1226 lines
34 KiB
C
1226 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
/***************************************************************************
|
|
* Copyright (C) 2005 by Dominic Rath *
|
|
* Dominic.Rath@gmx.de *
|
|
* *
|
|
* Copyright (C) 2008 by Spencer Oliver *
|
|
* spen@spen-soft.co.uk *
|
|
* *
|
|
* Copyright (C) 2011 by Andreas Fritiofson *
|
|
* andreas.fritiofson@gmail.com *
|
|
* *
|
|
* Copyright (C) 2013 by Roman Dmitrienko *
|
|
* me@iamroman.org *
|
|
* *
|
|
* Copyright (C) 2014 Nemui Trinomius *
|
|
* nemuisan_kawausogasuki@live.jp *
|
|
* *
|
|
* Copyright (C) 2021 Doug Brunner *
|
|
* doug.a.brunner@gmail.com *
|
|
***************************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "imp.h"
|
|
#include <helper/binarybuffer.h>
|
|
#include <target/algorithm.h>
|
|
#include <target/armv7m.h>
|
|
#include <target/cortex_m.h>
|
|
|
|
#define EFM_FAMILY_ID_GIANT_GECKO 72
|
|
#define EFM_FAMILY_ID_LEOPARD_GECKO 74
|
|
|
|
#define EFM32_FLASH_ERASE_TMO 100
|
|
#define EFM32_FLASH_WDATAREADY_TMO 100
|
|
#define EFM32_FLASH_WRITE_TMO 100
|
|
|
|
#define EFM32_FLASH_BASE 0
|
|
|
|
/* size in bytes, not words; must fit all Gecko devices */
|
|
#define LOCKWORDS_SZ 512
|
|
|
|
#define EFM32_MSC_INFO_BASE 0x0fe00000
|
|
|
|
#define EFM32_MSC_USER_DATA EFM32_MSC_INFO_BASE
|
|
#define EFM32_MSC_LOCK_BITS (EFM32_MSC_INFO_BASE+0x4000)
|
|
#define EFM32_MSC_LOCK_BITS_EXTRA (EFM32_MSC_LOCK_BITS+LOCKWORDS_SZ)
|
|
#define EFM32_MSC_DEV_INFO (EFM32_MSC_INFO_BASE+0x8000)
|
|
|
|
/* PAGE_SIZE is not present in Zero, Happy and the original Gecko MCU */
|
|
#define EFM32_MSC_DI_PAGE_SIZE (EFM32_MSC_DEV_INFO+0x1e7)
|
|
#define EFM32_MSC_DI_FLASH_SZ (EFM32_MSC_DEV_INFO+0x1f8)
|
|
#define EFM32_MSC_DI_RAM_SZ (EFM32_MSC_DEV_INFO+0x1fa)
|
|
#define EFM32_MSC_DI_PART_NUM (EFM32_MSC_DEV_INFO+0x1fc)
|
|
#define EFM32_MSC_DI_PART_FAMILY (EFM32_MSC_DEV_INFO+0x1fe)
|
|
#define EFM32_MSC_DI_PROD_REV (EFM32_MSC_DEV_INFO+0x1ff)
|
|
|
|
#define EFM32_MSC_REGBASE 0x400c0000
|
|
#define EFM32_MSC_REGBASE_SERIES1 0x400e0000
|
|
#define EFM32_MSC_REG_WRITECTRL 0x008
|
|
#define EFM32_MSC_WRITECTRL_WREN_MASK 0x1
|
|
#define EFM32_MSC_REG_WRITECMD 0x00c
|
|
#define EFM32_MSC_WRITECMD_LADDRIM_MASK 0x1
|
|
#define EFM32_MSC_WRITECMD_ERASEPAGE_MASK 0x2
|
|
#define EFM32_MSC_WRITECMD_WRITEONCE_MASK 0x8
|
|
#define EFM32_MSC_REG_ADDRB 0x010
|
|
#define EFM32_MSC_REG_WDATA 0x018
|
|
#define EFM32_MSC_REG_STATUS 0x01c
|
|
#define EFM32_MSC_STATUS_BUSY_MASK 0x1
|
|
#define EFM32_MSC_STATUS_LOCKED_MASK 0x2
|
|
#define EFM32_MSC_STATUS_INVADDR_MASK 0x4
|
|
#define EFM32_MSC_STATUS_WDATAREADY_MASK 0x8
|
|
#define EFM32_MSC_STATUS_WORDTIMEOUT_MASK 0x10
|
|
#define EFM32_MSC_STATUS_ERASEABORTED_MASK 0x20
|
|
#define EFM32_MSC_REG_LOCK 0x03c
|
|
#define EFM32_MSC_REG_LOCK_SERIES1 0x040
|
|
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71
|
|
|
|
enum efm32_bank_index {
|
|
EFM32_BANK_INDEX_MAIN,
|
|
EFM32_BANK_INDEX_USER_DATA,
|
|
EFM32_BANK_INDEX_LOCK_BITS,
|
|
EFM32_N_BANKS
|
|
};
|
|
|
|
static int efm32x_get_bank_index(target_addr_t base)
|
|
{
|
|
switch (base) {
|
|
case EFM32_FLASH_BASE:
|
|
return EFM32_BANK_INDEX_MAIN;
|
|
case EFM32_MSC_USER_DATA:
|
|
return EFM32_BANK_INDEX_USER_DATA;
|
|
case EFM32_MSC_LOCK_BITS:
|
|
return EFM32_BANK_INDEX_LOCK_BITS;
|
|
default:
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
struct efm32_family_data {
|
|
int family_id;
|
|
const char *name;
|
|
|
|
/* EFM32 series (EFM32LG995F is the "old" series 0, while EFR32MG12P132
|
|
is the "new" series 1). Determines location of MSC registers. */
|
|
int series;
|
|
|
|
/* Page size in bytes, or 0 to read from EFM32_MSC_DI_PAGE_SIZE */
|
|
int page_size;
|
|
|
|
/* MSC register base address, or 0 to use default */
|
|
uint32_t msc_regbase;
|
|
};
|
|
|
|
struct efm32_info {
|
|
const struct efm32_family_data *family_data;
|
|
uint16_t flash_sz_kib;
|
|
uint16_t ram_sz_kib;
|
|
uint16_t part_num;
|
|
uint8_t part_family;
|
|
uint8_t prod_rev;
|
|
uint16_t page_size;
|
|
};
|
|
|
|
struct efm32x_flash_chip {
|
|
struct efm32_info info;
|
|
bool probed[EFM32_N_BANKS];
|
|
uint32_t lb_page[LOCKWORDS_SZ/4];
|
|
uint32_t reg_base;
|
|
uint32_t reg_lock;
|
|
uint32_t refcount;
|
|
};
|
|
|
|
static const struct efm32_family_data efm32_families[] = {
|
|
{ 16, "EFR32MG1P Mighty", .series = 1 },
|
|
{ 17, "EFR32MG1B Mighty", .series = 1 },
|
|
{ 18, "EFR32MG1V Mighty", .series = 1 },
|
|
{ 19, "EFR32BG1P Blue", .series = 1 },
|
|
{ 20, "EFR32BG1B Blue", .series = 1 },
|
|
{ 21, "EFR32BG1V Blue", .series = 1 },
|
|
{ 25, "EFR32FG1P Flex", .series = 1 },
|
|
{ 26, "EFR32FG1B Flex", .series = 1 },
|
|
{ 27, "EFR32FG1V Flex", .series = 1 },
|
|
{ 28, "EFR32MG2P Mighty", .series = 1 },
|
|
{ 29, "EFR32MG2B Mighty", .series = 1 },
|
|
{ 30, "EFR32MG2V Mighty", .series = 1 },
|
|
{ 31, "EFR32BG12P Blue", .series = 1 },
|
|
{ 32, "EFR32BG12B Blue", .series = 1 },
|
|
{ 33, "EFR32BG12V Blue", .series = 1 },
|
|
{ 37, "EFR32FG12P Flex", .series = 1 },
|
|
{ 38, "EFR32FG12B Flex", .series = 1 },
|
|
{ 39, "EFR32FG12V Flex", .series = 1 },
|
|
{ 40, "EFR32MG13P Mighty", .series = 1 },
|
|
{ 41, "EFR32MG13B Mighty", .series = 1 },
|
|
{ 42, "EFR32MG13V Mighty", .series = 1 },
|
|
{ 43, "EFR32BG13P Blue", .series = 1 },
|
|
{ 44, "EFR32BG13B Blue", .series = 1 },
|
|
{ 45, "EFR32BG13V Blue", .series = 1 },
|
|
{ 46, "EFR32ZG13P Zen", .series = 1 },
|
|
{ 49, "EFR32FG13P Flex", .series = 1 },
|
|
{ 50, "EFR32FG13B Flex", .series = 1 },
|
|
{ 51, "EFR32FG13V Flex", .series = 1 },
|
|
{ 52, "EFR32MG14P Mighty", .series = 1 },
|
|
{ 53, "EFR32MG14B Mighty", .series = 1 },
|
|
{ 54, "EFR32MG14V Mighty", .series = 1 },
|
|
{ 55, "EFR32BG14P Blue", .series = 1 },
|
|
{ 56, "EFR32BG14B Blue", .series = 1 },
|
|
{ 57, "EFR32BG14V Blue", .series = 1 },
|
|
{ 58, "EFR32ZG14P Zen", .series = 1 },
|
|
{ 61, "EFR32FG14P Flex", .series = 1 },
|
|
{ 62, "EFR32FG14B Flex", .series = 1 },
|
|
{ 63, "EFR32FG14V Flex", .series = 1 },
|
|
{ 71, "EFM32G", .series = 0, .page_size = 512 },
|
|
{ 72, "EFM32GG Giant", .series = 0 },
|
|
{ 73, "EFM32TG Tiny", .series = 0, .page_size = 512 },
|
|
{ 74, "EFM32LG Leopard", .series = 0 },
|
|
{ 75, "EFM32WG Wonder", .series = 0 },
|
|
{ 76, "EFM32ZG Zero", .series = 0, .page_size = 1024 },
|
|
{ 77, "EFM32HG Happy", .series = 0, .page_size = 1024 },
|
|
{ 81, "EFM32PG1B Pearl", .series = 1 },
|
|
{ 83, "EFM32JG1B Jade", .series = 1 },
|
|
{ 85, "EFM32PG12B Pearl", .series = 1 },
|
|
{ 87, "EFM32JG12B Jade", .series = 1 },
|
|
{ 89, "EFM32PG13B Pearl", .series = 1 },
|
|
{ 91, "EFM32JG13B Jade", .series = 1 },
|
|
{ 100, "EFM32GG11B Giant", .series = 1, .msc_regbase = 0x40000000 },
|
|
{ 103, "EFM32TG11B Tiny", .series = 1, .msc_regbase = 0x40000000 },
|
|
{ 106, "EFM32GG12B Giant", .series = 1, .msc_regbase = 0x40000000 },
|
|
{ 120, "EZR32WG Wonder", .series = 0 },
|
|
{ 121, "EZR32LG Leopard", .series = 0 },
|
|
{ 122, "EZR32HG Happy", .series = 0, .page_size = 1024 },
|
|
};
|
|
|
|
const struct flash_driver efm32_flash;
|
|
|
|
static int efm32x_priv_write(struct flash_bank *bank, const uint8_t *buffer,
|
|
uint32_t addr, uint32_t count);
|
|
|
|
static int efm32x_write_only_lockbits(struct flash_bank *bank);
|
|
|
|
static int efm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_sz)
|
|
{
|
|
return target_read_u16(bank->target, EFM32_MSC_DI_FLASH_SZ, flash_sz);
|
|
}
|
|
|
|
static int efm32x_get_ram_size(struct flash_bank *bank, uint16_t *ram_sz)
|
|
{
|
|
return target_read_u16(bank->target, EFM32_MSC_DI_RAM_SZ, ram_sz);
|
|
}
|
|
|
|
static int efm32x_get_part_num(struct flash_bank *bank, uint16_t *pnum)
|
|
{
|
|
return target_read_u16(bank->target, EFM32_MSC_DI_PART_NUM, pnum);
|
|
}
|
|
|
|
static int efm32x_get_part_family(struct flash_bank *bank, uint8_t *pfamily)
|
|
{
|
|
return target_read_u8(bank->target, EFM32_MSC_DI_PART_FAMILY, pfamily);
|
|
}
|
|
|
|
static int efm32x_get_prod_rev(struct flash_bank *bank, uint8_t *prev)
|
|
{
|
|
return target_read_u8(bank->target, EFM32_MSC_DI_PROD_REV, prev);
|
|
}
|
|
|
|
static int efm32x_read_reg_u32(struct flash_bank *bank, target_addr_t offset,
|
|
uint32_t *value)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
uint32_t base = efm32x_info->reg_base;
|
|
|
|
return target_read_u32(bank->target, base + offset, value);
|
|
}
|
|
|
|
static int efm32x_write_reg_u32(struct flash_bank *bank, target_addr_t offset,
|
|
uint32_t value)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
uint32_t base = efm32x_info->reg_base;
|
|
|
|
return target_write_u32(bank->target, base + offset, value);
|
|
}
|
|
|
|
static int efm32x_read_info(struct flash_bank *bank)
|
|
{
|
|
int ret;
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
struct efm32_info *efm32_info = &(efm32x_info->info);
|
|
|
|
memset(efm32_info, 0, sizeof(struct efm32_info));
|
|
|
|
ret = efm32x_get_flash_size(bank, &(efm32_info->flash_sz_kib));
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
ret = efm32x_get_ram_size(bank, &(efm32_info->ram_sz_kib));
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
ret = efm32x_get_part_num(bank, &(efm32_info->part_num));
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
ret = efm32x_get_part_family(bank, &(efm32_info->part_family));
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
ret = efm32x_get_prod_rev(bank, &(efm32_info->prod_rev));
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(efm32_families); i++) {
|
|
if (efm32_families[i].family_id == efm32_info->part_family)
|
|
efm32_info->family_data = &efm32_families[i];
|
|
}
|
|
|
|
if (!efm32_info->family_data) {
|
|
LOG_ERROR("Unknown MCU family %d", efm32_info->part_family);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
switch (efm32_info->family_data->series) {
|
|
case 0:
|
|
efm32x_info->reg_base = EFM32_MSC_REGBASE;
|
|
efm32x_info->reg_lock = EFM32_MSC_REG_LOCK;
|
|
break;
|
|
case 1:
|
|
efm32x_info->reg_base = EFM32_MSC_REGBASE_SERIES1;
|
|
efm32x_info->reg_lock = EFM32_MSC_REG_LOCK_SERIES1;
|
|
break;
|
|
}
|
|
|
|
if (efm32_info->family_data->msc_regbase != 0)
|
|
efm32x_info->reg_base = efm32_info->family_data->msc_regbase;
|
|
|
|
if (efm32_info->family_data->page_size != 0) {
|
|
efm32_info->page_size = efm32_info->family_data->page_size;
|
|
} else {
|
|
uint8_t pg_size = 0;
|
|
ret = target_read_u8(bank->target, EFM32_MSC_DI_PAGE_SIZE,
|
|
&pg_size);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
efm32_info->page_size = (1 << ((pg_size+10) & 0xff));
|
|
|
|
if (efm32_info->part_family == EFM_FAMILY_ID_GIANT_GECKO ||
|
|
efm32_info->part_family == EFM_FAMILY_ID_LEOPARD_GECKO) {
|
|
/* Giant or Leopard Gecko */
|
|
if (efm32_info->prod_rev < 18) {
|
|
/* EFM32 GG/LG errata: MEM_INFO_PAGE_SIZE is invalid
|
|
for MCUs with PROD_REV < 18 */
|
|
if (efm32_info->flash_sz_kib < 512)
|
|
efm32_info->page_size = 2048;
|
|
else
|
|
efm32_info->page_size = 4096;
|
|
}
|
|
}
|
|
|
|
if ((efm32_info->page_size != 2048) &&
|
|
(efm32_info->page_size != 4096)) {
|
|
LOG_ERROR("Invalid page size %u", efm32_info->page_size);
|
|
return ERROR_FAIL;
|
|
}
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/* flash bank efm32 <base> <size> 0 0 <target#> */
|
|
FLASH_BANK_COMMAND_HANDLER(efm32x_flash_bank_command)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = NULL;
|
|
|
|
if (CMD_ARGC < 6)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
int bank_index = efm32x_get_bank_index(bank->base);
|
|
if (bank_index < 0) {
|
|
LOG_ERROR("Flash bank with base address %" PRIx32 " is not supported",
|
|
(uint32_t) bank->base);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
/* look for an existing flash structure matching target */
|
|
for (struct flash_bank *bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
|
|
if (bank_iter->driver == &efm32_flash
|
|
&& bank_iter->target == bank->target
|
|
&& bank->driver_priv) {
|
|
efm32x_info = bank->driver_priv;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!efm32x_info) {
|
|
/* target not matched, make a new one */
|
|
efm32x_info = calloc(1, sizeof(struct efm32x_flash_chip));
|
|
|
|
memset(efm32x_info->lb_page, 0xff, LOCKWORDS_SZ);
|
|
}
|
|
|
|
++efm32x_info->refcount;
|
|
bank->driver_priv = efm32x_info;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
/**
|
|
* Remove flash structure corresponding to this bank,
|
|
* if and only if it's not used by any others
|
|
*/
|
|
static void efm32x_free_driver_priv(struct flash_bank *bank)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
|
|
if (efm32x_info) {
|
|
/* Use ref count to determine if it can be freed; scanning bank list doesn't work,
|
|
* because this function can be called after some banks in the list have been
|
|
* already destroyed */
|
|
--efm32x_info->refcount;
|
|
if (efm32x_info->refcount == 0) {
|
|
free(efm32x_info);
|
|
bank->driver_priv = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* set or reset given bits in a register */
|
|
static int efm32x_set_reg_bits(struct flash_bank *bank, uint32_t reg,
|
|
uint32_t bitmask, int set)
|
|
{
|
|
int ret = 0;
|
|
uint32_t reg_val = 0;
|
|
|
|
ret = efm32x_read_reg_u32(bank, reg, ®_val);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
if (set)
|
|
reg_val |= bitmask;
|
|
else
|
|
reg_val &= ~bitmask;
|
|
|
|
return efm32x_write_reg_u32(bank, reg, reg_val);
|
|
}
|
|
|
|
static int efm32x_set_wren(struct flash_bank *bank, int write_enable)
|
|
{
|
|
return efm32x_set_reg_bits(bank, EFM32_MSC_REG_WRITECTRL,
|
|
EFM32_MSC_WRITECTRL_WREN_MASK, write_enable);
|
|
}
|
|
|
|
static int efm32x_msc_lock(struct flash_bank *bank, int lock)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
return efm32x_write_reg_u32(bank, efm32x_info->reg_lock,
|
|
(lock ? 0 : EFM32_MSC_LOCK_LOCKKEY));
|
|
}
|
|
|
|
static int efm32x_wait_status(struct flash_bank *bank, int timeout,
|
|
uint32_t wait_mask, int wait_for_set)
|
|
{
|
|
int ret = 0;
|
|
uint32_t status = 0;
|
|
|
|
while (1) {
|
|
ret = efm32x_read_reg_u32(bank, EFM32_MSC_REG_STATUS, &status);
|
|
if (ret != ERROR_OK)
|
|
break;
|
|
|
|
LOG_DEBUG("status: 0x%" PRIx32 "", status);
|
|
|
|
if (((status & wait_mask) == 0) && (wait_for_set == 0))
|
|
break;
|
|
else if (((status & wait_mask) != 0) && wait_for_set)
|
|
break;
|
|
|
|
if (timeout-- <= 0) {
|
|
LOG_ERROR("timed out waiting for MSC status");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
alive_sleep(1);
|
|
}
|
|
|
|
if (status & EFM32_MSC_STATUS_ERASEABORTED_MASK)
|
|
LOG_WARNING("page erase was aborted");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int efm32x_erase_page(struct flash_bank *bank, uint32_t addr)
|
|
{
|
|
/* this function DOES NOT set WREN; must be set already */
|
|
/* 1. write address to ADDRB
|
|
2. write LADDRIM
|
|
3. check status (INVADDR, LOCKED)
|
|
4. write ERASEPAGE
|
|
5. wait until !STATUS_BUSY
|
|
*/
|
|
int ret = 0;
|
|
uint32_t status = 0;
|
|
LOG_DEBUG("erasing flash page at 0x%08" PRIx32, addr);
|
|
|
|
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_ADDRB, addr);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
ret = efm32x_set_reg_bits(bank, EFM32_MSC_REG_WRITECMD,
|
|
EFM32_MSC_WRITECMD_LADDRIM_MASK, 1);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
ret = efm32x_read_reg_u32(bank, EFM32_MSC_REG_STATUS, &status);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
LOG_DEBUG("status 0x%" PRIx32, status);
|
|
|
|
if (status & EFM32_MSC_STATUS_LOCKED_MASK) {
|
|
LOG_ERROR("Page is locked");
|
|
return ERROR_FAIL;
|
|
} else if (status & EFM32_MSC_STATUS_INVADDR_MASK) {
|
|
LOG_ERROR("Invalid address 0x%" PRIx32, addr);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
ret = efm32x_set_reg_bits(bank, EFM32_MSC_REG_WRITECMD,
|
|
EFM32_MSC_WRITECMD_ERASEPAGE_MASK, 1);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
return efm32x_wait_status(bank, EFM32_FLASH_ERASE_TMO,
|
|
EFM32_MSC_STATUS_BUSY_MASK, 0);
|
|
}
|
|
|
|
static int efm32x_erase(struct flash_bank *bank, unsigned int first,
|
|
unsigned int last)
|
|
{
|
|
struct target *target = bank->target;
|
|
int ret = 0;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
efm32x_msc_lock(bank, 0);
|
|
ret = efm32x_set_wren(bank, 1);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to enable MSC write");
|
|
return ret;
|
|
}
|
|
|
|
for (unsigned int i = first; i <= last; i++) {
|
|
ret = efm32x_erase_page(bank, bank->base + bank->sectors[i].offset);
|
|
if (ret != ERROR_OK)
|
|
LOG_ERROR("Failed to erase page %d", i);
|
|
}
|
|
|
|
ret = efm32x_set_wren(bank, 0);
|
|
efm32x_msc_lock(bank, 1);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
if (bank->base == EFM32_MSC_LOCK_BITS) {
|
|
ret = efm32x_write_only_lockbits(bank);
|
|
if (ret != ERROR_OK)
|
|
LOG_ERROR("Failed to restore lockbits after erase");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int efm32x_read_lock_data(struct flash_bank *bank)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
struct target *target = bank->target;
|
|
int data_size = 0;
|
|
uint32_t *ptr = NULL;
|
|
int ret = 0;
|
|
|
|
assert(bank->num_sectors > 0);
|
|
|
|
/* calculate the number of 32-bit words to read (one lock bit per sector) */
|
|
data_size = (bank->num_sectors + 31) / 32;
|
|
|
|
ptr = efm32x_info->lb_page;
|
|
|
|
for (int i = 0; i < data_size; i++, ptr++) {
|
|
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+i*4, ptr);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read PLW %d", i);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* also, read ULW, DLW, MLW, ALW and CLW words */
|
|
|
|
/* ULW, word 126 */
|
|
ptr = efm32x_info->lb_page + 126;
|
|
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+126*4, ptr);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read ULW");
|
|
return ret;
|
|
}
|
|
|
|
/* DLW, word 127 */
|
|
ptr = efm32x_info->lb_page + 127;
|
|
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+127*4, ptr);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read DLW");
|
|
return ret;
|
|
}
|
|
|
|
/* MLW, word 125, present in GG, LG, PG, JG, EFR32 */
|
|
ptr = efm32x_info->lb_page + 125;
|
|
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+125*4, ptr);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read MLW");
|
|
return ret;
|
|
}
|
|
|
|
/* ALW, word 124, present in GG, LG, PG, JG, EFR32 */
|
|
ptr = efm32x_info->lb_page + 124;
|
|
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+124*4, ptr);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read ALW");
|
|
return ret;
|
|
}
|
|
|
|
/* CLW1, word 123, present in EFR32 */
|
|
ptr = efm32x_info->lb_page + 123;
|
|
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+123*4, ptr);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read CLW1");
|
|
return ret;
|
|
}
|
|
|
|
/* CLW0, word 122, present in GG, LG, PG, JG, EFR32 */
|
|
ptr = efm32x_info->lb_page + 122;
|
|
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+122*4, ptr);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read CLW0");
|
|
return ret;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int efm32x_write_only_lockbits(struct flash_bank *bank)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
return efm32x_priv_write(bank, (uint8_t *)efm32x_info->lb_page, EFM32_MSC_LOCK_BITS, LOCKWORDS_SZ);
|
|
}
|
|
|
|
static int efm32x_write_lock_data(struct flash_bank *bank)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
int ret = 0;
|
|
|
|
/* Preserve any data written to the high portion of the lockbits page */
|
|
assert(efm32x_info->info.page_size >= LOCKWORDS_SZ);
|
|
uint32_t extra_bytes = efm32x_info->info.page_size - LOCKWORDS_SZ;
|
|
uint8_t *extra_data = NULL;
|
|
if (extra_bytes) {
|
|
extra_data = malloc(extra_bytes);
|
|
ret = target_read_buffer(bank->target, EFM32_MSC_LOCK_BITS_EXTRA, extra_bytes, extra_data);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read extra contents of LB page");
|
|
free(extra_data);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = efm32x_erase_page(bank, EFM32_MSC_LOCK_BITS);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to erase LB page");
|
|
if (extra_data)
|
|
free(extra_data);
|
|
return ret;
|
|
}
|
|
|
|
if (extra_data) {
|
|
ret = efm32x_priv_write(bank, extra_data, EFM32_MSC_LOCK_BITS_EXTRA, extra_bytes);
|
|
free(extra_data);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to restore extra contents of LB page");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return efm32x_write_only_lockbits(bank);
|
|
}
|
|
|
|
static int efm32x_get_page_lock(struct flash_bank *bank, size_t page)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
uint32_t dw = 0;
|
|
uint32_t mask = 0;
|
|
|
|
switch (bank->base) {
|
|
case EFM32_FLASH_BASE:
|
|
dw = efm32x_info->lb_page[page >> 5];
|
|
mask = 1 << (page & 0x1f);
|
|
break;
|
|
case EFM32_MSC_USER_DATA:
|
|
dw = efm32x_info->lb_page[126];
|
|
mask = 0x1;
|
|
break;
|
|
case EFM32_MSC_LOCK_BITS:
|
|
dw = efm32x_info->lb_page[126];
|
|
mask = 0x2;
|
|
break;
|
|
}
|
|
|
|
return (dw & mask) ? 0 : 1;
|
|
}
|
|
|
|
static int efm32x_set_page_lock(struct flash_bank *bank, size_t page, int set)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
|
|
if (bank->base != EFM32_FLASH_BASE) {
|
|
LOG_ERROR("Locking user and lockbits pages is not supported yet");
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
uint32_t *dw = &efm32x_info->lb_page[page >> 5];
|
|
uint32_t mask = 0;
|
|
|
|
mask = 1 << (page & 0x1f);
|
|
|
|
if (!set)
|
|
*dw |= mask;
|
|
else
|
|
*dw &= ~mask;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int efm32x_protect(struct flash_bank *bank, int set, unsigned int first,
|
|
unsigned int last)
|
|
{
|
|
struct target *target = bank->target;
|
|
int ret = 0;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
for (unsigned int i = first; i <= last; i++) {
|
|
ret = efm32x_set_page_lock(bank, i, set);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to set lock on page %d", i);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = efm32x_write_lock_data(bank);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to write LB page");
|
|
return ret;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int efm32x_write_block(struct flash_bank *bank, const uint8_t *buf,
|
|
uint32_t address, uint32_t count)
|
|
{
|
|
struct target *target = bank->target;
|
|
uint32_t buffer_size = 16384;
|
|
struct working_area *write_algorithm;
|
|
struct working_area *source;
|
|
struct reg_param reg_params[5];
|
|
struct armv7m_algorithm armv7m_info;
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
int ret = ERROR_OK;
|
|
|
|
/* see contrib/loaders/flash/efm32.S for src */
|
|
static const uint8_t efm32x_flash_write_code[] = {
|
|
/* #define EFM32_MSC_WRITECTRL_OFFSET 0x008 */
|
|
/* #define EFM32_MSC_WRITECMD_OFFSET 0x00c */
|
|
/* #define EFM32_MSC_ADDRB_OFFSET 0x010 */
|
|
/* #define EFM32_MSC_WDATA_OFFSET 0x018 */
|
|
/* #define EFM32_MSC_STATUS_OFFSET 0x01c */
|
|
|
|
0x01, 0x26, /* movs r6, #1 */
|
|
0x86, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECTRL_OFFSET] */
|
|
|
|
/* wait_fifo: */
|
|
0x16, 0x68, /* ldr r6, [r2, #0] */
|
|
0x00, 0x2e, /* cmp r6, #0 */
|
|
0x22, 0xd0, /* beq exit */
|
|
0x55, 0x68, /* ldr r5, [r2, #4] */
|
|
0xb5, 0x42, /* cmp r5, r6 */
|
|
0xf9, 0xd0, /* beq wait_fifo */
|
|
|
|
0x04, 0x61, /* str r4, [r0, #EFM32_MSC_ADDRB_OFFSET] */
|
|
0x01, 0x26, /* movs r6, #1 */
|
|
0xc6, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET] */
|
|
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
|
|
0x06, 0x27, /* movs r7, #6 */
|
|
0x3e, 0x42, /* tst r6, r7 */
|
|
0x16, 0xd1, /* bne error */
|
|
|
|
/* wait_wdataready: */
|
|
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
|
|
0x08, 0x27, /* movs r7, #8 */
|
|
0x3e, 0x42, /* tst r6, r7 */
|
|
0xfb, 0xd0, /* beq wait_wdataready */
|
|
|
|
0x2e, 0x68, /* ldr r6, [r5] */
|
|
0x86, 0x61, /* str r6, [r0, #EFM32_MSC_WDATA_OFFSET] */
|
|
0x08, 0x26, /* movs r6, #8 */
|
|
0xc6, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET] */
|
|
|
|
0x04, 0x35, /* adds r5, #4 */
|
|
0x04, 0x34, /* adds r4, #4 */
|
|
|
|
/* busy: */
|
|
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
|
|
0x01, 0x27, /* movs r7, #1 */
|
|
0x3e, 0x42, /* tst r6, r7 */
|
|
0xfb, 0xd1, /* bne busy */
|
|
|
|
0x9d, 0x42, /* cmp r5, r3 */
|
|
0x01, 0xd3, /* bcc no_wrap */
|
|
0x15, 0x46, /* mov r5, r2 */
|
|
0x08, 0x35, /* adds r5, #8 */
|
|
|
|
/* no_wrap: */
|
|
0x55, 0x60, /* str r5, [r2, #4] */
|
|
0x01, 0x39, /* subs r1, r1, #1 */
|
|
0x00, 0x29, /* cmp r1, #0 */
|
|
0x02, 0xd0, /* beq exit */
|
|
0xdb, 0xe7, /* b wait_fifo */
|
|
|
|
/* error: */
|
|
0x00, 0x20, /* movs r0, #0 */
|
|
0x50, 0x60, /* str r0, [r2, #4] */
|
|
|
|
/* exit: */
|
|
0x30, 0x46, /* mov r0, r6 */
|
|
0x00, 0xbe, /* bkpt #0 */
|
|
};
|
|
|
|
|
|
/* flash write code */
|
|
if (target_alloc_working_area(target, sizeof(efm32x_flash_write_code),
|
|
&write_algorithm) != ERROR_OK) {
|
|
LOG_WARNING("no working area available, can't do block memory writes");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
|
|
ret = target_write_buffer(target, write_algorithm->address,
|
|
sizeof(efm32x_flash_write_code), efm32x_flash_write_code);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
/* memory buffer */
|
|
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
|
|
buffer_size /= 2;
|
|
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
|
|
if (buffer_size <= 256) {
|
|
/* we already allocated the writing code, but failed to get a
|
|
* buffer, free the algorithm */
|
|
target_free_working_area(target, write_algorithm);
|
|
|
|
LOG_WARNING("no large enough working area available, can't do block memory writes");
|
|
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
|
|
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* count (word-32bit) */
|
|
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* buffer start */
|
|
init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* buffer end */
|
|
init_reg_param(®_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
|
|
|
|
buf_set_u32(reg_params[0].value, 0, 32, efm32x_info->reg_base);
|
|
buf_set_u32(reg_params[1].value, 0, 32, count);
|
|
buf_set_u32(reg_params[2].value, 0, 32, source->address);
|
|
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
|
|
buf_set_u32(reg_params[4].value, 0, 32, address);
|
|
|
|
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
|
|
armv7m_info.core_mode = ARM_MODE_THREAD;
|
|
|
|
ret = target_run_flash_async_algorithm(target, buf, count, 4,
|
|
0, NULL,
|
|
5, reg_params,
|
|
source->address, source->size,
|
|
write_algorithm->address, 0,
|
|
&armv7m_info);
|
|
|
|
if (ret == ERROR_FLASH_OPERATION_FAILED) {
|
|
LOG_ERROR("flash write failed at address 0x%"PRIx32,
|
|
buf_get_u32(reg_params[4].value, 0, 32));
|
|
|
|
if (buf_get_u32(reg_params[0].value, 0, 32) &
|
|
EFM32_MSC_STATUS_LOCKED_MASK) {
|
|
LOG_ERROR("flash memory write protected");
|
|
}
|
|
|
|
if (buf_get_u32(reg_params[0].value, 0, 32) &
|
|
EFM32_MSC_STATUS_INVADDR_MASK) {
|
|
LOG_ERROR("invalid flash memory write address");
|
|
}
|
|
}
|
|
|
|
target_free_working_area(target, source);
|
|
target_free_working_area(target, write_algorithm);
|
|
|
|
destroy_reg_param(®_params[0]);
|
|
destroy_reg_param(®_params[1]);
|
|
destroy_reg_param(®_params[2]);
|
|
destroy_reg_param(®_params[3]);
|
|
destroy_reg_param(®_params[4]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int efm32x_write_word(struct flash_bank *bank, uint32_t addr,
|
|
uint32_t val)
|
|
{
|
|
/* this function DOES NOT set WREN; must be set already */
|
|
/* 1. write address to ADDRB
|
|
2. write LADDRIM
|
|
3. check status (INVADDR, LOCKED)
|
|
4. wait for WDATAREADY
|
|
5. write data to WDATA
|
|
6. write WRITECMD_WRITEONCE to WRITECMD
|
|
7. wait until !STATUS_BUSY
|
|
*/
|
|
|
|
/* FIXME: EFM32G ref states (7.3.2) that writes should be
|
|
* performed twice per dword */
|
|
|
|
int ret = 0;
|
|
uint32_t status = 0;
|
|
|
|
/* if not called, GDB errors will be reported during large writes */
|
|
keep_alive();
|
|
|
|
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_ADDRB, addr);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
ret = efm32x_set_reg_bits(bank, EFM32_MSC_REG_WRITECMD,
|
|
EFM32_MSC_WRITECMD_LADDRIM_MASK, 1);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
ret = efm32x_read_reg_u32(bank, EFM32_MSC_REG_STATUS, &status);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
LOG_DEBUG("status 0x%" PRIx32, status);
|
|
|
|
if (status & EFM32_MSC_STATUS_LOCKED_MASK) {
|
|
LOG_ERROR("Page is locked");
|
|
return ERROR_FAIL;
|
|
} else if (status & EFM32_MSC_STATUS_INVADDR_MASK) {
|
|
LOG_ERROR("Invalid address 0x%" PRIx32, addr);
|
|
return ERROR_FAIL;
|
|
}
|
|
|
|
ret = efm32x_wait_status(bank, EFM32_FLASH_WDATAREADY_TMO,
|
|
EFM32_MSC_STATUS_WDATAREADY_MASK, 1);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Wait for WDATAREADY failed");
|
|
return ret;
|
|
}
|
|
|
|
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_WDATA, val);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("WDATA write failed");
|
|
return ret;
|
|
}
|
|
|
|
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_WRITECMD,
|
|
EFM32_MSC_WRITECMD_WRITEONCE_MASK);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("WRITECMD write failed");
|
|
return ret;
|
|
}
|
|
|
|
ret = efm32x_wait_status(bank, EFM32_FLASH_WRITE_TMO,
|
|
EFM32_MSC_STATUS_BUSY_MASK, 0);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Wait for BUSY failed");
|
|
return ret;
|
|
}
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int efm32x_priv_write(struct flash_bank *bank, const uint8_t *buffer,
|
|
uint32_t addr, uint32_t count)
|
|
{
|
|
struct target *target = bank->target;
|
|
uint8_t *new_buffer = NULL;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
if (addr & 0x3) {
|
|
LOG_ERROR("addr 0x%" PRIx32 " breaks required 4-byte "
|
|
"alignment", addr);
|
|
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
|
|
}
|
|
|
|
if (count & 0x3) {
|
|
uint32_t old_count = count;
|
|
count = (old_count | 3) + 1;
|
|
new_buffer = malloc(count);
|
|
if (!new_buffer) {
|
|
LOG_ERROR("odd number of bytes to write and no memory "
|
|
"for padding buffer");
|
|
return ERROR_FAIL;
|
|
}
|
|
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
|
|
"and padding with 0xff", old_count, count);
|
|
memset(new_buffer, 0xff, count);
|
|
buffer = memcpy(new_buffer, buffer, old_count);
|
|
}
|
|
|
|
uint32_t words_remaining = count / 4;
|
|
int retval, retval2;
|
|
|
|
/* unlock flash registers */
|
|
efm32x_msc_lock(bank, 0);
|
|
retval = efm32x_set_wren(bank, 1);
|
|
if (retval != ERROR_OK)
|
|
goto cleanup;
|
|
|
|
/* try using a block write */
|
|
retval = efm32x_write_block(bank, buffer, addr, words_remaining);
|
|
|
|
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
|
|
/* if block write failed (no sufficient working area),
|
|
* we use normal (slow) single word accesses */
|
|
LOG_WARNING("couldn't use block writes, falling back to single "
|
|
"memory accesses");
|
|
|
|
while (words_remaining > 0) {
|
|
uint32_t value;
|
|
memcpy(&value, buffer, sizeof(uint32_t));
|
|
|
|
retval = efm32x_write_word(bank, addr, value);
|
|
if (retval != ERROR_OK)
|
|
goto reset_pg_and_lock;
|
|
|
|
words_remaining--;
|
|
buffer += 4;
|
|
addr += 4;
|
|
}
|
|
}
|
|
|
|
reset_pg_and_lock:
|
|
retval2 = efm32x_set_wren(bank, 0);
|
|
efm32x_msc_lock(bank, 1);
|
|
if (retval == ERROR_OK)
|
|
retval = retval2;
|
|
|
|
cleanup:
|
|
free(new_buffer);
|
|
return retval;
|
|
}
|
|
|
|
static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
|
|
uint32_t offset, uint32_t count)
|
|
{
|
|
if (bank->base == EFM32_MSC_LOCK_BITS && offset < LOCKWORDS_SZ) {
|
|
LOG_ERROR("Cannot write to lock words");
|
|
return ERROR_FAIL;
|
|
}
|
|
return efm32x_priv_write(bank, buffer, bank->base + offset, count);
|
|
}
|
|
|
|
static int efm32x_probe(struct flash_bank *bank)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
struct efm32_info *efm32_mcu_info = &(efm32x_info->info);
|
|
int ret;
|
|
|
|
int bank_index = efm32x_get_bank_index(bank->base);
|
|
assert(bank_index >= 0);
|
|
|
|
efm32x_info->probed[bank_index] = false;
|
|
memset(efm32x_info->lb_page, 0xff, LOCKWORDS_SZ);
|
|
|
|
ret = efm32x_read_info(bank);
|
|
if (ret != ERROR_OK)
|
|
return ret;
|
|
|
|
LOG_INFO("detected part: %s Gecko, rev %d",
|
|
efm32_mcu_info->family_data->name, efm32_mcu_info->prod_rev);
|
|
LOG_INFO("flash size = %d KiB", efm32_mcu_info->flash_sz_kib);
|
|
LOG_INFO("flash page size = %d B", efm32_mcu_info->page_size);
|
|
|
|
assert(efm32_mcu_info->page_size != 0);
|
|
|
|
free(bank->sectors);
|
|
bank->sectors = NULL;
|
|
|
|
if (bank->base == EFM32_FLASH_BASE) {
|
|
bank->num_sectors = efm32_mcu_info->flash_sz_kib * 1024 /
|
|
efm32_mcu_info->page_size;
|
|
assert(bank->num_sectors > 0);
|
|
|
|
ret = efm32x_read_lock_data(bank);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read LB data");
|
|
return ret;
|
|
}
|
|
} else
|
|
bank->num_sectors = 1;
|
|
bank->size = bank->num_sectors * efm32_mcu_info->page_size;
|
|
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
|
|
|
|
for (uint32_t i = 0; i < bank->num_sectors; i++) {
|
|
bank->sectors[i].offset = i * efm32_mcu_info->page_size;
|
|
bank->sectors[i].size = efm32_mcu_info->page_size;
|
|
bank->sectors[i].is_erased = -1;
|
|
bank->sectors[i].is_protected = 1;
|
|
}
|
|
|
|
efm32x_info->probed[bank_index] = true;
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int efm32x_auto_probe(struct flash_bank *bank)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
|
|
int bank_index = efm32x_get_bank_index(bank->base);
|
|
assert(bank_index >= 0);
|
|
|
|
if (efm32x_info->probed[bank_index])
|
|
return ERROR_OK;
|
|
return efm32x_probe(bank);
|
|
}
|
|
|
|
static int efm32x_protect_check(struct flash_bank *bank)
|
|
{
|
|
struct target *target = bank->target;
|
|
int ret = 0;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
ret = efm32x_read_lock_data(bank);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read LB data");
|
|
return ret;
|
|
}
|
|
|
|
assert(bank->sectors);
|
|
|
|
for (unsigned int i = 0; i < bank->num_sectors; i++)
|
|
bank->sectors[i].is_protected = efm32x_get_page_lock(bank, i);
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static int get_efm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
|
|
{
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
int ret;
|
|
|
|
ret = efm32x_read_info(bank);
|
|
if (ret != ERROR_OK) {
|
|
LOG_ERROR("Failed to read EFM32 info");
|
|
return ret;
|
|
}
|
|
|
|
command_print_sameline(cmd, "%s Gecko, rev %d", efm32x_info->info.family_data->name,
|
|
efm32x_info->info.prod_rev);
|
|
return ERROR_OK;
|
|
}
|
|
|
|
COMMAND_HANDLER(efm32x_handle_debuglock_command)
|
|
{
|
|
struct target *target = NULL;
|
|
|
|
if (CMD_ARGC < 1)
|
|
return ERROR_COMMAND_SYNTAX_ERROR;
|
|
|
|
struct flash_bank *bank;
|
|
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
|
|
if (retval != ERROR_OK)
|
|
return retval;
|
|
|
|
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
|
|
|
|
target = bank->target;
|
|
|
|
if (target->state != TARGET_HALTED) {
|
|
LOG_ERROR("Target not halted");
|
|
return ERROR_TARGET_NOT_HALTED;
|
|
}
|
|
|
|
uint32_t *ptr;
|
|
ptr = efm32x_info->lb_page + 127;
|
|
*ptr = 0;
|
|
|
|
retval = efm32x_write_lock_data(bank);
|
|
if (retval != ERROR_OK) {
|
|
LOG_ERROR("Failed to write LB page");
|
|
return retval;
|
|
}
|
|
|
|
command_print(CMD, "efm32x debug interface locked, reset the device to apply");
|
|
|
|
return ERROR_OK;
|
|
}
|
|
|
|
static const struct command_registration efm32x_exec_command_handlers[] = {
|
|
{
|
|
.name = "debuglock",
|
|
.handler = efm32x_handle_debuglock_command,
|
|
.mode = COMMAND_EXEC,
|
|
.usage = "bank_id",
|
|
.help = "Lock the debug interface of the device.",
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
static const struct command_registration efm32x_command_handlers[] = {
|
|
{
|
|
.name = "efm32",
|
|
.mode = COMMAND_ANY,
|
|
.help = "efm32 flash command group",
|
|
.usage = "",
|
|
.chain = efm32x_exec_command_handlers,
|
|
},
|
|
COMMAND_REGISTRATION_DONE
|
|
};
|
|
|
|
const struct flash_driver efm32_flash = {
|
|
.name = "efm32",
|
|
.commands = efm32x_command_handlers,
|
|
.flash_bank_command = efm32x_flash_bank_command,
|
|
.erase = efm32x_erase,
|
|
.protect = efm32x_protect,
|
|
.write = efm32x_write,
|
|
.read = default_flash_read,
|
|
.probe = efm32x_probe,
|
|
.auto_probe = efm32x_auto_probe,
|
|
.erase_check = default_flash_blank_check,
|
|
.protect_check = efm32x_protect_check,
|
|
.info = get_efm32x_info,
|
|
.free_driver_priv = efm32x_free_driver_priv,
|
|
};
|