1036 lines
36 KiB
C
1036 lines
36 KiB
C
/***************************************************************************
|
|
* Copyright (C) 2008 by Spencer Oliver *
|
|
* spen@spen-soft.co.uk *
|
|
* *
|
|
* Copyright (C) 2008 by David T.L. Wong *
|
|
* *
|
|
* Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
|
|
* *
|
|
* Copyright (C) 2011 by Drasko DRASKOVIC *
|
|
* drasko.draskovic@gmail.com *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
|
***************************************************************************/
|
|
|
|
/*
|
|
* This version has optimized assembly routines for 32 bit operations:
|
|
* - read word
|
|
* - write word
|
|
* - write array of words
|
|
*
|
|
* One thing to be aware of is that the MIPS32 cpu will execute the
|
|
* instruction after a branch instruction (one delay slot).
|
|
*
|
|
* For example:
|
|
* LW $2, ($5 +10)
|
|
* B foo
|
|
* LW $1, ($2 +100)
|
|
*
|
|
* The LW $1, ($2 +100) instruction is also executed. If this is
|
|
* not wanted a NOP can be inserted:
|
|
*
|
|
* LW $2, ($5 +10)
|
|
* B foo
|
|
* NOP
|
|
* LW $1, ($2 +100)
|
|
*
|
|
* or the code can be changed to:
|
|
*
|
|
* B foo
|
|
* LW $2, ($5 +10)
|
|
* LW $1, ($2 +100)
|
|
*
|
|
* The original code contained NOPs. I have removed these and moved
|
|
* the branches.
|
|
*
|
|
* These changes result in a 35% speed increase when programming an
|
|
* external flash.
|
|
*
|
|
* More improvement could be gained if the registers do no need
|
|
* to be preserved but in that case the routines should be aware
|
|
* OpenOCD is used as a flash programmer or as a debug tool.
|
|
*
|
|
* Nico Coesel
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <helper/time_support.h>
|
|
|
|
#include "mips32.h"
|
|
#include "mips32_pracc.h"
|
|
|
|
static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info)
|
|
{
|
|
int64_t then = timeval_ms();
|
|
|
|
/* wait for the PrAcc to become "1" */
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
|
|
|
|
while (1) {
|
|
ejtag_info->pa_ctrl = ejtag_info->ejtag_ctrl;
|
|
int retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_ctrl);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRACC)
|
|
break;
|
|
|
|
int64_t timeout = timeval_ms() - then;
|
|
if (timeout > 1000) {
|
|
LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* Shift in control and address for a new processor access, save them in ejtag_info */
|
|
static int mips32_pracc_read_ctrl_addr(struct mips_ejtag *ejtag_info)
|
|
{
|
|
int retval = wait_for_pracc_rw(ejtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
|
|
|
|
ejtag_info->pa_addr = 0;
|
|
return mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_addr);
|
|
}
|
|
|
|
/* Finish processor access */
|
|
static void mips32_pracc_finish(struct mips_ejtag *ejtag_info)
|
|
{
|
|
uint32_t ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
|
|
mips_ejtag_drscan_32_out(ejtag_info, ctrl);
|
|
}
|
|
|
|
int mips32_pracc_clean_text_jump(struct mips_ejtag *ejtag_info)
|
|
{
|
|
uint32_t jt_code = MIPS32_J(ejtag_info->isa, MIPS32_PRACC_TEXT);
|
|
pracc_swap16_array(ejtag_info, &jt_code, 1);
|
|
/* do 3 0/nops to clean pipeline before a jump to pracc text, NOP in delay slot */
|
|
for (int i = 0; i != 5; i++) {
|
|
/* Wait for pracc */
|
|
int retval = wait_for_pracc_rw(ejtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Data or instruction out */
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
|
|
uint32_t data = (i == 3) ? jt_code : MIPS32_NOP;
|
|
mips_ejtag_drscan_32_out(ejtag_info, data);
|
|
|
|
/* finish pa */
|
|
mips32_pracc_finish(ejtag_info);
|
|
}
|
|
|
|
if (ejtag_info->mode != 0) /* async mode support only for MIPS ... */
|
|
return ERROR_OK;
|
|
|
|
for (int i = 0; i != 2; i++) {
|
|
int retval = mips32_pracc_read_ctrl_addr(ejtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT) { /* LEXRA/BMIPS ?, shift out another NOP, max 2 */
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
|
|
mips_ejtag_drscan_32_out(ejtag_info, MIPS32_NOP);
|
|
mips32_pracc_finish(ejtag_info);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
int mips32_pracc_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx,
|
|
uint32_t *param_out, bool check_last)
|
|
{
|
|
int code_count = 0;
|
|
int store_pending = 0; /* increases with every store instr at dmseg, decreases with every store pa */
|
|
uint32_t max_store_addr = 0; /* for store pa address testing */
|
|
bool restart = 0; /* restarting control */
|
|
int restart_count = 0;
|
|
uint32_t instr = 0;
|
|
bool final_check = 0; /* set to 1 if in final checks after function code shifted out */
|
|
bool pass = 0; /* to check the pass through pracc text after function code sent */
|
|
int retval;
|
|
|
|
while (1) {
|
|
if (restart) {
|
|
if (restart_count < 3) { /* max 3 restarts allowed */
|
|
retval = mips32_pracc_clean_text_jump(ejtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
} else
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
restart_count++;
|
|
restart = 0;
|
|
code_count = 0;
|
|
LOG_DEBUG("restarting code");
|
|
}
|
|
|
|
retval = mips32_pracc_read_ctrl_addr(ejtag_info); /* update current pa info: control and address */
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Check for read or write access */
|
|
if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRNW) { /* write/store access */
|
|
/* Check for pending store from a previous store instruction at dmseg */
|
|
if (store_pending == 0) {
|
|
LOG_DEBUG("unexpected write at address %" PRIx32, ejtag_info->pa_addr);
|
|
if (code_count < 2) { /* allow for restart */
|
|
restart = 1;
|
|
continue;
|
|
} else
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
} else {
|
|
/* check address */
|
|
if (ejtag_info->pa_addr < MIPS32_PRACC_PARAM_OUT ||
|
|
ejtag_info->pa_addr > max_store_addr) {
|
|
LOG_DEBUG("writing at unexpected address %" PRIx32, ejtag_info->pa_addr);
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
}
|
|
}
|
|
/* read data */
|
|
uint32_t data = 0;
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
|
|
retval = mips_ejtag_drscan_32(ejtag_info, &data);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* store data at param out, address based offset */
|
|
param_out[(ejtag_info->pa_addr - MIPS32_PRACC_PARAM_OUT) / 4] = data;
|
|
store_pending--;
|
|
|
|
} else { /* read/fetch access */
|
|
if (!final_check) { /* executing function code */
|
|
/* check address */
|
|
if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
|
|
LOG_DEBUG("reading at unexpected address %" PRIx32 ", expected %x",
|
|
ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4);
|
|
|
|
/* restart code execution only in some cases */
|
|
if (code_count == 1 && ejtag_info->pa_addr == MIPS32_PRACC_TEXT &&
|
|
restart_count == 0) {
|
|
LOG_DEBUG("restarting, without clean jump");
|
|
restart_count++;
|
|
code_count = 0;
|
|
continue;
|
|
} else if (code_count < 2) {
|
|
restart = 1;
|
|
continue;
|
|
}
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
}
|
|
/* check for store instruction at dmseg */
|
|
uint32_t store_addr = ctx->pracc_list[code_count].addr;
|
|
if (store_addr != 0) {
|
|
if (store_addr > max_store_addr)
|
|
max_store_addr = store_addr;
|
|
store_pending++;
|
|
}
|
|
|
|
instr = ctx->pracc_list[code_count++].instr;
|
|
if (code_count == ctx->code_count) /* last instruction, start final check */
|
|
final_check = 1;
|
|
|
|
} else { /* final check after function code shifted out */
|
|
/* check address */
|
|
if (ejtag_info->pa_addr == MIPS32_PRACC_TEXT) {
|
|
if (!pass) { /* first pass through pracc text */
|
|
if (store_pending == 0) /* done, normal exit */
|
|
return ERROR_OK;
|
|
pass = 1; /* pracc text passed */
|
|
code_count = 0; /* restart code count */
|
|
} else {
|
|
LOG_DEBUG("unexpected second pass through pracc text");
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
}
|
|
} else {
|
|
if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
|
|
LOG_DEBUG("unexpected read address in final check: %"
|
|
PRIx32 ", expected: %x", ejtag_info->pa_addr,
|
|
MIPS32_PRACC_TEXT + code_count * 4);
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
}
|
|
}
|
|
if (!pass) {
|
|
if ((code_count - ctx->code_count) > 1) { /* allow max 2 instr delay slot */
|
|
LOG_DEBUG("failed to jump back to pracc text");
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
}
|
|
} else
|
|
if (code_count > 10) { /* enough, abandone */
|
|
LOG_DEBUG("execution abandoned, store pending: %d", store_pending);
|
|
return ERROR_JTAG_DEVICE_ERROR;
|
|
}
|
|
instr = MIPS32_NOP; /* shift out NOPs instructions */
|
|
code_count++;
|
|
}
|
|
|
|
/* Send instruction out */
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
|
|
mips_ejtag_drscan_32_out(ejtag_info, instr);
|
|
}
|
|
/* finish processor access, let the processor eat! */
|
|
mips32_pracc_finish(ejtag_info);
|
|
|
|
if (final_check && !check_last) /* last instr, don't check, execute and exit */
|
|
return jtag_execute_queue();
|
|
|
|
if (store_pending == 0 && pass) { /* store access done, but after passing pracc text */
|
|
LOG_DEBUG("warning: store access pass pracc text");
|
|
return ERROR_OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void pracc_queue_init(struct pracc_queue_info *ctx)
|
|
{
|
|
ctx->retval = ERROR_OK;
|
|
ctx->code_count = 0;
|
|
ctx->store_count = 0;
|
|
ctx->max_code = 0;
|
|
ctx->pracc_list = NULL;
|
|
ctx->isa = ctx->ejtag_info->isa ? 1 : 0;
|
|
}
|
|
|
|
void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
|
|
{
|
|
if (ctx->retval != ERROR_OK) /* On previous out of memory, return */
|
|
return;
|
|
if (ctx->code_count == ctx->max_code) {
|
|
void *p = realloc(ctx->pracc_list, sizeof(pa_list) * (ctx->max_code + PRACC_BLOCK));
|
|
if (p) {
|
|
ctx->max_code += PRACC_BLOCK;
|
|
ctx->pracc_list = p;
|
|
} else {
|
|
ctx->retval = ERROR_FAIL; /* Out of memory */
|
|
return;
|
|
}
|
|
}
|
|
ctx->pracc_list[ctx->code_count].instr = instr;
|
|
ctx->pracc_list[ctx->code_count++].addr = addr;
|
|
if (addr)
|
|
ctx->store_count++;
|
|
}
|
|
|
|
void pracc_add_li32(struct pracc_queue_info *ctx, uint32_t reg_num, uint32_t data, bool optimize)
|
|
{
|
|
if (LOWER16(data) == 0 && optimize)
|
|
pracc_add(ctx, 0, MIPS32_LUI(ctx->isa, reg_num, UPPER16(data))); /* load only upper value */
|
|
else if (UPPER16(data) == 0 && optimize)
|
|
pracc_add(ctx, 0, MIPS32_ORI(ctx->isa, reg_num, 0, LOWER16(data))); /* load only lower */
|
|
else {
|
|
pracc_add(ctx, 0, MIPS32_LUI(ctx->isa, reg_num, UPPER16(data))); /* load upper and lower */
|
|
pracc_add(ctx, 0, MIPS32_ORI(ctx->isa, reg_num, reg_num, LOWER16(data)));
|
|
}
|
|
}
|
|
|
|
inline void pracc_queue_free(struct pracc_queue_info *ctx)
|
|
{
|
|
if (ctx->pracc_list != NULL)
|
|
free(ctx->pracc_list);
|
|
}
|
|
|
|
int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx,
|
|
uint32_t *buf, bool check_last)
|
|
{
|
|
if (ctx->retval != ERROR_OK) {
|
|
LOG_ERROR("Out of memory");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
if (ejtag_info->isa && ejtag_info->endianness)
|
|
for (int i = 0; i != ctx->code_count; i++)
|
|
ctx->pracc_list[i].instr = SWAP16(ctx->pracc_list[i].instr);
|
|
|
|
if (ejtag_info->mode == 0)
|
|
return mips32_pracc_exec(ejtag_info, ctx, buf, check_last);
|
|
|
|
union scan_in {
|
|
uint8_t scan_96[12];
|
|
struct {
|
|
uint8_t ctrl[4];
|
|
uint8_t data[4];
|
|
uint8_t addr[4];
|
|
} scan_32;
|
|
|
|
} *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
|
|
if (scan_in == NULL) {
|
|
LOG_ERROR("Out of memory");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
unsigned num_clocks =
|
|
((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
|
|
|
|
uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
|
|
|
|
int scan_count = 0;
|
|
for (int i = 0; i != ctx->code_count; i++) {
|
|
jtag_add_clocks(num_clocks);
|
|
mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, ctx->pracc_list[i].instr,
|
|
scan_in[scan_count++].scan_96);
|
|
|
|
/* Check store address from previous instruction, if not the first */
|
|
if (i > 0 && ctx->pracc_list[i - 1].addr) {
|
|
jtag_add_clocks(num_clocks);
|
|
mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, 0, scan_in[scan_count++].scan_96);
|
|
}
|
|
}
|
|
|
|
int retval = jtag_execute_queue(); /* execute queued scans */
|
|
if (retval != ERROR_OK)
|
|
goto exit;
|
|
|
|
uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */
|
|
scan_count = 0;
|
|
for (int i = 0; i != ctx->code_count; i++) { /* verify every pracc access */
|
|
/* check pracc bit */
|
|
ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
|
|
uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
|
|
if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
|
|
LOG_ERROR("Error: access not pending count: %d", scan_count);
|
|
retval = ERROR_FAIL;
|
|
goto exit;
|
|
}
|
|
if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
|
|
LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
|
|
retval = ERROR_FAIL;
|
|
goto exit;
|
|
}
|
|
if (addr != fetch_addr) {
|
|
LOG_ERROR("Fetch addr mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
|
|
addr, fetch_addr, scan_count);
|
|
retval = ERROR_FAIL;
|
|
goto exit;
|
|
}
|
|
fetch_addr += 4;
|
|
scan_count++;
|
|
|
|
/* check if previous intrucction is a store instruction at dmesg */
|
|
if (i > 0 && ctx->pracc_list[i - 1].addr) {
|
|
uint32_t store_addr = ctx->pracc_list[i - 1].addr;
|
|
ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
|
|
addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
|
|
|
|
if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
|
|
LOG_ERROR("Not a store/write access, count: %d", scan_count);
|
|
retval = ERROR_FAIL;
|
|
goto exit;
|
|
}
|
|
if (addr != store_addr) {
|
|
LOG_ERROR("Store address mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
|
|
addr, store_addr, scan_count);
|
|
retval = ERROR_FAIL;
|
|
goto exit;
|
|
}
|
|
int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
|
|
buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
|
|
scan_count++;
|
|
}
|
|
}
|
|
exit:
|
|
free(scan_in);
|
|
return retval;
|
|
}
|
|
|
|
int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
|
|
{
|
|
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
|
|
pracc_queue_init(&ctx);
|
|
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper addr */
|
|
pracc_add(&ctx, 0, MIPS32_LW(ctx.isa, 8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */
|
|
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
|
|
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */
|
|
pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* move COP0 DeSave to $15 */
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf, 1);
|
|
pracc_queue_free(&ctx);
|
|
return ctx.retval;
|
|
}
|
|
|
|
int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
|
|
{
|
|
if (count == 1 && size == 4)
|
|
return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
|
|
|
|
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
|
|
pracc_queue_init(&ctx);
|
|
|
|
uint32_t *data = NULL;
|
|
if (size != 4) {
|
|
data = malloc(256 * sizeof(uint32_t));
|
|
if (data == NULL) {
|
|
LOG_ERROR("Out of memory");
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
uint32_t *buf32 = buf;
|
|
uint16_t *buf16 = buf;
|
|
uint8_t *buf8 = buf;
|
|
|
|
while (count) {
|
|
ctx.code_count = 0;
|
|
ctx.store_count = 0;
|
|
|
|
int this_round_count = (count > 256) ? 256 : count;
|
|
uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
|
|
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 9, last_upper_base_addr)); /* upper memory addr to $9 */
|
|
|
|
for (int i = 0; i != this_round_count; i++) { /* Main code loop */
|
|
uint32_t upper_base_addr = UPPER16((addr + 0x8000));
|
|
if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper addr in $9 */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 9, upper_base_addr));
|
|
last_upper_base_addr = upper_base_addr;
|
|
}
|
|
|
|
if (size == 4) /* load from memory to $8 */
|
|
pracc_add(&ctx, 0, MIPS32_LW(ctx.isa, 8, LOWER16(addr), 9));
|
|
else if (size == 2)
|
|
pracc_add(&ctx, 0, MIPS32_LHU(ctx.isa, 8, LOWER16(addr), 9));
|
|
else
|
|
pracc_add(&ctx, 0, MIPS32_LBU(ctx.isa, 8, LOWER16(addr), 9));
|
|
|
|
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4, /* store $8 at param out */
|
|
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + i * 4, 15));
|
|
addr += size;
|
|
}
|
|
pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
|
|
pracc_add_li32(&ctx, 9, ejtag_info->reg9, 0); /* restore $9 */
|
|
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
|
|
|
|
if (size == 4) {
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32, 1);
|
|
if (ctx.retval != ERROR_OK)
|
|
goto exit;
|
|
buf32 += this_round_count;
|
|
} else {
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data, 1);
|
|
if (ctx.retval != ERROR_OK)
|
|
goto exit;
|
|
|
|
uint32_t *data_p = data;
|
|
for (int i = 0; i != this_round_count; i++) {
|
|
if (size == 2)
|
|
*buf16++ = *data_p++;
|
|
else
|
|
*buf8++ = *data_p++;
|
|
}
|
|
}
|
|
count -= this_round_count;
|
|
}
|
|
exit:
|
|
pracc_queue_free(&ctx);
|
|
if (data != NULL)
|
|
free(data);
|
|
return ctx.retval;
|
|
}
|
|
|
|
int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
|
|
{
|
|
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
|
|
pracc_queue_init(&ctx);
|
|
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 8, cp0_reg, cp0_sel)); /* move cp0 reg / sel to $8 */
|
|
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
|
|
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val, 1);
|
|
pracc_queue_free(&ctx);
|
|
return ctx.retval;
|
|
}
|
|
|
|
int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
|
|
{
|
|
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
|
|
pracc_queue_init(&ctx);
|
|
|
|
pracc_add_li32(&ctx, 15, val, 0); /* Load val to $15 */
|
|
|
|
pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, cp0_reg, cp0_sel)); /* write $15 to cp0 reg / sel */
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
|
|
pracc_queue_free(&ctx);
|
|
return ctx.retval;
|
|
}
|
|
|
|
/**
|
|
* \b mips32_pracc_sync_cache
|
|
*
|
|
* Synchronize Caches to Make Instruction Writes Effective
|
|
* (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
|
|
* Document Number: MD00086, Revision 2.00, June 9, 2003)
|
|
*
|
|
* When the instruction stream is written, the SYNCI instruction should be used
|
|
* in conjunction with other instructions to make the newly-written instructions effective.
|
|
*
|
|
* Explanation :
|
|
* A program that loads another program into memory is actually writing the D- side cache.
|
|
* The instructions it has loaded can't be executed until they reach the I-cache.
|
|
*
|
|
* After the instructions have been written, the loader should arrange
|
|
* to write back any containing D-cache line and invalidate any locations
|
|
* already in the I-cache.
|
|
*
|
|
* If the cache coherency attribute (CCA) is set to zero, it's a write through cache, there is no need
|
|
* to write back.
|
|
*
|
|
* In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
|
|
* which does the whole job for a cache-line-sized chunk of the memory you just loaded:
|
|
* That is, it arranges a D-cache write-back (if CCA = 3) and an I-cache invalidate.
|
|
*
|
|
* The line size is obtained with the rdhwr SYNCI_Step in release 2 or from cp0 config 1 register in release 1.
|
|
*/
|
|
static int mips32_pracc_synchronize_cache(struct mips_ejtag *ejtag_info,
|
|
uint32_t start_addr, uint32_t end_addr, int cached, int rel)
|
|
{
|
|
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
|
|
pracc_queue_init(&ctx);
|
|
|
|
/** Find cache line size in bytes */
|
|
uint32_t clsiz;
|
|
if (rel) { /* Release 2 (rel = 1) */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
|
|
|
|
pracc_add(&ctx, 0, MIPS32_RDHWR(ctx.isa, 8, MIPS32_SYNCI_STEP)); /* load synci_step value to $8 */
|
|
|
|
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
|
|
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
|
|
|
|
pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
|
|
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, &clsiz, 1);
|
|
if (ctx.retval != ERROR_OK)
|
|
goto exit;
|
|
|
|
} else { /* Release 1 (rel = 0) */
|
|
uint32_t conf;
|
|
ctx.retval = mips32_cp0_read(ejtag_info, &conf, 16, 1);
|
|
if (ctx.retval != ERROR_OK)
|
|
goto exit;
|
|
|
|
uint32_t dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
|
|
|
|
/* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... max dl=6 => 128 bytes cache line size */
|
|
clsiz = 0x2 << dl;
|
|
if (dl == 0)
|
|
clsiz = 0;
|
|
}
|
|
|
|
if (clsiz == 0)
|
|
goto exit; /* Nothing to do */
|
|
|
|
/* make sure clsiz is power of 2 */
|
|
if (clsiz & (clsiz - 1)) {
|
|
LOG_DEBUG("clsiz must be power of 2");
|
|
ctx.retval = ERROR_FAIL;
|
|
goto exit;
|
|
}
|
|
|
|
/* make sure start_addr and end_addr have the same offset inside de cache line */
|
|
start_addr |= clsiz - 1;
|
|
end_addr |= clsiz - 1;
|
|
|
|
ctx.code_count = 0;
|
|
ctx.store_count = 0;
|
|
|
|
int count = 0;
|
|
uint32_t last_upper_base_addr = UPPER16((start_addr + 0x8000));
|
|
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, last_upper_base_addr)); /* load upper memory base addr to $15 */
|
|
|
|
while (start_addr <= end_addr) { /* main loop */
|
|
uint32_t upper_base_addr = UPPER16((start_addr + 0x8000));
|
|
if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper addr in $15 */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, upper_base_addr));
|
|
last_upper_base_addr = upper_base_addr;
|
|
}
|
|
if (rel) /* synci instruction, offset($15) */
|
|
pracc_add(&ctx, 0, MIPS32_SYNCI(ctx.isa, LOWER16(start_addr), 15));
|
|
|
|
else {
|
|
if (cached == 3) /* cache Hit_Writeback_D, offset($15) */
|
|
pracc_add(&ctx, 0, MIPS32_CACHE(ctx.isa, MIPS32_CACHE_D_HIT_WRITEBACK,
|
|
LOWER16(start_addr), 15));
|
|
/* cache Hit_Invalidate_I, offset($15) */
|
|
pracc_add(&ctx, 0, MIPS32_CACHE(ctx.isa, MIPS32_CACHE_I_HIT_INVALIDATE,
|
|
LOWER16(start_addr), 15));
|
|
}
|
|
start_addr += clsiz;
|
|
count++;
|
|
if (count == 256 && start_addr <= end_addr) { /* more ?, then execute code list */
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* to start */
|
|
pracc_add(&ctx, 0, MIPS32_NOP); /* nop in delay slot */
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
|
|
if (ctx.retval != ERROR_OK)
|
|
goto exit;
|
|
|
|
ctx.code_count = 0; /* reset counters for another loop */
|
|
ctx.store_count = 0;
|
|
count = 0;
|
|
}
|
|
}
|
|
pracc_add(&ctx, 0, MIPS32_SYNC(ctx.isa));
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave*/
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
|
|
exit:
|
|
pracc_queue_free(&ctx);
|
|
return ctx.retval;
|
|
}
|
|
|
|
static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info,
|
|
uint32_t addr, int size, int count, const void *buf)
|
|
{
|
|
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
|
|
pracc_queue_init(&ctx);
|
|
|
|
const uint32_t *buf32 = buf;
|
|
const uint16_t *buf16 = buf;
|
|
const uint8_t *buf8 = buf;
|
|
|
|
while (count) {
|
|
ctx.code_count = 0;
|
|
ctx.store_count = 0;
|
|
|
|
int this_round_count = (count > 128) ? 128 : count;
|
|
uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
|
|
/* load $15 with memory base address */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, last_upper_base_addr));
|
|
|
|
for (int i = 0; i != this_round_count; i++) {
|
|
uint32_t upper_base_addr = UPPER16((addr + 0x8000));
|
|
if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $15*/
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 15, upper_base_addr));
|
|
last_upper_base_addr = upper_base_addr;
|
|
}
|
|
|
|
if (size == 4) {
|
|
pracc_add_li32(&ctx, 8, *buf32, 1); /* load with li32, optimize */
|
|
pracc_add(&ctx, 0, MIPS32_SW(ctx.isa, 8, LOWER16(addr), 15)); /* store word to mem */
|
|
buf32++;
|
|
|
|
} else if (size == 2) {
|
|
pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 0, *buf16)); /* load lower value */
|
|
pracc_add(&ctx, 0, MIPS32_SH(ctx.isa, 8, LOWER16(addr), 15)); /* store half word */
|
|
buf16++;
|
|
|
|
} else {
|
|
pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 8, 0, *buf8)); /* load lower value */
|
|
pracc_add(&ctx, 0, MIPS32_SB(ctx.isa, 8, LOWER16(addr), 15)); /* store byte */
|
|
buf8++;
|
|
}
|
|
addr += size;
|
|
}
|
|
|
|
pracc_add_li32(&ctx, 8, ejtag_info->reg8, 0); /* restore $8 */
|
|
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 15, 31, 0)); /* restore $15 from DeSave */
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
|
|
if (ctx.retval != ERROR_OK)
|
|
goto exit;
|
|
count -= this_round_count;
|
|
}
|
|
exit:
|
|
pracc_queue_free(&ctx);
|
|
return ctx.retval;
|
|
}
|
|
|
|
int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf)
|
|
{
|
|
int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/**
|
|
* If we are in the cacheable region and cache is activated,
|
|
* we must clean D$ (if Cache Coherency Attribute is set to 3) + invalidate I$ after we did the write,
|
|
* so that changes do not continue to live only in D$ (if CCA = 3), but to be
|
|
* replicated in I$ also (maybe we wrote the istructions)
|
|
*/
|
|
uint32_t conf = 0;
|
|
int cached = 0;
|
|
|
|
if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
|
|
return retval; /*Nothing to do*/
|
|
|
|
mips32_cp0_read(ejtag_info, &conf, 16, 0);
|
|
|
|
switch (KSEGX(addr)) {
|
|
case KUSEG:
|
|
cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
|
|
break;
|
|
case KSEG0:
|
|
cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
|
|
break;
|
|
case KSEG2:
|
|
case KSEG3:
|
|
cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
|
|
break;
|
|
default:
|
|
/* what ? */
|
|
break;
|
|
}
|
|
|
|
/**
|
|
* Check cachablitiy bits coherency algorithm
|
|
* is the region cacheable or uncached.
|
|
* If cacheable we have to synchronize the cache
|
|
*/
|
|
if (cached == 3 || cached == 0) { /* Write back cache or write through cache */
|
|
uint32_t start_addr = addr;
|
|
uint32_t end_addr = addr + count * size;
|
|
uint32_t rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
|
|
if (rel > 1) {
|
|
LOG_DEBUG("Unknown release in cache code");
|
|
return ERROR_FAIL;
|
|
}
|
|
retval = mips32_pracc_synchronize_cache(ejtag_info, start_addr, end_addr, cached, rel);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
|
|
{
|
|
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
|
|
pracc_queue_init(&ctx);
|
|
|
|
uint32_t cp0_write_code[] = {
|
|
MIPS32_MTC0(ctx.isa, 1, 12, 0), /* move $1 to status */
|
|
MIPS32_MTLO(ctx.isa, 1), /* move $1 to lo */
|
|
MIPS32_MTHI(ctx.isa, 1), /* move $1 to hi */
|
|
MIPS32_MTC0(ctx.isa, 1, 8, 0), /* move $1 to badvaddr */
|
|
MIPS32_MTC0(ctx.isa, 1, 13, 0), /* move $1 to cause*/
|
|
MIPS32_MTC0(ctx.isa, 1, 24, 0), /* move $1 to depc (pc) */
|
|
};
|
|
|
|
/* load registers 2 to 31 with li32, optimize */
|
|
for (int i = 2; i < 32; i++)
|
|
pracc_add_li32(&ctx, i, regs[i], 1);
|
|
|
|
for (int i = 0; i != 6; i++) {
|
|
pracc_add_li32(&ctx, 1, regs[i + 32], 0); /* load CPO value in $1 */
|
|
pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */
|
|
}
|
|
pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, 31, 0)); /* load $15 in DeSave */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 1, UPPER16((regs[1])))); /* load upper half word in $1 */
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_ORI(ctx.isa, 1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL, 1);
|
|
|
|
ejtag_info->reg8 = regs[8];
|
|
ejtag_info->reg9 = regs[9];
|
|
pracc_queue_free(&ctx);
|
|
return ctx.retval;
|
|
}
|
|
|
|
int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
|
|
{
|
|
struct pracc_queue_info ctx = {.ejtag_info = ejtag_info};
|
|
pracc_queue_init(&ctx);
|
|
|
|
uint32_t cp0_read_code[] = {
|
|
MIPS32_MFC0(ctx.isa, 8, 12, 0), /* move status to $8 */
|
|
MIPS32_MFLO(ctx.isa, 8), /* move lo to $8 */
|
|
MIPS32_MFHI(ctx.isa, 8), /* move hi to $8 */
|
|
MIPS32_MFC0(ctx.isa, 8, 8, 0), /* move badvaddr to $8 */
|
|
MIPS32_MFC0(ctx.isa, 8, 13, 0), /* move cause to $8 */
|
|
MIPS32_MFC0(ctx.isa, 8, 24, 0), /* move depc (pc) to $8 */
|
|
};
|
|
|
|
pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 1, 31, 0)); /* move $1 to COP0 DeSave */
|
|
pracc_add(&ctx, 0, MIPS32_LUI(ctx.isa, 1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */
|
|
|
|
for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */
|
|
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
|
|
MIPS32_SW(ctx.isa, i, PRACC_OUT_OFFSET + (i * 4), 1));
|
|
|
|
for (int i = 0; i != 6; i++) {
|
|
pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */
|
|
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */
|
|
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
|
|
}
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 8, 31, 0)); /* move DeSave to $8, reg1 value */
|
|
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */
|
|
MIPS32_SW(ctx.isa, 8, PRACC_OUT_OFFSET + 4, 1));
|
|
|
|
pracc_add(&ctx, 0, MIPS32_MFC0(ctx.isa, 1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */
|
|
pracc_add(&ctx, 0, MIPS32_B(ctx.isa, NEG16((ctx.code_count + 1) << ctx.isa))); /* jump to start */
|
|
pracc_add(&ctx, 0, MIPS32_MTC0(ctx.isa, 15, 31, 0)); /* load $15 in DeSave */
|
|
|
|
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs, 1);
|
|
|
|
ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */
|
|
ejtag_info->reg9 = regs[9];
|
|
pracc_queue_free(&ctx);
|
|
return ctx.retval;
|
|
}
|
|
|
|
/* fastdata upload/download requires an initialized working area
|
|
* to load the download code; it should not be called otherwise
|
|
* fetch order from the fastdata area
|
|
* 1. start addr
|
|
* 2. end addr
|
|
* 3. data ...
|
|
*/
|
|
int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
|
|
int write_t, uint32_t addr, int count, uint32_t *buf)
|
|
{
|
|
uint32_t isa = ejtag_info->isa ? 1 : 0;
|
|
uint32_t handler_code[] = {
|
|
/* r15 points to the start of this code */
|
|
MIPS32_SW(isa, 8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
|
|
MIPS32_SW(isa, 9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
|
|
MIPS32_SW(isa, 10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
|
|
MIPS32_SW(isa, 11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
|
|
/* start of fastdata area in t0 */
|
|
MIPS32_LUI(isa, 8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
|
|
MIPS32_ORI(isa, 8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
|
|
MIPS32_LW(isa, 9, 0, 8), /* start addr in t1 */
|
|
MIPS32_LW(isa, 10, 0, 8), /* end addr to t2 */
|
|
/* loop: */
|
|
write_t ? MIPS32_LW(isa, 11, 0, 8) : MIPS32_LW(isa, 11, 0, 9), /* from xfer area : from memory */
|
|
write_t ? MIPS32_SW(isa, 11, 0, 9) : MIPS32_SW(isa, 11, 0, 8), /* to memory : to xfer area */
|
|
|
|
MIPS32_BNE(isa, 10, 9, NEG16(3 << isa)), /* bne $t2,t1,loop */
|
|
MIPS32_ADDI(isa, 9, 9, 4), /* addi t1,t1,4 */
|
|
|
|
MIPS32_LW(isa, 8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
|
|
MIPS32_LW(isa, 9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
|
|
MIPS32_LW(isa, 10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
|
|
MIPS32_LW(isa, 11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
|
|
|
|
MIPS32_LUI(isa, 15, UPPER16(MIPS32_PRACC_TEXT)),
|
|
MIPS32_ORI(isa, 15, 15, LOWER16(MIPS32_PRACC_TEXT) | isa), /* isa bit for JR instr */
|
|
MIPS32_JR(isa, 15), /* jr start */
|
|
MIPS32_MFC0(isa, 15, 31, 0), /* move COP0 DeSave to $15 */
|
|
};
|
|
|
|
if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
|
|
pracc_swap16_array(ejtag_info, handler_code, ARRAY_SIZE(handler_code));
|
|
/* write program into RAM */
|
|
if (write_t != ejtag_info->fast_access_save) {
|
|
mips32_pracc_write_mem(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
|
|
/* save previous operation to speed to any consecutive read/writes */
|
|
ejtag_info->fast_access_save = write_t;
|
|
}
|
|
|
|
LOG_DEBUG("%s using 0x%.8" TARGET_PRIxADDR " for write handler", __func__, source->address);
|
|
|
|
uint32_t jmp_code[] = {
|
|
MIPS32_LUI(isa, 15, UPPER16(source->address)), /* load addr of jump in $15 */
|
|
MIPS32_ORI(isa, 15, 15, LOWER16(source->address) | isa), /* isa bit for JR instr */
|
|
MIPS32_JR(isa, 15), /* jump to ram program */
|
|
isa ? MIPS32_XORI(isa, 15, 15, 1) : MIPS32_NOP, /* drop isa bit, needed for LW/SW instructions */
|
|
};
|
|
|
|
pracc_swap16_array(ejtag_info, jmp_code, ARRAY_SIZE(jmp_code));
|
|
|
|
/* execute jump code, with no address check */
|
|
for (unsigned i = 0; i < ARRAY_SIZE(jmp_code); i++) {
|
|
int retval = wait_for_pracc_rw(ejtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
|
|
mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
|
|
|
|
/* Clear the access pending bit (let the processor eat!) */
|
|
mips32_pracc_finish(ejtag_info);
|
|
}
|
|
|
|
/* wait PrAcc pending bit for FASTDATA write, read address */
|
|
int retval = mips32_pracc_read_ctrl_addr(ejtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* next fetch to dmseg should be in FASTDATA_AREA, check */
|
|
if (ejtag_info->pa_addr != MIPS32_PRACC_FASTDATA_AREA)
|
|
return ERROR_FAIL;
|
|
|
|
/* Send the load start address */
|
|
uint32_t val = addr;
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
|
|
mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
|
|
|
|
retval = wait_for_pracc_rw(ejtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
/* Send the load end address */
|
|
val = addr + (count - 1) * 4;
|
|
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
|
|
mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
|
|
|
|
unsigned num_clocks = 0; /* like in legacy code */
|
|
if (ejtag_info->mode != 0)
|
|
num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
jtag_add_clocks(num_clocks);
|
|
mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
|
|
}
|
|
|
|
retval = jtag_execute_queue();
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("fastdata load failed");
|
|
return retval;
|
|
}
|
|
|
|
retval = mips32_pracc_read_ctrl_addr(ejtag_info);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT)
|
|
LOG_ERROR("mini program did not return to start");
|
|
|
|
return retval;
|
|
}
|