]);
|
|
if (retval > 0)
|
|
LOG_WARNING("error detected and corrected: %d/%d",
|
|
page, i);
|
|
if (retval < 0)
|
|
break;
|
|
}
|
|
if (i == ecc_count)
|
|
retval = ERROR_OK;
|
|
else {
|
|
LOG_ERROR("uncorrectable error detected: %d/%d", page, i);
|
|
retval = ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static int lpc32xx_read_page(struct nand_device *nand, uint32_t page,
|
|
uint8_t *data, uint32_t data_size,
|
|
uint8_t *oob, uint32_t oob_size)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval = ERROR_OK;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use LPC32xx "
|
|
"NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
|
|
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
if (data_size > (uint32_t)nand->page_size) {
|
|
LOG_ERROR("data size exceeds page size");
|
|
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
retval = lpc32xx_read_page_mlc(nand, page, data, data_size,
|
|
oob, oob_size);
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
struct working_area *pworking_area;
|
|
|
|
retval = target_alloc_working_area(target,
|
|
nand->page_size + 0x200,
|
|
&pworking_area);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Can't allocate working area in "
|
|
"LPC internal RAM");
|
|
return ERROR_FLASH_OPERATION_FAILED;
|
|
}
|
|
retval = lpc32xx_read_page_slc(nand, pworking_area, page,
|
|
data, data_size, oob, oob_size);
|
|
target_free_working_area(target, pworking_area);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int lpc32xx_controller_ready(struct nand_device *nand, int timeout)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use LPC32xx "
|
|
"NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
LOG_DEBUG("lpc32xx_controller_ready count start=%d", timeout);
|
|
|
|
do {
|
|
if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
uint8_t status;
|
|
|
|
/* Read MLC_ISR, wait for controller to become ready */
|
|
retval = target_read_u8(target, 0x200b8048, &status);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set MLC_STAT");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (status & 2) {
|
|
LOG_DEBUG("lpc32xx_controller_ready count=%d",
|
|
timeout);
|
|
return 1;
|
|
}
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
uint32_t status;
|
|
|
|
/* Read SLC_STAT and check READY bit */
|
|
retval = target_read_u32(target, 0x20020018, &status);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not set SLC_STAT");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (status & 1) {
|
|
LOG_DEBUG("lpc32xx_controller_ready count=%d",
|
|
timeout);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
alive_sleep(1);
|
|
} while (timeout-- > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lpc32xx_nand_ready(struct nand_device *nand, int timeout)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
|
|
struct target *target = nand->target;
|
|
int retval;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("target must be halted to use LPC32xx "
|
|
"NAND flash controller");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
LOG_DEBUG("lpc32xx_nand_ready count start=%d", timeout);
|
|
|
|
do {
|
|
if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
|
|
uint8_t status = 0x0;
|
|
|
|
/* Read MLC_ISR, wait for NAND flash device to
|
|
* become ready */
|
|
retval = target_read_u8(target, 0x200b8048, &status);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read MLC_ISR");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (status & 1) {
|
|
LOG_DEBUG("lpc32xx_nand_ready count end=%d",
|
|
timeout);
|
|
return 1;
|
|
}
|
|
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
|
|
uint32_t status = 0x0;
|
|
|
|
/* Read SLC_STAT and check READY bit */
|
|
retval = target_read_u32(target, 0x20020018, &status);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("could not read SLC_STAT");
|
|
return ERROR_NAND_OPERATION_FAILED;
|
|
}
|
|
|
|
if (status & 1) {
|
|
LOG_DEBUG("lpc32xx_nand_ready count end=%d",
|
|
timeout);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
alive_sleep(1);
|
|
} while (timeout-- > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lpc32xx_tc_ready(struct nand_device *nand, int timeout)
|
|
{
|
|
struct target *target = nand->target;
|
|
|
|
LOG_DEBUG("lpc32xx_tc_ready count start=%d", timeout);
|
|
|
|
do {
|
|
uint32_t status = 0x0;
|
|
int retval;
|
|
/* Read SLC_INT_STAT and check INT_TC_STAT bit */
|
|
retval = target_read_u32(target, 0x2002001c, &status);
|
|
if (ERROR_OK != retval) {
|
|
LOG_ERROR("Could not read SLC_INT_STAT");
|
|
return 0;
|
|
}
|
|
if (status & 2){
|
|
LOG_DEBUG("lpc32xx_tc_ready count=%d", timeout);
|
|
return 1;
|
|
}
|
|
|
|
alive_sleep(1);
|
|
} while (timeout-- > 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
COMMAND_HANDLER(handle_lpc32xx_select_command)
|
|
{
|
|
struct lpc32xx_nand_controller *lpc32xx_info = NULL;
|
|
char *selected[] = {
|
|
"no", "mlc", "slc"
|
|
};
|
|
|
|
if ((CMD_ARGC < 1) || (CMD_ARGC > 3)) {
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
|
|
unsigned num;
|
|
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
|
|
struct nand_device *nand = get_nand_device_by_num(num);
|
|
if (!nand) {
|
|
command_print(CMD_CTX, "nand device '#%s' is out of bounds",
|
|
CMD_ARGV[0]);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
lpc32xx_info = nand->controller_priv;
|
|
|
|
if (CMD_ARGC >= 2) {
|
|
if (strcmp(CMD_ARGV[1], "mlc") == 0) {
|
|
lpc32xx_info->selected_controller =
|
|
LPC32xx_MLC_CONTROLLER;
|
|
} else if (strcmp(CMD_ARGV[1], "slc") == 0) {
|
|
lpc32xx_info->selected_controller =
|
|
LPC32xx_SLC_CONTROLLER;
|
|
} else {
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
}
|
|
}
|
|
|
|
command_print(CMD_CTX, "%s controller selected",
|
|
selected[lpc32xx_info->selected_controller]);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static const struct command_registration lpc32xx_exec_command_handlers[] = {
|
|
{
|
|
.name = "select",
|
|
.handler = handle_lpc32xx_select_command,
|
|
.mode = COMMAND_EXEC,
|
|
.help = "select MLC or SLC controller (default is MLC)",
|
|
.usage = "bank_id ['mlc'|'slc' ]",
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
static const struct command_registration lpc32xx_command_handler[] = {
|
|
{
|
|
.name = "lpc32xx",
|
|
.mode = COMMAND_ANY,
|
|
.help = "LPC32xx NAND flash controller commands",
|
|
.chain = lpc32xx_exec_command_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
struct nand_flash_controller lpc32xx_nand_controller = {
|
|
.name = "lpc32xx",
|
|
.commands = lpc32xx_command_handler,
|
|
.nand_device_command = lpc32xx_nand_device_command,
|
|
.init = lpc32xx_init,
|
|
.reset = lpc32xx_reset,
|
|
.command = lpc32xx_command,
|
|
.address = lpc32xx_address,
|
|
.write_data = lpc32xx_write_data,
|
|
.read_data = lpc32xx_read_data,
|
|
.write_page = lpc32xx_write_page,
|
|
.read_page = lpc32xx_read_page,
|
|
.nand_ready = lpc32xx_nand_ready,
|
|
};
|