/* SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "target/target.h" #include "target/algorithm.h" #include "target/target_type.h" #include #include "jtag/jtag.h" #include "target/register.h" #include "target/breakpoints.h" #include "helper/base64.h" #include "helper/time_support.h" #include "riscv.h" #include "program.h" #include "gdb_regs.h" #include "rtos/rtos.h" #include "debug_defines.h" #include #define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1))) #define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask))) /*** JTAG registers. ***/ #define DTMCONTROL 0x10 #define DTMCONTROL_VERSION (0xf) #define DBUS 0x11 uint8_t ir_dtmcontrol[4] = {DTMCONTROL}; struct scan_field select_dtmcontrol = { .in_value = NULL, .out_value = ir_dtmcontrol }; uint8_t ir_dbus[4] = {DBUS}; struct scan_field select_dbus = { .in_value = NULL, .out_value = ir_dbus }; uint8_t ir_idcode[4] = {0x1}; struct scan_field select_idcode = { .in_value = NULL, .out_value = ir_idcode }; bscan_tunnel_type_t bscan_tunnel_type; int bscan_tunnel_ir_width; /* if zero, then tunneling is not present/active */ static int bscan_tunnel_ir_id; /* IR ID of the JTAG TAP to access the tunnel. Valid when not 0 */ static const uint8_t bscan_zero[4] = {0}; static const uint8_t bscan_one[4] = {1}; uint8_t ir_user4[4]; struct scan_field select_user4 = { .in_value = NULL, .out_value = ir_user4 }; uint8_t bscan_tunneled_ir_width[4] = {5}; /* overridden by assignment in riscv_init_target */ struct scan_field _bscan_tunnel_data_register_select_dmi[] = { { .num_bits = 3, .out_value = bscan_zero, .in_value = NULL, }, { .num_bits = 5, /* initialized in riscv_init_target to ir width of DM */ .out_value = ir_dbus, .in_value = NULL, }, { .num_bits = 7, .out_value = bscan_tunneled_ir_width, .in_value = NULL, }, { .num_bits = 1, .out_value = bscan_zero, .in_value = NULL, } }; struct scan_field _bscan_tunnel_nested_tap_select_dmi[] = { { .num_bits = 1, .out_value = bscan_zero, .in_value = NULL, }, { .num_bits = 7, .out_value = bscan_tunneled_ir_width, .in_value = NULL, }, { .num_bits = 0, /* initialized in riscv_init_target to ir width of DM */ .out_value = ir_dbus, .in_value = NULL, }, { .num_bits = 3, .out_value = bscan_zero, .in_value = NULL, } }; struct scan_field *bscan_tunnel_nested_tap_select_dmi = _bscan_tunnel_nested_tap_select_dmi; uint32_t bscan_tunnel_nested_tap_select_dmi_num_fields = ARRAY_SIZE(_bscan_tunnel_nested_tap_select_dmi); struct scan_field *bscan_tunnel_data_register_select_dmi = _bscan_tunnel_data_register_select_dmi; uint32_t bscan_tunnel_data_register_select_dmi_num_fields = ARRAY_SIZE(_bscan_tunnel_data_register_select_dmi); struct trigger { uint64_t address; uint32_t length; uint64_t mask; uint64_t value; bool read, write, execute; int unique_id; }; /* Wall-clock timeout for a command/access. Settable via RISC-V Target commands.*/ int riscv_command_timeout_sec = DEFAULT_COMMAND_TIMEOUT_SEC; /* Wall-clock timeout after reset. Settable via RISC-V Target commands.*/ int riscv_reset_timeout_sec = DEFAULT_RESET_TIMEOUT_SEC; bool riscv_enable_virt2phys = true; bool riscv_ebreakm = true; bool riscv_ebreaks = true; bool riscv_ebreaku = true; bool riscv_enable_virtual; static enum { RO_NORMAL, RO_REVERSED } resume_order; const virt2phys_info_t sv32 = { .name = "Sv32", .va_bits = 32, .level = 2, .pte_shift = 2, .vpn_shift = {12, 22}, .vpn_mask = {0x3ff, 0x3ff}, .pte_ppn_shift = {10, 20}, .pte_ppn_mask = {0x3ff, 0xfff}, .pa_ppn_shift = {12, 22}, .pa_ppn_mask = {0x3ff, 0xfff}, }; const virt2phys_info_t sv39 = { .name = "Sv39", .va_bits = 39, .level = 3, .pte_shift = 3, .vpn_shift = {12, 21, 30}, .vpn_mask = {0x1ff, 0x1ff, 0x1ff}, .pte_ppn_shift = {10, 19, 28}, .pte_ppn_mask = {0x1ff, 0x1ff, 0x3ffffff}, .pa_ppn_shift = {12, 21, 30}, .pa_ppn_mask = {0x1ff, 0x1ff, 0x3ffffff}, }; const virt2phys_info_t sv48 = { .name = "Sv48", .va_bits = 48, .level = 4, .pte_shift = 3, .vpn_shift = {12, 21, 30, 39}, .vpn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff}, .pte_ppn_shift = {10, 19, 28, 37}, .pte_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ffff}, .pa_ppn_shift = {12, 21, 30, 39}, .pa_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ffff}, }; void riscv_sample_buf_maybe_add_timestamp(struct target *target, bool before) { RISCV_INFO(r); uint32_t now = timeval_ms() & 0xffffffff; if (r->sample_buf.used + 5 < r->sample_buf.size) { if (before) r->sample_buf.buf[r->sample_buf.used++] = RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE; else r->sample_buf.buf[r->sample_buf.used++] = RISCV_SAMPLE_BUF_TIMESTAMP_AFTER; r->sample_buf.buf[r->sample_buf.used++] = now & 0xff; r->sample_buf.buf[r->sample_buf.used++] = (now >> 8) & 0xff; r->sample_buf.buf[r->sample_buf.used++] = (now >> 16) & 0xff; r->sample_buf.buf[r->sample_buf.used++] = (now >> 24) & 0xff; } } static int riscv_resume_go_all_harts(struct target *target); void select_dmi_via_bscan(struct target *target) { jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE); if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) jtag_add_dr_scan(target->tap, bscan_tunnel_data_register_select_dmi_num_fields, bscan_tunnel_data_register_select_dmi, TAP_IDLE); else /* BSCAN_TUNNEL_NESTED_TAP */ jtag_add_dr_scan(target->tap, bscan_tunnel_nested_tap_select_dmi_num_fields, bscan_tunnel_nested_tap_select_dmi, TAP_IDLE); } uint32_t dtmcontrol_scan_via_bscan(struct target *target, uint32_t out) { /* On BSCAN TAP: Select IR=USER4, issue tunneled IR scan via BSCAN TAP's DR */ uint8_t tunneled_ir_width[4] = {bscan_tunnel_ir_width}; uint8_t tunneled_dr_width[4] = {32}; uint8_t out_value[5] = {0}; uint8_t in_value[5] = {0}; buf_set_u32(out_value, 0, 32, out); struct scan_field tunneled_ir[4] = {}; struct scan_field tunneled_dr[4] = {}; if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) { tunneled_ir[0].num_bits = 3; tunneled_ir[0].out_value = bscan_zero; tunneled_ir[0].in_value = NULL; tunneled_ir[1].num_bits = bscan_tunnel_ir_width; tunneled_ir[1].out_value = ir_dtmcontrol; tunneled_ir[1].in_value = NULL; tunneled_ir[2].num_bits = 7; tunneled_ir[2].out_value = tunneled_ir_width; tunneled_ir[2].in_value = NULL; tunneled_ir[3].num_bits = 1; tunneled_ir[3].out_value = bscan_zero; tunneled_ir[3].in_value = NULL; tunneled_dr[0].num_bits = 3; tunneled_dr[0].out_value = bscan_zero; tunneled_dr[0].in_value = NULL; tunneled_dr[1].num_bits = 32 + 1; tunneled_dr[1].out_value = out_value; tunneled_dr[1].in_value = in_value; tunneled_dr[2].num_bits = 7; tunneled_dr[2].out_value = tunneled_dr_width; tunneled_dr[2].in_value = NULL; tunneled_dr[3].num_bits = 1; tunneled_dr[3].out_value = bscan_one; tunneled_dr[3].in_value = NULL; } else { /* BSCAN_TUNNEL_NESTED_TAP */ tunneled_ir[3].num_bits = 3; tunneled_ir[3].out_value = bscan_zero; tunneled_ir[3].in_value = NULL; tunneled_ir[2].num_bits = bscan_tunnel_ir_width; tunneled_ir[2].out_value = ir_dtmcontrol; tunneled_ir[1].in_value = NULL; tunneled_ir[1].num_bits = 7; tunneled_ir[1].out_value = tunneled_ir_width; tunneled_ir[2].in_value = NULL; tunneled_ir[0].num_bits = 1; tunneled_ir[0].out_value = bscan_zero; tunneled_ir[0].in_value = NULL; tunneled_dr[3].num_bits = 3; tunneled_dr[3].out_value = bscan_zero; tunneled_dr[3].in_value = NULL; tunneled_dr[2].num_bits = 32 + 1; tunneled_dr[2].out_value = out_value; tunneled_dr[2].in_value = in_value; tunneled_dr[1].num_bits = 7; tunneled_dr[1].out_value = tunneled_dr_width; tunneled_dr[1].in_value = NULL; tunneled_dr[0].num_bits = 1; tunneled_dr[0].out_value = bscan_one; tunneled_dr[0].in_value = NULL; } jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE); jtag_add_dr_scan(target->tap, ARRAY_SIZE(tunneled_ir), tunneled_ir, TAP_IDLE); jtag_add_dr_scan(target->tap, ARRAY_SIZE(tunneled_dr), tunneled_dr, TAP_IDLE); select_dmi_via_bscan(target); int retval = jtag_execute_queue(); if (retval != ERROR_OK) { LOG_ERROR("failed jtag scan: %d", retval); return retval; } /* Note the starting offset is bit 1, not bit 0. In BSCAN tunnel, there is a one-bit TCK skew between output and input */ uint32_t in = buf_get_u32(in_value, 1, 32); LOG_DEBUG("DTMCS: 0x%x -> 0x%x", out, in); return in; } static uint32_t dtmcontrol_scan(struct target *target, uint32_t out) { struct scan_field field; uint8_t in_value[4]; uint8_t out_value[4] = { 0 }; if (bscan_tunnel_ir_width != 0) return dtmcontrol_scan_via_bscan(target, out); buf_set_u32(out_value, 0, 32, out); jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE); field.num_bits = 32; field.out_value = out_value; field.in_value = in_value; jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE); /* Always return to dbus. */ jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE); int retval = jtag_execute_queue(); if (retval != ERROR_OK) { LOG_ERROR("failed jtag scan: %d", retval); return retval; } uint32_t in = buf_get_u32(field.in_value, 0, 32); LOG_DEBUG("DTMCONTROL: 0x%x -> 0x%x", out, in); return in; } static struct target_type *get_target_type(struct target *target) { riscv_info_t *info = (riscv_info_t *) target->arch_info; if (!info) { LOG_ERROR("Target has not been initialized"); return NULL; } switch (info->dtm_version) { case 0: return &riscv011_target; case 1: return &riscv013_target; default: LOG_ERROR("[%s] Unsupported DTM version: %d", target_name(target), info->dtm_version); return NULL; } } static int riscv_create_target(struct target *target, Jim_Interp *interp) { LOG_DEBUG("riscv_create_target()"); target->arch_info = calloc(1, sizeof(riscv_info_t)); if (!target->arch_info) { LOG_ERROR("Failed to allocate RISC-V target structure."); return ERROR_FAIL; } riscv_info_init(target, target->arch_info); return ERROR_OK; } static int riscv_init_target(struct command_context *cmd_ctx, struct target *target) { LOG_DEBUG("riscv_init_target()"); RISCV_INFO(info); info->cmd_ctx = cmd_ctx; select_dtmcontrol.num_bits = target->tap->ir_length; select_dbus.num_bits = target->tap->ir_length; select_idcode.num_bits = target->tap->ir_length; if (bscan_tunnel_ir_width != 0) { uint32_t ir_user4_raw = bscan_tunnel_ir_id; /* Provide a default value which target some Xilinx FPGA USER4 IR */ if (ir_user4_raw == 0) { assert(target->tap->ir_length >= 6); ir_user4_raw = 0x23 << (target->tap->ir_length - 6); } ir_user4[0] = (uint8_t)ir_user4_raw; ir_user4[1] = (uint8_t)(ir_user4_raw >>= 8); ir_user4[2] = (uint8_t)(ir_user4_raw >>= 8); ir_user4[3] = (uint8_t)(ir_user4_raw >>= 8); select_user4.num_bits = target->tap->ir_length; bscan_tunneled_ir_width[0] = bscan_tunnel_ir_width; if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) bscan_tunnel_data_register_select_dmi[1].num_bits = bscan_tunnel_ir_width; else /* BSCAN_TUNNEL_NESTED_TAP */ bscan_tunnel_nested_tap_select_dmi[2].num_bits = bscan_tunnel_ir_width; } riscv_semihosting_init(target); target->debug_reason = DBG_REASON_DBGRQ; return ERROR_OK; } static void riscv_free_registers(struct target *target) { /* Free the shared structure use for most registers. */ if (target->reg_cache) { if (target->reg_cache->reg_list) { free(target->reg_cache->reg_list[0].arch_info); /* Free the ones we allocated separately. */ for (unsigned i = GDB_REGNO_COUNT; i < target->reg_cache->num_regs; i++) free(target->reg_cache->reg_list[i].arch_info); for (unsigned int i = 0; i < target->reg_cache->num_regs; i++) free(target->reg_cache->reg_list[i].value); free(target->reg_cache->reg_list); } free(target->reg_cache); } } static void riscv_deinit_target(struct target *target) { LOG_DEBUG("riscv_deinit_target()"); riscv_info_t *info = target->arch_info; struct target_type *tt = get_target_type(target); if (riscv_flush_registers(target) != ERROR_OK) LOG_ERROR("[%s] Failed to flush registers. Ignoring this error.", target_name(target)); if (tt && info->version_specific) tt->deinit_target(target); riscv_free_registers(target); range_list_t *entry, *tmp; list_for_each_entry_safe(entry, tmp, &info->hide_csr, list) { free(entry->name); free(entry); } list_for_each_entry_safe(entry, tmp, &info->expose_csr, list) { free(entry->name); free(entry); } list_for_each_entry_safe(entry, tmp, &info->expose_custom, list) { free(entry->name); free(entry); } free(info->reg_names); free(target->arch_info); target->arch_info = NULL; } static void trigger_from_breakpoint(struct trigger *trigger, const struct breakpoint *breakpoint) { trigger->address = breakpoint->address; trigger->length = breakpoint->length; trigger->mask = ~0LL; trigger->read = false; trigger->write = false; trigger->execute = true; /* unique_id is unique across both breakpoints and watchpoints. */ trigger->unique_id = breakpoint->unique_id; } static bool can_use_napot_match(struct trigger *trigger, riscv_reg_t *tdata2) { riscv_reg_t addr = trigger->address; riscv_reg_t size = trigger->length; bool sizePowerOf2 = (size & (size - 1)) == 0; bool addrAligned = (addr & (size - 1)) == 0; if (size > 1 && sizePowerOf2 && addrAligned) { if (tdata2) *tdata2 = addr | ((size - 1) >> 1); return true; } return false; } static int find_trigger(struct target *target, int type, bool chained, unsigned int *idx) { RISCV_INFO(r); unsigned int num_found = 0; unsigned int num_required = chained ? 2 : 1; for (unsigned i = 0; i < r->trigger_count; i++) { if (r->trigger_unique_id[i] == -1) { if (r->trigger_tinfo[i] & (1 << type)) { num_found++; bool done = (num_required == num_found); if (done) { /* Found num_required consecutive free triggers - success, done. */ if (idx) *idx = i - (num_required - 1); return ERROR_OK; } /* Found a trigger but need more consecutive ones */ continue; } } /* Trigger already occupied or incompatible type. * Reset the counter of found consecutive triggers */ num_found = 0; } return ERROR_FAIL; } static int find_first_trigger_by_id(struct target *target, int unique_id) { RISCV_INFO(r); for (unsigned i = 0; i < r->trigger_count; i++) { if (r->trigger_unique_id[i] == unique_id) return i; } return -1; } static int set_trigger(struct target *target, unsigned int idx, riscv_reg_t tdata1, riscv_reg_t tdata2, riscv_reg_t tdata1_ignore_mask) { riscv_reg_t tdata1_rb, tdata2_rb; if (riscv_set_register(target, GDB_REGNO_TSELECT, idx) != ERROR_OK) return ERROR_FAIL; if (riscv_set_register(target, GDB_REGNO_TDATA1, tdata1) != ERROR_OK) return ERROR_FAIL; if (riscv_get_register(target, &tdata1_rb, GDB_REGNO_TDATA1) != ERROR_OK) return ERROR_FAIL; if ((tdata1 & ~tdata1_ignore_mask) != (tdata1_rb & ~tdata1_ignore_mask)) { LOG_TARGET_DEBUG(target, "Trigger %u doesn't support what we need; After writing 0x%" PRIx64 " to tdata1 it contains 0x%" PRIx64 "; tdata1_ignore_mask=0x%" PRIx64, idx, tdata1, tdata1_rb, tdata1_ignore_mask); riscv_set_register(target, GDB_REGNO_TDATA1, 0); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } if (riscv_set_register(target, GDB_REGNO_TDATA2, tdata2) != ERROR_OK) return ERROR_FAIL; if (riscv_get_register(target, &tdata2_rb, GDB_REGNO_TDATA2) != ERROR_OK) return ERROR_FAIL; if (tdata2 != tdata2_rb) { LOG_TARGET_DEBUG(target, "Trigger %u doesn't support what we need; wrote 0x%" PRIx64 " to tdata2 but read back 0x%" PRIx64, idx, tdata2, tdata2_rb); riscv_set_register(target, GDB_REGNO_TDATA1, 0); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } return ERROR_OK; } static int maybe_add_trigger_t1(struct target *target, struct trigger *trigger) { int ret; riscv_reg_t tdata1, tdata2; RISCV_INFO(r); const uint32_t bpcontrol_x = 1<<0; const uint32_t bpcontrol_w = 1<<1; const uint32_t bpcontrol_r = 1<<2; const uint32_t bpcontrol_u = 1<<3; const uint32_t bpcontrol_s = 1<<4; const uint32_t bpcontrol_h = 1<<5; const uint32_t bpcontrol_m = 1<<6; const uint32_t bpcontrol_bpmatch = 0xf << 7; const uint32_t bpcontrol_bpaction = 0xff << 11; unsigned int idx; ret = find_trigger(target, CSR_TDATA1_TYPE_LEGACY, false, &idx); if (ret != ERROR_OK) return ret; if (riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1) != ERROR_OK) return ERROR_FAIL; if (tdata1 & (bpcontrol_r | bpcontrol_w | bpcontrol_x)) { /* Trigger is already in use, presumably by user code. */ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } tdata1 = 0; tdata1 = set_field(tdata1, bpcontrol_r, trigger->read); tdata1 = set_field(tdata1, bpcontrol_w, trigger->write); tdata1 = set_field(tdata1, bpcontrol_x, trigger->execute); tdata1 = set_field(tdata1, bpcontrol_u, !!(r->misa & BIT('U' - 'A'))); tdata1 = set_field(tdata1, bpcontrol_s, !!(r->misa & BIT('S' - 'A'))); tdata1 = set_field(tdata1, bpcontrol_h, !!(r->misa & BIT('H' - 'A'))); tdata1 = set_field(tdata1, bpcontrol_m, 1); tdata1 = set_field(tdata1, bpcontrol_bpaction, 0); /* cause bp exception */ tdata1 = set_field(tdata1, bpcontrol_bpmatch, 0); /* exact match */ tdata2 = trigger->address; ret = set_trigger(target, idx, tdata1, tdata2, 0); if (ret != ERROR_OK) return ret; r->trigger_unique_id[idx] = trigger->unique_id; return ERROR_OK; } static int maybe_add_trigger_t2(struct target *target, struct trigger *trigger) { int ret; riscv_reg_t tdata1, tdata2; RISCV_INFO(r); tdata1 = 0; tdata1 = set_field(tdata1, CSR_MCONTROL_TYPE(riscv_xlen(target)), 2); tdata1 = set_field(tdata1, CSR_MCONTROL_DMODE(riscv_xlen(target)), 1); tdata1 = set_field(tdata1, CSR_MCONTROL_ACTION, CSR_MCONTROL_ACTION_DEBUG_MODE); tdata1 = set_field(tdata1, CSR_MCONTROL_M, 1); tdata1 = set_field(tdata1, CSR_MCONTROL_S, !!(r->misa & (1 << ('S' - 'A')))); tdata1 = set_field(tdata1, CSR_MCONTROL_U, !!(r->misa & (1 << ('U' - 'A')))); tdata1 = set_field(tdata1, CSR_MCONTROL_EXECUTE, trigger->execute); tdata1 = set_field(tdata1, CSR_MCONTROL_LOAD, trigger->read); tdata1 = set_field(tdata1, CSR_MCONTROL_STORE, trigger->write); tdata1 = set_field(tdata1, CSR_MCONTROL_SIZELO, CSR_MCONTROL_SIZELO_ANY & 3); tdata1 = set_field(tdata1, CSR_MCONTROL_SIZEHI, (CSR_MCONTROL_SIZELO_ANY >> 2) & 3); if (trigger->execute || trigger->length == 1) goto MATCH_EQUAL; if (!can_use_napot_match(trigger, &tdata2)) goto MATCH_GE_LT; unsigned int idx; ret = find_trigger(target, CSR_TDATA1_TYPE_MCONTROL, false, &idx); if (ret != ERROR_OK) return ret; tdata1 = set_field(tdata1, CSR_MCONTROL_MATCH, CSR_MCONTROL_MATCH_NAPOT); tdata1 = set_field(tdata1, CSR_MCONTROL_CHAIN, CSR_MCONTROL_CHAIN_DISABLED); ret = set_trigger(target, idx, tdata1, tdata2, CSR_MCONTROL_MASKMAX(riscv_xlen(target))); if (ret != ERROR_OK) { if (ret == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) goto MATCH_GE_LT; /* Fallback to chained MATCH using GT and LE */ return ret; } r->trigger_unique_id[idx] = trigger->unique_id; return ERROR_OK; MATCH_GE_LT: ret = find_trigger(target, CSR_TDATA1_TYPE_MCONTROL, true, &idx); if (ret != ERROR_OK) return ret; tdata1 = set_field(tdata1, CSR_MCONTROL_MATCH, CSR_MCONTROL_MATCH_GE); tdata1 = set_field(tdata1, CSR_MCONTROL_CHAIN, CSR_MCONTROL_CHAIN_ENABLED); tdata2 = trigger->address; ret = set_trigger(target, idx, tdata1, tdata2, 0); if (ret != ERROR_OK) { if (ret == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) goto MATCH_EQUAL; /* Fallback to EQUAL MATCH */ return ret; } tdata1 = set_field(tdata1, CSR_MCONTROL_MATCH, CSR_MCONTROL_MATCH_LT); tdata1 = set_field(tdata1, CSR_MCONTROL_CHAIN, CSR_MCONTROL_CHAIN_DISABLED); tdata2 = trigger->address + trigger->length; ret = set_trigger(target, idx + 1, tdata1, tdata2, 0); if (ret != ERROR_OK) { /* Undo the setting of the previous trigger*/ set_trigger(target, idx, 0, 0, CSR_MCONTROL_MASKMAX(riscv_xlen(target))); if (ret == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) goto MATCH_EQUAL; /* Fallback to EQUAL MATCH */ return ret; } r->trigger_unique_id[idx] = trigger->unique_id; r->trigger_unique_id[idx + 1] = trigger->unique_id; return ERROR_OK; MATCH_EQUAL: ret = find_trigger(target, CSR_TDATA1_TYPE_MCONTROL, false, &idx); if (ret != ERROR_OK) return ret; tdata1 = set_field(tdata1, CSR_MCONTROL_MATCH, CSR_MCONTROL_MATCH_EQUAL); if (trigger->length == 1) { tdata1 = set_field(tdata1, CSR_MCONTROL_SIZELO, CSR_MCONTROL_SIZELO_8BIT & 3); tdata1 = set_field(tdata1, CSR_MCONTROL_SIZEHI, (CSR_MCONTROL_SIZELO_8BIT >> 2) & 3); } tdata1 = set_field(tdata1, CSR_MCONTROL_CHAIN, CSR_MCONTROL_CHAIN_DISABLED); tdata2 = trigger->address; ret = set_trigger(target, idx, tdata1, tdata2, CSR_MCONTROL_MASKMAX(riscv_xlen(target))); if (ret != ERROR_OK) return ret; r->trigger_unique_id[idx] = trigger->unique_id; return ERROR_OK; } static int maybe_add_trigger_t4(struct target *target, bool vs, bool vu, bool nmi, bool m, bool s, bool u, riscv_reg_t interrupts, int unique_id) { int ret; riscv_reg_t tdata1, tdata2; RISCV_INFO(r); tdata1 = 0; tdata1 = set_field(tdata1, CSR_ITRIGGER_TYPE(riscv_xlen(target)), CSR_TDATA1_TYPE_ITRIGGER); tdata1 = set_field(tdata1, CSR_ITRIGGER_DMODE(riscv_xlen(target)), 1); tdata1 = set_field(tdata1, CSR_ITRIGGER_ACTION, CSR_ITRIGGER_ACTION_DEBUG_MODE); tdata1 = set_field(tdata1, CSR_ITRIGGER_VS, vs); tdata1 = set_field(tdata1, CSR_ITRIGGER_VU, vu); tdata1 = set_field(tdata1, CSR_ITRIGGER_NMI, nmi); tdata1 = set_field(tdata1, CSR_ITRIGGER_M, m); tdata1 = set_field(tdata1, CSR_ITRIGGER_S, s); tdata1 = set_field(tdata1, CSR_ITRIGGER_U, u); tdata2 = interrupts; unsigned int idx; ret = find_trigger(target, CSR_TDATA1_TYPE_ITRIGGER, false, &idx); if (ret != ERROR_OK) return ret; ret = set_trigger(target, idx, tdata1, tdata2, 0); if (ret != ERROR_OK) return ret; r->trigger_unique_id[idx] = unique_id; return ERROR_OK; } static int maybe_add_trigger_t5(struct target *target, bool vs, bool vu, bool m, bool s, bool u, riscv_reg_t exception_codes, int unique_id) { int ret; riscv_reg_t tdata1, tdata2; RISCV_INFO(r); tdata1 = 0; tdata1 = set_field(tdata1, CSR_ETRIGGER_TYPE(riscv_xlen(target)), CSR_TDATA1_TYPE_ETRIGGER); tdata1 = set_field(tdata1, CSR_ETRIGGER_DMODE(riscv_xlen(target)), 1); tdata1 = set_field(tdata1, CSR_ETRIGGER_ACTION, CSR_ETRIGGER_ACTION_DEBUG_MODE); tdata1 = set_field(tdata1, CSR_ETRIGGER_VS, vs); tdata1 = set_field(tdata1, CSR_ETRIGGER_VU, vu); tdata1 = set_field(tdata1, CSR_ETRIGGER_M, m); tdata1 = set_field(tdata1, CSR_ETRIGGER_S, s); tdata1 = set_field(tdata1, CSR_ETRIGGER_U, u); tdata2 = exception_codes; unsigned int idx; ret = find_trigger(target, CSR_TDATA1_TYPE_ETRIGGER, false, &idx); if (ret != ERROR_OK) return ret; ret = set_trigger(target, idx, tdata1, tdata2, 0); if (ret != ERROR_OK) return ret; r->trigger_unique_id[idx] = unique_id; return ERROR_OK; } static int maybe_add_trigger_t6(struct target *target, struct trigger *trigger) { int ret; riscv_reg_t tdata1, tdata2; RISCV_INFO(r); tdata1 = 0; tdata1 = set_field(tdata1, CSR_MCONTROL6_TYPE(riscv_xlen(target)), 6); tdata1 = set_field(tdata1, CSR_MCONTROL6_DMODE(riscv_xlen(target)), 1); tdata1 = set_field(tdata1, CSR_MCONTROL6_ACTION, CSR_MCONTROL6_ACTION_DEBUG_MODE); tdata1 = set_field(tdata1, CSR_MCONTROL6_M, 1); tdata1 = set_field(tdata1, CSR_MCONTROL6_S, !!(r->misa & (1 << ('S' - 'A')))); tdata1 = set_field(tdata1, CSR_MCONTROL6_U, !!(r->misa & (1 << ('U' - 'A')))); tdata1 = set_field(tdata1, CSR_MCONTROL6_EXECUTE, trigger->execute); tdata1 = set_field(tdata1, CSR_MCONTROL6_LOAD, trigger->read); tdata1 = set_field(tdata1, CSR_MCONTROL6_STORE, trigger->write); tdata1 = set_field(tdata1, CSR_MCONTROL6_SIZE, CSR_MCONTROL6_SIZE_ANY); if (trigger->execute || trigger->length == 1) goto MATCH_EQUAL; if (!can_use_napot_match(trigger, &tdata2)) goto MATCH_GE_LT; unsigned int idx; ret = find_trigger(target, CSR_TDATA1_TYPE_MCONTROL6, false, &idx); if (ret != ERROR_OK) return ret; tdata1 = set_field(tdata1, CSR_MCONTROL6_MATCH, CSR_MCONTROL6_MATCH_NAPOT); tdata1 = set_field(tdata1, CSR_MCONTROL6_CHAIN, CSR_MCONTROL6_CHAIN_DISABLED); ret = set_trigger(target, idx, tdata1, tdata2, 0); if (ret != ERROR_OK) { if (ret == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) goto MATCH_GE_LT; /* Fallback to chained MATCH using GT and LE */ return ret; } r->trigger_unique_id[idx] = trigger->unique_id; return ERROR_OK; MATCH_GE_LT: ret = find_trigger(target, CSR_TDATA1_TYPE_MCONTROL6, true, &idx); if (ret != ERROR_OK) return ret; tdata1 = set_field(tdata1, CSR_MCONTROL6_MATCH, CSR_MCONTROL6_MATCH_GE); tdata1 = set_field(tdata1, CSR_MCONTROL6_CHAIN, CSR_MCONTROL6_CHAIN_ENABLED); tdata2 = trigger->address; ret = set_trigger(target, idx, tdata1, tdata2, 0); if (ret != ERROR_OK) { if (ret == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) goto MATCH_EQUAL; /* Fallback to EQUAL MATCH */ return ret; } tdata1 = set_field(tdata1, CSR_MCONTROL6_MATCH, CSR_MCONTROL6_MATCH_LT); tdata1 = set_field(tdata1, CSR_MCONTROL6_CHAIN, CSR_MCONTROL6_CHAIN_DISABLED); tdata2 = trigger->address + trigger->length; ret = set_trigger(target, idx + 1, tdata1, tdata2, 0); if (ret != ERROR_OK) { set_trigger(target, idx, 0, 0, 0); /* Undo the setting of the previous trigger*/ if (ret == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) goto MATCH_EQUAL; /* Fallback to EQUAL MATCH */ return ret; } r->trigger_unique_id[idx] = trigger->unique_id; r->trigger_unique_id[idx + 1] = trigger->unique_id; return ERROR_OK; MATCH_EQUAL: ret = find_trigger(target, CSR_TDATA1_TYPE_MCONTROL6, false, &idx); if (ret != ERROR_OK) return ret; tdata1 = set_field(tdata1, CSR_MCONTROL6_MATCH, CSR_MCONTROL6_MATCH_EQUAL); if (trigger->length == 1) tdata1 = set_field(tdata1, CSR_MCONTROL6_SIZE, CSR_MCONTROL6_SIZE_8BIT); tdata1 = set_field(tdata1, CSR_MCONTROL6_CHAIN, CSR_MCONTROL6_CHAIN_DISABLED); tdata2 = trigger->address; ret = set_trigger(target, idx, tdata1, tdata2, 0); if (ret != ERROR_OK) return ret; r->trigger_unique_id[idx] = trigger->unique_id; return ERROR_OK; } static int add_trigger(struct target *target, struct trigger *trigger) { int ret; riscv_reg_t tselect; if (riscv_enumerate_triggers(target) != ERROR_OK) return ERROR_FAIL; int result = riscv_get_register(target, &tselect, GDB_REGNO_TSELECT); if (result != ERROR_OK) return result; do { ret = maybe_add_trigger_t1(target, trigger); if (ret == ERROR_OK) break; ret = maybe_add_trigger_t2(target, trigger); if (ret == ERROR_OK) break; ret = maybe_add_trigger_t6(target, trigger); if (ret == ERROR_OK) break; } while (0); riscv_set_register(target, GDB_REGNO_TSELECT, tselect); return ret; } /** * Write one memory item of given "size". Use memory access of given "access_size". * Utilize read-modify-write, if needed. * */ static int write_by_given_size(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer, uint32_t access_size) { assert(size == 1 || size == 2 || size == 4 || size == 8); assert(access_size == 1 || access_size == 2 || access_size == 4 || access_size == 8); if (access_size <= size && address % access_size == 0) /* Can do the memory access directly without a helper buffer. */ return target_write_memory(target, address, access_size, size / access_size, buffer); unsigned int offset_head = address % access_size; unsigned int n_blocks = ((size + offset_head) <= access_size) ? 1 : 2; uint8_t helper_buf[n_blocks * access_size]; /* Read from memory */ if (target_read_memory(target, address - offset_head, access_size, n_blocks, helper_buf) != ERROR_OK) return ERROR_FAIL; /* Modify and write back */ memcpy(helper_buf + offset_head, buffer, size); return target_write_memory(target, address - offset_head, access_size, n_blocks, helper_buf); } /** * Read one memory item of given "size". Use memory access of given "access_size". * Read larger section of memory and pick out the required portion, if needed. * */ static int read_by_given_size(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer, uint32_t access_size) { assert(size == 1 || size == 2 || size == 4 || size == 8); assert(access_size == 1 || access_size == 2 || access_size == 4 || access_size == 8); if (access_size <= size && address % access_size == 0) /* Can do the memory access directly without a helper buffer. */ return target_read_memory(target, address, access_size, size / access_size, buffer); unsigned int offset_head = address % access_size; unsigned int n_blocks = ((size + offset_head) <= access_size) ? 1 : 2; uint8_t helper_buf[n_blocks * access_size]; /* Read from memory */ if (target_read_memory(target, address - offset_head, access_size, n_blocks, helper_buf) != ERROR_OK) return ERROR_FAIL; /* Pick the requested portion from the buffer */ memcpy(buffer, helper_buf + offset_head, size); return ERROR_OK; } /** * Write one memory item using any memory access size that will work. * Utilize read-modify-write, if needed. * */ int riscv_write_by_any_size(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer) { assert(size == 1 || size == 2 || size == 4 || size == 8); /* Find access size that correspond to data size and the alignment. */ unsigned int preferred_size = size; while (address % preferred_size != 0) preferred_size /= 2; /* First try the preferred (most natural) access size. */ if (write_by_given_size(target, address, size, buffer, preferred_size) == ERROR_OK) return ERROR_OK; /* On failure, try other access sizes. Minimize the number of accesses by trying first the largest size. */ for (unsigned int access_size = 8; access_size > 0; access_size /= 2) { if (access_size == preferred_size) /* Already tried this size. */ continue; if (write_by_given_size(target, address, size, buffer, access_size) == ERROR_OK) return ERROR_OK; } /* No access attempt succeeded. */ return ERROR_FAIL; } /** * Read one memory item using any memory access size that will work. * Read larger section of memory and pick out the required portion, if needed. * */ int riscv_read_by_any_size(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer) { assert(size == 1 || size == 2 || size == 4 || size == 8); /* Find access size that correspond to data size and the alignment. */ unsigned int preferred_size = size; while (address % preferred_size != 0) preferred_size /= 2; /* First try the preferred (most natural) access size. */ if (read_by_given_size(target, address, size, buffer, preferred_size) == ERROR_OK) return ERROR_OK; /* On failure, try other access sizes. Minimize the number of accesses by trying first the largest size. */ for (unsigned int access_size = 8; access_size > 0; access_size /= 2) { if (access_size == preferred_size) /* Already tried this size. */ continue; if (read_by_given_size(target, address, size, buffer, access_size) == ERROR_OK) return ERROR_OK; } /* No access attempt succeeded. */ return ERROR_FAIL; } int riscv_add_breakpoint(struct target *target, struct breakpoint *breakpoint) { LOG_TARGET_DEBUG(target, "@0x%" TARGET_PRIxADDR, breakpoint->address); assert(breakpoint); if (breakpoint->type == BKPT_SOFT) { /** @todo check RVC for size/alignment */ if (!(breakpoint->length == 4 || breakpoint->length == 2)) { LOG_ERROR("Invalid breakpoint length %d", breakpoint->length); return ERROR_FAIL; } if (0 != (breakpoint->address % 2)) { LOG_ERROR("Invalid breakpoint alignment for address 0x%" TARGET_PRIxADDR, breakpoint->address); return ERROR_FAIL; } /* Read the original instruction. */ if (riscv_read_by_any_size( target, breakpoint->address, breakpoint->length, breakpoint->orig_instr) != ERROR_OK) { LOG_ERROR("Failed to read original instruction at 0x%" TARGET_PRIxADDR, breakpoint->address); return ERROR_FAIL; } uint8_t buff[4] = { 0 }; buf_set_u32(buff, 0, breakpoint->length * CHAR_BIT, breakpoint->length == 4 ? ebreak() : ebreak_c()); /* Write the ebreak instruction. */ if (riscv_write_by_any_size(target, breakpoint->address, breakpoint->length, buff) != ERROR_OK) { LOG_ERROR("Failed to write %d-byte breakpoint instruction at 0x%" TARGET_PRIxADDR, breakpoint->length, breakpoint->address); return ERROR_FAIL; } } else if (breakpoint->type == BKPT_HARD) { struct trigger trigger; trigger_from_breakpoint(&trigger, breakpoint); int const result = add_trigger(target, &trigger); if (result != ERROR_OK) return result; } else { LOG_INFO("OpenOCD only supports hardware and software breakpoints."); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } breakpoint->is_set = true; return ERROR_OK; } static int remove_trigger(struct target *target, int unique_id) { RISCV_INFO(r); if (riscv_enumerate_triggers(target) != ERROR_OK) return ERROR_FAIL; riscv_reg_t tselect; int result = riscv_get_register(target, &tselect, GDB_REGNO_TSELECT); if (result != ERROR_OK) return result; bool done = false; for (unsigned int i = 0; i < r->trigger_count; i++) { if (r->trigger_unique_id[i] == unique_id) { riscv_set_register(target, GDB_REGNO_TSELECT, i); riscv_set_register(target, GDB_REGNO_TDATA1, 0); r->trigger_unique_id[i] = -1; LOG_TARGET_DEBUG(target, "Stop using resource %d for bp %d", i, unique_id); done = true; } } if (!done) { LOG_ERROR("Couldn't find the hardware resources used by hardware " "trigger."); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } riscv_set_register(target, GDB_REGNO_TSELECT, tselect); return ERROR_OK; } int riscv_remove_breakpoint(struct target *target, struct breakpoint *breakpoint) { if (breakpoint->type == BKPT_SOFT) { /* Write the original instruction. */ if (riscv_write_by_any_size( target, breakpoint->address, breakpoint->length, breakpoint->orig_instr) != ERROR_OK) { LOG_ERROR("Failed to restore instruction for %d-byte breakpoint at " "0x%" TARGET_PRIxADDR, breakpoint->length, breakpoint->address); return ERROR_FAIL; } } else if (breakpoint->type == BKPT_HARD) { struct trigger trigger; trigger_from_breakpoint(&trigger, breakpoint); int result = remove_trigger(target, trigger.unique_id); if (result != ERROR_OK) return result; } else { LOG_INFO("OpenOCD only supports hardware and software breakpoints."); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } breakpoint->is_set = false; return ERROR_OK; } static void trigger_from_watchpoint(struct trigger *trigger, const struct watchpoint *watchpoint) { trigger->address = watchpoint->address; trigger->length = watchpoint->length; trigger->mask = watchpoint->mask; trigger->value = watchpoint->value; trigger->read = (watchpoint->rw == WPT_READ || watchpoint->rw == WPT_ACCESS); trigger->write = (watchpoint->rw == WPT_WRITE || watchpoint->rw == WPT_ACCESS); trigger->execute = false; /* unique_id is unique across both breakpoints and watchpoints. */ trigger->unique_id = watchpoint->unique_id; } int riscv_add_watchpoint(struct target *target, struct watchpoint *watchpoint) { struct trigger trigger; trigger_from_watchpoint(&trigger, watchpoint); int result = add_trigger(target, &trigger); if (result != ERROR_OK) return result; watchpoint->is_set = true; return ERROR_OK; } int riscv_remove_watchpoint(struct target *target, struct watchpoint *watchpoint) { LOG_DEBUG("[%d] @0x%" TARGET_PRIxADDR, target->coreid, watchpoint->address); struct trigger trigger; trigger_from_watchpoint(&trigger, watchpoint); int result = remove_trigger(target, trigger.unique_id); if (result != ERROR_OK) return result; watchpoint->is_set = false; return ERROR_OK; } /** * Look at the trigger hit bits to find out which trigger is the reason we're * halted. Sets *unique_id to the unique ID of that trigger. If *unique_id is * ~0, no match was found. */ static int riscv_hit_trigger_hit_bit(struct target *target, uint32_t *unique_id) { RISCV_INFO(r); riscv_reg_t tselect; if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK) return ERROR_FAIL; *unique_id = ~0; for (unsigned int i = 0; i < r->trigger_count; i++) { if (r->trigger_unique_id[i] == -1) continue; if (riscv_set_register(target, GDB_REGNO_TSELECT, i) != ERROR_OK) return ERROR_FAIL; uint64_t tdata1; if (riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1) != ERROR_OK) return ERROR_FAIL; int type = get_field(tdata1, CSR_TDATA1_TYPE(riscv_xlen(target))); uint64_t hit_mask = 0; switch (type) { case CSR_TDATA1_TYPE_LEGACY: /* Doesn't support hit bit. */ break; case CSR_TDATA1_TYPE_MCONTROL: hit_mask = CSR_MCONTROL_HIT; break; case CSR_TDATA1_TYPE_MCONTROL6: hit_mask = CSR_MCONTROL6_HIT; break; case CSR_TDATA1_TYPE_ITRIGGER: hit_mask = CSR_ITRIGGER_HIT(riscv_xlen(target)); break; case CSR_TDATA1_TYPE_ETRIGGER: hit_mask = CSR_ETRIGGER_HIT(riscv_xlen(target)); break; default: LOG_DEBUG("trigger %d has unknown type %d", i, type); continue; } /* Note: If we ever use chained triggers, then this logic needs * to be changed to ignore triggers that are not the last one in * the chain. */ if (tdata1 & hit_mask) { LOG_DEBUG("Trigger %d (unique_id=%d) has hit bit set.", i, r->trigger_unique_id[i]); if (riscv_set_register(target, GDB_REGNO_TDATA1, tdata1 & ~hit_mask) != ERROR_OK) return ERROR_FAIL; *unique_id = r->trigger_unique_id[i]; break; } } if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK) return ERROR_FAIL; return ERROR_OK; } /* Sets *hit_watchpoint to the first watchpoint identified as causing the * current halt. * * The GDB server uses this information to tell GDB what data address has * been hit, which enables GDB to print the hit variable along with its old * and new value. */ int riscv_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint) { RISCV_INFO(r); LOG_TARGET_DEBUG(target, "Hit Watchpoint"); /* If we identified which trigger caused the halt earlier, then just use * that. */ for (struct watchpoint *wp = target->watchpoints; wp; wp = wp->next) { if (wp->unique_id == r->trigger_hit) { *hit_watchpoint = wp; return ERROR_OK; } } riscv_reg_t dpc; riscv_get_register(target, &dpc, GDB_REGNO_DPC); const uint8_t length = 4; LOG_DEBUG("dpc is 0x%" PRIx64, dpc); /* fetch the instruction at dpc */ uint8_t buffer[length]; if (target_read_buffer(target, dpc, length, buffer) != ERROR_OK) { LOG_ERROR("Failed to read instruction at dpc 0x%" PRIx64, dpc); return ERROR_FAIL; } uint32_t instruction = 0; for (int i = 0; i < length; i++) { LOG_DEBUG("Next byte is %x", buffer[i]); instruction += (buffer[i] << 8 * i); } LOG_DEBUG("Full instruction is %x", instruction); /* find out which memory address is accessed by the instruction at dpc */ /* opcode is first 7 bits of the instruction */ uint8_t opcode = instruction & 0x7F; uint32_t rs1; int16_t imm; riscv_reg_t mem_addr; if (opcode == MATCH_LB || opcode == MATCH_SB) { rs1 = (instruction & 0xf8000) >> 15; riscv_get_register(target, &mem_addr, rs1); if (opcode == MATCH_SB) { LOG_DEBUG("%x is store instruction", instruction); imm = ((instruction & 0xf80) >> 7) | ((instruction & 0xfe000000) >> 20); } else { LOG_DEBUG("%x is load instruction", instruction); imm = (instruction & 0xfff00000) >> 20; } /* sign extend 12-bit imm to 16-bits */ if (imm & (1 << 11)) imm |= 0xf000; mem_addr += imm; LOG_DEBUG("memory address=0x%" PRIx64, mem_addr); } else { LOG_DEBUG("%x is not a RV32I load or store", instruction); return ERROR_FAIL; } struct watchpoint *wp = target->watchpoints; while (wp) { /*TODO support length/mask */ if (wp->address == mem_addr) { *hit_watchpoint = wp; LOG_DEBUG("Hit address=%" TARGET_PRIxADDR, wp->address); return ERROR_OK; } wp = wp->next; } /* No match found - either we hit a watchpoint caused by an instruction that * this function does not yet disassemble, or we hit a breakpoint. * * OpenOCD will behave as if this function had never been implemented i.e. * report the halt to GDB with no address information. */ return ERROR_FAIL; } static int oldriscv_step(struct target *target, int current, uint32_t address, int handle_breakpoints) { struct target_type *tt = get_target_type(target); return tt->step(target, current, address, handle_breakpoints); } static int old_or_new_riscv_step(struct target *target, int current, target_addr_t address, int handle_breakpoints) { RISCV_INFO(r); LOG_DEBUG("handle_breakpoints=%d", handle_breakpoints); if (!r->get_hart_state) return oldriscv_step(target, current, address, handle_breakpoints); else return riscv_openocd_step(target, current, address, handle_breakpoints); } static int riscv_examine(struct target *target) { LOG_DEBUG("[%s]", target_name(target)); if (target_was_examined(target)) { LOG_DEBUG("Target was already examined."); return ERROR_OK; } /* Don't need to select dbus, since the first thing we do is read dtmcontrol. */ RISCV_INFO(info); uint32_t dtmcontrol = dtmcontrol_scan(target, 0); LOG_DEBUG("dtmcontrol=0x%x", dtmcontrol); info->dtm_version = get_field(dtmcontrol, DTMCONTROL_VERSION); LOG_DEBUG(" version=0x%x", info->dtm_version); struct target_type *tt = get_target_type(target); if (!tt) return ERROR_FAIL; int result = tt->init_target(info->cmd_ctx, target); if (result != ERROR_OK) return result; return tt->examine(target); } static int oldriscv_poll(struct target *target) { struct target_type *tt = get_target_type(target); return tt->poll(target); } static int old_or_new_riscv_poll(struct target *target) { RISCV_INFO(r); if (!r->get_hart_state) return oldriscv_poll(target); else return riscv_openocd_poll(target); } int riscv_flush_registers(struct target *target) { RISCV_INFO(r); if (!target->reg_cache) return ERROR_OK; LOG_DEBUG("[%s]", target_name(target)); for (uint32_t number = 0; number < target->reg_cache->num_regs; number++) { struct reg *reg = &target->reg_cache->reg_list[number]; if (reg->valid && reg->dirty) { uint64_t value = buf_get_u64(reg->value, 0, reg->size); LOG_DEBUG("[%s] %s is dirty; write back 0x%" PRIx64, target_name(target), reg->name, value); int result = r->set_register(target, number, value); if (result != ERROR_OK) return ERROR_FAIL; reg->dirty = false; } } return ERROR_OK; } /* Convert: RISC-V hart's halt reason --> OpenOCD's generic debug reason */ int set_debug_reason(struct target *target, enum riscv_halt_reason halt_reason) { RISCV_INFO(r); r->trigger_hit = -1; switch (halt_reason) { case RISCV_HALT_EBREAK: target->debug_reason = DBG_REASON_BREAKPOINT; break; case RISCV_HALT_TRIGGER: if (riscv_hit_trigger_hit_bit(target, &r->trigger_hit) != ERROR_OK) return ERROR_FAIL; target->debug_reason = DBG_REASON_WATCHPOINT; /* Check if we hit a hardware breakpoint. */ for (struct breakpoint *bp = target->breakpoints; bp; bp = bp->next) { if (bp->unique_id == r->trigger_hit) target->debug_reason = DBG_REASON_BREAKPOINT; } break; case RISCV_HALT_INTERRUPT: case RISCV_HALT_GROUP: target->debug_reason = DBG_REASON_DBGRQ; break; case RISCV_HALT_SINGLESTEP: target->debug_reason = DBG_REASON_SINGLESTEP; break; case RISCV_HALT_UNKNOWN: target->debug_reason = DBG_REASON_UNDEFINED; break; case RISCV_HALT_ERROR: return ERROR_FAIL; } LOG_DEBUG("[%s] debug_reason=%d", target_name(target), target->debug_reason); return ERROR_OK; } int halt_prep(struct target *target) { RISCV_INFO(r); LOG_DEBUG("[%s] prep hart, debug_reason=%d", target_name(target), target->debug_reason); r->prepped = false; if (target->state == TARGET_HALTED) { LOG_TARGET_DEBUG(target, "Hart is already halted."); } else if (target->state == TARGET_UNAVAILABLE) { LOG_TARGET_DEBUG(target, "Hart is unavailable."); } else { if (r->halt_prep(target) != ERROR_OK) return ERROR_FAIL; r->prepped = true; } return ERROR_OK; } int riscv_halt_go_all_harts(struct target *target) { RISCV_INFO(r); enum riscv_hart_state state; if (riscv_get_hart_state(target, &state) != ERROR_OK) return ERROR_FAIL; if (state == RISCV_STATE_HALTED) { LOG_DEBUG("[%s] Hart is already halted.", target_name(target)); } else { if (r->halt_go(target) != ERROR_OK) return ERROR_FAIL; riscv_invalidate_register_cache(target); } return ERROR_OK; } int halt_go(struct target *target) { riscv_info_t *r = riscv_info(target); int result; if (!r->get_hart_state) { struct target_type *tt = get_target_type(target); result = tt->halt(target); } else { result = riscv_halt_go_all_harts(target); } if (target->debug_reason == DBG_REASON_NOTHALTED) target->debug_reason = DBG_REASON_DBGRQ; return result; } static int halt_finish(struct target *target) { return target_call_event_callbacks(target, TARGET_EVENT_HALTED); } int riscv_halt(struct target *target) { RISCV_INFO(r); if (!r->get_hart_state) { struct target_type *tt = get_target_type(target); return tt->halt(target); } LOG_TARGET_DEBUG(target, "halting all harts"); int result = ERROR_OK; if (target->smp) { struct target_list *tlist; foreach_smp_target(tlist, target->smp_targets) { struct target *t = tlist->target; if (halt_prep(t) != ERROR_OK) result = ERROR_FAIL; } foreach_smp_target(tlist, target->smp_targets) { struct target *t = tlist->target; riscv_info_t *i = riscv_info(t); if (i->prepped) { if (halt_go(t) != ERROR_OK) result = ERROR_FAIL; } } foreach_smp_target(tlist, target->smp_targets) { struct target *t = tlist->target; if (halt_finish(t) != ERROR_OK) return ERROR_FAIL; } } else { if (halt_prep(target) != ERROR_OK) result = ERROR_FAIL; if (halt_go(target) != ERROR_OK) result = ERROR_FAIL; if (halt_finish(target) != ERROR_OK) return ERROR_FAIL; } return result; } static int riscv_assert_reset(struct target *target) { LOG_DEBUG("[%d]", target->coreid); struct target_type *tt = get_target_type(target); riscv_invalidate_register_cache(target); return tt->assert_reset(target); } static int riscv_deassert_reset(struct target *target) { LOG_DEBUG("[%d]", target->coreid); struct target_type *tt = get_target_type(target); return tt->deassert_reset(target); } /* state must be riscv_reg_t state[RISCV_MAX_HWBPS] = {0}; */ static int disable_triggers(struct target *target, riscv_reg_t *state) { RISCV_INFO(r); LOG_DEBUG("deal with triggers"); if (riscv_enumerate_triggers(target) != ERROR_OK) return ERROR_FAIL; if (r->manual_hwbp_set) { /* Look at every trigger that may have been set. */ riscv_reg_t tselect; if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK) return ERROR_FAIL; for (unsigned int t = 0; t < r->trigger_count; t++) { if (riscv_set_register(target, GDB_REGNO_TSELECT, t) != ERROR_OK) return ERROR_FAIL; riscv_reg_t tdata1; if (riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1) != ERROR_OK) return ERROR_FAIL; if (tdata1 & CSR_TDATA1_DMODE(riscv_xlen(target))) { state[t] = tdata1; if (riscv_set_register(target, GDB_REGNO_TDATA1, 0) != ERROR_OK) return ERROR_FAIL; } } if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK) return ERROR_FAIL; } else { /* Just go through the triggers we manage. */ struct watchpoint *watchpoint = target->watchpoints; int i = 0; while (watchpoint) { LOG_DEBUG("watchpoint %d: set=%d", i, watchpoint->is_set); state[i] = watchpoint->is_set; if (watchpoint->is_set) { if (riscv_remove_watchpoint(target, watchpoint) != ERROR_OK) return ERROR_FAIL; } watchpoint = watchpoint->next; i++; } } return ERROR_OK; } static int enable_triggers(struct target *target, riscv_reg_t *state) { RISCV_INFO(r); if (r->manual_hwbp_set) { /* Look at every trigger that may have been set. */ riscv_reg_t tselect; if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK) return ERROR_FAIL; for (unsigned int t = 0; t < r->trigger_count; t++) { if (state[t] != 0) { if (riscv_set_register(target, GDB_REGNO_TSELECT, t) != ERROR_OK) return ERROR_FAIL; if (riscv_set_register(target, GDB_REGNO_TDATA1, state[t]) != ERROR_OK) return ERROR_FAIL; } } if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK) return ERROR_FAIL; } else { struct watchpoint *watchpoint = target->watchpoints; int i = 0; while (watchpoint) { LOG_DEBUG("watchpoint %d: cleared=%" PRId64, i, state[i]); if (state[i]) { if (riscv_add_watchpoint(target, watchpoint) != ERROR_OK) return ERROR_FAIL; } watchpoint = watchpoint->next; i++; } } return ERROR_OK; } /** * Get everything ready to resume. */ static int resume_prep(struct target *target, int current, target_addr_t address, int handle_breakpoints, int debug_execution) { RISCV_INFO(r); LOG_TARGET_DEBUG(target, "target->state=%d", target->state); if (!current) riscv_set_register(target, GDB_REGNO_PC, address); if (target->debug_reason == DBG_REASON_WATCHPOINT) { /* To be able to run off a trigger, disable all the triggers, step, and * then resume as usual. */ riscv_reg_t trigger_state[RISCV_MAX_HWBPS] = {0}; if (disable_triggers(target, trigger_state) != ERROR_OK) return ERROR_FAIL; if (old_or_new_riscv_step(target, true, 0, false) != ERROR_OK) return ERROR_FAIL; if (enable_triggers(target, trigger_state) != ERROR_OK) return ERROR_FAIL; } if (r->get_hart_state) { if (r->resume_prep(target) != ERROR_OK) return ERROR_FAIL; } LOG_DEBUG("[%d] mark as prepped", target->coreid); r->prepped = true; return ERROR_OK; } /** * Resume all the harts that have been prepped, as close to instantaneous as * possible. */ static int resume_go(struct target *target, int current, target_addr_t address, int handle_breakpoints, int debug_execution) { riscv_info_t *r = riscv_info(target); int result; if (!r->get_hart_state) { struct target_type *tt = get_target_type(target); result = tt->resume(target, current, address, handle_breakpoints, debug_execution); } else { result = riscv_resume_go_all_harts(target); } return result; } static int resume_finish(struct target *target, int debug_execution) { register_cache_invalidate(target->reg_cache); target->state = debug_execution ? TARGET_DEBUG_RUNNING : TARGET_RUNNING; target->debug_reason = DBG_REASON_NOTHALTED; return target_call_event_callbacks(target, debug_execution ? TARGET_EVENT_DEBUG_RESUMED : TARGET_EVENT_RESUMED); } /** * @par single_hart When true, only resume a single hart even if SMP is * configured. This is used to run algorithms on just one hart. */ int riscv_resume( struct target *target, int current, target_addr_t address, int handle_breakpoints, int debug_execution, bool single_hart) { LOG_DEBUG("handle_breakpoints=%d", handle_breakpoints); int result = ERROR_OK; struct list_head *targets; LIST_HEAD(single_target_list); struct target_list single_target_entry = { .lh = {NULL, NULL}, .target = target }; if (target->smp && !single_hart) { targets = target->smp_targets; } else { /* Make a list that just contains a single target, so we can * share code below. */ list_add(&single_target_entry.lh, &single_target_list); targets = &single_target_list; } struct target_list *tlist; foreach_smp_target_direction(resume_order == RO_NORMAL, tlist, targets) { struct target *t = tlist->target; if (t->state != TARGET_UNAVAILABLE) { if (resume_prep(t, current, address, handle_breakpoints, debug_execution) != ERROR_OK) result = ERROR_FAIL; } } foreach_smp_target_direction(resume_order == RO_NORMAL, tlist, targets) { struct target *t = tlist->target; riscv_info_t *i = riscv_info(t); if (i->prepped) { if (resume_go(t, current, address, handle_breakpoints, debug_execution) != ERROR_OK) result = ERROR_FAIL; } } foreach_smp_target_direction(resume_order == RO_NORMAL, tlist, targets) { struct target *t = tlist->target; if (t->state != TARGET_UNAVAILABLE) { if (resume_finish(t, debug_execution) != ERROR_OK) result = ERROR_FAIL; } } return result; } static int riscv_target_resume(struct target *target, int current, target_addr_t address, int handle_breakpoints, int debug_execution) { return riscv_resume(target, current, address, handle_breakpoints, debug_execution, false); } static int riscv_mmu(struct target *target, int *enabled) { if (!riscv_enable_virt2phys) { *enabled = 0; return ERROR_OK; } /* Don't use MMU in explicit or effective M (machine) mode */ riscv_reg_t priv; if (riscv_get_register(target, &priv, GDB_REGNO_PRIV) != ERROR_OK) { LOG_ERROR("Failed to read priv register."); return ERROR_FAIL; } riscv_reg_t mstatus; if (riscv_get_register(target, &mstatus, GDB_REGNO_MSTATUS) != ERROR_OK) { LOG_ERROR("Failed to read mstatus register."); return ERROR_FAIL; } if ((get_field(mstatus, MSTATUS_MPRV) ? get_field(mstatus, MSTATUS_MPP) : priv) == PRV_M) { LOG_DEBUG("SATP/MMU ignored in Machine mode (mstatus=0x%" PRIx64 ").", mstatus); *enabled = 0; return ERROR_OK; } riscv_reg_t satp; if (riscv_get_register(target, &satp, GDB_REGNO_SATP) != ERROR_OK) { LOG_DEBUG("Couldn't read SATP."); /* If we can't read SATP, then there must not be an MMU. */ *enabled = 0; return ERROR_OK; } if (get_field(satp, RISCV_SATP_MODE(riscv_xlen(target))) == SATP_MODE_OFF) { LOG_DEBUG("MMU is disabled."); *enabled = 0; } else { LOG_DEBUG("MMU is enabled."); *enabled = 1; } return ERROR_OK; } static int riscv_address_translate(struct target *target, target_addr_t virtual, target_addr_t *physical) { RISCV_INFO(r); riscv_reg_t satp_value; int mode; uint64_t ppn_value; target_addr_t table_address; const virt2phys_info_t *info; uint64_t pte = 0; int i; int result = riscv_get_register(target, &satp_value, GDB_REGNO_SATP); if (result != ERROR_OK) return result; unsigned xlen = riscv_xlen(target); mode = get_field(satp_value, RISCV_SATP_MODE(xlen)); switch (mode) { case SATP_MODE_SV32: info = &sv32; break; case SATP_MODE_SV39: info = &sv39; break; case SATP_MODE_SV48: info = &sv48; break; case SATP_MODE_OFF: LOG_ERROR("No translation or protection." \ " (satp: 0x%" PRIx64 ")", satp_value); return ERROR_FAIL; default: LOG_ERROR("The translation mode is not supported." \ " (satp: 0x%" PRIx64 ")", satp_value); return ERROR_FAIL; } LOG_DEBUG("virtual=0x%" TARGET_PRIxADDR "; mode=%s", virtual, info->name); /* verify bits xlen-1:va_bits-1 are all equal */ target_addr_t mask = ((target_addr_t)1 << (xlen - (info->va_bits - 1))) - 1; target_addr_t masked_msbs = (virtual >> (info->va_bits - 1)) & mask; if (masked_msbs != 0 && masked_msbs != mask) { LOG_ERROR("Virtual address 0x%" TARGET_PRIxADDR " is not sign-extended " "for %s mode.", virtual, info->name); return ERROR_FAIL; } ppn_value = get_field(satp_value, RISCV_SATP_PPN(xlen)); table_address = ppn_value << RISCV_PGSHIFT; i = info->level - 1; while (i >= 0) { uint64_t vpn = virtual >> info->vpn_shift[i]; vpn &= info->vpn_mask[i]; target_addr_t pte_address = table_address + (vpn << info->pte_shift); uint8_t buffer[8]; assert(info->pte_shift <= 3); int retval = r->read_memory(target, pte_address, 4, (1 << info->pte_shift) / 4, buffer, 4); if (retval != ERROR_OK) return ERROR_FAIL; if (info->pte_shift == 2) pte = buf_get_u32(buffer, 0, 32); else pte = buf_get_u64(buffer, 0, 64); LOG_DEBUG("i=%d; PTE @0x%" TARGET_PRIxADDR " = 0x%" PRIx64, i, pte_address, pte); if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) return ERROR_FAIL; if ((pte & PTE_R) || (pte & PTE_X)) /* Found leaf PTE. */ break; i--; if (i < 0) break; ppn_value = pte >> PTE_PPN_SHIFT; table_address = ppn_value << RISCV_PGSHIFT; } if (i < 0) { LOG_ERROR("Couldn't find the PTE."); return ERROR_FAIL; } /* Make sure to clear out the high bits that may be set. */ *physical = virtual & (((target_addr_t)1 << info->va_bits) - 1); while (i < info->level) { ppn_value = pte >> info->pte_ppn_shift[i]; ppn_value &= info->pte_ppn_mask[i]; *physical &= ~(((target_addr_t)info->pa_ppn_mask[i]) << info->pa_ppn_shift[i]); *physical |= (ppn_value << info->pa_ppn_shift[i]); i++; } LOG_DEBUG("0x%" TARGET_PRIxADDR " -> 0x%" TARGET_PRIxADDR, virtual, *physical); return ERROR_OK; } static int riscv_virt2phys(struct target *target, target_addr_t virtual, target_addr_t *physical) { int enabled; if (riscv_mmu(target, &enabled) == ERROR_OK) { if (!enabled) return ERROR_FAIL; if (riscv_address_translate(target, virtual, physical) == ERROR_OK) return ERROR_OK; } return ERROR_FAIL; } static int riscv_read_phys_memory(struct target *target, target_addr_t phys_address, uint32_t size, uint32_t count, uint8_t *buffer) { RISCV_INFO(r); return r->read_memory(target, phys_address, size, count, buffer, size); } static int riscv_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer) { if (count == 0) { LOG_WARNING("0-length read from 0x%" TARGET_PRIxADDR, address); return ERROR_OK; } target_addr_t physical_addr; if (target->type->virt2phys(target, address, &physical_addr) == ERROR_OK) address = physical_addr; RISCV_INFO(r); return r->read_memory(target, address, size, count, buffer, size); } static int riscv_write_phys_memory(struct target *target, target_addr_t phys_address, uint32_t size, uint32_t count, const uint8_t *buffer) { struct target_type *tt = get_target_type(target); return tt->write_memory(target, phys_address, size, count, buffer); } static int riscv_write_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer) { if (count == 0) { LOG_WARNING("0-length write to 0x%" TARGET_PRIxADDR, address); return ERROR_OK; } target_addr_t physical_addr; if (target->type->virt2phys(target, address, &physical_addr) == ERROR_OK) address = physical_addr; struct target_type *tt = get_target_type(target); return tt->write_memory(target, address, size, count, buffer); } const char *riscv_get_gdb_arch(struct target *target) { switch (riscv_xlen(target)) { case 32: return "riscv:rv32"; case 64: return "riscv:rv64"; } LOG_ERROR("Unsupported xlen: %d", riscv_xlen(target)); return NULL; } static int riscv_get_gdb_reg_list_internal(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class, bool read) { LOG_TARGET_DEBUG(target, "reg_class=%d, read=%d", reg_class, read); if (!target->reg_cache) { LOG_ERROR("Target not initialized. Return ERROR_FAIL."); return ERROR_FAIL; } switch (reg_class) { case REG_CLASS_GENERAL: *reg_list_size = 33; break; case REG_CLASS_ALL: *reg_list_size = target->reg_cache->num_regs; break; default: LOG_ERROR("Unsupported reg_class: %d", reg_class); return ERROR_FAIL; } *reg_list = calloc(*reg_list_size, sizeof(struct reg *)); if (!*reg_list) return ERROR_FAIL; for (int i = 0; i < *reg_list_size; i++) { assert(!target->reg_cache->reg_list[i].valid || target->reg_cache->reg_list[i].size > 0); (*reg_list)[i] = &target->reg_cache->reg_list[i]; if (read && target->reg_cache->reg_list[i].exist && !target->reg_cache->reg_list[i].valid) { if (target->reg_cache->reg_list[i].type->get( &target->reg_cache->reg_list[i]) != ERROR_OK) return ERROR_FAIL; } } return ERROR_OK; } static int riscv_get_gdb_reg_list_noread(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class) { return riscv_get_gdb_reg_list_internal(target, reg_list, reg_list_size, reg_class, false); } static int riscv_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size, enum target_register_class reg_class) { return riscv_get_gdb_reg_list_internal(target, reg_list, reg_list_size, reg_class, true); } static int riscv_arch_state(struct target *target) { struct target_type *tt = get_target_type(target); return tt->arch_state(target); } /* Algorithm must end with a software breakpoint instruction. */ static int riscv_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, target_addr_t entry_point, target_addr_t exit_point, int timeout_ms, void *arch_info) { RISCV_INFO(info); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* Write memory parameters to the target memory */ for (int i = 0; i < num_mem_params; i++) { if (mem_params[i].direction == PARAM_OUT || mem_params[i].direction == PARAM_IN_OUT) { int retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value); if (retval != ERROR_OK) { LOG_ERROR("Couldn't write input mem param into the memory, addr=0x%" TARGET_PRIxADDR " size=0x%" PRIx32, mem_params[i].address, mem_params[i].size); return retval; } } } /* Save registers */ struct reg *reg_pc = register_get_by_name(target->reg_cache, "pc", true); if (!reg_pc || reg_pc->type->get(reg_pc) != ERROR_OK) return ERROR_FAIL; uint64_t saved_pc = buf_get_u64(reg_pc->value, 0, reg_pc->size); LOG_DEBUG("saved_pc=0x%" PRIx64, saved_pc); uint64_t saved_regs[32]; for (int i = 0; i < num_reg_params; i++) { LOG_DEBUG("save %s", reg_params[i].reg_name); struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false); if (!r) { LOG_ERROR("Couldn't find register named '%s'", reg_params[i].reg_name); return ERROR_FAIL; } if (r->size != reg_params[i].size) { LOG_ERROR("Register %s is %d bits instead of %d bits.", reg_params[i].reg_name, r->size, reg_params[i].size); return ERROR_FAIL; } if (r->number > GDB_REGNO_XPR31) { LOG_ERROR("Only GPRs can be use as argument registers."); return ERROR_FAIL; } if (r->type->get(r) != ERROR_OK) return ERROR_FAIL; saved_regs[r->number] = buf_get_u64(r->value, 0, r->size); if (reg_params[i].direction == PARAM_OUT || reg_params[i].direction == PARAM_IN_OUT) { if (r->type->set(r, reg_params[i].value) != ERROR_OK) return ERROR_FAIL; } } /* Disable Interrupts before attempting to run the algorithm. */ uint64_t current_mstatus; uint64_t irq_disabled_mask = MSTATUS_MIE | MSTATUS_HIE | MSTATUS_SIE | MSTATUS_UIE; if (riscv_interrupts_disable(target, irq_disabled_mask, ¤t_mstatus) != ERROR_OK) return ERROR_FAIL; /* Run algorithm */ LOG_DEBUG("resume at 0x%" TARGET_PRIxADDR, entry_point); if (riscv_resume(target, 0, entry_point, 0, 1, true) != ERROR_OK) return ERROR_FAIL; int64_t start = timeval_ms(); while (target->state != TARGET_HALTED) { LOG_DEBUG("poll()"); int64_t now = timeval_ms(); if (now - start > timeout_ms) { LOG_ERROR("Algorithm timed out after %" PRId64 " ms.", now - start); riscv_halt(target); old_or_new_riscv_poll(target); enum gdb_regno regnums[] = { GDB_REGNO_RA, GDB_REGNO_SP, GDB_REGNO_GP, GDB_REGNO_TP, GDB_REGNO_T0, GDB_REGNO_T1, GDB_REGNO_T2, GDB_REGNO_FP, GDB_REGNO_S1, GDB_REGNO_A0, GDB_REGNO_A1, GDB_REGNO_A2, GDB_REGNO_A3, GDB_REGNO_A4, GDB_REGNO_A5, GDB_REGNO_A6, GDB_REGNO_A7, GDB_REGNO_S2, GDB_REGNO_S3, GDB_REGNO_S4, GDB_REGNO_S5, GDB_REGNO_S6, GDB_REGNO_S7, GDB_REGNO_S8, GDB_REGNO_S9, GDB_REGNO_S10, GDB_REGNO_S11, GDB_REGNO_T3, GDB_REGNO_T4, GDB_REGNO_T5, GDB_REGNO_T6, GDB_REGNO_PC, GDB_REGNO_MSTATUS, GDB_REGNO_MEPC, GDB_REGNO_MCAUSE, }; for (unsigned i = 0; i < ARRAY_SIZE(regnums); i++) { enum gdb_regno regno = regnums[i]; riscv_reg_t reg_value; if (riscv_get_register(target, ®_value, regno) != ERROR_OK) break; LOG_ERROR("%s = 0x%" PRIx64, gdb_regno_name(regno), reg_value); } return ERROR_TARGET_TIMEOUT; } int result = old_or_new_riscv_poll(target); if (result != ERROR_OK) return result; } /* TODO: The current hart id might have been changed in poll(). */ /* if (riscv_select_current_hart(target) != ERROR_OK) return ERROR_FAIL; */ if (reg_pc->type->get(reg_pc) != ERROR_OK) return ERROR_FAIL; uint64_t final_pc = buf_get_u64(reg_pc->value, 0, reg_pc->size); if (exit_point && final_pc != exit_point) { LOG_ERROR("PC ended up at 0x%" PRIx64 " instead of 0x%" TARGET_PRIxADDR, final_pc, exit_point); return ERROR_FAIL; } /* Restore Interrupts */ if (riscv_interrupts_restore(target, current_mstatus) != ERROR_OK) return ERROR_FAIL; /* Restore registers */ uint8_t buf[8] = { 0 }; buf_set_u64(buf, 0, info->xlen, saved_pc); if (reg_pc->type->set(reg_pc, buf) != ERROR_OK) return ERROR_FAIL; for (int i = 0; i < num_reg_params; i++) { if (reg_params[i].direction == PARAM_IN || reg_params[i].direction == PARAM_IN_OUT) { struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false); if (r->type->get(r) != ERROR_OK) { LOG_ERROR("get(%s) failed", r->name); return ERROR_FAIL; } buf_cpy(r->value, reg_params[i].value, reg_params[i].size); } LOG_DEBUG("restore %s", reg_params[i].reg_name); struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false); buf_set_u64(buf, 0, info->xlen, saved_regs[r->number]); if (r->type->set(r, buf) != ERROR_OK) { LOG_ERROR("set(%s) failed", r->name); return ERROR_FAIL; } } /* Read memory parameters from the target memory */ for (int i = 0; i < num_mem_params; i++) { if (mem_params[i].direction == PARAM_IN || mem_params[i].direction == PARAM_IN_OUT) { int retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value); if (retval != ERROR_OK) { LOG_ERROR("Couldn't read output mem param from the memory, addr=0x%" TARGET_PRIxADDR " size=0x%" PRIx32, mem_params[i].address, mem_params[i].size); return retval; } } } return ERROR_OK; } static int riscv_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum) { struct working_area *crc_algorithm; struct reg_param reg_params[2]; int retval; LOG_DEBUG("address=0x%" TARGET_PRIxADDR "; count=0x%" PRIx32, address, count); static const uint8_t riscv32_crc_code[] = { #include "../../../contrib/loaders/checksum/riscv32_crc.inc" }; static const uint8_t riscv64_crc_code[] = { #include "../../../contrib/loaders/checksum/riscv64_crc.inc" }; static const uint8_t *crc_code; unsigned xlen = riscv_xlen(target); unsigned crc_code_size; if (xlen == 32) { crc_code = riscv32_crc_code; crc_code_size = sizeof(riscv32_crc_code); } else { crc_code = riscv64_crc_code; crc_code_size = sizeof(riscv64_crc_code); } if (count < crc_code_size * 4) { /* Don't use the algorithm for relatively small buffers. It's faster * just to read the memory. target_checksum_memory() will take care of * that if we fail. */ return ERROR_FAIL; } retval = target_alloc_working_area(target, crc_code_size, &crc_algorithm); if (retval != ERROR_OK) return retval; if (crc_algorithm->address + crc_algorithm->size > address && crc_algorithm->address < address + count) { /* Region to checksum overlaps with the work area we've been assigned. * Bail. (Would be better to manually checksum what we read there, and * use the algorithm for the rest.) */ target_free_working_area(target, crc_algorithm); return ERROR_FAIL; } retval = target_write_buffer(target, crc_algorithm->address, crc_code_size, crc_code); if (retval != ERROR_OK) { LOG_ERROR("Failed to write code to " TARGET_ADDR_FMT ": %d", crc_algorithm->address, retval); target_free_working_area(target, crc_algorithm); return retval; } init_reg_param(®_params[0], "a0", xlen, PARAM_IN_OUT); init_reg_param(®_params[1], "a1", xlen, PARAM_OUT); buf_set_u64(reg_params[0].value, 0, xlen, address); buf_set_u64(reg_params[1].value, 0, xlen, count); /* 20 second timeout/megabyte */ int timeout = 20000 * (1 + (count / (1024 * 1024))); retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address, 0, /* Leave exit point unspecified because we don't know. */ timeout, NULL); if (retval == ERROR_OK) *checksum = buf_get_u32(reg_params[0].value, 0, 32); else LOG_ERROR("error executing RISC-V CRC algorithm"); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); target_free_working_area(target, crc_algorithm); LOG_DEBUG("checksum=0x%" PRIx32 ", result=%d", *checksum, retval); return retval; } /*** OpenOCD Helper Functions ***/ enum riscv_next_action { RPH_NONE, RPH_RESUME, RPH_REMAIN_HALTED }; static int riscv_poll_hart(struct target *target, enum riscv_next_action *next_action) { RISCV_INFO(r); LOG_TARGET_DEBUG(target, "polling, target->state=%d", target->state); *next_action = RPH_NONE; enum riscv_hart_state previous_riscv_state = 0; enum target_state previous_target_state = target->state; switch (target->state) { case TARGET_UNKNOWN: /* Special case, handled further down. */ previous_riscv_state = RISCV_STATE_UNAVAILABLE; /* Need to assign something. */ break; case TARGET_RUNNING: previous_riscv_state = RISCV_STATE_RUNNING; break; case TARGET_HALTED: previous_riscv_state = RISCV_STATE_HALTED; break; case TARGET_RESET: previous_riscv_state = RISCV_STATE_HALTED; break; case TARGET_DEBUG_RUNNING: previous_riscv_state = RISCV_STATE_RUNNING; break; case TARGET_UNAVAILABLE: previous_riscv_state = RISCV_STATE_UNAVAILABLE; break; } /* If OpenOCD thinks we're running but this hart is halted then it's time * to raise an event. */ enum riscv_hart_state state; if (riscv_get_hart_state(target, &state) != ERROR_OK) return ERROR_FAIL; if (state == RISCV_STATE_NON_EXISTENT) { LOG_TARGET_ERROR(target, "Hart is non-existent!"); return ERROR_FAIL; } if (state == RISCV_STATE_HALTED && timeval_ms() - r->last_activity > 100) { /* If we've been idle for a while, flush the register cache. Just in case * OpenOCD is going to be disconnected without shutting down cleanly. */ if (riscv_flush_registers(target) != ERROR_OK) return ERROR_FAIL; } if (target->state == TARGET_UNKNOWN || state != previous_riscv_state) { switch (state) { case RISCV_STATE_HALTED: LOG_TARGET_DEBUG(target, " triggered a halt; previous_target_state=%d", previous_target_state); target->state = TARGET_HALTED; enum riscv_halt_reason halt_reason = riscv_halt_reason(target); if (set_debug_reason(target, halt_reason) != ERROR_OK) return ERROR_FAIL; if (halt_reason == RISCV_HALT_EBREAK) { int retval; /* Detect if this EBREAK is a semihosting request. If so, handle it. */ switch (riscv_semihosting(target, &retval)) { case SEMI_NONE: break; case SEMI_WAITING: /* This hart should remain halted. */ *next_action = RPH_REMAIN_HALTED; break; case SEMI_HANDLED: /* This hart should be resumed, along with any other * harts that halted due to haltgroups. */ *next_action = RPH_RESUME; return ERROR_OK; case SEMI_ERROR: return retval; } } r->on_halt(target); /* We shouldn't do the callbacks yet. What if * there are multiple harts that halted at the * same time? We need to set debug reason on each * of them before calling a callback, which is * going to figure out the "current thread". */ r->halted_needs_event_callback = true; if (previous_target_state == TARGET_DEBUG_RUNNING) r->halted_callback_event = TARGET_EVENT_DEBUG_HALTED; else r->halted_callback_event = TARGET_EVENT_HALTED; break; case RISCV_STATE_RUNNING: LOG_TARGET_DEBUG(target, " triggered running"); target->state = TARGET_RUNNING; target->debug_reason = DBG_REASON_NOTHALTED; break; case RISCV_STATE_UNAVAILABLE: LOG_TARGET_DEBUG(target, " became unavailable"); LOG_TARGET_INFO(target, "became unavailable."); target->state = TARGET_UNAVAILABLE; break; case RISCV_STATE_NON_EXISTENT: LOG_TARGET_ERROR(target, "Hart is non-existent!"); target->state = TARGET_UNAVAILABLE; break; } } return ERROR_OK; } int sample_memory(struct target *target) { RISCV_INFO(r); if (!r->sample_buf.buf || !r->sample_config.enabled) return ERROR_OK; LOG_DEBUG("buf used/size: %d/%d", r->sample_buf.used, r->sample_buf.size); uint64_t start = timeval_ms(); riscv_sample_buf_maybe_add_timestamp(target, true); int result = ERROR_OK; if (r->sample_memory) { result = r->sample_memory(target, &r->sample_buf, &r->sample_config, start + TARGET_DEFAULT_POLLING_INTERVAL); if (result != ERROR_NOT_IMPLEMENTED) goto exit; } /* Default slow path. */ while (timeval_ms() - start < TARGET_DEFAULT_POLLING_INTERVAL) { for (unsigned int i = 0; i < ARRAY_SIZE(r->sample_config.bucket); i++) { if (r->sample_config.bucket[i].enabled && r->sample_buf.used + 1 + r->sample_config.bucket[i].size_bytes < r->sample_buf.size) { assert(i < RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE); r->sample_buf.buf[r->sample_buf.used] = i; result = riscv_read_phys_memory( target, r->sample_config.bucket[i].address, r->sample_config.bucket[i].size_bytes, 1, r->sample_buf.buf + r->sample_buf.used + 1); if (result == ERROR_OK) r->sample_buf.used += 1 + r->sample_config.bucket[i].size_bytes; else goto exit; } } } exit: riscv_sample_buf_maybe_add_timestamp(target, false); if (result != ERROR_OK) { LOG_INFO("Turning off memory sampling because it failed."); r->sample_config.enabled = false; } return result; } /*** OpenOCD Interface ***/ int riscv_openocd_poll(struct target *target) { LOG_DEBUG("polling all harts"); struct list_head *targets; LIST_HEAD(single_target_list); struct target_list single_target_entry = { .lh = {NULL, NULL}, .target = target }; if (target->smp) { targets = target->smp_targets; } else { /* Make a list that just contains a single target, so we can * share code below. */ list_add(&single_target_entry.lh, &single_target_list); targets = &single_target_list; } unsigned should_remain_halted = 0; unsigned should_resume = 0; unsigned halted = 0; unsigned running = 0; struct target_list *entry; foreach_smp_target(entry, targets) { struct target *t = entry->target; riscv_info_t *info = riscv_info(t); /* Clear here just in case there were errors and we never got to * check this flag further down. */ info->halted_needs_event_callback = false; if (!target_was_examined(t)) continue; enum riscv_next_action next_action; if (riscv_poll_hart(t, &next_action) != ERROR_OK) return ERROR_FAIL; switch (next_action) { case RPH_NONE: if (t->state == TARGET_HALTED) halted++; if (t->state == TARGET_RUNNING || t->state == TARGET_DEBUG_RUNNING) running++; break; case RPH_REMAIN_HALTED: should_remain_halted++; break; case RPH_RESUME: should_resume++; break; } } LOG_DEBUG("should_remain_halted=%d, should_resume=%d", should_remain_halted, should_resume); if (should_remain_halted && should_resume) { LOG_WARNING("%d harts should remain halted, and %d should resume.", should_remain_halted, should_resume); } if (should_remain_halted) { LOG_TARGET_DEBUG(target, "halt all; should_remain_halted=%d", should_remain_halted); riscv_halt(target); } else if (should_resume) { LOG_DEBUG("resume all"); riscv_resume(target, true, 0, 0, 0, false); } else if (halted && running) { LOG_TARGET_DEBUG(target, "halt all; halted=%d", halted); riscv_halt(target); } else { /* For targets that were discovered to be halted, call the * appropriate callback. */ foreach_smp_target(entry, targets) { struct target *t = entry->target; riscv_info_t *info = riscv_info(t); if (info->halted_needs_event_callback) { target_call_event_callbacks(t, info->halted_callback_event); info->halted_needs_event_callback = false; } } } /* Sample memory if any target is running. */ foreach_smp_target(entry, targets) { struct target *t = entry->target; if (t->state == TARGET_RUNNING) { sample_memory(target); break; } } return ERROR_OK; } int riscv_openocd_step(struct target *target, int current, target_addr_t address, int handle_breakpoints) { LOG_TARGET_DEBUG(target, "stepping hart"); if (!current) { if (riscv_set_register(target, GDB_REGNO_PC, address) != ERROR_OK) return ERROR_FAIL; } struct breakpoint *breakpoint = NULL; /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) { if (current) { if (riscv_get_register(target, &address, GDB_REGNO_PC) != ERROR_OK) return ERROR_FAIL; } breakpoint = breakpoint_find(target, address); if (breakpoint && (riscv_remove_breakpoint(target, breakpoint) != ERROR_OK)) return ERROR_FAIL; } riscv_reg_t trigger_state[RISCV_MAX_HWBPS] = {0}; if (disable_triggers(target, trigger_state) != ERROR_OK) return ERROR_FAIL; bool success = true; uint64_t current_mstatus; RISCV_INFO(info); if (info->isrmask_mode == RISCV_ISRMASK_STEPONLY) { /* Disable Interrupts before stepping. */ uint64_t irq_disabled_mask = MSTATUS_MIE | MSTATUS_HIE | MSTATUS_SIE | MSTATUS_UIE; if (riscv_interrupts_disable(target, irq_disabled_mask, ¤t_mstatus) != ERROR_OK) { success = false; LOG_ERROR("unable to disable interrupts"); goto _exit; } } if (riscv_step_rtos_hart(target) != ERROR_OK) { success = false; LOG_ERROR("unable to step rtos hart"); } register_cache_invalidate(target->reg_cache); if (info->isrmask_mode == RISCV_ISRMASK_STEPONLY) if (riscv_interrupts_restore(target, current_mstatus) != ERROR_OK) { success = false; LOG_ERROR("unable to restore interrupts"); } _exit: if (enable_triggers(target, trigger_state) != ERROR_OK) { success = false; LOG_ERROR("unable to enable triggers"); } if (breakpoint && (riscv_add_breakpoint(target, breakpoint) != ERROR_OK)) { success = false; LOG_TARGET_ERROR(target, "unable to restore the disabled breakpoint"); } if (success) { target->state = TARGET_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_RESUMED); target->state = TARGET_HALTED; target->debug_reason = DBG_REASON_SINGLESTEP; target_call_event_callbacks(target, TARGET_EVENT_HALTED); } return success ? ERROR_OK : ERROR_FAIL; } /* Command Handlers */ COMMAND_HANDLER(riscv_set_command_timeout_sec) { if (CMD_ARGC != 1) { LOG_ERROR("Command takes exactly 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } int timeout = atoi(CMD_ARGV[0]); if (timeout <= 0) { LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]); return ERROR_FAIL; } riscv_command_timeout_sec = timeout; return ERROR_OK; } COMMAND_HANDLER(riscv_set_reset_timeout_sec) { if (CMD_ARGC != 1) { LOG_ERROR("Command takes exactly 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } int timeout = atoi(CMD_ARGV[0]); if (timeout <= 0) { LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]); return ERROR_FAIL; } riscv_reset_timeout_sec = timeout; return ERROR_OK; } COMMAND_HANDLER(riscv_set_prefer_sba) { struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); bool prefer_sba; LOG_WARNING("`riscv set_prefer_sba` is deprecated. Please use `riscv set_mem_access` instead."); if (CMD_ARGC != 1) { LOG_ERROR("Command takes exactly 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } COMMAND_PARSE_ON_OFF(CMD_ARGV[0], prefer_sba); if (prefer_sba) { /* Use system bus with highest priority */ r->mem_access_methods[0] = RISCV_MEM_ACCESS_SYSBUS; r->mem_access_methods[1] = RISCV_MEM_ACCESS_PROGBUF; r->mem_access_methods[2] = RISCV_MEM_ACCESS_ABSTRACT; } else { /* Use progbuf with highest priority */ r->mem_access_methods[0] = RISCV_MEM_ACCESS_PROGBUF; r->mem_access_methods[1] = RISCV_MEM_ACCESS_SYSBUS; r->mem_access_methods[2] = RISCV_MEM_ACCESS_ABSTRACT; } /* Reset warning flags */ r->mem_access_progbuf_warn = true; r->mem_access_sysbus_warn = true; r->mem_access_abstract_warn = true; return ERROR_OK; } COMMAND_HANDLER(riscv_set_mem_access) { struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); int progbuf_cnt = 0; int sysbus_cnt = 0; int abstract_cnt = 0; if (CMD_ARGC < 1 || CMD_ARGC > RISCV_NUM_MEM_ACCESS_METHODS) { LOG_ERROR("Command takes 1 to %d parameters", RISCV_NUM_MEM_ACCESS_METHODS); return ERROR_COMMAND_SYNTAX_ERROR; } /* Check argument validity */ for (unsigned int i = 0; i < CMD_ARGC; i++) { if (strcmp("progbuf", CMD_ARGV[i]) == 0) { progbuf_cnt++; } else if (strcmp("sysbus", CMD_ARGV[i]) == 0) { sysbus_cnt++; } else if (strcmp("abstract", CMD_ARGV[i]) == 0) { abstract_cnt++; } else { LOG_ERROR("Unknown argument '%s'. " "Must be one of: 'progbuf', 'sysbus' or 'abstract'.", CMD_ARGV[i]); return ERROR_COMMAND_SYNTAX_ERROR; } } if (progbuf_cnt > 1 || sysbus_cnt > 1 || abstract_cnt > 1) { LOG_ERROR("Syntax error - duplicate arguments to `riscv set_mem_access`."); return ERROR_COMMAND_SYNTAX_ERROR; } /* Args are valid, store them */ for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) r->mem_access_methods[i] = RISCV_MEM_ACCESS_UNSPECIFIED; for (unsigned int i = 0; i < CMD_ARGC; i++) { if (strcmp("progbuf", CMD_ARGV[i]) == 0) r->mem_access_methods[i] = RISCV_MEM_ACCESS_PROGBUF; else if (strcmp("sysbus", CMD_ARGV[i]) == 0) r->mem_access_methods[i] = RISCV_MEM_ACCESS_SYSBUS; else if (strcmp("abstract", CMD_ARGV[i]) == 0) r->mem_access_methods[i] = RISCV_MEM_ACCESS_ABSTRACT; } /* Reset warning flags */ r->mem_access_progbuf_warn = true; r->mem_access_sysbus_warn = true; r->mem_access_abstract_warn = true; return ERROR_OK; } COMMAND_HANDLER(riscv_set_enable_virtual) { if (CMD_ARGC != 1) { LOG_ERROR("Command takes exactly 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_enable_virtual); return ERROR_OK; } int parse_ranges(struct list_head *ranges, const char *tcl_arg, const char *reg_type, unsigned int max_val) { char *args = strdup(tcl_arg); if (!args) return ERROR_FAIL; /* For backward compatibility, allow multiple parameters within one TCL argument, separated by ',' */ char *arg = strtok(args, ","); while (arg) { unsigned low = 0; unsigned high = 0; char *name = NULL; char *dash = strchr(arg, '-'); char *equals = strchr(arg, '='); unsigned int pos; if (!dash && !equals) { /* Expecting single register number. */ if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) { LOG_ERROR("Failed to parse single register number from '%s'.", arg); free(args); return ERROR_COMMAND_SYNTAX_ERROR; } } else if (dash && !equals) { /* Expecting register range - two numbers separated by a dash: ##-## */ *dash = 0; dash++; if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) { LOG_ERROR("Failed to parse single register number from '%s'.", arg); free(args); return ERROR_COMMAND_SYNTAX_ERROR; } if (sscanf(dash, "%u%n", &high, &pos) != 1 || pos != strlen(dash)) { LOG_ERROR("Failed to parse single register number from '%s'.", dash); free(args); return ERROR_COMMAND_SYNTAX_ERROR; } if (high < low) { LOG_ERROR("Incorrect range encountered [%u, %u].", low, high); free(args); return ERROR_FAIL; } } else if (!dash && equals) { /* Expecting single register number with textual name specified: ##=name */ *equals = 0; equals++; if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) { LOG_ERROR("Failed to parse single register number from '%s'.", arg); free(args); return ERROR_COMMAND_SYNTAX_ERROR; } name = calloc(1, strlen(equals) + strlen(reg_type) + 2); if (!name) { LOG_ERROR("Failed to allocate register name."); free(args); return ERROR_FAIL; } /* Register prefix: "csr_" or "custom_" */ strcpy(name, reg_type); name[strlen(reg_type)] = '_'; if (sscanf(equals, "%[_a-zA-Z0-9]%n", name + strlen(reg_type) + 1, &pos) != 1 || pos != strlen(equals)) { LOG_ERROR("Failed to parse register name from '%s'.", equals); free(args); free(name); return ERROR_COMMAND_SYNTAX_ERROR; } } else { LOG_ERROR("Invalid argument '%s'.", arg); free(args); return ERROR_COMMAND_SYNTAX_ERROR; } high = high > low ? high : low; if (high > max_val) { LOG_ERROR("Cannot expose %s register number %u, maximum allowed value is %u.", reg_type, high, max_val); free(name); free(args); return ERROR_FAIL; } /* Check for overlap, name uniqueness. */ range_list_t *entry; list_for_each_entry(entry, ranges, list) { if ((entry->low <= high) && (low <= entry->high)) { if (low == high) LOG_WARNING("Duplicate %s register number - " "Register %u has already been exposed previously", reg_type, low); else LOG_WARNING("Overlapping register ranges - Register range starting from %u overlaps " "with already exposed register/range at %u.", low, entry->low); } if (entry->name && name && (strcasecmp(entry->name, name) == 0)) { LOG_ERROR("Duplicate register name \"%s\" found.", name); free(name); free(args); return ERROR_FAIL; } } range_list_t *range = calloc(1, sizeof(range_list_t)); if (!range) { LOG_ERROR("Failed to allocate range list."); free(name); free(args); return ERROR_FAIL; } range->low = low; range->high = high; range->name = name; list_add(&range->list, ranges); arg = strtok(NULL, ","); } free(args); return ERROR_OK; } COMMAND_HANDLER(riscv_set_expose_csrs) { if (CMD_ARGC == 0) { LOG_ERROR("Command expects parameters"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); RISCV_INFO(info); int ret = ERROR_OK; for (unsigned int i = 0; i < CMD_ARGC; i++) { ret = parse_ranges(&info->expose_csr, CMD_ARGV[i], "csr", 0xfff); if (ret != ERROR_OK) break; } return ret; } COMMAND_HANDLER(riscv_set_expose_custom) { if (CMD_ARGC == 0) { LOG_ERROR("Command expects parameters"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); RISCV_INFO(info); int ret = ERROR_OK; for (unsigned int i = 0; i < CMD_ARGC; i++) { ret = parse_ranges(&info->expose_custom, CMD_ARGV[i], "custom", 0x3fff); if (ret != ERROR_OK) break; } return ret; } COMMAND_HANDLER(riscv_hide_csrs) { if (CMD_ARGC == 0) { LOG_ERROR("Command expects parameters"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); RISCV_INFO(info); int ret = ERROR_OK; for (unsigned int i = 0; i < CMD_ARGC; i++) { ret = parse_ranges(&info->hide_csr, CMD_ARGV[i], "csr", 0xfff); if (ret != ERROR_OK) break; } return ret; } COMMAND_HANDLER(riscv_authdata_read) { unsigned int index = 0; if (CMD_ARGC == 0) { /* nop */ } else if (CMD_ARGC == 1) { COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], index); } else { LOG_ERROR("Command takes at most one parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); if (!target) { LOG_ERROR("target is NULL!"); return ERROR_FAIL; } RISCV_INFO(r); if (!r) { LOG_ERROR("riscv_info is NULL!"); return ERROR_FAIL; } if (r->authdata_read) { uint32_t value; if (r->authdata_read(target, &value, index) != ERROR_OK) return ERROR_FAIL; command_print_sameline(CMD, "0x%08" PRIx32, value); return ERROR_OK; } else { LOG_ERROR("authdata_read is not implemented for this target."); return ERROR_FAIL; } } COMMAND_HANDLER(riscv_authdata_write) { uint32_t value; unsigned int index = 0; if (CMD_ARGC == 0) { /* nop */ } else if (CMD_ARGC == 1) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], value); } else if (CMD_ARGC == 2) { COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], index); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); } else { LOG_ERROR("Command takes at most 2 arguments"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); if (r->authdata_write) { return r->authdata_write(target, value, index); } else { LOG_ERROR("authdata_write is not implemented for this target."); return ERROR_FAIL; } } COMMAND_HANDLER(riscv_dmi_read) { if (CMD_ARGC != 1) { LOG_ERROR("Command takes 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); if (!target) { LOG_ERROR("target is NULL!"); return ERROR_FAIL; } RISCV_INFO(r); if (!r) { LOG_ERROR("riscv_info is NULL!"); return ERROR_FAIL; } if (r->dmi_read) { uint32_t address, value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address); if (r->dmi_read(target, &value, address) != ERROR_OK) return ERROR_FAIL; command_print(CMD, "0x%" PRIx32, value); return ERROR_OK; } else { LOG_ERROR("dmi_read is not implemented for this target."); return ERROR_FAIL; } } COMMAND_HANDLER(riscv_dmi_write) { if (CMD_ARGC != 2) { LOG_ERROR("Command takes exactly 2 arguments"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); uint32_t address, value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); if (r->dmi_write) { /* Perform the DMI write */ int retval = r->dmi_write(target, address, value); /* Invalidate our cached progbuf copy: - if the user tinkered directly with a progbuf register - if debug module was reset, in which case progbuf registers may not retain their value. */ bool progbufTouched = (address >= DM_PROGBUF0 && address <= DM_PROGBUF15); bool dmDeactivated = (address == DM_DMCONTROL && (value & DM_DMCONTROL_DMACTIVE) == 0); if (progbufTouched || dmDeactivated) { if (r->invalidate_cached_debug_buffer) r->invalidate_cached_debug_buffer(target); } return retval; } LOG_ERROR("dmi_write is not implemented for this target."); return ERROR_FAIL; } COMMAND_HANDLER(riscv_reset_delays) { int wait = 0; if (CMD_ARGC > 1) { LOG_ERROR("Command takes at most one argument"); return ERROR_COMMAND_SYNTAX_ERROR; } if (CMD_ARGC == 1) COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], wait); struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); r->reset_delays_wait = wait; return ERROR_OK; } COMMAND_HANDLER(riscv_set_ir) { if (CMD_ARGC != 2) { LOG_ERROR("Command takes exactly 2 arguments"); return ERROR_COMMAND_SYNTAX_ERROR; } uint32_t value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); if (!strcmp(CMD_ARGV[0], "idcode")) buf_set_u32(ir_idcode, 0, 32, value); else if (!strcmp(CMD_ARGV[0], "dtmcs")) buf_set_u32(ir_dtmcontrol, 0, 32, value); else if (!strcmp(CMD_ARGV[0], "dmi")) buf_set_u32(ir_dbus, 0, 32, value); else return ERROR_FAIL; return ERROR_OK; } COMMAND_HANDLER(riscv_resume_order) { if (CMD_ARGC > 1) { LOG_ERROR("Command takes at most one argument"); return ERROR_COMMAND_SYNTAX_ERROR; } if (!strcmp(CMD_ARGV[0], "normal")) { resume_order = RO_NORMAL; } else if (!strcmp(CMD_ARGV[0], "reversed")) { resume_order = RO_REVERSED; } else { LOG_ERROR("Unsupported resume order: %s", CMD_ARGV[0]); return ERROR_FAIL; } return ERROR_OK; } COMMAND_HANDLER(riscv_use_bscan_tunnel) { int irwidth = 0; int tunnel_type = BSCAN_TUNNEL_NESTED_TAP; if (CMD_ARGC > 2) { LOG_ERROR("Command takes at most two arguments"); return ERROR_COMMAND_SYNTAX_ERROR; } else if (CMD_ARGC == 1) { COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], irwidth); } else if (CMD_ARGC == 2) { COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], irwidth); COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], tunnel_type); } if (tunnel_type == BSCAN_TUNNEL_NESTED_TAP) LOG_INFO("Nested Tap based Bscan Tunnel Selected"); else if (tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) LOG_INFO("Simple Register based Bscan Tunnel Selected"); else LOG_INFO("Invalid Tunnel type selected ! : selecting default Nested Tap Type"); bscan_tunnel_type = tunnel_type; bscan_tunnel_ir_width = irwidth; return ERROR_OK; } COMMAND_HANDLER(riscv_set_bscan_tunnel_ir) { int ir_id = 0; if (CMD_ARGC > 1) { LOG_ERROR("Command takes at most one arguments"); return ERROR_COMMAND_SYNTAX_ERROR; } else if (CMD_ARGC == 1) { COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], ir_id); } LOG_INFO("Bscan tunnel IR 0x%x selected", ir_id); bscan_tunnel_ir_id = ir_id; return ERROR_OK; } COMMAND_HANDLER(riscv_set_maskisr) { struct target *target = get_current_target(CMD_CTX); RISCV_INFO(info); static const struct jim_nvp nvp_maskisr_modes[] = { { .name = "off", .value = RISCV_ISRMASK_OFF }, { .name = "steponly", .value = RISCV_ISRMASK_STEPONLY }, { .name = NULL, .value = -1 }, }; const struct jim_nvp *n; if (CMD_ARGC > 0) { n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]); if (!n->name) return ERROR_COMMAND_SYNTAX_ERROR; info->isrmask_mode = n->value; } else { n = jim_nvp_value2name_simple(nvp_maskisr_modes, info->isrmask_mode); command_print(CMD, "riscv interrupt mask %s", n->name); } return ERROR_OK; } COMMAND_HANDLER(riscv_set_enable_virt2phys) { if (CMD_ARGC != 1) { LOG_ERROR("Command takes exactly 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_enable_virt2phys); return ERROR_OK; } COMMAND_HANDLER(riscv_set_ebreakm) { if (CMD_ARGC != 1) { LOG_ERROR("Command takes exactly 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_ebreakm); return ERROR_OK; } COMMAND_HANDLER(riscv_set_ebreaks) { if (CMD_ARGC != 1) { LOG_ERROR("Command takes exactly 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_ebreaks); return ERROR_OK; } COMMAND_HANDLER(riscv_set_ebreaku) { if (CMD_ARGC != 1) { LOG_ERROR("Command takes exactly 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_ebreaku); return ERROR_OK; } COMMAND_HANDLER(riscv_itrigger) { if (CMD_ARGC < 1) { LOG_ERROR("Command takes at least 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); const int ITRIGGER_UNIQUE_ID = -CSR_TDATA1_TYPE_ITRIGGER; if (riscv_enumerate_triggers(target) != ERROR_OK) return ERROR_FAIL; if (!strcmp(CMD_ARGV[0], "set")) { if (find_first_trigger_by_id(target, ITRIGGER_UNIQUE_ID) >= 0) { LOG_TARGET_ERROR(target, "An itrigger is already set, and OpenOCD " "doesn't support setting more than one at a time."); return ERROR_FAIL; } bool vs = false; bool vu = false; bool nmi = false; bool m = false; bool s = false; bool u = false; riscv_reg_t interrupts = 0; for (unsigned int i = 1; i < CMD_ARGC; i++) { if (!strcmp(CMD_ARGV[i], "vs")) vs = true; else if (!strcmp(CMD_ARGV[i], "vu")) vu = true; else if (!strcmp(CMD_ARGV[i], "nmi")) nmi = true; else if (!strcmp(CMD_ARGV[i], "m")) m = true; else if (!strcmp(CMD_ARGV[i], "s")) s = true; else if (!strcmp(CMD_ARGV[i], "u")) u = true; else COMMAND_PARSE_NUMBER(u64, CMD_ARGV[i], interrupts); } if (!nmi && interrupts == 0) { LOG_ERROR("Doesn't make sense to set itrigger with " "mie_bits=0 and without nmi."); return ERROR_FAIL; } else if (!vs && !vu && !m && !s && !u) { LOG_ERROR("Doesn't make sense to set itrigger without at " "least one of vs, vu, m, s, or u."); return ERROR_FAIL; } int result = maybe_add_trigger_t4(target, vs, vu, nmi, m, s, u, interrupts, ITRIGGER_UNIQUE_ID); if (result != ERROR_OK) LOG_TARGET_ERROR(target, "Failed to set requested itrigger."); return result; } else if (!strcmp(CMD_ARGV[0], "clear")) { if (CMD_ARGC != 1) { LOG_ERROR("clear command takes no extra arguments."); return ERROR_COMMAND_SYNTAX_ERROR; } if (find_first_trigger_by_id(target, ITRIGGER_UNIQUE_ID) < 0) { LOG_TARGET_ERROR(target, "No itrigger is set. Nothing to clear."); return ERROR_FAIL; } return remove_trigger(target, ITRIGGER_UNIQUE_ID); } else { LOG_ERROR("First argument must be either 'set' or 'clear'."); return ERROR_COMMAND_SYNTAX_ERROR; } return ERROR_OK; } COMMAND_HANDLER(riscv_etrigger) { if (CMD_ARGC < 1) { LOG_ERROR("Command takes at least 1 parameter"); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); const int ETRIGGER_UNIQUE_ID = -CSR_TDATA1_TYPE_ETRIGGER; if (riscv_enumerate_triggers(target) != ERROR_OK) return ERROR_FAIL; if (!strcmp(CMD_ARGV[0], "set")) { if (find_first_trigger_by_id(target, ETRIGGER_UNIQUE_ID) >= 0) { LOG_TARGET_ERROR(target, "An etrigger is already set, and OpenOCD " "doesn't support setting more than one at a time."); return ERROR_FAIL; } bool vs = false; bool vu = false; bool m = false; bool s = false; bool u = false; riscv_reg_t exception_codes = 0; for (unsigned int i = 1; i < CMD_ARGC; i++) { if (!strcmp(CMD_ARGV[i], "vs")) vs = true; else if (!strcmp(CMD_ARGV[i], "vu")) vu = true; else if (!strcmp(CMD_ARGV[i], "m")) m = true; else if (!strcmp(CMD_ARGV[i], "s")) s = true; else if (!strcmp(CMD_ARGV[i], "u")) u = true; else COMMAND_PARSE_NUMBER(u64, CMD_ARGV[i], exception_codes); } if (exception_codes == 0) { LOG_ERROR("Doesn't make sense to set etrigger with " "exception_codes=0."); return ERROR_FAIL; } else if (!vs && !vu && !m && !s && !u) { LOG_ERROR("Doesn't make sense to set etrigger without at " "least one of vs, vu, m, s, or u."); return ERROR_FAIL; } int result = maybe_add_trigger_t5(target, vs, vu, m, s, u, exception_codes, ETRIGGER_UNIQUE_ID); if (result != ERROR_OK) LOG_TARGET_ERROR(target, "Failed to set requested etrigger."); return result; } else if (!strcmp(CMD_ARGV[0], "clear")) { if (CMD_ARGC != 1) { LOG_ERROR("clear command takes no extra arguments."); return ERROR_COMMAND_SYNTAX_ERROR; } if (find_first_trigger_by_id(target, ETRIGGER_UNIQUE_ID) < 0) { LOG_TARGET_ERROR(target, "No etrigger is set. Nothing to clear."); return ERROR_FAIL; } return remove_trigger(target, ETRIGGER_UNIQUE_ID); } else { LOG_ERROR("First argument must be either 'set' or 'clear'."); return ERROR_COMMAND_SYNTAX_ERROR; } return ERROR_OK; } COMMAND_HANDLER(handle_repeat_read) { struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); if (CMD_ARGC < 2) { LOG_ERROR("Command requires at least count and address arguments."); return ERROR_COMMAND_SYNTAX_ERROR; } if (CMD_ARGC > 3) { LOG_ERROR("Command takes at most 3 arguments."); return ERROR_COMMAND_SYNTAX_ERROR; } uint32_t count; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], count); target_addr_t address; COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address); uint32_t size = 4; if (CMD_ARGC > 2) COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size); if (count == 0) return ERROR_OK; uint8_t *buffer = malloc(size * count); if (!buffer) { LOG_ERROR("malloc failed"); return ERROR_FAIL; } int result = r->read_memory(target, address, size, count, buffer, 0); if (result == ERROR_OK) { target_handle_md_output(cmd, target, address, size, count, buffer, false); } free(buffer); return result; } COMMAND_HANDLER(handle_memory_sample_command) { struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); if (CMD_ARGC == 0) { command_print(CMD, "Memory sample configuration for %s:", target_name(target)); for (unsigned i = 0; i < ARRAY_SIZE(r->sample_config.bucket); i++) { if (r->sample_config.bucket[i].enabled) { command_print(CMD, "bucket %d; address=0x%" TARGET_PRIxADDR "; size=%d", i, r->sample_config.bucket[i].address, r->sample_config.bucket[i].size_bytes); } else { command_print(CMD, "bucket %d; disabled", i); } } return ERROR_OK; } if (CMD_ARGC < 2) { LOG_ERROR("Command requires at least bucket and address arguments."); return ERROR_COMMAND_SYNTAX_ERROR; } uint32_t bucket; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], bucket); if (bucket > ARRAY_SIZE(r->sample_config.bucket)) { LOG_ERROR("Max bucket number is %d.", (unsigned) ARRAY_SIZE(r->sample_config.bucket)); return ERROR_COMMAND_ARGUMENT_INVALID; } if (!strcmp(CMD_ARGV[1], "clear")) { r->sample_config.bucket[bucket].enabled = false; } else { COMMAND_PARSE_ADDRESS(CMD_ARGV[1], r->sample_config.bucket[bucket].address); if (CMD_ARGC > 2) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], r->sample_config.bucket[bucket].size_bytes); if (r->sample_config.bucket[bucket].size_bytes != 4 && r->sample_config.bucket[bucket].size_bytes != 8) { LOG_ERROR("Only 4-byte and 8-byte sizes are supported."); return ERROR_COMMAND_ARGUMENT_INVALID; } } else { r->sample_config.bucket[bucket].size_bytes = 4; } r->sample_config.bucket[bucket].enabled = true; } if (!r->sample_buf.buf) { r->sample_buf.size = 1024 * 1024; r->sample_buf.buf = malloc(r->sample_buf.size); } /* Clear the buffer when the configuration is changed. */ r->sample_buf.used = 0; r->sample_config.enabled = true; return ERROR_OK; } COMMAND_HANDLER(handle_dump_sample_buf_command) { struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); if (CMD_ARGC > 1) { LOG_ERROR("Command takes at most 1 arguments."); return ERROR_COMMAND_SYNTAX_ERROR; } bool base64 = false; if (CMD_ARGC > 0) { if (!strcmp(CMD_ARGV[0], "base64")) { base64 = true; } else { LOG_ERROR("Unknown argument: %s", CMD_ARGV[0]); return ERROR_COMMAND_SYNTAX_ERROR; } } int result = ERROR_OK; if (base64) { unsigned char *encoded = base64_encode(r->sample_buf.buf, r->sample_buf.used, NULL); if (!encoded) { LOG_ERROR("Failed base64 encode!"); result = ERROR_FAIL; goto error; } command_print(CMD, "%s", encoded); free(encoded); } else { unsigned i = 0; while (i < r->sample_buf.used) { uint8_t command = r->sample_buf.buf[i++]; if (command == RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE) { uint32_t timestamp = buf_get_u32(r->sample_buf.buf + i, 0, 32); i += 4; command_print(CMD, "timestamp before: %u", timestamp); } else if (command == RISCV_SAMPLE_BUF_TIMESTAMP_AFTER) { uint32_t timestamp = buf_get_u32(r->sample_buf.buf + i, 0, 32); i += 4; command_print(CMD, "timestamp after: %u", timestamp); } else if (command < ARRAY_SIZE(r->sample_config.bucket)) { command_print_sameline(CMD, "0x%" TARGET_PRIxADDR ": ", r->sample_config.bucket[command].address); if (r->sample_config.bucket[command].size_bytes == 4) { uint32_t value = buf_get_u32(r->sample_buf.buf + i, 0, 32); i += 4; command_print(CMD, "0x%08" PRIx32, value); } else if (r->sample_config.bucket[command].size_bytes == 8) { uint64_t value = buf_get_u64(r->sample_buf.buf + i, 0, 64); i += 8; command_print(CMD, "0x%016" PRIx64, value); } else { LOG_ERROR("Found invalid size in bucket %d: %d", command, r->sample_config.bucket[command].size_bytes); result = ERROR_FAIL; goto error; } } else { LOG_ERROR("Found invalid command byte in sample buf: 0x%2x at offset 0x%x", command, i - 1); result = ERROR_FAIL; goto error; } } } error: /* Clear the sample buffer even when there was an error. */ r->sample_buf.used = 0; return result; } COMMAND_HELPER(riscv_print_info_line, const char *section, const char *key, unsigned value) { char full_key[80]; snprintf(full_key, sizeof(full_key), "%s.%s", section, key); command_print(CMD, "%-21s %3d", full_key, value); return 0; } COMMAND_HANDLER(handle_info) { struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); /* This output format can be fed directly into TCL's "array set". */ riscv_print_info_line(CMD, "hart", "xlen", riscv_xlen(target)); riscv_enumerate_triggers(target); riscv_print_info_line(CMD, "hart", "trigger_count", r->trigger_count); if (r->print_info) return CALL_COMMAND_HANDLER(r->print_info, target); return 0; } COMMAND_HANDLER(riscv_exec_progbuf) { if (CMD_ARGC < 1 || CMD_ARGC > 16) { LOG_ERROR("Command 'exec_progbuf' takes 1 to 16 arguments."); return ERROR_COMMAND_SYNTAX_ERROR; } struct target *target = get_current_target(CMD_CTX); RISCV_INFO(r); if (r->dtm_version != 1) { LOG_TARGET_ERROR(target, "exec_progbuf: Program buffer is " "only supported on v0.13 or v1.0 targets."); return ERROR_FAIL; } if (target->state != TARGET_HALTED) { LOG_TARGET_ERROR(target, "exec_progbuf: Can't execute " "program buffer, target not halted."); return ERROR_FAIL; } if (riscv_debug_buffer_size(target) == 0) { LOG_TARGET_ERROR(target, "exec_progbuf: Program buffer not implemented " "in the target."); return ERROR_FAIL; } struct riscv_program prog; riscv_program_init(&prog, target); for (unsigned int i = 0; i < CMD_ARGC; i++) { riscv_insn_t instr; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[i], instr); if (riscv_program_insert(&prog, instr) != ERROR_OK) return ERROR_FAIL; } if (riscv_program_exec(&prog, target) == ERROR_OK) LOG_TARGET_DEBUG(target, "exec_progbuf: Program buffer execution successful."); else LOG_TARGET_ERROR(target, "exec_progbuf: Program buffer execution failed."); return ERROR_OK; } static const struct command_registration riscv_exec_command_handlers[] = { { .name = "dump_sample_buf", .handler = handle_dump_sample_buf_command, .mode = COMMAND_ANY, .usage = "[base64]", .help = "Print the contents of the sample buffer, and clear the buffer." }, { .name = "info", .handler = handle_info, .mode = COMMAND_ANY, .usage = "", .help = "Displays some information OpenOCD detected about the target." }, { .name = "memory_sample", .handler = handle_memory_sample_command, .mode = COMMAND_ANY, .usage = "bucket address|clear [size=4]", .help = "Causes OpenOCD to frequently read size bytes at the given address." }, { .name = "repeat_read", .handler = handle_repeat_read, .mode = COMMAND_ANY, .usage = "count address [size=4]", .help = "Repeatedly read the value at address." }, { .name = "set_command_timeout_sec", .handler = riscv_set_command_timeout_sec, .mode = COMMAND_ANY, .usage = "[sec]", .help = "Set the wall-clock timeout (in seconds) for individual commands" }, { .name = "set_reset_timeout_sec", .handler = riscv_set_reset_timeout_sec, .mode = COMMAND_ANY, .usage = "[sec]", .help = "Set the wall-clock timeout (in seconds) after reset is deasserted" }, { .name = "set_prefer_sba", .handler = riscv_set_prefer_sba, .mode = COMMAND_ANY, .usage = "on|off", .help = "When on, prefer to use System Bus Access to access memory. " "When off (default), prefer to use the Program Buffer to access memory." }, { .name = "set_mem_access", .handler = riscv_set_mem_access, .mode = COMMAND_ANY, .usage = "method1 [method2] [method3]", .help = "Set which memory access methods shall be used and in which order " "of priority. Method can be one of: 'progbuf', 'sysbus' or 'abstract'." }, { .name = "set_enable_virtual", .handler = riscv_set_enable_virtual, .mode = COMMAND_ANY, .usage = "on|off", .help = "When on, memory accesses are performed on physical or virtual " "memory depending on the current system configuration. " "When off (default), all memory accessses are performed on physical memory." }, { .name = "expose_csrs", .handler = riscv_set_expose_csrs, .mode = COMMAND_CONFIG, .usage = "n0[-m0|=name0][,n1[-m1|=name1]]...", .help = "Configure a list of inclusive ranges for CSRs to expose in " "addition to the standard ones. This must be executed before " "`init`." }, { .name = "expose_custom", .handler = riscv_set_expose_custom, .mode = COMMAND_CONFIG, .usage = "n0[-m0|=name0][,n1[-m1|=name1]]...", .help = "Configure a list of inclusive ranges for custom registers to " "expose. custom0 is accessed as abstract register number 0xc000, " "etc. This must be executed before `init`." }, { .name = "hide_csrs", .handler = riscv_hide_csrs, .mode = COMMAND_CONFIG, .usage = "{n0|n-m0}[,n1|n-m1]......", .help = "Configure a list of inclusive ranges for CSRs to hide from gdb. " "Hidden registers are still available, but are not listed in " "gdb target description and `reg` command output. " "This must be executed before `init`." }, { .name = "authdata_read", .handler = riscv_authdata_read, .usage = "[index]", .mode = COMMAND_ANY, .help = "Return the 32-bit value read from authdata or authdata0 " "(index=0), or authdata1 (index=1)." }, { .name = "authdata_write", .handler = riscv_authdata_write, .mode = COMMAND_ANY, .usage = "[index] value", .help = "Write the 32-bit value to authdata or authdata0 (index=0), " "or authdata1 (index=1)." }, { .name = "dmi_read", .handler = riscv_dmi_read, .mode = COMMAND_ANY, .usage = "address", .help = "Perform a 32-bit DMI read at address, returning the value." }, { .name = "dmi_write", .handler = riscv_dmi_write, .mode = COMMAND_ANY, .usage = "address value", .help = "Perform a 32-bit DMI write of value at address." }, { .name = "reset_delays", .handler = riscv_reset_delays, .mode = COMMAND_ANY, .usage = "[wait]", .help = "OpenOCD learns how many Run-Test/Idle cycles are required " "between scans to avoid encountering the target being busy. This " "command resets those learned values after `wait` scans. It's only " "useful for testing OpenOCD itself." }, { .name = "resume_order", .handler = riscv_resume_order, .mode = COMMAND_ANY, .usage = "normal|reversed", .help = "Choose the order that harts are resumed in when `hasel` is not " "supported. Normal order is from lowest hart index to highest. " "Reversed order is from highest hart index to lowest." }, { .name = "set_ir", .handler = riscv_set_ir, .mode = COMMAND_ANY, .usage = "[idcode|dtmcs|dmi] value", .help = "Set IR value for specified JTAG register." }, { .name = "use_bscan_tunnel", .handler = riscv_use_bscan_tunnel, .mode = COMMAND_ANY, .usage = "value [type]", .help = "Enable or disable use of a BSCAN tunnel to reach DM. Supply " "the width of the DM transport TAP's instruction register to " "enable. Supply a value of 0 to disable. Pass A second argument " "(optional) to indicate Bscan Tunnel Type {0:(default) NESTED_TAP , " "1: DATA_REGISTER}" }, { .name = "set_bscan_tunnel_ir", .handler = riscv_set_bscan_tunnel_ir, .mode = COMMAND_ANY, .usage = "value", .help = "Specify the JTAG TAP IR used to access the bscan tunnel. " "By default it is 0x23 << (ir_length - 6), which map some " "Xilinx FPGA (IR USER4)" }, { .name = "set_maskisr", .handler = riscv_set_maskisr, .mode = COMMAND_EXEC, .help = "mask riscv interrupts", .usage = "['off'|'steponly']", }, { .name = "set_enable_virt2phys", .handler = riscv_set_enable_virt2phys, .mode = COMMAND_ANY, .usage = "on|off", .help = "When on (default), enable translation from virtual address to " "physical address." }, { .name = "set_ebreakm", .handler = riscv_set_ebreakm, .mode = COMMAND_ANY, .usage = "on|off", .help = "Control dcsr.ebreakm. When off, M-mode ebreak instructions " "don't trap to OpenOCD. Defaults to on." }, { .name = "set_ebreaks", .handler = riscv_set_ebreaks, .mode = COMMAND_ANY, .usage = "on|off", .help = "Control dcsr.ebreaks. When off, S-mode ebreak instructions " "don't trap to OpenOCD. Defaults to on." }, { .name = "set_ebreaku", .handler = riscv_set_ebreaku, .mode = COMMAND_ANY, .usage = "on|off", .help = "Control dcsr.ebreaku. When off, U-mode ebreak instructions " "don't trap to OpenOCD. Defaults to on." }, { .name = "etrigger", .handler = riscv_etrigger, .mode = COMMAND_EXEC, .usage = "set [vs] [vu] [m] [s] [u] |clear", .help = "Set or clear a single exception trigger." }, { .name = "itrigger", .handler = riscv_itrigger, .mode = COMMAND_EXEC, .usage = "set [vs] [vu] [nmi] [m] [s] [u] |clear", .help = "Set or clear a single interrupt trigger." }, { .name = "exec_progbuf", .handler = riscv_exec_progbuf, .mode = COMMAND_EXEC, .usage = "instr1 [instr2 [... instr16]]", .help = "Execute a sequence of 32-bit instructions using the program buffer. " "The final ebreak instruction is added automatically, if needed." }, COMMAND_REGISTRATION_DONE }; /* * To be noted that RISC-V targets use the same semihosting commands as * ARM targets. * * The main reason is compatibility with existing tools. For example the * Eclipse OpenOCD/SEGGER J-Link/QEMU plug-ins have several widgets to * configure semihosting, which generate commands like `arm semihosting * enable`. * A secondary reason is the fact that the protocol used is exactly the * one specified by ARM. If RISC-V will ever define its own semihosting * protocol, then a command like `riscv semihosting enable` will make * sense, but for now all semihosting commands are prefixed with `arm`. */ extern const struct command_registration semihosting_common_handlers[]; const struct command_registration riscv_command_handlers[] = { { .name = "riscv", .mode = COMMAND_ANY, .help = "RISC-V Command Group", .usage = "", .chain = riscv_exec_command_handlers }, { .name = "arm", .mode = COMMAND_ANY, .help = "ARM Command Group", .usage = "", .chain = semihosting_common_handlers }, COMMAND_REGISTRATION_DONE }; static unsigned riscv_xlen_nonconst(struct target *target) { return riscv_xlen(target); } static unsigned int riscv_data_bits(struct target *target) { RISCV_INFO(r); if (r->data_bits) return r->data_bits(target); return riscv_xlen(target); } struct target_type riscv_target = { .name = "riscv", .target_create = riscv_create_target, .init_target = riscv_init_target, .deinit_target = riscv_deinit_target, .examine = riscv_examine, /* poll current target status */ .poll = old_or_new_riscv_poll, .halt = riscv_halt, .resume = riscv_target_resume, .step = old_or_new_riscv_step, .assert_reset = riscv_assert_reset, .deassert_reset = riscv_deassert_reset, .read_memory = riscv_read_memory, .write_memory = riscv_write_memory, .read_phys_memory = riscv_read_phys_memory, .write_phys_memory = riscv_write_phys_memory, .checksum_memory = riscv_checksum_memory, .mmu = riscv_mmu, .virt2phys = riscv_virt2phys, .get_gdb_arch = riscv_get_gdb_arch, .get_gdb_reg_list = riscv_get_gdb_reg_list, .get_gdb_reg_list_noread = riscv_get_gdb_reg_list_noread, .add_breakpoint = riscv_add_breakpoint, .remove_breakpoint = riscv_remove_breakpoint, .add_watchpoint = riscv_add_watchpoint, .remove_watchpoint = riscv_remove_watchpoint, .hit_watchpoint = riscv_hit_watchpoint, .arch_state = riscv_arch_state, .run_algorithm = riscv_run_algorithm, .commands = riscv_command_handlers, .address_bits = riscv_xlen_nonconst, .data_bits = riscv_data_bits }; /*** RISC-V Interface ***/ void riscv_info_init(struct target *target, riscv_info_t *r) { memset(r, 0, sizeof(*r)); r->dtm_version = 1; r->version_specific = NULL; memset(r->trigger_unique_id, 0xff, sizeof(r->trigger_unique_id)); r->xlen = -1; r->isrmask_mode = RISCV_ISRMASK_OFF; r->mem_access_methods[0] = RISCV_MEM_ACCESS_PROGBUF; r->mem_access_methods[1] = RISCV_MEM_ACCESS_SYSBUS; r->mem_access_methods[2] = RISCV_MEM_ACCESS_ABSTRACT; r->mem_access_progbuf_warn = true; r->mem_access_sysbus_warn = true; r->mem_access_abstract_warn = true; INIT_LIST_HEAD(&r->expose_csr); INIT_LIST_HEAD(&r->expose_custom); INIT_LIST_HEAD(&r->hide_csr); r->vsew64_supported = YNM_MAYBE; } static int riscv_resume_go_all_harts(struct target *target) { RISCV_INFO(r); LOG_TARGET_DEBUG(target, "resuming hart, state=%d", target->state); if (target->state == TARGET_HALTED) { if (r->resume_go(target) != ERROR_OK) return ERROR_FAIL; } else { LOG_DEBUG("[%s] hart requested resume, but was already resumed", target_name(target)); } riscv_invalidate_register_cache(target); return ERROR_OK; } int riscv_interrupts_disable(struct target *target, uint64_t irq_mask, uint64_t *old_mstatus) { LOG_DEBUG("Disabling Interrupts"); struct reg *reg_mstatus = register_get_by_name(target->reg_cache, "mstatus", true); if (!reg_mstatus) { LOG_ERROR("Couldn't find mstatus!"); return ERROR_FAIL; } int retval = reg_mstatus->type->get(reg_mstatus); if (retval != ERROR_OK) return retval; RISCV_INFO(info); uint8_t mstatus_bytes[8] = { 0 }; uint64_t current_mstatus = buf_get_u64(reg_mstatus->value, 0, reg_mstatus->size); buf_set_u64(mstatus_bytes, 0, info->xlen, set_field(current_mstatus, irq_mask, 0)); retval = reg_mstatus->type->set(reg_mstatus, mstatus_bytes); if (retval != ERROR_OK) return retval; if (old_mstatus) *old_mstatus = current_mstatus; return ERROR_OK; } int riscv_interrupts_restore(struct target *target, uint64_t old_mstatus) { LOG_DEBUG("Restore Interrupts"); struct reg *reg_mstatus = register_get_by_name(target->reg_cache, "mstatus", true); if (!reg_mstatus) { LOG_ERROR("Couldn't find mstatus!"); return ERROR_FAIL; } RISCV_INFO(info); uint8_t mstatus_bytes[8]; buf_set_u64(mstatus_bytes, 0, info->xlen, old_mstatus); return reg_mstatus->type->set(reg_mstatus, mstatus_bytes); } int riscv_step_rtos_hart(struct target *target) { RISCV_INFO(r); LOG_DEBUG("[%s] stepping", target_name(target)); if (target->state != TARGET_HALTED) { LOG_ERROR("Hart isn't halted before single step!"); return ERROR_FAIL; } r->on_step(target); if (r->step_current_hart(target) != ERROR_OK) return ERROR_FAIL; r->on_halt(target); if (target->state != TARGET_HALTED) { LOG_ERROR("Hart was not halted after single step!"); return ERROR_FAIL; } return ERROR_OK; } bool riscv_supports_extension(struct target *target, char letter) { RISCV_INFO(r); unsigned num; if (letter >= 'a' && letter <= 'z') num = letter - 'a'; else if (letter >= 'A' && letter <= 'Z') num = letter - 'A'; else return false; return r->misa & BIT(num); } unsigned riscv_xlen(const struct target *target) { RISCV_INFO(r); return r->xlen; } void riscv_invalidate_register_cache(struct target *target) { /* Do not invalidate the register cache if it is not yet set up * (e.g. when the target failed to get examined). */ if (!target->reg_cache) return; LOG_DEBUG("[%d]", target->coreid); register_cache_invalidate(target->reg_cache); for (size_t i = 0; i < target->reg_cache->num_regs; ++i) { struct reg *reg = &target->reg_cache->reg_list[i]; reg->valid = false; } } unsigned int riscv_count_harts(struct target *target) { if (!target) return 1; RISCV_INFO(r); if (!r || !r->hart_count) return 1; return r->hart_count(target); } /** * If write is true: * return true iff we are guaranteed that the register will contain exactly * the value we just wrote when it's read. * If write is false: * return true iff we are guaranteed that the register will read the same * value in the future as the value we just read. */ static bool gdb_regno_cacheable(enum gdb_regno regno, bool write) { /* GPRs, FPRs, vector registers are just normal data stores. */ if (regno <= GDB_REGNO_XPR31 || (regno >= GDB_REGNO_FPR0 && regno <= GDB_REGNO_FPR31) || (regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31)) return true; /* Most CSRs won't change value on us, but we can't assume it about arbitrary * CSRs. */ switch (regno) { case GDB_REGNO_DPC: return true; case GDB_REGNO_VSTART: case GDB_REGNO_VXSAT: case GDB_REGNO_VXRM: case GDB_REGNO_VLENB: case GDB_REGNO_VL: case GDB_REGNO_VTYPE: case GDB_REGNO_MISA: case GDB_REGNO_DCSR: case GDB_REGNO_DSCRATCH0: case GDB_REGNO_MSTATUS: case GDB_REGNO_MEPC: case GDB_REGNO_MCAUSE: case GDB_REGNO_SATP: /* * WARL registers might not contain the value we just wrote, but * these ones won't spontaneously change their value either. * */ return !write; case GDB_REGNO_TSELECT: /* I think this should be above, but then it doesn't work. */ case GDB_REGNO_TDATA1: /* Changes value when tselect is changed. */ case GDB_REGNO_TDATA2: /* Changse value when tselect is changed. */ default: return false; } } /** * This function is called when the debug user wants to change the value of a * register. The new value may be cached, and may not be written until the hart * is resumed. */ int riscv_set_register(struct target *target, enum gdb_regno regid, riscv_reg_t value) { RISCV_INFO(r); LOG_DEBUG("[%s] %s <- %" PRIx64, target_name(target), gdb_regno_name(regid), value); assert(r->set_register); keep_alive(); /* TODO: Hack to deal with gdb that thinks these registers still exist. */ if (regid > GDB_REGNO_XPR15 && regid <= GDB_REGNO_XPR31 && value == 0 && riscv_supports_extension(target, 'E')) return ERROR_OK; struct reg *reg = &target->reg_cache->reg_list[regid]; buf_set_u64(reg->value, 0, reg->size, value); if (gdb_regno_cacheable(regid, true)) { reg->valid = true; reg->dirty = true; } else { if (r->set_register(target, regid, value) != ERROR_OK) return ERROR_FAIL; } LOG_DEBUG("[%s] wrote 0x%" PRIx64 " to %s valid=%d", target_name(target), value, reg->name, reg->valid); return ERROR_OK; } int riscv_get_register(struct target *target, riscv_reg_t *value, enum gdb_regno regid) { RISCV_INFO(r); keep_alive(); struct reg *reg = &target->reg_cache->reg_list[regid]; if (!reg->exist) { LOG_DEBUG("[%s] %s does not exist.", target_name(target), gdb_regno_name(regid)); return ERROR_FAIL; } if (reg && reg->valid) { *value = buf_get_u64(reg->value, 0, reg->size); LOG_DEBUG("[%s] %s: %" PRIx64 " (cached)", target_name(target), gdb_regno_name(regid), *value); return ERROR_OK; } /* TODO: Hack to deal with gdb that thinks these registers still exist. */ if (regid > GDB_REGNO_XPR15 && regid <= GDB_REGNO_XPR31 && riscv_supports_extension(target, 'E')) { *value = 0; return ERROR_OK; } int result = r->get_register(target, value, regid); if (result == ERROR_OK) { /* Update the cache in case we're called from * riscv_save_register(). */ buf_set_u64(reg->value, 0, reg->size, *value); reg->valid = gdb_regno_cacheable(regid, false); } LOG_DEBUG("[%s] %s: %" PRIx64, target_name(target), gdb_regno_name(regid), *value); return result; } int riscv_save_register(struct target *target, enum gdb_regno regid) { RISCV_INFO(r); riscv_reg_t value; if (!target->reg_cache) { assert(!target_was_examined(target)); return ERROR_OK; } struct reg *reg = &target->reg_cache->reg_list[regid]; LOG_DEBUG("[%s] save %s", target_name(target), reg->name); if (riscv_get_register(target, &value, regid) != ERROR_OK) return ERROR_FAIL; if (!reg->valid) return ERROR_FAIL; /* Mark the register dirty. We assume that this function is called * because the caller is about to mess with the underlying value of the * register. */ reg->dirty = true; r->last_activity = timeval_ms(); return ERROR_OK; } int riscv_get_hart_state(struct target *target, enum riscv_hart_state *state) { RISCV_INFO(r); assert(r->get_hart_state); return r->get_hart_state(target, state); } enum riscv_halt_reason riscv_halt_reason(struct target *target) { RISCV_INFO(r); if (target->state != TARGET_HALTED) { LOG_ERROR("Hart is not halted!"); return RISCV_HALT_UNKNOWN; } return r->halt_reason(target); } size_t riscv_debug_buffer_size(struct target *target) { RISCV_INFO(r); return r->debug_buffer_size; } int riscv_write_debug_buffer(struct target *target, int index, riscv_insn_t insn) { RISCV_INFO(r); r->write_debug_buffer(target, index, insn); return ERROR_OK; } riscv_insn_t riscv_read_debug_buffer(struct target *target, int index) { RISCV_INFO(r); return r->read_debug_buffer(target, index); } int riscv_execute_debug_buffer(struct target *target) { RISCV_INFO(r); return r->execute_debug_buffer(target); } void riscv_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d) { RISCV_INFO(r); r->fill_dmi_write_u64(target, buf, a, d); } void riscv_fill_dmi_read_u64(struct target *target, char *buf, int a) { RISCV_INFO(r); r->fill_dmi_read_u64(target, buf, a); } void riscv_fill_dmi_nop_u64(struct target *target, char *buf) { RISCV_INFO(r); r->fill_dmi_nop_u64(target, buf); } int riscv_dmi_write_u64_bits(struct target *target) { RISCV_INFO(r); return r->dmi_write_u64_bits(target); } /** * Count triggers, and initialize trigger_count for each hart. * trigger_count is initialized even if this function fails to discover * something. * Disable any hardware triggers that have dmode set. We can't have set them * ourselves. Maybe they're left over from some killed debug session. * */ int riscv_enumerate_triggers(struct target *target) { RISCV_INFO(r); if (r->triggers_enumerated) return ERROR_OK; r->triggers_enumerated = true; /* At the very least we tried. */ riscv_reg_t tselect; int result = riscv_get_register(target, &tselect, GDB_REGNO_TSELECT); /* If tselect is not readable, the trigger module is likely not * implemented. There are no triggers to enumerate then and no error * should be thrown. */ if (result != ERROR_OK) { LOG_DEBUG("[%s] Cannot access tselect register. " "Assuming that triggers are not implemented.", target_name(target)); r->trigger_count = 0; return ERROR_OK; } for (unsigned int t = 0; t < RISCV_MAX_TRIGGERS; ++t) { r->trigger_count = t; /* If we can't write tselect, then this hart does not support triggers. */ if (riscv_set_register(target, GDB_REGNO_TSELECT, t) != ERROR_OK) break; uint64_t tselect_rb; result = riscv_get_register(target, &tselect_rb, GDB_REGNO_TSELECT); if (result != ERROR_OK) return result; /* Mask off the top bit, which is used as tdrmode in old * implementations. */ tselect_rb &= ~(1ULL << (riscv_xlen(target) - 1)); if (tselect_rb != t) break; uint64_t tinfo; result = riscv_get_register(target, &tinfo, GDB_REGNO_TINFO); if (result == ERROR_OK) { /* tinfo == 0 invalid tinfo * tinfo == 1 trigger doesn’t exist */ if (tinfo == 0 || tinfo == 1) break; r->trigger_tinfo[t] = tinfo; } else { uint64_t tdata1; result = riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1); if (result != ERROR_OK) return result; int type = get_field(tdata1, CSR_TDATA1_TYPE(riscv_xlen(target))); if (type == 0) break; switch (type) { case CSR_TDATA1_TYPE_LEGACY: /* On these older cores we don't support software using * triggers. */ riscv_set_register(target, GDB_REGNO_TDATA1, 0); break; case CSR_TDATA1_TYPE_MCONTROL: if (tdata1 & CSR_MCONTROL_DMODE(riscv_xlen(target))) riscv_set_register(target, GDB_REGNO_TDATA1, 0); break; case CSR_TDATA1_TYPE_MCONTROL6: if (tdata1 & CSR_MCONTROL6_DMODE(riscv_xlen(target))) riscv_set_register(target, GDB_REGNO_TDATA1, 0); break; case CSR_TDATA1_TYPE_ITRIGGER: if (tdata1 & CSR_ITRIGGER_DMODE(riscv_xlen(target))) riscv_set_register(target, GDB_REGNO_TDATA1, 0); break; case CSR_TDATA1_TYPE_ETRIGGER: if (tdata1 & CSR_ETRIGGER_DMODE(riscv_xlen(target))) riscv_set_register(target, GDB_REGNO_TDATA1, 0); break; } r->trigger_tinfo[t] = 1 << type; } LOG_TARGET_DEBUG(target, "Trigger %u: supported types (mask) = 0x%08x", t, r->trigger_tinfo[t]); } riscv_set_register(target, GDB_REGNO_TSELECT, tselect); LOG_INFO("[%s] Found %d triggers", target_name(target), r->trigger_count); return ERROR_OK; } const char *gdb_regno_name(enum gdb_regno regno) { static char buf[32]; switch (regno) { case GDB_REGNO_ZERO: return "zero"; case GDB_REGNO_RA: return "ra"; case GDB_REGNO_SP: return "sp"; case GDB_REGNO_GP: return "gp"; case GDB_REGNO_TP: return "tp"; case GDB_REGNO_T0: return "t0"; case GDB_REGNO_T1: return "t1"; case GDB_REGNO_T2: return "t2"; case GDB_REGNO_S0: return "s0"; case GDB_REGNO_S1: return "s1"; case GDB_REGNO_A0: return "a0"; case GDB_REGNO_A1: return "a1"; case GDB_REGNO_A2: return "a2"; case GDB_REGNO_A3: return "a3"; case GDB_REGNO_A4: return "a4"; case GDB_REGNO_A5: return "a5"; case GDB_REGNO_A6: return "a6"; case GDB_REGNO_A7: return "a7"; case GDB_REGNO_S2: return "s2"; case GDB_REGNO_S3: return "s3"; case GDB_REGNO_S4: return "s4"; case GDB_REGNO_S5: return "s5"; case GDB_REGNO_S6: return "s6"; case GDB_REGNO_S7: return "s7"; case GDB_REGNO_S8: return "s8"; case GDB_REGNO_S9: return "s9"; case GDB_REGNO_S10: return "s10"; case GDB_REGNO_S11: return "s11"; case GDB_REGNO_T3: return "t3"; case GDB_REGNO_T4: return "t4"; case GDB_REGNO_T5: return "t5"; case GDB_REGNO_T6: return "t6"; case GDB_REGNO_PC: return "pc"; case GDB_REGNO_FPR0: return "fpr0"; case GDB_REGNO_FPR31: return "fpr31"; case GDB_REGNO_CSR0: return "csr0"; case GDB_REGNO_TSELECT: return "tselect"; case GDB_REGNO_TDATA1: return "tdata1"; case GDB_REGNO_TDATA2: return "tdata2"; case GDB_REGNO_MISA: return "misa"; case GDB_REGNO_DPC: return "dpc"; case GDB_REGNO_DCSR: return "dcsr"; case GDB_REGNO_DSCRATCH0: return "dscratch0"; case GDB_REGNO_MSTATUS: return "mstatus"; case GDB_REGNO_MEPC: return "mepc"; case GDB_REGNO_MCAUSE: return "mcause"; case GDB_REGNO_PRIV: return "priv"; case GDB_REGNO_SATP: return "satp"; case GDB_REGNO_VTYPE: return "vtype"; case GDB_REGNO_VL: return "vl"; case GDB_REGNO_V0: return "v0"; case GDB_REGNO_V1: return "v1"; case GDB_REGNO_V2: return "v2"; case GDB_REGNO_V3: return "v3"; case GDB_REGNO_V4: return "v4"; case GDB_REGNO_V5: return "v5"; case GDB_REGNO_V6: return "v6"; case GDB_REGNO_V7: return "v7"; case GDB_REGNO_V8: return "v8"; case GDB_REGNO_V9: return "v9"; case GDB_REGNO_V10: return "v10"; case GDB_REGNO_V11: return "v11"; case GDB_REGNO_V12: return "v12"; case GDB_REGNO_V13: return "v13"; case GDB_REGNO_V14: return "v14"; case GDB_REGNO_V15: return "v15"; case GDB_REGNO_V16: return "v16"; case GDB_REGNO_V17: return "v17"; case GDB_REGNO_V18: return "v18"; case GDB_REGNO_V19: return "v19"; case GDB_REGNO_V20: return "v20"; case GDB_REGNO_V21: return "v21"; case GDB_REGNO_V22: return "v22"; case GDB_REGNO_V23: return "v23"; case GDB_REGNO_V24: return "v24"; case GDB_REGNO_V25: return "v25"; case GDB_REGNO_V26: return "v26"; case GDB_REGNO_V27: return "v27"; case GDB_REGNO_V28: return "v28"; case GDB_REGNO_V29: return "v29"; case GDB_REGNO_V30: return "v30"; case GDB_REGNO_V31: return "v31"; default: if (regno <= GDB_REGNO_XPR31) sprintf(buf, "x%d", regno - GDB_REGNO_ZERO); else if (regno >= GDB_REGNO_CSR0 && regno <= GDB_REGNO_CSR4095) sprintf(buf, "csr%d", regno - GDB_REGNO_CSR0); else if (regno >= GDB_REGNO_FPR0 && regno <= GDB_REGNO_FPR31) sprintf(buf, "f%d", regno - GDB_REGNO_FPR0); else sprintf(buf, "gdb_regno_%d", regno); return buf; } } static int register_get(struct reg *reg) { riscv_reg_info_t *reg_info = reg->arch_info; struct target *target = reg_info->target; RISCV_INFO(r); if (reg->number >= GDB_REGNO_V0 && reg->number <= GDB_REGNO_V31) { if (!r->get_register_buf) { LOG_ERROR("Reading register %s not supported on this RISC-V target.", gdb_regno_name(reg->number)); return ERROR_FAIL; } if (r->get_register_buf(target, reg->value, reg->number) != ERROR_OK) return ERROR_FAIL; } else { uint64_t value; int result = riscv_get_register(target, &value, reg->number); if (result != ERROR_OK) return result; buf_set_u64(reg->value, 0, reg->size, value); } reg->valid = gdb_regno_cacheable(reg->number, false); char *str = buf_to_hex_str(reg->value, reg->size); LOG_DEBUG("[%s] read 0x%s from %s (valid=%d)", target_name(target), str, reg->name, reg->valid); free(str); return ERROR_OK; } static int register_set(struct reg *reg, uint8_t *buf) { riscv_reg_info_t *reg_info = reg->arch_info; struct target *target = reg_info->target; RISCV_INFO(r); char *str = buf_to_hex_str(buf, reg->size); LOG_DEBUG("[%s] write 0x%s to %s (valid=%d)", target_name(target), str, reg->name, reg->valid); free(str); /* Exit early for writing x0, which on the hardware would be ignored, and we * don't want to update our cache. */ if (reg->number == GDB_REGNO_ZERO) return ERROR_OK; memcpy(reg->value, buf, DIV_ROUND_UP(reg->size, 8)); reg->valid = gdb_regno_cacheable(reg->number, true); if (reg->number == GDB_REGNO_TDATA1 || reg->number == GDB_REGNO_TDATA2) { r->manual_hwbp_set = true; /* When enumerating triggers, we clear any triggers with DMODE set, * assuming they were left over from a previous debug session. So make * sure that is done before a user might be setting their own triggers. */ if (riscv_enumerate_triggers(target) != ERROR_OK) return ERROR_FAIL; } if (reg->number >= GDB_REGNO_V0 && reg->number <= GDB_REGNO_V31) { if (!r->set_register_buf) { LOG_ERROR("Writing register %s not supported on this RISC-V target.", gdb_regno_name(reg->number)); return ERROR_FAIL; } if (r->set_register_buf(target, reg->number, reg->value) != ERROR_OK) return ERROR_FAIL; } else { uint64_t value = buf_get_u64(buf, 0, reg->size); if (riscv_set_register(target, reg->number, value) != ERROR_OK) return ERROR_FAIL; } return ERROR_OK; } static struct reg_arch_type riscv_reg_arch_type = { .get = register_get, .set = register_set }; struct csr_info { unsigned number; const char *name; }; static int cmp_csr_info(const void *p1, const void *p2) { return (int) (((struct csr_info *)p1)->number) - (int) (((struct csr_info *)p2)->number); } int riscv_init_registers(struct target *target) { RISCV_INFO(info); riscv_free_registers(target); target->reg_cache = calloc(1, sizeof(*target->reg_cache)); if (!target->reg_cache) return ERROR_FAIL; target->reg_cache->name = "RISC-V Registers"; target->reg_cache->num_regs = GDB_REGNO_COUNT; if (!list_empty(&info->expose_custom)) { range_list_t *entry; list_for_each_entry(entry, &info->expose_custom, list) target->reg_cache->num_regs += entry->high - entry->low + 1; } LOG_DEBUG("[%s] create register cache for %d registers", target_name(target), target->reg_cache->num_regs); target->reg_cache->reg_list = calloc(target->reg_cache->num_regs, sizeof(struct reg)); if (!target->reg_cache->reg_list) return ERROR_FAIL; const unsigned int max_reg_name_len = 12; free(info->reg_names); info->reg_names = calloc(target->reg_cache->num_regs, max_reg_name_len); if (!info->reg_names) return ERROR_FAIL; char *reg_name = info->reg_names; static struct reg_feature feature_cpu = { .name = "org.gnu.gdb.riscv.cpu" }; static struct reg_feature feature_fpu = { .name = "org.gnu.gdb.riscv.fpu" }; static struct reg_feature feature_csr = { .name = "org.gnu.gdb.riscv.csr" }; static struct reg_feature feature_vector = { .name = "org.gnu.gdb.riscv.vector" }; static struct reg_feature feature_virtual = { .name = "org.gnu.gdb.riscv.virtual" }; static struct reg_feature feature_custom = { .name = "org.gnu.gdb.riscv.custom" }; /* These types are built into gdb. */ static struct reg_data_type type_ieee_single = { .type = REG_TYPE_IEEE_SINGLE, .id = "ieee_single" }; static struct reg_data_type type_ieee_double = { .type = REG_TYPE_IEEE_DOUBLE, .id = "ieee_double" }; static struct reg_data_type_union_field single_double_fields[] = { {"float", &type_ieee_single, single_double_fields + 1}, {"double", &type_ieee_double, NULL}, }; static struct reg_data_type_union single_double_union = { .fields = single_double_fields }; static struct reg_data_type type_ieee_single_double = { .type = REG_TYPE_ARCH_DEFINED, .id = "FPU_FD", .type_class = REG_TYPE_CLASS_UNION, .reg_type_union = &single_double_union }; static struct reg_data_type type_uint8 = { .type = REG_TYPE_UINT8, .id = "uint8" }; static struct reg_data_type type_uint16 = { .type = REG_TYPE_UINT16, .id = "uint16" }; static struct reg_data_type type_uint32 = { .type = REG_TYPE_UINT32, .id = "uint32" }; static struct reg_data_type type_uint64 = { .type = REG_TYPE_UINT64, .id = "uint64" }; static struct reg_data_type type_uint128 = { .type = REG_TYPE_UINT128, .id = "uint128" }; /* This is roughly the XML we want: * * * * * * * * * * * * */ info->vector_uint8.type = &type_uint8; info->vector_uint8.count = info->vlenb; info->type_uint8_vector.type = REG_TYPE_ARCH_DEFINED; info->type_uint8_vector.id = "bytes"; info->type_uint8_vector.type_class = REG_TYPE_CLASS_VECTOR; info->type_uint8_vector.reg_type_vector = &info->vector_uint8; info->vector_uint16.type = &type_uint16; info->vector_uint16.count = info->vlenb / 2; info->type_uint16_vector.type = REG_TYPE_ARCH_DEFINED; info->type_uint16_vector.id = "shorts"; info->type_uint16_vector.type_class = REG_TYPE_CLASS_VECTOR; info->type_uint16_vector.reg_type_vector = &info->vector_uint16; info->vector_uint32.type = &type_uint32; info->vector_uint32.count = info->vlenb / 4; info->type_uint32_vector.type = REG_TYPE_ARCH_DEFINED; info->type_uint32_vector.id = "words"; info->type_uint32_vector.type_class = REG_TYPE_CLASS_VECTOR; info->type_uint32_vector.reg_type_vector = &info->vector_uint32; info->vector_uint64.type = &type_uint64; info->vector_uint64.count = info->vlenb / 8; info->type_uint64_vector.type = REG_TYPE_ARCH_DEFINED; info->type_uint64_vector.id = "longs"; info->type_uint64_vector.type_class = REG_TYPE_CLASS_VECTOR; info->type_uint64_vector.reg_type_vector = &info->vector_uint64; info->vector_uint128.type = &type_uint128; info->vector_uint128.count = info->vlenb / 16; info->type_uint128_vector.type = REG_TYPE_ARCH_DEFINED; info->type_uint128_vector.id = "quads"; info->type_uint128_vector.type_class = REG_TYPE_CLASS_VECTOR; info->type_uint128_vector.reg_type_vector = &info->vector_uint128; info->vector_fields[0].name = "b"; info->vector_fields[0].type = &info->type_uint8_vector; if (info->vlenb >= 2) { info->vector_fields[0].next = info->vector_fields + 1; info->vector_fields[1].name = "s"; info->vector_fields[1].type = &info->type_uint16_vector; } else { info->vector_fields[0].next = NULL; } if (info->vlenb >= 4) { info->vector_fields[1].next = info->vector_fields + 2; info->vector_fields[2].name = "w"; info->vector_fields[2].type = &info->type_uint32_vector; } else { info->vector_fields[1].next = NULL; } if (info->vlenb >= 8) { info->vector_fields[2].next = info->vector_fields + 3; info->vector_fields[3].name = "l"; info->vector_fields[3].type = &info->type_uint64_vector; } else { info->vector_fields[2].next = NULL; } if (info->vlenb >= 16) { info->vector_fields[3].next = info->vector_fields + 4; info->vector_fields[4].name = "q"; info->vector_fields[4].type = &info->type_uint128_vector; } else { info->vector_fields[3].next = NULL; } info->vector_fields[4].next = NULL; info->vector_union.fields = info->vector_fields; info->type_vector.type = REG_TYPE_ARCH_DEFINED; info->type_vector.id = "riscv_vector"; info->type_vector.type_class = REG_TYPE_CLASS_UNION; info->type_vector.reg_type_union = &info->vector_union; struct csr_info csr_info[] = { #define DECLARE_CSR(name, number) { number, #name }, #include "encoding.h" #undef DECLARE_CSR }; /* encoding.h does not contain the registers in sorted order. */ qsort(csr_info, ARRAY_SIZE(csr_info), sizeof(*csr_info), cmp_csr_info); unsigned csr_info_index = 0; int custom_within_range = 0; riscv_reg_info_t *shared_reg_info = calloc(1, sizeof(riscv_reg_info_t)); if (!shared_reg_info) return ERROR_FAIL; shared_reg_info->target = target; /* When gdb requests register N, gdb_get_register_packet() assumes that this * is register at index N in reg_list. So if there are certain registers * that don't exist, we need to leave holes in the list (or renumber, but * it would be nice not to have yet another set of numbers to translate * between). */ for (uint32_t number = 0; number < target->reg_cache->num_regs; number++) { struct reg *r = &target->reg_cache->reg_list[number]; r->dirty = false; r->valid = false; r->exist = true; r->type = &riscv_reg_arch_type; r->arch_info = shared_reg_info; r->number = number; r->size = riscv_xlen(target); /* r->size is set in riscv_invalidate_register_cache, maybe because the * target is in theory allowed to change XLEN on us. But I expect a lot * of other things to break in that case as well. */ if (number <= GDB_REGNO_XPR31) { r->exist = number <= GDB_REGNO_XPR15 || !riscv_supports_extension(target, 'E'); /* TODO: For now we fake that all GPRs exist because otherwise gdb * doesn't work. */ r->exist = true; r->caller_save = true; switch (number) { case GDB_REGNO_ZERO: r->name = "zero"; break; case GDB_REGNO_RA: r->name = "ra"; break; case GDB_REGNO_SP: r->name = "sp"; break; case GDB_REGNO_GP: r->name = "gp"; break; case GDB_REGNO_TP: r->name = "tp"; break; case GDB_REGNO_T0: r->name = "t0"; break; case GDB_REGNO_T1: r->name = "t1"; break; case GDB_REGNO_T2: r->name = "t2"; break; case GDB_REGNO_FP: r->name = "fp"; break; case GDB_REGNO_S1: r->name = "s1"; break; case GDB_REGNO_A0: r->name = "a0"; break; case GDB_REGNO_A1: r->name = "a1"; break; case GDB_REGNO_A2: r->name = "a2"; break; case GDB_REGNO_A3: r->name = "a3"; break; case GDB_REGNO_A4: r->name = "a4"; break; case GDB_REGNO_A5: r->name = "a5"; break; case GDB_REGNO_A6: r->name = "a6"; break; case GDB_REGNO_A7: r->name = "a7"; break; case GDB_REGNO_S2: r->name = "s2"; break; case GDB_REGNO_S3: r->name = "s3"; break; case GDB_REGNO_S4: r->name = "s4"; break; case GDB_REGNO_S5: r->name = "s5"; break; case GDB_REGNO_S6: r->name = "s6"; break; case GDB_REGNO_S7: r->name = "s7"; break; case GDB_REGNO_S8: r->name = "s8"; break; case GDB_REGNO_S9: r->name = "s9"; break; case GDB_REGNO_S10: r->name = "s10"; break; case GDB_REGNO_S11: r->name = "s11"; break; case GDB_REGNO_T3: r->name = "t3"; break; case GDB_REGNO_T4: r->name = "t4"; break; case GDB_REGNO_T5: r->name = "t5"; break; case GDB_REGNO_T6: r->name = "t6"; break; } r->group = "general"; r->feature = &feature_cpu; } else if (number == GDB_REGNO_PC) { r->caller_save = true; sprintf(reg_name, "pc"); r->group = "general"; r->feature = &feature_cpu; } else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) { r->caller_save = true; if (riscv_supports_extension(target, 'D')) { r->size = 64; if (riscv_supports_extension(target, 'F')) r->reg_data_type = &type_ieee_single_double; else r->reg_data_type = &type_ieee_double; } else if (riscv_supports_extension(target, 'F')) { r->reg_data_type = &type_ieee_single; r->size = 32; } else { r->exist = false; } switch (number) { case GDB_REGNO_FT0: r->name = "ft0"; break; case GDB_REGNO_FT1: r->name = "ft1"; break; case GDB_REGNO_FT2: r->name = "ft2"; break; case GDB_REGNO_FT3: r->name = "ft3"; break; case GDB_REGNO_FT4: r->name = "ft4"; break; case GDB_REGNO_FT5: r->name = "ft5"; break; case GDB_REGNO_FT6: r->name = "ft6"; break; case GDB_REGNO_FT7: r->name = "ft7"; break; case GDB_REGNO_FS0: r->name = "fs0"; break; case GDB_REGNO_FS1: r->name = "fs1"; break; case GDB_REGNO_FA0: r->name = "fa0"; break; case GDB_REGNO_FA1: r->name = "fa1"; break; case GDB_REGNO_FA2: r->name = "fa2"; break; case GDB_REGNO_FA3: r->name = "fa3"; break; case GDB_REGNO_FA4: r->name = "fa4"; break; case GDB_REGNO_FA5: r->name = "fa5"; break; case GDB_REGNO_FA6: r->name = "fa6"; break; case GDB_REGNO_FA7: r->name = "fa7"; break; case GDB_REGNO_FS2: r->name = "fs2"; break; case GDB_REGNO_FS3: r->name = "fs3"; break; case GDB_REGNO_FS4: r->name = "fs4"; break; case GDB_REGNO_FS5: r->name = "fs5"; break; case GDB_REGNO_FS6: r->name = "fs6"; break; case GDB_REGNO_FS7: r->name = "fs7"; break; case GDB_REGNO_FS8: r->name = "fs8"; break; case GDB_REGNO_FS9: r->name = "fs9"; break; case GDB_REGNO_FS10: r->name = "fs10"; break; case GDB_REGNO_FS11: r->name = "fs11"; break; case GDB_REGNO_FT8: r->name = "ft8"; break; case GDB_REGNO_FT9: r->name = "ft9"; break; case GDB_REGNO_FT10: r->name = "ft10"; break; case GDB_REGNO_FT11: r->name = "ft11"; break; } r->group = "float"; r->feature = &feature_fpu; } else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) { r->group = "csr"; r->feature = &feature_csr; unsigned csr_number = number - GDB_REGNO_CSR0; while (csr_info[csr_info_index].number < csr_number && csr_info_index < ARRAY_SIZE(csr_info) - 1) { csr_info_index++; } if (csr_info[csr_info_index].number == csr_number) { r->name = csr_info[csr_info_index].name; } else { sprintf(reg_name, "csr%d", csr_number); /* Assume unnamed registers don't exist, unless we have some * configuration that tells us otherwise. That's important * because eg. Eclipse crashes if a target has too many * registers, and apparently has no way of only showing a * subset of registers in any case. */ r->exist = false; } switch (csr_number) { case CSR_FFLAGS: case CSR_FRM: case CSR_FCSR: r->exist = riscv_supports_extension(target, 'F'); r->group = "float"; r->feature = &feature_fpu; break; case CSR_SSTATUS: case CSR_STVEC: case CSR_SIP: case CSR_SIE: case CSR_SCOUNTEREN: case CSR_SSCRATCH: case CSR_SEPC: case CSR_SCAUSE: case CSR_STVAL: case CSR_SATP: r->exist = riscv_supports_extension(target, 'S'); break; case CSR_MEDELEG: case CSR_MIDELEG: /* "In systems with only M-mode, or with both M-mode and * U-mode but without U-mode trap support, the medeleg and * mideleg registers should not exist." */ r->exist = riscv_supports_extension(target, 'S') || riscv_supports_extension(target, 'N'); break; case CSR_PMPCFG1: case CSR_PMPCFG3: case CSR_CYCLEH: case CSR_TIMEH: case CSR_INSTRETH: case CSR_HPMCOUNTER3H: case CSR_HPMCOUNTER4H: case CSR_HPMCOUNTER5H: case CSR_HPMCOUNTER6H: case CSR_HPMCOUNTER7H: case CSR_HPMCOUNTER8H: case CSR_HPMCOUNTER9H: case CSR_HPMCOUNTER10H: case CSR_HPMCOUNTER11H: case CSR_HPMCOUNTER12H: case CSR_HPMCOUNTER13H: case CSR_HPMCOUNTER14H: case CSR_HPMCOUNTER15H: case CSR_HPMCOUNTER16H: case CSR_HPMCOUNTER17H: case CSR_HPMCOUNTER18H: case CSR_HPMCOUNTER19H: case CSR_HPMCOUNTER20H: case CSR_HPMCOUNTER21H: case CSR_HPMCOUNTER22H: case CSR_HPMCOUNTER23H: case CSR_HPMCOUNTER24H: case CSR_HPMCOUNTER25H: case CSR_HPMCOUNTER26H: case CSR_HPMCOUNTER27H: case CSR_HPMCOUNTER28H: case CSR_HPMCOUNTER29H: case CSR_HPMCOUNTER30H: case CSR_HPMCOUNTER31H: case CSR_MCYCLEH: case CSR_MINSTRETH: case CSR_MHPMCOUNTER3H: case CSR_MHPMCOUNTER4H: case CSR_MHPMCOUNTER5H: case CSR_MHPMCOUNTER6H: case CSR_MHPMCOUNTER7H: case CSR_MHPMCOUNTER8H: case CSR_MHPMCOUNTER9H: case CSR_MHPMCOUNTER10H: case CSR_MHPMCOUNTER11H: case CSR_MHPMCOUNTER12H: case CSR_MHPMCOUNTER13H: case CSR_MHPMCOUNTER14H: case CSR_MHPMCOUNTER15H: case CSR_MHPMCOUNTER16H: case CSR_MHPMCOUNTER17H: case CSR_MHPMCOUNTER18H: case CSR_MHPMCOUNTER19H: case CSR_MHPMCOUNTER20H: case CSR_MHPMCOUNTER21H: case CSR_MHPMCOUNTER22H: case CSR_MHPMCOUNTER23H: case CSR_MHPMCOUNTER24H: case CSR_MHPMCOUNTER25H: case CSR_MHPMCOUNTER26H: case CSR_MHPMCOUNTER27H: case CSR_MHPMCOUNTER28H: case CSR_MHPMCOUNTER29H: case CSR_MHPMCOUNTER30H: case CSR_MHPMCOUNTER31H: r->exist = riscv_xlen(target) == 32; break; case CSR_VSTART: case CSR_VXSAT: case CSR_VXRM: case CSR_VL: case CSR_VCSR: case CSR_VTYPE: case CSR_VLENB: r->exist = (info->vlenb > 0); break; case CSR_MCOUNTEREN: r->exist = riscv_supports_extension(target, 'U'); break; } if (!r->exist && !list_empty(&info->expose_csr)) { range_list_t *entry; list_for_each_entry(entry, &info->expose_csr, list) if ((entry->low <= csr_number) && (csr_number <= entry->high)) { if (entry->name) { *reg_name = 0; r->name = entry->name; } LOG_DEBUG("Exposing additional CSR %d (name=%s)", csr_number, entry->name ? entry->name : reg_name); r->exist = true; break; } } else if (r->exist && !list_empty(&info->hide_csr)) { range_list_t *entry; list_for_each_entry(entry, &info->hide_csr, list) if ((entry->low <= csr_number) && (csr_number <= entry->high)) { LOG_TARGET_DEBUG(target, "Hiding CSR %d (name=%s)", csr_number, r->name); r->hidden = true; break; } } } else if (number == GDB_REGNO_PRIV) { sprintf(reg_name, "priv"); r->group = "general"; r->feature = &feature_virtual; r->size = 8; } else if (number >= GDB_REGNO_V0 && number <= GDB_REGNO_V31) { r->caller_save = false; r->exist = (info->vlenb > 0); r->size = info->vlenb * 8; sprintf(reg_name, "v%d", number - GDB_REGNO_V0); r->group = "vector"; r->feature = &feature_vector; r->reg_data_type = &info->type_vector; } else if (number >= GDB_REGNO_COUNT) { /* Custom registers. */ assert(!list_empty(&info->expose_custom)); range_list_t *range = list_first_entry(&info->expose_custom, range_list_t, list); unsigned custom_number = range->low + custom_within_range; r->group = "custom"; r->feature = &feature_custom; r->arch_info = calloc(1, sizeof(riscv_reg_info_t)); if (!r->arch_info) return ERROR_FAIL; ((riscv_reg_info_t *) r->arch_info)->target = target; ((riscv_reg_info_t *) r->arch_info)->custom_number = custom_number; sprintf(reg_name, "custom%d", custom_number); if (range->name) { *reg_name = 0; r->name = range->name; } LOG_DEBUG("Exposing additional custom register %d (name=%s)", number, range->name ? range->name : reg_name); custom_within_range++; if (custom_within_range > range->high - range->low) { custom_within_range = 0; list_rotate_left(&info->expose_custom); } } if (reg_name[0]) { r->name = reg_name; reg_name += strlen(reg_name) + 1; assert(reg_name < info->reg_names + target->reg_cache->num_regs * max_reg_name_len); } r->value = calloc(1, DIV_ROUND_UP(r->size, 8)); } return ERROR_OK; } void riscv_add_bscan_tunneled_scan(struct target *target, struct scan_field *field, riscv_bscan_tunneled_scan_context_t *ctxt) { jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE); memset(ctxt->tunneled_dr, 0, sizeof(ctxt->tunneled_dr)); if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) { ctxt->tunneled_dr[3].num_bits = 1; ctxt->tunneled_dr[3].out_value = bscan_one; ctxt->tunneled_dr[2].num_bits = 7; ctxt->tunneled_dr_width = field->num_bits; ctxt->tunneled_dr[2].out_value = &ctxt->tunneled_dr_width; /* for BSCAN tunnel, there is a one-TCK skew between shift in and shift out, so scanning num_bits + 1, and then will right shift the input field after executing the queues */ ctxt->tunneled_dr[1].num_bits = field->num_bits + 1; ctxt->tunneled_dr[1].out_value = field->out_value; ctxt->tunneled_dr[1].in_value = field->in_value; ctxt->tunneled_dr[0].num_bits = 3; ctxt->tunneled_dr[0].out_value = bscan_zero; } else { /* BSCAN_TUNNEL_NESTED_TAP */ ctxt->tunneled_dr[0].num_bits = 1; ctxt->tunneled_dr[0].out_value = bscan_one; ctxt->tunneled_dr[1].num_bits = 7; ctxt->tunneled_dr_width = field->num_bits; ctxt->tunneled_dr[1].out_value = &ctxt->tunneled_dr_width; /* for BSCAN tunnel, there is a one-TCK skew between shift in and shift out, so scanning num_bits + 1, and then will right shift the input field after executing the queues */ ctxt->tunneled_dr[2].num_bits = field->num_bits + 1; ctxt->tunneled_dr[2].out_value = field->out_value; ctxt->tunneled_dr[2].in_value = field->in_value; ctxt->tunneled_dr[3].num_bits = 3; ctxt->tunneled_dr[3].out_value = bscan_zero; } jtag_add_dr_scan(target->tap, ARRAY_SIZE(ctxt->tunneled_dr), ctxt->tunneled_dr, TAP_IDLE); }