tcl/target: add Espressif riscv targets (ESP32-C6, ESP32-H2)
ESP32-C6 and ESP32-H2 are single core riscv targets. Change-Id: If92429de4fb67a040f303a54177d61b70e1ea281 Signed-off-by: Erhan Kurubas <erhan.kurubas@espressif.com>
This commit is contained in:
parent
c7500f9161
commit
f21bd77dd1
|
@ -0,0 +1,142 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-or-later
|
||||
#
|
||||
|
||||
# Source the ESP common configuration file.
|
||||
source [find target/esp_common.cfg]
|
||||
|
||||
# Target specific global variables
|
||||
set _CHIPNAME "riscv"
|
||||
set _CPUTAPID 0x0000dc25
|
||||
set _ESP_ARCH "riscv"
|
||||
set _ONLYCPU 1
|
||||
set _ESP_SMP_TARGET 0
|
||||
set _ESP_SMP_BREAK 0
|
||||
set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844
|
||||
|
||||
# Target specific functions should be implemented for each riscv chips.
|
||||
proc riscv_wdt_disable { } {
|
||||
# Halt event can occur during config phase (before "init" is done).
|
||||
# Ignore it since mww commands don't work at that time.
|
||||
if { [string compare [command mode] config] == 0 } {
|
||||
return
|
||||
}
|
||||
|
||||
# Timer Group 0 & 1 WDTs
|
||||
mww 0x60008064 0x50D83AA1
|
||||
mww 0x60008048 0
|
||||
mww 0x60009064 0x50D83AA1
|
||||
mww 0x60009048 0
|
||||
# LP_WDT_RTC
|
||||
mww 0x600b1c18 0x50D83AA1
|
||||
mww 0x600B1C00 0
|
||||
# LP_WDT_SWD
|
||||
mww 0x600b1c20 0x50D83AA1
|
||||
mww 0x600b1c1c 0x40000000
|
||||
}
|
||||
|
||||
proc riscv_soc_reset { } {
|
||||
global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0
|
||||
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
|
||||
riscv dmi_write $_RISCV_SB_CS 0x48000
|
||||
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034
|
||||
riscv dmi_write $_RISCV_SB_DATA0 0x80000000
|
||||
# clear dmactive to clear sbbusy otherwise debug module gets stuck
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0
|
||||
|
||||
riscv dmi_write $_RISCV_SB_CS 0x48000
|
||||
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038
|
||||
riscv dmi_write $_RISCV_SB_DATA0 0x10000000
|
||||
|
||||
# clear dmactive to clear sbbusy otherwise debug module gets stuck
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
|
||||
# Here debugger reads dmstatus as 0xc03a2
|
||||
|
||||
# Wait for the reset to happen
|
||||
sleep 10
|
||||
poll
|
||||
# Here debugger reads dmstatus as 0x3a2
|
||||
|
||||
# Disable the watchdogs again
|
||||
riscv_wdt_disable
|
||||
|
||||
# Here debugger reads anyhalted and allhalted bits as set (0x3a2)
|
||||
# We will clean allhalted state by resuming the core.
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
|
||||
|
||||
# Put the hart back into reset state. Note that we need to keep haltreq set.
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
|
||||
}
|
||||
|
||||
proc riscv_memprot_is_enabled { } {
|
||||
global _RISCV_ABS_CMD _RISCV_ABS_DATA0
|
||||
|
||||
# If IRAM/DRAM split is enabled TOR address match mode is used.
|
||||
# If IRAM/DRAM split is disabled NAPOT mode is used.
|
||||
# In order to determine if the IRAM/DRAM regions are protected against RWX/RW,
|
||||
# it is necessary to first read the mode and then apply the appropriate method for checking.
|
||||
# We can understand the mode reading pmp5cfg in pmpcfg1 register.
|
||||
# If it is none we know that pmp6cfg and pmp7cfg is in TOR mode.
|
||||
|
||||
# Read pmpcfg1 and extract into 8-bit variables.
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203a1
|
||||
set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0]
|
||||
|
||||
set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}]
|
||||
set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}]
|
||||
set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}]
|
||||
|
||||
set IRAM_LOW 0x40800000
|
||||
set IRAM_HIGH 0x40880000
|
||||
set DRAM_LOW 0x40800000
|
||||
set DRAM_HIGH 0x40880000
|
||||
set PMP_RWX 0x07
|
||||
set PMP_RW 0x03
|
||||
set PMP_A [expr {($pmp5cfg >> 3) & 0x03}]
|
||||
|
||||
if {$PMP_A == 0} {
|
||||
# TOR mode used to protect valid address space.
|
||||
|
||||
# Read PMPADDR 5-7
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
|
||||
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203b6
|
||||
set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203b7
|
||||
set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
|
||||
|
||||
# The lock bit remains unset during the execution of the 2nd stage bootloader.
|
||||
# Thus we do not perform a lock bit check for IRAM and DRAM regions.
|
||||
|
||||
# Check OpenOCD can write and execute from IRAM.
|
||||
if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} {
|
||||
if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} {
|
||||
return 1
|
||||
}
|
||||
}
|
||||
|
||||
# Check OpenOCD can read/write entire DRAM region.
|
||||
if {$pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} {
|
||||
if {($pmp7cfg & $PMP_RW) != $PMP_RW} {
|
||||
return 1
|
||||
}
|
||||
}
|
||||
} elseif {$PMP_A == 3} {
|
||||
# NAPOT mode used to protect valid address space.
|
||||
|
||||
# Read PMPADDR 5
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
|
||||
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0]}]
|
||||
|
||||
# Expected value written to the pmpaddr5
|
||||
set pmpaddr_napot [expr {($IRAM_LOW | (($IRAM_HIGH - $IRAM_LOW - 1) >> 1)) >> 2}]
|
||||
if {($pmpaddr_napot != $pmpaddr5) || ($pmp5cfg & $PMP_RWX) != $PMP_RWX} {
|
||||
return 1
|
||||
}
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
create_esp_target $_ESP_ARCH
|
|
@ -0,0 +1,122 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-or-later
|
||||
#
|
||||
|
||||
# Source the ESP common configuration file.
|
||||
source [find target/esp_common.cfg]
|
||||
|
||||
# Target specific global variables
|
||||
set _CHIPNAME "riscv"
|
||||
set _CPUTAPID 0x00010c25
|
||||
set _ESP_ARCH "riscv"
|
||||
set _ONLYCPU 1
|
||||
set _ESP_SMP_TARGET 0
|
||||
set _ESP_SMP_BREAK 0
|
||||
set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844
|
||||
|
||||
# Target specific functions should be implemented for each riscv chips.
|
||||
proc riscv_wdt_disable { } {
|
||||
# Halt event can occur during config phase (before "init" is done).
|
||||
# Ignore it since mww commands don't work at that time.
|
||||
if { [string compare [command mode] config] == 0 } {
|
||||
return
|
||||
}
|
||||
|
||||
# Timer Group 0 & 1 WDTs
|
||||
mww 0x60009064 0x50D83AA1
|
||||
mww 0x60009048 0
|
||||
mww 0x6000A064 0x50D83AA1
|
||||
mww 0x6000A048 0
|
||||
# WDT_RTC
|
||||
#mww 0x600b1c18 0x50D83AA1
|
||||
#mww 0x600B1C00 0
|
||||
# WDT_SWD
|
||||
#mww 0x600b1c20 0x8F1D312A
|
||||
#mww 0x600b1c1c 0x84B00000
|
||||
}
|
||||
|
||||
proc riscv_soc_reset { } {
|
||||
global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0
|
||||
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
|
||||
riscv dmi_write $_RISCV_SB_CS 0x48000
|
||||
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034
|
||||
riscv dmi_write $_RISCV_SB_DATA0 0x80000000
|
||||
# clear dmactive to clear sbbusy otherwise debug module gets stuck
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0
|
||||
|
||||
riscv dmi_write $_RISCV_SB_CS 0x48000
|
||||
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038
|
||||
riscv dmi_write $_RISCV_SB_DATA0 0x10000000
|
||||
|
||||
# clear dmactive to clear sbbusy otherwise debug module gets stuck
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
|
||||
# Here debugger reads dmstatus as 0xc03a2
|
||||
|
||||
# Wait for the reset to happen
|
||||
sleep 10
|
||||
poll
|
||||
# Here debugger reads dmstatus as 0x3a2
|
||||
|
||||
# Disable the watchdogs again
|
||||
riscv_wdt_disable
|
||||
|
||||
# Here debugger reads anyhalted and allhalted bits as set (0x3a2)
|
||||
# We will clean allhalted state by resuming the core.
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
|
||||
|
||||
# Put the hart back into reset state. Note that we need to keep haltreq set.
|
||||
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
|
||||
}
|
||||
|
||||
proc riscv_memprot_is_enabled { } {
|
||||
global _RISCV_ABS_CMD _RISCV_ABS_DATA0
|
||||
# If IRAM/DRAM split is enabled, PMPADDR 5-6 will cover valid IRAM region and PMPADDR 7 will cover valid DRAM region
|
||||
# Only TOR mode is used for IRAM and DRAM protections.
|
||||
|
||||
# Read pmpcfg1 and extract into 8-bit variables.
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203a1
|
||||
set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0]
|
||||
|
||||
set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}]
|
||||
set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}]
|
||||
set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}]
|
||||
|
||||
# Read PMPADDR 5-7
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
|
||||
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203b6
|
||||
set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
|
||||
riscv dmi_write $_RISCV_ABS_CMD 0x2203b7
|
||||
set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
|
||||
|
||||
set IRAM_LOW 0x40800000
|
||||
set IRAM_HIGH 0x40850000
|
||||
set DRAM_LOW 0x40800000
|
||||
set DRAM_HIGH 0x40850000
|
||||
|
||||
set PMP_RWX 0x07
|
||||
set PMP_RW 0x03
|
||||
|
||||
# The lock bit remains unset during the execution of the 2nd stage bootloader.
|
||||
# Thus, we do not perform a lock bit check for IRAM and DRAM regions.
|
||||
|
||||
# Check OpenOCD can write and execute from IRAM.
|
||||
if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} {
|
||||
if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} {
|
||||
return 1
|
||||
}
|
||||
}
|
||||
|
||||
# Check OpenOCD can read/write entire DRAM region.
|
||||
# If IRAM/DRAM split is disabled, pmpaddr7 will be zero, checking only IRAM region is enough.
|
||||
if {$pmpaddr7 != 0 && $pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} {
|
||||
if {($pmp7cfg & $PMP_RW) != $PMP_RW} {
|
||||
return 1
|
||||
}
|
||||
}
|
||||
|
||||
return 0
|
||||
}
|
||||
|
||||
create_esp_target $_ESP_ARCH
|
Loading…
Reference in New Issue