Merge pull request #344 from riscv/idle
Deal with DMI busy in block reads/writes
This commit is contained in:
commit
fe1280438b
|
@ -358,6 +358,15 @@ static void add_dbus_scan(const struct target *target, struct scan_field *field,
|
|||
uint16_t address, uint64_t data)
|
||||
{
|
||||
riscv011_info_t *info = get_info(target);
|
||||
RISCV_INFO(r);
|
||||
|
||||
if (r->reset_delays_wait >= 0) {
|
||||
r->reset_delays_wait--;
|
||||
if (r->reset_delays_wait < 0) {
|
||||
info->dbus_busy_delay = 0;
|
||||
info->interrupt_high_delay = 0;
|
||||
}
|
||||
}
|
||||
|
||||
field->num_bits = info->addrbits + DBUS_OP_SIZE + DBUS_DATA_SIZE;
|
||||
field->in_value = in_value;
|
||||
|
|
|
@ -177,7 +177,7 @@ typedef struct {
|
|||
|
||||
/* Number of run-test/idle cycles the target requests we do after each dbus
|
||||
* access. */
|
||||
unsigned int dtmcontrol_idle;
|
||||
unsigned int dtmcs_idle;
|
||||
|
||||
/* This value is incremented every time a dbus access comes back as "busy".
|
||||
* It's used to determine how many run-test/idle cycles to feed the target
|
||||
|
@ -442,8 +442,8 @@ static void increase_dmi_busy_delay(struct target *target)
|
|||
{
|
||||
riscv013_info_t *info = get_info(target);
|
||||
info->dmi_busy_delay += info->dmi_busy_delay / 10 + 1;
|
||||
LOG_DEBUG("dtmcontrol_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
|
||||
info->dtmcontrol_idle, info->dmi_busy_delay,
|
||||
LOG_DEBUG("dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
|
||||
info->dtmcs_idle, info->dmi_busy_delay,
|
||||
info->ac_busy_delay);
|
||||
|
||||
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET);
|
||||
|
@ -458,6 +458,7 @@ static dmi_status_t dmi_scan(struct target *target, uint32_t *address_in,
|
|||
bool exec)
|
||||
{
|
||||
riscv013_info_t *info = get_info(target);
|
||||
RISCV_INFO(r);
|
||||
unsigned num_bits = info->abits + DTM_DMI_OP_LENGTH + DTM_DMI_DATA_LENGTH;
|
||||
size_t num_bytes = (num_bits + 7) / 8;
|
||||
uint8_t in[num_bytes];
|
||||
|
@ -468,6 +469,14 @@ static dmi_status_t dmi_scan(struct target *target, uint32_t *address_in,
|
|||
.in_value = in
|
||||
};
|
||||
|
||||
if (r->reset_delays_wait >= 0) {
|
||||
r->reset_delays_wait--;
|
||||
if (r->reset_delays_wait < 0) {
|
||||
info->dmi_busy_delay = 0;
|
||||
info->ac_busy_delay = 0;
|
||||
}
|
||||
}
|
||||
|
||||
memset(in, 0, num_bytes);
|
||||
|
||||
assert(info->abits != 0);
|
||||
|
@ -503,14 +512,20 @@ static dmi_status_t dmi_scan(struct target *target, uint32_t *address_in,
|
|||
return buf_get_u32(in, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH);
|
||||
}
|
||||
|
||||
static int dmi_op_timeout(struct target *target, uint32_t *data_in, int dmi_op,
|
||||
uint32_t address, uint32_t data_out, int timeout_sec)
|
||||
/* If dmi_busy_encountered is non-NULL, this function will use it to tell the
|
||||
* caller whether DMI was ever busy during this call. */
|
||||
static int dmi_op_timeout(struct target *target, uint32_t *data_in,
|
||||
bool *dmi_busy_encountered, int dmi_op, uint32_t address,
|
||||
uint32_t data_out, int timeout_sec, bool exec)
|
||||
{
|
||||
select_dmi(target);
|
||||
|
||||
dmi_status_t status;
|
||||
uint32_t address_in;
|
||||
|
||||
if (dmi_busy_encountered)
|
||||
*dmi_busy_encountered = false;
|
||||
|
||||
const char *op_name;
|
||||
switch (dmi_op) {
|
||||
case DMI_OP_NOP:
|
||||
|
@ -532,9 +547,11 @@ static int dmi_op_timeout(struct target *target, uint32_t *data_in, int dmi_op,
|
|||
* stays busy, it is actually due to the previous access. */
|
||||
while (1) {
|
||||
status = dmi_scan(target, NULL, NULL, dmi_op, address, data_out,
|
||||
false);
|
||||
exec);
|
||||
if (status == DMI_STATUS_BUSY) {
|
||||
increase_dmi_busy_delay(target);
|
||||
if (dmi_busy_encountered)
|
||||
*dmi_busy_encountered = true;
|
||||
} else if (status == DMI_STATUS_SUCCESS) {
|
||||
break;
|
||||
} else {
|
||||
|
@ -583,11 +600,12 @@ static int dmi_op_timeout(struct target *target, uint32_t *data_in, int dmi_op,
|
|||
return ERROR_OK;
|
||||
}
|
||||
|
||||
static int dmi_op(struct target *target, uint32_t *data_in, int dmi_op,
|
||||
uint32_t address, uint32_t data_out)
|
||||
static int dmi_op(struct target *target, uint32_t *data_in,
|
||||
bool *dmi_busy_encountered, int dmi_op, uint32_t address,
|
||||
uint32_t data_out, bool exec)
|
||||
{
|
||||
int result = dmi_op_timeout(target, data_in, dmi_op, address, data_out,
|
||||
riscv_command_timeout_sec);
|
||||
int result = dmi_op_timeout(target, data_in, dmi_busy_encountered, dmi_op,
|
||||
address, data_out, riscv_command_timeout_sec, exec);
|
||||
if (result == ERROR_TIMEOUT_REACHED) {
|
||||
LOG_ERROR("DMI operation didn't complete in %d seconds. The target is "
|
||||
"either really slow or broken. You could increase the "
|
||||
|
@ -600,19 +618,29 @@ static int dmi_op(struct target *target, uint32_t *data_in, int dmi_op,
|
|||
|
||||
static int dmi_read(struct target *target, uint32_t *value, uint32_t address)
|
||||
{
|
||||
return dmi_op(target, value, DMI_OP_READ, address, 0);
|
||||
return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, false);
|
||||
}
|
||||
|
||||
static int dmi_read_exec(struct target *target, uint32_t *value, uint32_t address)
|
||||
{
|
||||
return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, true);
|
||||
}
|
||||
|
||||
static int dmi_write(struct target *target, uint32_t address, uint32_t value)
|
||||
{
|
||||
return dmi_op(target, NULL, DMI_OP_WRITE, address, value);
|
||||
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, false);
|
||||
}
|
||||
|
||||
static int dmi_write_exec(struct target *target, uint32_t address, uint32_t value)
|
||||
{
|
||||
return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, true);
|
||||
}
|
||||
|
||||
int dmstatus_read_timeout(struct target *target, uint32_t *dmstatus,
|
||||
bool authenticated, unsigned timeout_sec)
|
||||
{
|
||||
int result = dmi_op_timeout(target, dmstatus, DMI_OP_READ, DMI_DMSTATUS, 0,
|
||||
timeout_sec);
|
||||
int result = dmi_op_timeout(target, dmstatus, NULL, DMI_OP_READ,
|
||||
DMI_DMSTATUS, 0, timeout_sec, false);
|
||||
if (result != ERROR_OK)
|
||||
return result;
|
||||
if (authenticated && !get_field(*dmstatus, DMI_DMSTATUS_AUTHENTICATED)) {
|
||||
|
@ -635,8 +663,8 @@ static void increase_ac_busy_delay(struct target *target)
|
|||
{
|
||||
riscv013_info_t *info = get_info(target);
|
||||
info->ac_busy_delay += info->ac_busy_delay / 10 + 1;
|
||||
LOG_DEBUG("dtmcontrol_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
|
||||
info->dtmcontrol_idle, info->dmi_busy_delay,
|
||||
LOG_DEBUG("dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
|
||||
info->dtmcs_idle, info->dmi_busy_delay,
|
||||
info->ac_busy_delay);
|
||||
}
|
||||
|
||||
|
@ -715,7 +743,7 @@ static int execute_abstract_command(struct target *target, uint32_t command)
|
|||
}
|
||||
}
|
||||
|
||||
dmi_write(target, DMI_COMMAND, command);
|
||||
dmi_write_exec(target, DMI_COMMAND, command);
|
||||
|
||||
uint32_t abstractcs = 0;
|
||||
wait_for_idle(target, &abstractcs);
|
||||
|
@ -1380,7 +1408,7 @@ static int examine(struct target *target)
|
|||
|
||||
riscv013_info_t *info = get_info(target);
|
||||
info->abits = get_field(dtmcontrol, DTM_DTMCS_ABITS);
|
||||
info->dtmcontrol_idle = get_field(dtmcontrol, DTM_DTMCS_IDLE);
|
||||
info->dtmcs_idle = get_field(dtmcontrol, DTM_DTMCS_IDLE);
|
||||
|
||||
uint32_t dmstatus;
|
||||
if (dmstatus_read(target, &dmstatus, false) != ERROR_OK)
|
||||
|
@ -2077,6 +2105,21 @@ static int read_memory_bus_v1(struct target *target, target_addr_t address,
|
|||
return ERROR_OK;
|
||||
}
|
||||
|
||||
static int batch_run(const struct target *target, struct riscv_batch *batch)
|
||||
{
|
||||
RISCV013_INFO(info);
|
||||
RISCV_INFO(r);
|
||||
if (r->reset_delays_wait >= 0) {
|
||||
r->reset_delays_wait -= batch->used_scans;
|
||||
if (r->reset_delays_wait <= 0) {
|
||||
batch->idle_count = 0;
|
||||
info->dmi_busy_delay = 0;
|
||||
info->ac_busy_delay = 0;
|
||||
}
|
||||
}
|
||||
return riscv_batch_run(batch);
|
||||
}
|
||||
|
||||
/**
|
||||
* Read the requested memory, taking care to execute every read exactly once,
|
||||
* even if cmderr=busy is encountered.
|
||||
|
@ -2095,31 +2138,43 @@ static int read_memory_progbuf_inner(struct target *target, target_addr_t addres
|
|||
uint32_t command = access_register_command(target, GDB_REGNO_S1,
|
||||
riscv_xlen(target),
|
||||
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
|
||||
result = execute_abstract_command(target, command);
|
||||
if (result != ERROR_OK)
|
||||
goto error;
|
||||
if (execute_abstract_command(target, command) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
|
||||
/* First read has just triggered. Result is in s1. */
|
||||
|
||||
dmi_write(target, DMI_ABSTRACTAUTO,
|
||||
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
|
||||
if (count == 1) {
|
||||
uint64_t value;
|
||||
if (register_read_direct(target, &value, GDB_REGNO_S1) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
write_to_buf(buffer, value, size);
|
||||
log_memory_access(address, value, size, true);
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
if (dmi_write(target, DMI_ABSTRACTAUTO,
|
||||
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET) != ERROR_OK)
|
||||
goto error;
|
||||
/* Read garbage from dmi_data0, which triggers another execution of the
|
||||
* program. Now dmi_data0 contains the first good result, and s1 the next
|
||||
* memory value. */
|
||||
if (dmi_read_exec(target, NULL, DMI_DATA0) != ERROR_OK)
|
||||
goto error;
|
||||
|
||||
/* read_addr is the next address that the hart will read from, which is the
|
||||
* value in s0. */
|
||||
riscv_addr_t read_addr = address + size;
|
||||
/* The next address that we need to receive data for. */
|
||||
riscv_addr_t receive_addr = address;
|
||||
riscv_addr_t read_addr = address + 2 * size;
|
||||
riscv_addr_t fin_addr = address + (count * size);
|
||||
unsigned skip = 1;
|
||||
while (read_addr < fin_addr) {
|
||||
LOG_DEBUG("read_addr=0x%" PRIx64 ", receive_addr=0x%" PRIx64
|
||||
", fin_addr=0x%" PRIx64, read_addr, receive_addr, fin_addr);
|
||||
LOG_DEBUG("read_addr=0x%" PRIx64 ", fin_addr=0x%" PRIx64, read_addr,
|
||||
fin_addr);
|
||||
/* The pipeline looks like this:
|
||||
* memory -> s1 -> dm_data0 -> debugger
|
||||
* It advances every time the debugger reads dmdata0.
|
||||
* So at any time the debugger has just read mem[s0 - 3*size],
|
||||
* dm_data0 contains mem[s0 - 2*size]
|
||||
* s1 contains mem[s0-size] */
|
||||
* Right now:
|
||||
* s0 contains read_addr
|
||||
* s1 contains mem[read_addr-size]
|
||||
* dm_data0 contains[read_addr-size*2]
|
||||
*/
|
||||
|
||||
LOG_DEBUG("creating burst to read from 0x%" PRIx64
|
||||
" up to 0x%" PRIx64, read_addr, fin_addr);
|
||||
|
@ -2136,10 +2191,11 @@ static int read_memory_progbuf_inner(struct target *target, target_addr_t addres
|
|||
break;
|
||||
}
|
||||
|
||||
riscv_batch_run(batch);
|
||||
batch_run(target, batch);
|
||||
|
||||
/* Wait for the target to finish performing the last abstract command,
|
||||
* and update our copy of cmderr. */
|
||||
* and update our copy of cmderr. If we see that DMI is busy here,
|
||||
* dmi_busy_delay will be incremented. */
|
||||
uint32_t abstractcs;
|
||||
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
|
@ -2148,9 +2204,8 @@ static int read_memory_progbuf_inner(struct target *target, target_addr_t addres
|
|||
return ERROR_FAIL;
|
||||
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
|
||||
|
||||
unsigned cmderr = info->cmderr;
|
||||
riscv_addr_t next_read_addr;
|
||||
uint32_t dmi_data0 = -1;
|
||||
unsigned ignore_last = 0;
|
||||
switch (info->cmderr) {
|
||||
case CMDERR_NONE:
|
||||
LOG_DEBUG("successful (partial?) memory read");
|
||||
|
@ -2159,38 +2214,12 @@ static int read_memory_progbuf_inner(struct target *target, target_addr_t addres
|
|||
case CMDERR_BUSY:
|
||||
LOG_DEBUG("memory read resulted in busy response");
|
||||
|
||||
/*
|
||||
* If you want to exercise this code path, apply the following patch to spike:
|
||||
--- a/riscv/debug_module.cc
|
||||
+++ b/riscv/debug_module.cc
|
||||
@@ -1,3 +1,5 @@
|
||||
+#include <unistd.h>
|
||||
+
|
||||
#include <cassert>
|
||||
|
||||
#include "debug_module.h"
|
||||
@@ -398,6 +400,15 @@ bool debug_module_t::perform_abstract_command()
|
||||
// Since the next instruction is what we will use, just use nother NOP
|
||||
// to get there.
|
||||
write32(debug_abstract, 1, addi(ZERO, ZERO, 0));
|
||||
+
|
||||
+ if (abstractauto.autoexecdata &&
|
||||
+ program_buffer[0] == 0x83 &&
|
||||
+ program_buffer[1] == 0x24 &&
|
||||
+ program_buffer[2] == 0x04 &&
|
||||
+ program_buffer[3] == 0 &&
|
||||
+ rand() < RAND_MAX / 10) {
|
||||
+ usleep(1000000);
|
||||
+ }
|
||||
} else {
|
||||
write32(debug_abstract, 1, ebreak());
|
||||
}
|
||||
*/
|
||||
increase_ac_busy_delay(target);
|
||||
riscv013_clear_abstract_error(target);
|
||||
|
||||
dmi_write(target, DMI_ABSTRACTAUTO, 0);
|
||||
|
||||
uint32_t dmi_data0;
|
||||
/* This is definitely a good version of the value that we
|
||||
* attempted to read when we discovered that the target was
|
||||
* busy. */
|
||||
|
@ -2199,20 +2228,27 @@ static int read_memory_progbuf_inner(struct target *target, target_addr_t addres
|
|||
goto error;
|
||||
}
|
||||
|
||||
/* Clobbers DMI_DATA0. */
|
||||
/* See how far we got, clobbering dmi_data0. */
|
||||
result = register_read_direct(target, &next_read_addr,
|
||||
GDB_REGNO_S0);
|
||||
if (result != ERROR_OK) {
|
||||
riscv_batch_free(batch);
|
||||
goto error;
|
||||
}
|
||||
write_to_buf(buffer + next_read_addr - 2 * size - address, dmi_data0, size);
|
||||
log_memory_access(next_read_addr - 2 * size, dmi_data0, size, true);
|
||||
|
||||
/* Restore the command, and execute it.
|
||||
* Now DMI_DATA0 contains the next value just as it would if no
|
||||
* error had occurred. */
|
||||
dmi_write(target, DMI_COMMAND, command);
|
||||
dmi_write_exec(target, DMI_COMMAND, command);
|
||||
next_read_addr += size;
|
||||
|
||||
dmi_write(target, DMI_ABSTRACTAUTO,
|
||||
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
|
||||
|
||||
ignore_last = 1;
|
||||
|
||||
break;
|
||||
default:
|
||||
LOG_DEBUG("error when reading memory, abstractcs=0x%08lx", (long)abstractcs);
|
||||
|
@ -2223,34 +2259,43 @@ static int read_memory_progbuf_inner(struct target *target, target_addr_t addres
|
|||
}
|
||||
|
||||
/* Now read whatever we got out of the batch. */
|
||||
dmi_status_t status = DMI_STATUS_SUCCESS;
|
||||
for (size_t i = 0; i < reads; i++) {
|
||||
if (read_addr >= next_read_addr)
|
||||
riscv_addr_t receive_addr = read_addr + (i-2) * size;
|
||||
assert(receive_addr < address + size * count);
|
||||
if (receive_addr < address)
|
||||
continue;
|
||||
if (receive_addr > next_read_addr - (3 + ignore_last) * size)
|
||||
break;
|
||||
|
||||
read_addr += size;
|
||||
|
||||
if (skip > 0) {
|
||||
skip--;
|
||||
continue;
|
||||
}
|
||||
|
||||
riscv_addr_t offset = receive_addr - address;
|
||||
uint64_t dmi_out = riscv_batch_get_dmi_read(batch, i);
|
||||
status = get_field(dmi_out, DTM_DMI_OP);
|
||||
if (status != DMI_STATUS_SUCCESS) {
|
||||
/* If we're here because of busy count, dmi_busy_delay will
|
||||
* already have been increased and busy state will have been
|
||||
* cleared in dmi_read(). */
|
||||
/* In at least some implementations, we issue a read, and then
|
||||
* can get busy back when we try to scan out the read result,
|
||||
* and the actual read value is lost forever. Since this is
|
||||
* rare in any case, we return error here and rely on our
|
||||
* caller to reread the entire block. */
|
||||
LOG_WARNING("Batch memory read encountered DMI error %d. "
|
||||
"Falling back on slower reads.", status);
|
||||
riscv_batch_free(batch);
|
||||
result = ERROR_FAIL;
|
||||
goto error;
|
||||
}
|
||||
uint32_t value = get_field(dmi_out, DTM_DMI_DATA);
|
||||
riscv_addr_t offset = receive_addr - address;
|
||||
write_to_buf(buffer + offset, value, size);
|
||||
log_memory_access(receive_addr, value, size, true);
|
||||
|
||||
receive_addr += size;
|
||||
}
|
||||
riscv_batch_free(batch);
|
||||
|
||||
if (cmderr == CMDERR_BUSY) {
|
||||
riscv_addr_t offset = receive_addr - address;
|
||||
write_to_buf(buffer + offset, dmi_data0, size);
|
||||
log_memory_access(receive_addr, dmi_data0, size, true);
|
||||
read_addr += size;
|
||||
receive_addr += size;
|
||||
}
|
||||
read_addr = next_read_addr;
|
||||
|
||||
riscv_batch_free(batch);
|
||||
}
|
||||
|
||||
dmi_write(target, DMI_ABSTRACTAUTO, 0);
|
||||
|
@ -2259,10 +2304,9 @@ static int read_memory_progbuf_inner(struct target *target, target_addr_t addres
|
|||
/* Read the penultimate word. */
|
||||
uint32_t value;
|
||||
if (dmi_read(target, &value, DMI_DATA0) != ERROR_OK)
|
||||
goto error;
|
||||
write_to_buf(buffer + receive_addr - address, value, size);
|
||||
log_memory_access(receive_addr, value, size, true);
|
||||
receive_addr += size;
|
||||
return ERROR_FAIL;
|
||||
write_to_buf(buffer + size * (count-2), value, size);
|
||||
log_memory_access(address + size * (count-2), value, size, true);
|
||||
}
|
||||
|
||||
/* Read the last word. */
|
||||
|
@ -2270,8 +2314,8 @@ static int read_memory_progbuf_inner(struct target *target, target_addr_t addres
|
|||
result = register_read_direct(target, &value, GDB_REGNO_S1);
|
||||
if (result != ERROR_OK)
|
||||
goto error;
|
||||
write_to_buf(buffer + receive_addr - address, value, size);
|
||||
log_memory_access(receive_addr, value, size, true);
|
||||
write_to_buf(buffer + size * (count-1), value, size);
|
||||
log_memory_access(address + size * (count-1), value, size, true);
|
||||
|
||||
return ERROR_OK;
|
||||
|
||||
|
@ -2682,7 +2726,7 @@ static int write_memory_progbuf(struct target *target, target_addr_t address,
|
|||
}
|
||||
}
|
||||
|
||||
result = riscv_batch_run(batch);
|
||||
result = batch_run(target, batch);
|
||||
riscv_batch_free(batch);
|
||||
if (result != ERROR_OK)
|
||||
goto error;
|
||||
|
@ -2692,33 +2736,34 @@ static int write_memory_progbuf(struct target *target, target_addr_t address,
|
|||
* to be incremented if necessary. */
|
||||
|
||||
uint32_t abstractcs;
|
||||
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
|
||||
bool dmi_busy_encountered;
|
||||
if (dmi_op(target, &abstractcs, &dmi_busy_encountered, DMI_OP_READ,
|
||||
DMI_ABSTRACTCS, 0, false) != ERROR_OK)
|
||||
goto error;
|
||||
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY))
|
||||
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
|
||||
switch (info->cmderr) {
|
||||
case CMDERR_NONE:
|
||||
LOG_DEBUG("successful (partial?) memory write");
|
||||
break;
|
||||
case CMDERR_BUSY:
|
||||
LOG_DEBUG("memory write resulted in busy response");
|
||||
riscv013_clear_abstract_error(target);
|
||||
increase_ac_busy_delay(target);
|
||||
if (info->cmderr == CMDERR_NONE && !dmi_busy_encountered) {
|
||||
LOG_DEBUG("successful (partial?) memory write");
|
||||
} else if (info->cmderr == CMDERR_BUSY || dmi_busy_encountered) {
|
||||
if (info->cmderr == CMDERR_BUSY)
|
||||
LOG_DEBUG("Memory write resulted in abstract command busy response.");
|
||||
else if (dmi_busy_encountered)
|
||||
LOG_DEBUG("Memory write resulted in DMI busy response.");
|
||||
riscv013_clear_abstract_error(target);
|
||||
increase_ac_busy_delay(target);
|
||||
|
||||
dmi_write(target, DMI_ABSTRACTAUTO, 0);
|
||||
result = register_read_direct(target, &cur_addr, GDB_REGNO_S0);
|
||||
if (result != ERROR_OK)
|
||||
goto error;
|
||||
setup_needed = true;
|
||||
break;
|
||||
|
||||
default:
|
||||
LOG_ERROR("error when writing memory, abstractcs=0x%08lx", (long)abstractcs);
|
||||
riscv013_clear_abstract_error(target);
|
||||
result = ERROR_FAIL;
|
||||
dmi_write(target, DMI_ABSTRACTAUTO, 0);
|
||||
result = register_read_direct(target, &cur_addr, GDB_REGNO_S0);
|
||||
if (result != ERROR_OK)
|
||||
goto error;
|
||||
setup_needed = true;
|
||||
} else {
|
||||
LOG_ERROR("error when writing memory, abstractcs=0x%08lx", (long)abstractcs);
|
||||
riscv013_clear_abstract_error(target);
|
||||
result = ERROR_FAIL;
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1608,6 +1608,24 @@ COMMAND_HANDLER(riscv_test_sba_config_reg)
|
|||
}
|
||||
}
|
||||
|
||||
COMMAND_HANDLER(riscv_reset_delays)
|
||||
{
|
||||
int wait = 0;
|
||||
|
||||
if (CMD_ARGC > 1) {
|
||||
LOG_ERROR("Command takes at most one argument");
|
||||
return ERROR_COMMAND_SYNTAX_ERROR;
|
||||
}
|
||||
|
||||
if (CMD_ARGC == 1)
|
||||
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], wait);
|
||||
|
||||
struct target *target = get_current_target(CMD_CTX);
|
||||
RISCV_INFO(r);
|
||||
r->reset_delays_wait = wait;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
static const struct command_registration riscv_exec_command_handlers[] = {
|
||||
{
|
||||
.name = "test_compliance",
|
||||
|
@ -1697,6 +1715,16 @@ static const struct command_registration riscv_exec_command_handlers[] = {
|
|||
", an illegal, 128-byte aligned address for error flag/handling cases,"
|
||||
"and whether sbbusyerror test should be run."
|
||||
},
|
||||
{
|
||||
.name = "reset_delays",
|
||||
.handler = riscv_reset_delays,
|
||||
.mode = COMMAND_ANY,
|
||||
.usage = "reset_delays [wait]",
|
||||
.help = "OpenOCD learns how many Run-Test/Idle cycles are required "
|
||||
"between scans to avoid encountering the target being busy. This "
|
||||
"command resets those learned values after `wait` scans. It's only "
|
||||
"useful for testing OpenOCD itself."
|
||||
},
|
||||
COMMAND_REGISTRATION_DONE
|
||||
};
|
||||
|
||||
|
|
|
@ -96,6 +96,10 @@ typedef struct {
|
|||
|
||||
bool triggers_enumerated;
|
||||
|
||||
/* Decremented every scan, and when it reaches 0 we clear the learned
|
||||
* delays, causing them to be relearned. Used for testing. */
|
||||
int reset_delays_wait;
|
||||
|
||||
/* Helper functions that target the various RISC-V debug spec
|
||||
* implementations. */
|
||||
int (*get_register)(struct target *target,
|
||||
|
|
Loading…
Reference in New Issue