tcl/target: add Espressif riscv targets (ESP32-C6, ESP32-H2)

ESP32-C6 and ESP32-H2 are single core riscv targets.

Change-Id: If92429de4fb67a040f303a54177d61b70e1ea281
Signed-off-by: Erhan Kurubas <erhan.kurubas@espressif.com>
This commit is contained in:
Erhan Kurubas 2023-07-18 00:51:54 +02:00
parent c7500f9161
commit f21bd77dd1
2 changed files with 264 additions and 0 deletions

142
tcl/target/esp32c6.cfg Normal file
View File

@ -0,0 +1,142 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
# Target specific global variables
set _CHIPNAME "riscv"
set _CPUTAPID 0x0000dc25
set _ESP_ARCH "riscv"
set _ONLYCPU 1
set _ESP_SMP_TARGET 0
set _ESP_SMP_BREAK 0
set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844
# Target specific functions should be implemented for each riscv chips.
proc riscv_wdt_disable { } {
# Halt event can occur during config phase (before "init" is done).
# Ignore it since mww commands don't work at that time.
if { [string compare [command mode] config] == 0 } {
return
}
# Timer Group 0 & 1 WDTs
mww 0x60008064 0x50D83AA1
mww 0x60008048 0
mww 0x60009064 0x50D83AA1
mww 0x60009048 0
# LP_WDT_RTC
mww 0x600b1c18 0x50D83AA1
mww 0x600B1C00 0
# LP_WDT_SWD
mww 0x600b1c20 0x50D83AA1
mww 0x600b1c1c 0x40000000
}
proc riscv_soc_reset { } {
global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
riscv dmi_write $_RISCV_SB_CS 0x48000
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034
riscv dmi_write $_RISCV_SB_DATA0 0x80000000
# clear dmactive to clear sbbusy otherwise debug module gets stuck
riscv dmi_write $_RISCV_DMCONTROL 0
riscv dmi_write $_RISCV_SB_CS 0x48000
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038
riscv dmi_write $_RISCV_SB_DATA0 0x10000000
# clear dmactive to clear sbbusy otherwise debug module gets stuck
riscv dmi_write $_RISCV_DMCONTROL 0
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Here debugger reads dmstatus as 0xc03a2
# Wait for the reset to happen
sleep 10
poll
# Here debugger reads dmstatus as 0x3a2
# Disable the watchdogs again
riscv_wdt_disable
# Here debugger reads anyhalted and allhalted bits as set (0x3a2)
# We will clean allhalted state by resuming the core.
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Put the hart back into reset state. Note that we need to keep haltreq set.
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
}
proc riscv_memprot_is_enabled { } {
global _RISCV_ABS_CMD _RISCV_ABS_DATA0
# If IRAM/DRAM split is enabled TOR address match mode is used.
# If IRAM/DRAM split is disabled NAPOT mode is used.
# In order to determine if the IRAM/DRAM regions are protected against RWX/RW,
# it is necessary to first read the mode and then apply the appropriate method for checking.
# We can understand the mode reading pmp5cfg in pmpcfg1 register.
# If it is none we know that pmp6cfg and pmp7cfg is in TOR mode.
# Read pmpcfg1 and extract into 8-bit variables.
riscv dmi_write $_RISCV_ABS_CMD 0x2203a1
set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0]
set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}]
set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}]
set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}]
set IRAM_LOW 0x40800000
set IRAM_HIGH 0x40880000
set DRAM_LOW 0x40800000
set DRAM_HIGH 0x40880000
set PMP_RWX 0x07
set PMP_RW 0x03
set PMP_A [expr {($pmp5cfg >> 3) & 0x03}]
if {$PMP_A == 0} {
# TOR mode used to protect valid address space.
# Read PMPADDR 5-7
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b6
set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b7
set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
# The lock bit remains unset during the execution of the 2nd stage bootloader.
# Thus we do not perform a lock bit check for IRAM and DRAM regions.
# Check OpenOCD can write and execute from IRAM.
if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} {
if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} {
return 1
}
}
# Check OpenOCD can read/write entire DRAM region.
if {$pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} {
if {($pmp7cfg & $PMP_RW) != $PMP_RW} {
return 1
}
}
} elseif {$PMP_A == 3} {
# NAPOT mode used to protect valid address space.
# Read PMPADDR 5
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0]}]
# Expected value written to the pmpaddr5
set pmpaddr_napot [expr {($IRAM_LOW | (($IRAM_HIGH - $IRAM_LOW - 1) >> 1)) >> 2}]
if {($pmpaddr_napot != $pmpaddr5) || ($pmp5cfg & $PMP_RWX) != $PMP_RWX} {
return 1
}
}
return 0
}
create_esp_target $_ESP_ARCH

122
tcl/target/esp32h2.cfg Normal file
View File

@ -0,0 +1,122 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
# Target specific global variables
set _CHIPNAME "riscv"
set _CPUTAPID 0x00010c25
set _ESP_ARCH "riscv"
set _ONLYCPU 1
set _ESP_SMP_TARGET 0
set _ESP_SMP_BREAK 0
set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844
# Target specific functions should be implemented for each riscv chips.
proc riscv_wdt_disable { } {
# Halt event can occur during config phase (before "init" is done).
# Ignore it since mww commands don't work at that time.
if { [string compare [command mode] config] == 0 } {
return
}
# Timer Group 0 & 1 WDTs
mww 0x60009064 0x50D83AA1
mww 0x60009048 0
mww 0x6000A064 0x50D83AA1
mww 0x6000A048 0
# WDT_RTC
#mww 0x600b1c18 0x50D83AA1
#mww 0x600B1C00 0
# WDT_SWD
#mww 0x600b1c20 0x8F1D312A
#mww 0x600b1c1c 0x84B00000
}
proc riscv_soc_reset { } {
global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
riscv dmi_write $_RISCV_SB_CS 0x48000
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034
riscv dmi_write $_RISCV_SB_DATA0 0x80000000
# clear dmactive to clear sbbusy otherwise debug module gets stuck
riscv dmi_write $_RISCV_DMCONTROL 0
riscv dmi_write $_RISCV_SB_CS 0x48000
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038
riscv dmi_write $_RISCV_SB_DATA0 0x10000000
# clear dmactive to clear sbbusy otherwise debug module gets stuck
riscv dmi_write $_RISCV_DMCONTROL 0
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Here debugger reads dmstatus as 0xc03a2
# Wait for the reset to happen
sleep 10
poll
# Here debugger reads dmstatus as 0x3a2
# Disable the watchdogs again
riscv_wdt_disable
# Here debugger reads anyhalted and allhalted bits as set (0x3a2)
# We will clean allhalted state by resuming the core.
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Put the hart back into reset state. Note that we need to keep haltreq set.
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
}
proc riscv_memprot_is_enabled { } {
global _RISCV_ABS_CMD _RISCV_ABS_DATA0
# If IRAM/DRAM split is enabled, PMPADDR 5-6 will cover valid IRAM region and PMPADDR 7 will cover valid DRAM region
# Only TOR mode is used for IRAM and DRAM protections.
# Read pmpcfg1 and extract into 8-bit variables.
riscv dmi_write $_RISCV_ABS_CMD 0x2203a1
set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0]
set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}]
set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}]
set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}]
# Read PMPADDR 5-7
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b6
set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b7
set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
set IRAM_LOW 0x40800000
set IRAM_HIGH 0x40850000
set DRAM_LOW 0x40800000
set DRAM_HIGH 0x40850000
set PMP_RWX 0x07
set PMP_RW 0x03
# The lock bit remains unset during the execution of the 2nd stage bootloader.
# Thus, we do not perform a lock bit check for IRAM and DRAM regions.
# Check OpenOCD can write and execute from IRAM.
if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} {
if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} {
return 1
}
}
# Check OpenOCD can read/write entire DRAM region.
# If IRAM/DRAM split is disabled, pmpaddr7 will be zero, checking only IRAM region is enough.
if {$pmpaddr7 != 0 && $pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} {
if {($pmp7cfg & $PMP_RW) != $PMP_RW} {
return 1
}
}
return 0
}
create_esp_target $_ESP_ARCH