1124 lines
32 KiB
C
1124 lines
32 KiB
C
/***************************************************************************
|
||
* Copyright (C) 2013 by Andrey Yurovsky *
|
||
* Andrey Yurovsky <yurovsky@gmail.com> *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License for more details. *
|
||
* *
|
||
* You should have received a copy of the GNU General Public License *
|
||
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
|
||
***************************************************************************/
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
#include "config.h"
|
||
#endif
|
||
|
||
#include "imp.h"
|
||
#include "helper/binarybuffer.h"
|
||
|
||
#include <target/cortex_m.h>
|
||
|
||
#define SAMD_NUM_PROT_BLOCKS 16
|
||
#define SAMD_PAGE_SIZE_MAX 1024
|
||
|
||
#define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
|
||
#define SAMD_USER_ROW ((uint32_t)0x00804000) /* User Row of Flash */
|
||
#define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
|
||
#define SAMD_DSU 0x41002000 /* Device Service Unit */
|
||
#define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
|
||
|
||
#define SAMD_DSU_STATUSA 1 /* DSU status register */
|
||
#define SAMD_DSU_DID 0x18 /* Device ID register */
|
||
#define SAMD_DSU_CTRL_EXT 0x100 /* CTRL register, external access */
|
||
|
||
#define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
|
||
#define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
|
||
#define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
|
||
#define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interupt Flag Status & Clear */
|
||
#define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
|
||
#define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
|
||
#define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
|
||
|
||
#define SAMD_CMDEX_KEY 0xA5UL
|
||
#define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
|
||
|
||
/* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
|
||
#define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
|
||
#define SAMD_NVM_CMD_WP 0x04 /* Write Page */
|
||
#define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxilary Row */
|
||
#define SAMD_NVM_CMD_WAP 0x06 /* Write Auxilary Page */
|
||
#define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
|
||
#define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
|
||
#define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
|
||
#define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
|
||
#define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
|
||
#define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
|
||
#define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
|
||
|
||
/* NVMCTRL bits */
|
||
#define SAMD_NVM_CTRLB_MANW 0x80
|
||
|
||
/* Known identifiers */
|
||
#define SAMD_PROCESSOR_M0 0x01
|
||
#define SAMD_FAMILY_D 0x00
|
||
#define SAMD_FAMILY_L 0x01
|
||
#define SAMD_FAMILY_C 0x02
|
||
#define SAMD_SERIES_20 0x00
|
||
#define SAMD_SERIES_21 0x01
|
||
#define SAMD_SERIES_22 0x02
|
||
#define SAMD_SERIES_10 0x02
|
||
#define SAMD_SERIES_11 0x03
|
||
#define SAMD_SERIES_09 0x04
|
||
|
||
/* Device ID macros */
|
||
#define SAMD_GET_PROCESSOR(id) (id >> 28)
|
||
#define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
|
||
#define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
|
||
#define SAMD_GET_DEVSEL(id) (id & 0xFF)
|
||
|
||
struct samd_part {
|
||
uint8_t id;
|
||
const char *name;
|
||
uint32_t flash_kb;
|
||
uint32_t ram_kb;
|
||
};
|
||
|
||
/* Known SAMD09 parts. DID reset values missing in RM, see
|
||
* https://github.com/avrxml/asf/blob/master/sam0/utils/cmsis/samd09/include/ */
|
||
static const struct samd_part samd09_parts[] = {
|
||
{ 0x0, "SAMD09D14A", 16, 4 },
|
||
{ 0x7, "SAMD09C13A", 8, 4 },
|
||
};
|
||
|
||
/* Known SAMD10 parts */
|
||
static const struct samd_part samd10_parts[] = {
|
||
{ 0x0, "SAMD10D14AMU", 16, 4 },
|
||
{ 0x1, "SAMD10D13AMU", 8, 4 },
|
||
{ 0x2, "SAMD10D12AMU", 4, 4 },
|
||
{ 0x3, "SAMD10D14ASU", 16, 4 },
|
||
{ 0x4, "SAMD10D13ASU", 8, 4 },
|
||
{ 0x5, "SAMD10D12ASU", 4, 4 },
|
||
{ 0x6, "SAMD10C14A", 16, 4 },
|
||
{ 0x7, "SAMD10C13A", 8, 4 },
|
||
{ 0x8, "SAMD10C12A", 4, 4 },
|
||
};
|
||
|
||
/* Known SAMD11 parts */
|
||
static const struct samd_part samd11_parts[] = {
|
||
{ 0x0, "SAMD11D14AMU", 16, 4 },
|
||
{ 0x1, "SAMD11D13AMU", 8, 4 },
|
||
{ 0x2, "SAMD11D12AMU", 4, 4 },
|
||
{ 0x3, "SAMD11D14ASU", 16, 4 },
|
||
{ 0x4, "SAMD11D13ASU", 8, 4 },
|
||
{ 0x5, "SAMD11D12ASU", 4, 4 },
|
||
{ 0x6, "SAMD11C14A", 16, 4 },
|
||
{ 0x7, "SAMD11C13A", 8, 4 },
|
||
{ 0x8, "SAMD11C12A", 4, 4 },
|
||
};
|
||
|
||
/* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
|
||
static const struct samd_part samd20_parts[] = {
|
||
{ 0x0, "SAMD20J18A", 256, 32 },
|
||
{ 0x1, "SAMD20J17A", 128, 16 },
|
||
{ 0x2, "SAMD20J16A", 64, 8 },
|
||
{ 0x3, "SAMD20J15A", 32, 4 },
|
||
{ 0x4, "SAMD20J14A", 16, 2 },
|
||
{ 0x5, "SAMD20G18A", 256, 32 },
|
||
{ 0x6, "SAMD20G17A", 128, 16 },
|
||
{ 0x7, "SAMD20G16A", 64, 8 },
|
||
{ 0x8, "SAMD20G15A", 32, 4 },
|
||
{ 0x9, "SAMD20G14A", 16, 2 },
|
||
{ 0xA, "SAMD20E18A", 256, 32 },
|
||
{ 0xB, "SAMD20E17A", 128, 16 },
|
||
{ 0xC, "SAMD20E16A", 64, 8 },
|
||
{ 0xD, "SAMD20E15A", 32, 4 },
|
||
{ 0xE, "SAMD20E14A", 16, 2 },
|
||
};
|
||
|
||
/* Known SAMD21 parts. */
|
||
static const struct samd_part samd21_parts[] = {
|
||
{ 0x0, "SAMD21J18A", 256, 32 },
|
||
{ 0x1, "SAMD21J17A", 128, 16 },
|
||
{ 0x2, "SAMD21J16A", 64, 8 },
|
||
{ 0x3, "SAMD21J15A", 32, 4 },
|
||
{ 0x4, "SAMD21J14A", 16, 2 },
|
||
{ 0x5, "SAMD21G18A", 256, 32 },
|
||
{ 0x6, "SAMD21G17A", 128, 16 },
|
||
{ 0x7, "SAMD21G16A", 64, 8 },
|
||
{ 0x8, "SAMD21G15A", 32, 4 },
|
||
{ 0x9, "SAMD21G14A", 16, 2 },
|
||
{ 0xA, "SAMD21E18A", 256, 32 },
|
||
{ 0xB, "SAMD21E17A", 128, 16 },
|
||
{ 0xC, "SAMD21E16A", 64, 8 },
|
||
{ 0xD, "SAMD21E15A", 32, 4 },
|
||
{ 0xE, "SAMD21E14A", 16, 2 },
|
||
/* Below are B Variants (Table 3-7 from rev I of datasheet) */
|
||
{ 0x20, "SAMD21J16B", 64, 8 },
|
||
{ 0x21, "SAMD21J15B", 32, 4 },
|
||
{ 0x23, "SAMD21G16B", 64, 8 },
|
||
{ 0x24, "SAMD21G15B", 32, 4 },
|
||
{ 0x26, "SAMD21E16B", 64, 8 },
|
||
{ 0x27, "SAMD21E15B", 32, 4 },
|
||
};
|
||
|
||
/* Known SAMR21 parts. */
|
||
static const struct samd_part samr21_parts[] = {
|
||
{ 0x19, "SAMR21G18A", 256, 32 },
|
||
{ 0x1A, "SAMR21G17A", 128, 32 },
|
||
{ 0x1B, "SAMR21G16A", 64, 32 },
|
||
{ 0x1C, "SAMR21E18A", 256, 32 },
|
||
{ 0x1D, "SAMR21E17A", 128, 32 },
|
||
{ 0x1E, "SAMR21E16A", 64, 32 },
|
||
};
|
||
|
||
/* Known SAML21 parts. */
|
||
static const struct samd_part saml21_parts[] = {
|
||
{ 0x00, "SAML21J18A", 256, 32 },
|
||
{ 0x01, "SAML21J17A", 128, 16 },
|
||
{ 0x02, "SAML21J16A", 64, 8 },
|
||
{ 0x05, "SAML21G18A", 256, 32 },
|
||
{ 0x06, "SAML21G17A", 128, 16 },
|
||
{ 0x07, "SAML21G16A", 64, 8 },
|
||
{ 0x0A, "SAML21E18A", 256, 32 },
|
||
{ 0x0B, "SAML21E17A", 128, 16 },
|
||
{ 0x0C, "SAML21E16A", 64, 8 },
|
||
{ 0x0D, "SAML21E15A", 32, 4 },
|
||
{ 0x0F, "SAML21J18B", 256, 32 },
|
||
{ 0x10, "SAML21J17B", 128, 16 },
|
||
{ 0x11, "SAML21J16B", 64, 8 },
|
||
{ 0x14, "SAML21G18B", 256, 32 },
|
||
{ 0x15, "SAML21G17B", 128, 16 },
|
||
{ 0x16, "SAML21G16B", 64, 8 },
|
||
{ 0x19, "SAML21E18B", 256, 32 },
|
||
{ 0x1A, "SAML21E17B", 128, 16 },
|
||
{ 0x1B, "SAML21E16B", 64, 8 },
|
||
{ 0x1C, "SAML21E15B", 32, 4 },
|
||
};
|
||
|
||
/* Known SAML22 parts. */
|
||
static const struct samd_part saml22_parts[] = {
|
||
{ 0x00, "SAML22N18A", 256, 32 },
|
||
{ 0x01, "SAML22N17A", 128, 16 },
|
||
{ 0x02, "SAML22N16A", 64, 8 },
|
||
{ 0x05, "SAML22J18A", 256, 32 },
|
||
{ 0x06, "SAML22J17A", 128, 16 },
|
||
{ 0x07, "SAML22J16A", 64, 8 },
|
||
{ 0x0A, "SAML22G18A", 256, 32 },
|
||
{ 0x0B, "SAML22G17A", 128, 16 },
|
||
{ 0x0C, "SAML22G16A", 64, 8 },
|
||
};
|
||
|
||
/* Known SAMC20 parts. */
|
||
static const struct samd_part samc20_parts[] = {
|
||
{ 0x00, "SAMC20J18A", 256, 32 },
|
||
{ 0x01, "SAMC20J17A", 128, 16 },
|
||
{ 0x02, "SAMC20J16A", 64, 8 },
|
||
{ 0x03, "SAMC20J15A", 32, 4 },
|
||
{ 0x05, "SAMC20G18A", 256, 32 },
|
||
{ 0x06, "SAMC20G17A", 128, 16 },
|
||
{ 0x07, "SAMC20G16A", 64, 8 },
|
||
{ 0x08, "SAMC20G15A", 32, 4 },
|
||
{ 0x0A, "SAMC20E18A", 256, 32 },
|
||
{ 0x0B, "SAMC20E17A", 128, 16 },
|
||
{ 0x0C, "SAMC20E16A", 64, 8 },
|
||
{ 0x0D, "SAMC20E15A", 32, 4 },
|
||
};
|
||
|
||
/* Known SAMC21 parts. */
|
||
static const struct samd_part samc21_parts[] = {
|
||
{ 0x00, "SAMC21J18A", 256, 32 },
|
||
{ 0x01, "SAMC21J17A", 128, 16 },
|
||
{ 0x02, "SAMC21J16A", 64, 8 },
|
||
{ 0x03, "SAMC21J15A", 32, 4 },
|
||
{ 0x05, "SAMC21G18A", 256, 32 },
|
||
{ 0x06, "SAMC21G17A", 128, 16 },
|
||
{ 0x07, "SAMC21G16A", 64, 8 },
|
||
{ 0x08, "SAMC21G15A", 32, 4 },
|
||
{ 0x0A, "SAMC21E18A", 256, 32 },
|
||
{ 0x0B, "SAMC21E17A", 128, 16 },
|
||
{ 0x0C, "SAMC21E16A", 64, 8 },
|
||
{ 0x0D, "SAMC21E15A", 32, 4 },
|
||
};
|
||
|
||
/* Each family of parts contains a parts table in the DEVSEL field of DID. The
|
||
* processor ID, family ID, and series ID are used to determine which exact
|
||
* family this is and then we can use the corresponding table. */
|
||
struct samd_family {
|
||
uint8_t processor;
|
||
uint8_t family;
|
||
uint8_t series;
|
||
const struct samd_part *parts;
|
||
size_t num_parts;
|
||
};
|
||
|
||
/* Known SAMD families */
|
||
static const struct samd_family samd_families[] = {
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
|
||
samd20_parts, ARRAY_SIZE(samd20_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
|
||
samd21_parts, ARRAY_SIZE(samd21_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
|
||
samr21_parts, ARRAY_SIZE(samr21_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_09,
|
||
samd09_parts, ARRAY_SIZE(samd09_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
|
||
samd10_parts, ARRAY_SIZE(samd10_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
|
||
samd11_parts, ARRAY_SIZE(samd11_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
|
||
saml21_parts, ARRAY_SIZE(saml21_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_22,
|
||
saml22_parts, ARRAY_SIZE(saml22_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
|
||
samc20_parts, ARRAY_SIZE(samc20_parts) },
|
||
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
|
||
samc21_parts, ARRAY_SIZE(samc21_parts) },
|
||
};
|
||
|
||
struct samd_info {
|
||
uint32_t page_size;
|
||
int num_pages;
|
||
int sector_size;
|
||
int prot_block_size;
|
||
|
||
bool probed;
|
||
struct target *target;
|
||
struct samd_info *next;
|
||
};
|
||
|
||
static struct samd_info *samd_chips;
|
||
|
||
|
||
|
||
static const struct samd_part *samd_find_part(uint32_t id)
|
||
{
|
||
uint8_t processor = SAMD_GET_PROCESSOR(id);
|
||
uint8_t family = SAMD_GET_FAMILY(id);
|
||
uint8_t series = SAMD_GET_SERIES(id);
|
||
uint8_t devsel = SAMD_GET_DEVSEL(id);
|
||
|
||
for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
|
||
if (samd_families[i].processor == processor &&
|
||
samd_families[i].series == series &&
|
||
samd_families[i].family == family) {
|
||
for (unsigned j = 0; j < samd_families[i].num_parts; j++) {
|
||
if (samd_families[i].parts[j].id == devsel)
|
||
return &samd_families[i].parts[j];
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static int samd_protect_check(struct flash_bank *bank)
|
||
{
|
||
int res, prot_block;
|
||
uint16_t lock;
|
||
|
||
res = target_read_u16(bank->target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
/* Lock bits are active-low */
|
||
for (prot_block = 0; prot_block < bank->num_prot_blocks; prot_block++)
|
||
bank->prot_blocks[prot_block].is_protected = !(lock & (1u<<prot_block));
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int samd_get_flash_page_info(struct target *target,
|
||
uint32_t *sizep, int *nump)
|
||
{
|
||
int res;
|
||
uint32_t param;
|
||
|
||
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, ¶m);
|
||
if (res == ERROR_OK) {
|
||
/* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
|
||
* so 0 is 8KB and 7 is 1024KB. */
|
||
if (sizep)
|
||
*sizep = (8 << ((param >> 16) & 0x7));
|
||
/* The NVMP field (bits 15:0) indicates the total number of pages */
|
||
if (nump)
|
||
*nump = param & 0xFFFF;
|
||
} else {
|
||
LOG_ERROR("Couldn't read NVM Parameters register");
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
static int samd_probe(struct flash_bank *bank)
|
||
{
|
||
uint32_t id;
|
||
int res;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
const struct samd_part *part;
|
||
|
||
if (chip->probed)
|
||
return ERROR_OK;
|
||
|
||
res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Couldn't read Device ID register");
|
||
return res;
|
||
}
|
||
|
||
part = samd_find_part(id);
|
||
if (part == NULL) {
|
||
LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
bank->size = part->flash_kb * 1024;
|
||
|
||
res = samd_get_flash_page_info(bank->target, &chip->page_size,
|
||
&chip->num_pages);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Couldn't determine Flash page size");
|
||
return res;
|
||
}
|
||
|
||
/* Sanity check: the total flash size in the DSU should match the page size
|
||
* multiplied by the number of pages. */
|
||
if (bank->size != chip->num_pages * chip->page_size) {
|
||
LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
|
||
"Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
|
||
part->flash_kb, chip->num_pages, chip->page_size);
|
||
}
|
||
|
||
/* Erase granularity = 1 row = 4 pages */
|
||
chip->sector_size = chip->page_size * 4;
|
||
|
||
/* Allocate the sector table */
|
||
bank->num_sectors = chip->num_pages / 4;
|
||
bank->sectors = alloc_block_array(0, chip->sector_size, bank->num_sectors);
|
||
if (!bank->sectors)
|
||
return ERROR_FAIL;
|
||
|
||
/* 16 protection blocks per device */
|
||
chip->prot_block_size = bank->size / SAMD_NUM_PROT_BLOCKS;
|
||
|
||
/* Allocate the table of protection blocks */
|
||
bank->num_prot_blocks = SAMD_NUM_PROT_BLOCKS;
|
||
bank->prot_blocks = alloc_block_array(0, chip->prot_block_size, bank->num_prot_blocks);
|
||
if (!bank->prot_blocks)
|
||
return ERROR_FAIL;
|
||
|
||
samd_protect_check(bank);
|
||
|
||
/* Done */
|
||
chip->probed = true;
|
||
|
||
LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
|
||
part->flash_kb, part->ram_kb);
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static int samd_check_error(struct target *target)
|
||
{
|
||
int ret, ret2;
|
||
uint16_t status;
|
||
|
||
ret = target_read_u16(target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
|
||
if (ret != ERROR_OK) {
|
||
LOG_ERROR("Can't read NVM status");
|
||
return ret;
|
||
}
|
||
|
||
if ((status & 0x001C) == 0)
|
||
return ERROR_OK;
|
||
|
||
if (status & (1 << 4)) { /* NVME */
|
||
LOG_ERROR("SAMD: NVM Error");
|
||
ret = ERROR_FLASH_OPERATION_FAILED;
|
||
}
|
||
|
||
if (status & (1 << 3)) { /* LOCKE */
|
||
LOG_ERROR("SAMD: NVM lock error");
|
||
ret = ERROR_FLASH_PROTECTED;
|
||
}
|
||
|
||
if (status & (1 << 2)) { /* PROGE */
|
||
LOG_ERROR("SAMD: NVM programming error");
|
||
ret = ERROR_FLASH_OPER_UNSUPPORTED;
|
||
}
|
||
|
||
/* Clear the error conditions by writing a one to them */
|
||
ret2 = target_write_u16(target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
|
||
if (ret2 != ERROR_OK)
|
||
LOG_ERROR("Can't clear NVM error conditions");
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
|
||
{
|
||
int res;
|
||
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
/* Issue the NVM command */
|
||
res = target_write_u16(target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
/* Check to see if the NVM command resulted in an error condition. */
|
||
return samd_check_error(target);
|
||
}
|
||
|
||
static int samd_erase_row(struct target *target, uint32_t address)
|
||
{
|
||
int res;
|
||
|
||
/* Set an address contained in the row to be erased */
|
||
res = target_write_u32(target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
|
||
|
||
/* Issue the Erase Row command to erase that row. */
|
||
if (res == ERROR_OK)
|
||
res = samd_issue_nvmctrl_command(target,
|
||
address == SAMD_USER_ROW ? SAMD_NVM_CMD_EAR : SAMD_NVM_CMD_ER);
|
||
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
static bool is_user_row_reserved_bit(uint8_t bit)
|
||
{
|
||
/* See Table 9-3 in the SAMD20 datasheet for more information. */
|
||
switch (bit) {
|
||
/* Reserved bits */
|
||
case 3:
|
||
case 7:
|
||
/* Voltage regulator internal configuration with default value of 0x70,
|
||
* may not be changed. */
|
||
case 17 ... 24:
|
||
/* 41 is voltage regulator internal configuration and must not be
|
||
* changed. 42 through 47 are reserved. */
|
||
case 41 ... 47:
|
||
return true;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Modify the contents of the User Row in Flash. These are described in Table
|
||
* 9-3 of the SAMD20 datasheet. The User Row itself has a size of one page
|
||
* and contains a combination of "fuses" and calibration data in bits 24:17.
|
||
* We therefore try not to erase the row's contents unless we absolutely have
|
||
* to and we don't permit modifying reserved bits. */
|
||
static int samd_modify_user_row(struct target *target, uint32_t value,
|
||
uint8_t startb, uint8_t endb)
|
||
{
|
||
int res;
|
||
uint32_t nvm_ctrlb;
|
||
bool manual_wp = true;
|
||
|
||
if (is_user_row_reserved_bit(startb) || is_user_row_reserved_bit(endb)) {
|
||
LOG_ERROR("Can't modify bits in the requested range");
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
/* Check if we need to do manual page write commands */
|
||
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
|
||
if (res == ERROR_OK)
|
||
manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
|
||
|
||
/* Retrieve the MCU's page size, in bytes. This is also the size of the
|
||
* entire User Row. */
|
||
uint32_t page_size;
|
||
res = samd_get_flash_page_info(target, &page_size, NULL);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Couldn't determine Flash page size");
|
||
return res;
|
||
}
|
||
|
||
/* Make sure the size is sane before we allocate. */
|
||
assert(page_size > 0 && page_size <= SAMD_PAGE_SIZE_MAX);
|
||
|
||
/* Make sure we're within the single page that comprises the User Row. */
|
||
if (startb >= (page_size * 8) || endb >= (page_size * 8)) {
|
||
LOG_ERROR("Can't modify bits outside the User Row page range");
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
uint8_t *buf = malloc(page_size);
|
||
if (!buf)
|
||
return ERROR_FAIL;
|
||
|
||
/* Read the user row (comprising one page) by words. */
|
||
res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
|
||
if (res != ERROR_OK)
|
||
goto out_user_row;
|
||
|
||
/* We will need to erase before writing if the new value needs a '1' in any
|
||
* position for which the current value had a '0'. Otherwise we can avoid
|
||
* erasing. */
|
||
uint32_t cur = buf_get_u32(buf, startb, endb - startb + 1);
|
||
if ((~cur) & value) {
|
||
res = samd_erase_row(target, SAMD_USER_ROW);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Couldn't erase user row");
|
||
goto out_user_row;
|
||
}
|
||
}
|
||
|
||
/* Modify */
|
||
buf_set_u32(buf, startb, endb - startb + 1, value);
|
||
|
||
/* Write the page buffer back out to the target. */
|
||
res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
|
||
if (res != ERROR_OK)
|
||
goto out_user_row;
|
||
|
||
if (manual_wp) {
|
||
/* Trigger flash write */
|
||
res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_WAP);
|
||
} else {
|
||
res = samd_check_error(target);
|
||
}
|
||
|
||
out_user_row:
|
||
free(buf);
|
||
|
||
return res;
|
||
}
|
||
|
||
static int samd_protect(struct flash_bank *bank, int set, int first_prot_bl, int last_prot_bl)
|
||
{
|
||
int res = ERROR_OK;
|
||
int prot_block;
|
||
|
||
/* We can issue lock/unlock region commands with the target running but
|
||
* the settings won't persist unless we're able to modify the LOCK regions
|
||
* and that requires the target to be halted. */
|
||
if (bank->target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
for (prot_block = first_prot_bl; prot_block <= last_prot_bl; prot_block++) {
|
||
if (set != bank->prot_blocks[prot_block].is_protected) {
|
||
/* Load an address that is within this protection block (we use offset 0) */
|
||
res = target_write_u32(bank->target,
|
||
SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
|
||
bank->prot_blocks[prot_block].offset >> 1);
|
||
if (res != ERROR_OK)
|
||
goto exit;
|
||
|
||
/* Tell the controller to lock that block */
|
||
res = samd_issue_nvmctrl_command(bank->target,
|
||
set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
|
||
if (res != ERROR_OK)
|
||
goto exit;
|
||
}
|
||
}
|
||
|
||
/* We've now applied our changes, however they will be undone by the next
|
||
* reset unless we also apply them to the LOCK bits in the User Page. The
|
||
* LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
|
||
* corresponding to Sector 15. A '1' means unlocked and a '0' means
|
||
* locked. See Table 9-3 in the SAMD20 datasheet for more details. */
|
||
|
||
res = samd_modify_user_row(bank->target, set ? 0x0000 : 0xFFFF,
|
||
48 + first_prot_bl, 48 + last_prot_bl);
|
||
if (res != ERROR_OK)
|
||
LOG_WARNING("SAMD: protect settings were not made persistent!");
|
||
|
||
res = ERROR_OK;
|
||
|
||
exit:
|
||
samd_protect_check(bank);
|
||
|
||
return res;
|
||
}
|
||
|
||
static int samd_erase(struct flash_bank *bank, int first_sect, int last_sect)
|
||
{
|
||
int res, s;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
|
||
if (bank->target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
if (!chip->probed) {
|
||
if (samd_probe(bank) != ERROR_OK)
|
||
return ERROR_FLASH_BANK_NOT_PROBED;
|
||
}
|
||
|
||
/* For each sector to be erased */
|
||
for (s = first_sect; s <= last_sect; s++) {
|
||
res = samd_erase_row(bank->target, bank->sectors[s].offset);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("SAMD: failed to erase sector %d at 0x%08" PRIx32, s, bank->sectors[s].offset);
|
||
return res;
|
||
}
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
|
||
static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
|
||
uint32_t offset, uint32_t count)
|
||
{
|
||
int res;
|
||
uint32_t nvm_ctrlb;
|
||
uint32_t address;
|
||
uint32_t pg_offset;
|
||
uint32_t nb;
|
||
uint32_t nw;
|
||
struct samd_info *chip = (struct samd_info *)bank->driver_priv;
|
||
uint8_t *pb = NULL;
|
||
bool manual_wp;
|
||
|
||
if (bank->target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
if (!chip->probed) {
|
||
if (samd_probe(bank) != ERROR_OK)
|
||
return ERROR_FLASH_BANK_NOT_PROBED;
|
||
}
|
||
|
||
/* Check if we need to do manual page write commands */
|
||
res = target_read_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
|
||
|
||
if (res != ERROR_OK)
|
||
return res;
|
||
|
||
if (nvm_ctrlb & SAMD_NVM_CTRLB_MANW)
|
||
manual_wp = true;
|
||
else
|
||
manual_wp = false;
|
||
|
||
res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_PBC);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("%s: %d", __func__, __LINE__);
|
||
return res;
|
||
}
|
||
|
||
while (count) {
|
||
nb = chip->page_size - offset % chip->page_size;
|
||
if (count < nb)
|
||
nb = count;
|
||
|
||
address = bank->base + offset;
|
||
pg_offset = offset % chip->page_size;
|
||
|
||
if (offset % 4 || (offset + nb) % 4) {
|
||
/* Either start or end of write is not word aligned */
|
||
if (!pb) {
|
||
pb = malloc(chip->page_size);
|
||
if (!pb)
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
/* Set temporary page buffer to 0xff and overwrite the relevant part */
|
||
memset(pb, 0xff, chip->page_size);
|
||
memcpy(pb + pg_offset, buffer, nb);
|
||
|
||
/* Align start address to a word boundary */
|
||
address -= offset % 4;
|
||
pg_offset -= offset % 4;
|
||
assert(pg_offset % 4 == 0);
|
||
|
||
/* Extend length to whole words */
|
||
nw = (nb + offset % 4 + 3) / 4;
|
||
assert(pg_offset + 4 * nw <= chip->page_size);
|
||
|
||
/* Now we have original data extended by 0xff bytes
|
||
* to the nearest word boundary on both start and end */
|
||
res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
|
||
} else {
|
||
assert(nb % 4 == 0);
|
||
nw = nb / 4;
|
||
assert(pg_offset + 4 * nw <= chip->page_size);
|
||
|
||
/* Word aligned data, use direct write from buffer */
|
||
res = target_write_memory(bank->target, address, 4, nw, buffer);
|
||
}
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("%s: %d", __func__, __LINE__);
|
||
goto free_pb;
|
||
}
|
||
|
||
/* Devices with errata 13134 have automatic page write enabled by default
|
||
* For other devices issue a write page CMD to the NVM
|
||
* If the page has not been written up to the last word
|
||
* then issue CMD_WP always */
|
||
if (manual_wp || pg_offset + 4 * nw < chip->page_size) {
|
||
res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_WP);
|
||
} else {
|
||
/* Access through AHB is stalled while flash is being programmed */
|
||
usleep(200);
|
||
|
||
res = samd_check_error(bank->target);
|
||
}
|
||
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
|
||
goto free_pb;
|
||
}
|
||
|
||
/* We're done with the page contents */
|
||
count -= nb;
|
||
offset += nb;
|
||
buffer += nb;
|
||
}
|
||
|
||
free_pb:
|
||
if (pb)
|
||
free(pb);
|
||
|
||
return res;
|
||
}
|
||
|
||
FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
|
||
{
|
||
struct samd_info *chip = samd_chips;
|
||
|
||
while (chip) {
|
||
if (chip->target == bank->target)
|
||
break;
|
||
chip = chip->next;
|
||
}
|
||
|
||
if (!chip) {
|
||
/* Create a new chip */
|
||
chip = calloc(1, sizeof(*chip));
|
||
if (!chip)
|
||
return ERROR_FAIL;
|
||
|
||
chip->target = bank->target;
|
||
chip->probed = false;
|
||
|
||
bank->driver_priv = chip;
|
||
|
||
/* Insert it into the chips list (at head) */
|
||
chip->next = samd_chips;
|
||
samd_chips = chip;
|
||
}
|
||
|
||
if (bank->base != SAMD_FLASH) {
|
||
LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
|
||
"[at91samd series] )",
|
||
bank->base, SAMD_FLASH);
|
||
return ERROR_FAIL;
|
||
}
|
||
|
||
return ERROR_OK;
|
||
}
|
||
|
||
COMMAND_HANDLER(samd_handle_info_command)
|
||
{
|
||
return ERROR_OK;
|
||
}
|
||
|
||
COMMAND_HANDLER(samd_handle_chip_erase_command)
|
||
{
|
||
struct target *target = get_current_target(CMD_CTX);
|
||
int res = ERROR_FAIL;
|
||
|
||
if (target) {
|
||
/* Enable access to the DSU by disabling the write protect bit */
|
||
target_write_u32(target, SAMD_PAC1, (1<<1));
|
||
/* intentionally without error checking - not accessible on secured chip */
|
||
|
||
/* Tell the DSU to perform a full chip erase. It takes about 240ms to
|
||
* perform the erase. */
|
||
res = target_write_u8(target, SAMD_DSU + SAMD_DSU_CTRL_EXT, (1<<4));
|
||
if (res == ERROR_OK)
|
||
command_print(CMD_CTX, "chip erase started");
|
||
else
|
||
command_print(CMD_CTX, "write to DSU CTRL failed");
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
COMMAND_HANDLER(samd_handle_set_security_command)
|
||
{
|
||
int res = ERROR_OK;
|
||
struct target *target = get_current_target(CMD_CTX);
|
||
|
||
if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
|
||
command_print(CMD_CTX, "supply the \"enable\" argument to proceed.");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
|
||
if (target) {
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
|
||
|
||
/* Check (and clear) error conditions */
|
||
if (res == ERROR_OK)
|
||
command_print(CMD_CTX, "chip secured on next power-cycle");
|
||
else
|
||
command_print(CMD_CTX, "failed to secure chip");
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
COMMAND_HANDLER(samd_handle_eeprom_command)
|
||
{
|
||
int res = ERROR_OK;
|
||
struct target *target = get_current_target(CMD_CTX);
|
||
|
||
if (target) {
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
if (CMD_ARGC >= 1) {
|
||
int val = atoi(CMD_ARGV[0]);
|
||
uint32_t code;
|
||
|
||
if (val == 0)
|
||
code = 7;
|
||
else {
|
||
/* Try to match size in bytes with corresponding size code */
|
||
for (code = 0; code <= 6; code++) {
|
||
if (val == (2 << (13 - code)))
|
||
break;
|
||
}
|
||
|
||
if (code > 6) {
|
||
command_print(CMD_CTX, "Invalid EEPROM size. Please see "
|
||
"datasheet for a list valid sizes.");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
}
|
||
|
||
res = samd_modify_user_row(target, code, 4, 6);
|
||
} else {
|
||
uint16_t val;
|
||
res = target_read_u16(target, SAMD_USER_ROW, &val);
|
||
if (res == ERROR_OK) {
|
||
uint32_t size = ((val >> 4) & 0x7); /* grab size code */
|
||
|
||
if (size == 0x7)
|
||
command_print(CMD_CTX, "EEPROM is disabled");
|
||
else {
|
||
/* Otherwise, 6 is 256B, 0 is 16KB */
|
||
command_print(CMD_CTX, "EEPROM size is %u bytes",
|
||
(2 << (13 - size)));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
COMMAND_HANDLER(samd_handle_bootloader_command)
|
||
{
|
||
int res = ERROR_OK;
|
||
struct target *target = get_current_target(CMD_CTX);
|
||
|
||
if (target) {
|
||
if (target->state != TARGET_HALTED) {
|
||
LOG_ERROR("Target not halted");
|
||
return ERROR_TARGET_NOT_HALTED;
|
||
}
|
||
|
||
/* Retrieve the MCU's page size, in bytes. */
|
||
uint32_t page_size;
|
||
res = samd_get_flash_page_info(target, &page_size, NULL);
|
||
if (res != ERROR_OK) {
|
||
LOG_ERROR("Couldn't determine Flash page size");
|
||
return res;
|
||
}
|
||
|
||
if (CMD_ARGC >= 1) {
|
||
int val = atoi(CMD_ARGV[0]);
|
||
uint32_t code;
|
||
|
||
if (val == 0)
|
||
code = 7;
|
||
else {
|
||
/* Try to match size in bytes with corresponding size code */
|
||
for (code = 0; code <= 6; code++) {
|
||
if ((unsigned int)val == (2UL << (8UL - code)) * page_size)
|
||
break;
|
||
}
|
||
|
||
if (code > 6) {
|
||
command_print(CMD_CTX, "Invalid bootloader size. Please "
|
||
"see datasheet for a list valid sizes.");
|
||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||
}
|
||
|
||
}
|
||
|
||
res = samd_modify_user_row(target, code, 0, 2);
|
||
} else {
|
||
uint16_t val;
|
||
res = target_read_u16(target, SAMD_USER_ROW, &val);
|
||
if (res == ERROR_OK) {
|
||
uint32_t size = (val & 0x7); /* grab size code */
|
||
uint32_t nb;
|
||
|
||
if (size == 0x7)
|
||
nb = 0;
|
||
else
|
||
nb = (2 << (8 - size)) * page_size;
|
||
|
||
/* There are 4 pages per row */
|
||
command_print(CMD_CTX, "Bootloader size is %" PRIu32 " bytes (%" PRIu32 " rows)",
|
||
nb, (uint32_t)(nb / (page_size * 4)));
|
||
}
|
||
}
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
|
||
COMMAND_HANDLER(samd_handle_reset_deassert)
|
||
{
|
||
struct target *target = get_current_target(CMD_CTX);
|
||
int retval = ERROR_OK;
|
||
enum reset_types jtag_reset_config = jtag_get_reset_config();
|
||
|
||
/* If the target has been unresponsive before, try to re-establish
|
||
* communication now - CPU is held in reset by DSU, DAP is working */
|
||
if (!target_was_examined(target))
|
||
target_examine_one(target);
|
||
target_poll(target);
|
||
|
||
/* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
|
||
* so we just release reset held by DSU
|
||
*
|
||
* n_RESET (srst) clears the DP, so reenable debug and set vector catch here
|
||
*
|
||
* After vectreset DSU release is not needed however makes no harm
|
||
*/
|
||
if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
|
||
retval = target_write_u32(target, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
|
||
if (retval == ERROR_OK)
|
||
retval = target_write_u32(target, DCB_DEMCR,
|
||
TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
|
||
/* do not return on error here, releasing DSU reset is more important */
|
||
}
|
||
|
||
/* clear CPU Reset Phase Extension bit */
|
||
int retval2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
|
||
if (retval2 != ERROR_OK)
|
||
return retval2;
|
||
|
||
return retval;
|
||
}
|
||
|
||
static const struct command_registration at91samd_exec_command_handlers[] = {
|
||
{
|
||
.name = "dsu_reset_deassert",
|
||
.handler = samd_handle_reset_deassert,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "deasert internal reset held by DSU"
|
||
},
|
||
{
|
||
.name = "info",
|
||
.handler = samd_handle_info_command,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "Print information about the current at91samd chip"
|
||
"and its flash configuration.",
|
||
},
|
||
{
|
||
.name = "chip-erase",
|
||
.handler = samd_handle_chip_erase_command,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "Erase the entire Flash by using the Chip"
|
||
"Erase feature in the Device Service Unit (DSU).",
|
||
},
|
||
{
|
||
.name = "set-security",
|
||
.handler = samd_handle_set_security_command,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "Secure the chip's Flash by setting the Security Bit."
|
||
"This makes it impossible to read the Flash contents."
|
||
"The only way to undo this is to issue the chip-erase"
|
||
"command.",
|
||
},
|
||
{
|
||
.name = "eeprom",
|
||
.usage = "[size_in_bytes]",
|
||
.handler = samd_handle_eeprom_command,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "Show or set the EEPROM size setting, stored in the User Row."
|
||
"Please see Table 20-3 of the SAMD20 datasheet for allowed values."
|
||
"Changes are stored immediately but take affect after the MCU is"
|
||
"reset.",
|
||
},
|
||
{
|
||
.name = "bootloader",
|
||
.usage = "[size_in_bytes]",
|
||
.handler = samd_handle_bootloader_command,
|
||
.mode = COMMAND_EXEC,
|
||
.help = "Show or set the bootloader size, stored in the User Row."
|
||
"Please see Table 20-2 of the SAMD20 datasheet for allowed values."
|
||
"Changes are stored immediately but take affect after the MCU is"
|
||
"reset.",
|
||
},
|
||
COMMAND_REGISTRATION_DONE
|
||
};
|
||
|
||
static const struct command_registration at91samd_command_handlers[] = {
|
||
{
|
||
.name = "at91samd",
|
||
.mode = COMMAND_ANY,
|
||
.help = "at91samd flash command group",
|
||
.usage = "",
|
||
.chain = at91samd_exec_command_handlers,
|
||
},
|
||
COMMAND_REGISTRATION_DONE
|
||
};
|
||
|
||
struct flash_driver at91samd_flash = {
|
||
.name = "at91samd",
|
||
.commands = at91samd_command_handlers,
|
||
.flash_bank_command = samd_flash_bank_command,
|
||
.erase = samd_erase,
|
||
.protect = samd_protect,
|
||
.write = samd_write,
|
||
.read = default_flash_read,
|
||
.probe = samd_probe,
|
||
.auto_probe = samd_probe,
|
||
.erase_check = default_flash_blank_check,
|
||
.protect_check = samd_protect_check,
|
||
};
|