Replace the 0.13-specific "program_t" with a generic one
This new version changes how we handle temporary registers: rather than tracking them by hand (like in the old code), they're now tracked as part of assembling programs. The register save/restore assertion that used to fire all the time no longer exists.
This commit is contained in:
parent
0e54044ac7
commit
e481524362
|
@ -213,14 +213,9 @@ static int riscv_gdb_thread_packet(struct connection *connection, const char *pa
|
|||
return JIM_OK;
|
||||
|
||||
case 'R':
|
||||
{
|
||||
char *packet_str = malloc(packet_size + 1);
|
||||
memset(packet_str, '\0', packet_size + 1);
|
||||
memcpy(packet_str, packet, packet_size);
|
||||
LOG_WARNING("riscv_gdb_thread_packet(%s): unimplemented", packet_str);
|
||||
gdb_put_packet(connection, NULL, 0);
|
||||
gdb_put_packet(connection, "E00", 3);
|
||||
return JIM_OK;
|
||||
}
|
||||
|
||||
default:
|
||||
LOG_ERROR("Unknown packet of type 0x%2.2x", packet[0]);
|
||||
gdb_put_packet(connection, NULL, 0);
|
||||
|
@ -285,7 +280,7 @@ static int riscv_get_thread_reg_list(struct rtos *rtos, int64_t thread_id, char
|
|||
*hex_reg_list[0] = '\0';
|
||||
for (size_t i = 0; i < n_regs; ++i) {
|
||||
if (riscv_has_register(rtos->target, thread_id, i)) {
|
||||
uint64_t reg_value = riscv_get_register(rtos->target, thread_id - 1, i);
|
||||
uint64_t reg_value = riscv_get_register_on_hart(rtos->target, thread_id - 1, i);
|
||||
for (size_t byte = 0; byte < xlen / 8; ++byte) {
|
||||
uint8_t reg_byte = reg_value >> (byte * 8);
|
||||
char hex[3];
|
||||
|
|
|
@ -138,7 +138,8 @@ INTEL_IA32_SRC = \
|
|||
RISCV_SRC = \
|
||||
riscv/riscv-011.c \
|
||||
riscv/riscv-013.c \
|
||||
riscv/riscv.c
|
||||
riscv/riscv.c \
|
||||
riscv/program.c
|
||||
|
||||
noinst_HEADERS = \
|
||||
algorithm.h \
|
||||
|
|
|
@ -26,15 +26,28 @@
|
|||
#define DTM_IDCODE_1 (0x1 << DTM_IDCODE_1_OFFSET)
|
||||
#define DTM_DTMCS 0x10
|
||||
/*
|
||||
* Writing 1 to this bit resets the DMI controller, clearing any
|
||||
* sticky error state.
|
||||
* Writing 1 to this bit does a hard reset of the DTM,
|
||||
* causing the DTM to forget about any outstanding DMI transactions.
|
||||
* In general this should only be used when the Debugger has
|
||||
* reason to expect that the outstanding DMI transaction will never
|
||||
* complete (e.g. a reset condition caused an inflight DMI transaction to
|
||||
* be cancelled).
|
||||
*/
|
||||
#define DTM_DTMCS_DMIHARDRESET_OFFSET 17
|
||||
#define DTM_DTMCS_DMIHARDRESET_LENGTH 1
|
||||
#define DTM_DTMCS_DMIHARDRESET (0x1 << DTM_DTMCS_DMIHARDRESET_OFFSET)
|
||||
/*
|
||||
* Writing 1 to this bit clears the sticky error state
|
||||
* and allows the DTM to retry or complete the previous
|
||||
* transaction.
|
||||
*/
|
||||
#define DTM_DTMCS_DMIRESET_OFFSET 16
|
||||
#define DTM_DTMCS_DMIRESET_LENGTH 1
|
||||
#define DTM_DTMCS_DMIRESET (0x1 << DTM_DTMCS_DMIRESET_OFFSET)
|
||||
/*
|
||||
* This is the minimum number of cycles a debugger should spend in
|
||||
* Run-Test/Idle after every DMI scan to avoid a 'busy'
|
||||
* This is a hint to the debugger of the minimum number of
|
||||
* cycles a debugger should spend in
|
||||
* Run-Test/Idle after every DMI scan to avoid a `busy'
|
||||
* return code (\Fdmistat of 3). A debugger must still
|
||||
* check \Fdmistat when necessary.
|
||||
*
|
||||
|
@ -146,26 +159,26 @@
|
|||
#define CSR_DCSR_XDEBUGVER_LENGTH 2
|
||||
#define CSR_DCSR_XDEBUGVER (0x3 << CSR_DCSR_XDEBUGVER_OFFSET)
|
||||
/*
|
||||
* When 1, {\tt ebreak} instructions in Machine Mode enter Halt Mode.
|
||||
* When 1, {\tt ebreak} instructions in Machine Mode enter Debug Mode.
|
||||
*/
|
||||
#define CSR_DCSR_EBREAKM_OFFSET 15
|
||||
#define CSR_DCSR_EBREAKM_LENGTH 1
|
||||
#define CSR_DCSR_EBREAKM (0x1 << CSR_DCSR_EBREAKM_OFFSET)
|
||||
/*
|
||||
* When 1, {\tt ebreak} instructions in Hypervisor Mode enter Halt Mode.
|
||||
* When 1, {\tt ebreak} instructions in Hypervisor Mode enter Debug Mode.
|
||||
*/
|
||||
#define CSR_DCSR_EBREAKH_OFFSET 14
|
||||
#define CSR_DCSR_EBREAKH_LENGTH 1
|
||||
#define CSR_DCSR_EBREAKH (0x1 << CSR_DCSR_EBREAKH_OFFSET)
|
||||
/*
|
||||
* When 1, {\tt ebreak} instructions in Supervisor Mode enter Halt Mode.
|
||||
* When 1, {\tt ebreak} instructions in Supervisor Mode enter Debug Mode.
|
||||
*/
|
||||
#define CSR_DCSR_EBREAKS_OFFSET 13
|
||||
#define CSR_DCSR_EBREAKS_LENGTH 1
|
||||
#define CSR_DCSR_EBREAKS (0x1 << CSR_DCSR_EBREAKS_OFFSET)
|
||||
/*
|
||||
* When 1, {\tt ebreak} instructions in User/Application Mode enter
|
||||
* Halt Mode.
|
||||
* Debug Mode.
|
||||
*/
|
||||
#define CSR_DCSR_EBREAKU_OFFSET 12
|
||||
#define CSR_DCSR_EBREAKU_LENGTH 1
|
||||
|
@ -173,7 +186,7 @@
|
|||
/*
|
||||
* 0: Increment counters as usual.
|
||||
*
|
||||
* 1: Don't increment any counters while in Halt Mode. This includes
|
||||
* 1: Don't increment any counters while in Debug Mode. This includes
|
||||
* the {\tt cycle} and {\tt instret} CSRs. This is preferred for most
|
||||
* debugging scenarios.
|
||||
*
|
||||
|
@ -187,7 +200,7 @@
|
|||
/*
|
||||
* 0: Increment timers as usual.
|
||||
*
|
||||
* 1: Don't increment any hart-local timers while in Halt Mode.
|
||||
* 1: Don't increment any hart-local timers while in Debug Mode.
|
||||
*
|
||||
* An implementation may choose not to support writing to this bit.
|
||||
* The debugger must read back the value it writes to check whether
|
||||
|
@ -197,29 +210,27 @@
|
|||
#define CSR_DCSR_STOPTIME_LENGTH 1
|
||||
#define CSR_DCSR_STOPTIME (0x1 << CSR_DCSR_STOPTIME_OFFSET)
|
||||
/*
|
||||
* Explains why Halt Mode was entered.
|
||||
* Explains why Debug Mode was entered.
|
||||
*
|
||||
* When there are multiple reasons to enter Halt Mode in a single
|
||||
* When there are multiple reasons to enter Debug Mode in a single
|
||||
* cycle, the cause with the highest priority is the one written.
|
||||
*
|
||||
* 1: A software breakpoint was hit. (priority 3)
|
||||
* 1: An {\tt ebreak} instruction was executed. (priority 3)
|
||||
*
|
||||
* 2: The Trigger Module caused a halt. (priority 4)
|
||||
*
|
||||
* 3: The debug interrupt was asserted by the Debug Module. (priority 2)
|
||||
* 3: \Fhaltreq was set. (priority 2)
|
||||
*
|
||||
* 4: The hart single stepped because \Fstep was set. (priority 1)
|
||||
*
|
||||
* 5: \Fhaltreq was set. (priority 0)
|
||||
*
|
||||
* Other values are reserved for future use.
|
||||
*/
|
||||
#define CSR_DCSR_CAUSE_OFFSET 6
|
||||
#define CSR_DCSR_CAUSE_LENGTH 3
|
||||
#define CSR_DCSR_CAUSE (0x7 << CSR_DCSR_CAUSE_OFFSET)
|
||||
/*
|
||||
* When set and not in Halt Mode, the hart will only execute a single
|
||||
* instruction, and then enter Halt Mode. Interrupts are disabled
|
||||
* When set and not in Debug Mode, the hart will only execute a single
|
||||
* instruction, and then enter Debug Mode. Interrupts are disabled
|
||||
* when this bit is set.
|
||||
*/
|
||||
#define CSR_DCSR_STEP_OFFSET 2
|
||||
|
@ -227,9 +238,9 @@
|
|||
#define CSR_DCSR_STEP (0x1 << CSR_DCSR_STEP_OFFSET)
|
||||
/*
|
||||
* Contains the privilege level the hart was operating in when Debug
|
||||
* Mode was entered. The encoding is describe in Table
|
||||
* Mode was entered. The encoding is described in Table
|
||||
* \ref{tab:privlevel}. A debugger can change this value to change
|
||||
* the hart's privilege level when exiting Halt Mode.
|
||||
* the hart's privilege level when exiting Debug Mode.
|
||||
*
|
||||
* Not all privilege levels are supported on all harts. If the
|
||||
* encoding written is not supported or the debugger is not allowed to
|
||||
|
@ -247,9 +258,9 @@
|
|||
#define CSR_PRIV virtual
|
||||
/*
|
||||
* Contains the privilege level the hart was operating in when Debug
|
||||
* Mode was entered. The encoding is describe in Table
|
||||
* Mode was entered. The encoding is described in Table
|
||||
* \ref{tab:privlevel}. A user can write this value to change the
|
||||
* hart's privilege level when exiting Halt Mode.
|
||||
* hart's privilege level when exiting Debug Mode.
|
||||
*/
|
||||
#define CSR_PRIV_PRV_OFFSET 0
|
||||
#define CSR_PRIV_PRV_LENGTH 2
|
||||
|
@ -283,10 +294,10 @@
|
|||
* 0: Both Debug and M Mode can write the {\tt tdata} registers at the
|
||||
* selected \Rtselect.
|
||||
*
|
||||
* 1: Only Halt Mode can write the {\tt tdata} registers at the
|
||||
* 1: Only Debug Mode can write the {\tt tdata} registers at the
|
||||
* selected \Rtselect. Writes from other modes are ignored.
|
||||
*
|
||||
* This bit is only writable from Halt Mode.
|
||||
* This bit is only writable from Debug Mode.
|
||||
*/
|
||||
#define CSR_TDATA1_HMODE_OFFSET XLEN-5
|
||||
#define CSR_TDATA1_HMODE_LENGTH 1
|
||||
|
@ -366,7 +377,7 @@
|
|||
* 0: Raise a breakpoint exception. (Used when software wants to use
|
||||
* the trigger module without an external debugger attached.)
|
||||
*
|
||||
* 1: Enter Halt Mode. (Only supported when \Fhmode is 1.)
|
||||
* 1: Enter Debug Mode. (Only supported when \Fhmode is 1.)
|
||||
*
|
||||
* 2: Start tracing.
|
||||
*
|
||||
|
@ -504,10 +515,10 @@
|
|||
/*
|
||||
* Determines what happens when this trigger matches.
|
||||
*
|
||||
* 0: Raise a debug exception. (Used when software wants to use the
|
||||
* 0: Raise a breakpoint exception. (Used when software wants to use the
|
||||
* trigger module without an external debugger attached.)
|
||||
*
|
||||
* 1: Enter Halt Mode. (Only supported when \Fhmode is 1.)
|
||||
* 1: Enter Debug Mode. (Only supported when \Fhmode is 1.)
|
||||
*
|
||||
* 2: Start tracing.
|
||||
*
|
||||
|
@ -524,6 +535,18 @@
|
|||
#define CSR_ICOUNT_ACTION (0x3fL << CSR_ICOUNT_ACTION_OFFSET)
|
||||
#define DMI_DMSTATUS 0x11
|
||||
/*
|
||||
* This field is 1 when all currently selected harts have acknowledged the previous \Fresumereq.
|
||||
*/
|
||||
#define DMI_DMSTATUS_ALLRESUMEACK_OFFSET 17
|
||||
#define DMI_DMSTATUS_ALLRESUMEACK_LENGTH 1
|
||||
#define DMI_DMSTATUS_ALLRESUMEACK (0x1 << DMI_DMSTATUS_ALLRESUMEACK_OFFSET)
|
||||
/*
|
||||
* This field is 1 when any currently selected hart has acknowledged the previous \Fresumereq.
|
||||
*/
|
||||
#define DMI_DMSTATUS_ANYRESUMEACK_OFFSET 16
|
||||
#define DMI_DMSTATUS_ANYRESUMEACK_LENGTH 1
|
||||
#define DMI_DMSTATUS_ANYRESUMEACK (0x1 << DMI_DMSTATUS_ANYRESUMEACK_OFFSET)
|
||||
/*
|
||||
* This field is 1 when all currently selected harts do not exist in this system.
|
||||
*/
|
||||
#define DMI_DMSTATUS_ALLNONEXISTENT_OFFSET 15
|
||||
|
@ -617,7 +640,7 @@
|
|||
#define DMI_DMSTATUS_VERSIONLO (0x3 << DMI_DMSTATUS_VERSIONLO_OFFSET)
|
||||
#define DMI_DMCONTROL 0x10
|
||||
/*
|
||||
* Halt request signal for all currently selected harts. When 1, the
|
||||
* Halt request signal for all currently selected harts. When set to 1, the
|
||||
* hart will halt if it is not currently halted.
|
||||
* Setting both \Fhaltreq and \Fresumereq leads to undefined behavior.
|
||||
*
|
||||
|
@ -627,7 +650,7 @@
|
|||
#define DMI_DMCONTROL_HALTREQ_LENGTH 1
|
||||
#define DMI_DMCONTROL_HALTREQ (0x1 << DMI_DMCONTROL_HALTREQ_OFFSET)
|
||||
/*
|
||||
* Resume request signal for all currently selected harts. When 1,
|
||||
* Resume request signal for all currently selected harts. When set to 1,
|
||||
* the hart will resume if it is currently halted.
|
||||
* Setting both \Fhaltreq and \Fresumereq leads to undefined behavior.
|
||||
*
|
||||
|
@ -942,31 +965,12 @@
|
|||
#define DMI_DATA0_DATA_OFFSET 0
|
||||
#define DMI_DATA0_DATA_LENGTH 32
|
||||
#define DMI_DATA0_DATA (0xffffffff << DMI_DATA0_DATA_OFFSET)
|
||||
#define DMI_DATA1 0x05
|
||||
#define DMI_DATA2 0x06
|
||||
#define DMI_DATA3 0x07
|
||||
#define DMI_DATA4 0x08
|
||||
#define DMI_DATA5 0x09
|
||||
#define DMI_DATA6 0x0a
|
||||
#define DMI_DATA7 0x0b
|
||||
#define DMI_DATA8 0x0c
|
||||
#define DMI_DATA9 0x0d
|
||||
#define DMI_DATA10 0x0e
|
||||
#define DMI_DATA11 0x0f
|
||||
#define DMI_PROGBUF0 0x20
|
||||
#define DMI_PROGBUF0_DATA_OFFSET 0
|
||||
#define DMI_PROGBUF0_DATA_LENGTH 32
|
||||
#define DMI_PROGBUF0_DATA (0xffffffff << DMI_PROGBUF0_DATA_OFFSET)
|
||||
#define DMI_PROGBUF1 0x21
|
||||
#define DMI_PROGBUF2 0x22
|
||||
#define DMI_PROGBUF3 0x23
|
||||
#define DMI_PROGBUF4 0x24
|
||||
#define DMI_PROGBUF5 0x25
|
||||
#define DMI_PROGBUF6 0x26
|
||||
#define DMI_PROGBUF7 0x27
|
||||
#define DMI_PROGBUF8 0x28
|
||||
#define DMI_PROGBUF9 0x29
|
||||
#define DMI_PROGBUF10 0x2a
|
||||
#define DMI_PROGBUF15 0x2f
|
||||
#define DMI_AUTHDATA 0x30
|
||||
#define DMI_AUTHDATA_DATA_OFFSET 0
|
||||
#define DMI_AUTHDATA_DATA_LENGTH 32
|
||||
|
@ -1233,93 +1237,6 @@
|
|||
#define DMI_SBDATA3_DATA_OFFSET 0
|
||||
#define DMI_SBDATA3_DATA_LENGTH 32
|
||||
#define DMI_SBDATA3_DATA (0xffffffff << DMI_SBDATA3_DATA_OFFSET)
|
||||
#define SERINFO 0x280
|
||||
/*
|
||||
* Like \Fserialzero.
|
||||
*/
|
||||
#define SERINFO_SERIAL7_OFFSET 7
|
||||
#define SERINFO_SERIAL7_LENGTH 1
|
||||
#define SERINFO_SERIAL7 (0x1 << SERINFO_SERIAL7_OFFSET)
|
||||
/*
|
||||
* Like \Fserialzero.
|
||||
*/
|
||||
#define SERINFO_SERIAL6_OFFSET 6
|
||||
#define SERINFO_SERIAL6_LENGTH 1
|
||||
#define SERINFO_SERIAL6 (0x1 << SERINFO_SERIAL6_OFFSET)
|
||||
/*
|
||||
* Like \Fserialzero.
|
||||
*/
|
||||
#define SERINFO_SERIAL5_OFFSET 5
|
||||
#define SERINFO_SERIAL5_LENGTH 1
|
||||
#define SERINFO_SERIAL5 (0x1 << SERINFO_SERIAL5_OFFSET)
|
||||
/*
|
||||
* Like \Fserialzero.
|
||||
*/
|
||||
#define SERINFO_SERIAL4_OFFSET 4
|
||||
#define SERINFO_SERIAL4_LENGTH 1
|
||||
#define SERINFO_SERIAL4 (0x1 << SERINFO_SERIAL4_OFFSET)
|
||||
/*
|
||||
* Like \Fserialzero.
|
||||
*/
|
||||
#define SERINFO_SERIAL3_OFFSET 3
|
||||
#define SERINFO_SERIAL3_LENGTH 1
|
||||
#define SERINFO_SERIAL3 (0x1 << SERINFO_SERIAL3_OFFSET)
|
||||
/*
|
||||
* Like \Fserialzero.
|
||||
*/
|
||||
#define SERINFO_SERIAL2_OFFSET 2
|
||||
#define SERINFO_SERIAL2_LENGTH 1
|
||||
#define SERINFO_SERIAL2 (0x1 << SERINFO_SERIAL2_OFFSET)
|
||||
/*
|
||||
* Like \Fserialzero.
|
||||
*/
|
||||
#define SERINFO_SERIAL1_OFFSET 1
|
||||
#define SERINFO_SERIAL1_LENGTH 1
|
||||
#define SERINFO_SERIAL1 (0x1 << SERINFO_SERIAL1_OFFSET)
|
||||
/*
|
||||
* 1 means serial interface 0 is supported.
|
||||
*/
|
||||
#define SERINFO_SERIAL0_OFFSET 0
|
||||
#define SERINFO_SERIAL0_LENGTH 1
|
||||
#define SERINFO_SERIAL0 (0x1 << SERINFO_SERIAL0_OFFSET)
|
||||
#define SERSEND0 0x200
|
||||
#define SERRECV0 0x204
|
||||
#define SERSTAT0 0x208
|
||||
/*
|
||||
* Send ready. 1 when the core-to-debugger queue is not full. 0
|
||||
* otherwise.
|
||||
*/
|
||||
#define SERSTAT0_SENDR_OFFSET 1
|
||||
#define SERSTAT0_SENDR_LENGTH 1
|
||||
#define SERSTAT0_SENDR (0x1 << SERSTAT0_SENDR_OFFSET)
|
||||
/*
|
||||
* Receive ready. 1 when the debugger-to-core queue is not empty. 0
|
||||
* otherwise.
|
||||
*/
|
||||
#define SERSTAT0_RECVR_OFFSET 0
|
||||
#define SERSTAT0_RECVR_LENGTH 1
|
||||
#define SERSTAT0_RECVR (0x1 << SERSTAT0_RECVR_OFFSET)
|
||||
#define SERSEND1 0x210
|
||||
#define SERRECV1 0x214
|
||||
#define SERSTAT1 0x218
|
||||
#define SERSEND2 0x220
|
||||
#define SERRECV2 0x224
|
||||
#define SERSTAT2 0x228
|
||||
#define SERSEND3 0x230
|
||||
#define SERRECV3 0x234
|
||||
#define SERSTAT3 0x238
|
||||
#define SERSEND4 0x240
|
||||
#define SERRECV4 0x244
|
||||
#define SERSTAT4 0x248
|
||||
#define SERSEND5 0x250
|
||||
#define SERRECV5 0x254
|
||||
#define SERSTAT5 0x258
|
||||
#define SERSEND6 0x260
|
||||
#define SERRECV6 0x264
|
||||
#define SERSTAT6 0x268
|
||||
#define SERSEND7 0x274
|
||||
#define SERRECV7 0x278
|
||||
#define SERSTAT7 0x27c
|
||||
#define TRACE 0x728
|
||||
/*
|
||||
* 1 if the trace buffer has wrapped since the last time \Fdiscard was
|
||||
|
@ -1454,14 +1371,6 @@
|
|||
#define AC_ACCESS_REGISTER_SIZE (0x7 << AC_ACCESS_REGISTER_SIZE_OFFSET)
|
||||
/*
|
||||
* When 1, execute the program in the Program Buffer exactly once
|
||||
* before performing the transfer.
|
||||
* \textbf{WARNING: preexec is considered for removal.}
|
||||
*/
|
||||
#define AC_ACCESS_REGISTER_PREEXEC_OFFSET 19
|
||||
#define AC_ACCESS_REGISTER_PREEXEC_LENGTH 1
|
||||
#define AC_ACCESS_REGISTER_PREEXEC (0x1 << AC_ACCESS_REGISTER_PREEXEC_OFFSET)
|
||||
/*
|
||||
* When 1, execute the program in the Program Buffer exactly once
|
||||
* after performing the transfer, if any.
|
||||
*/
|
||||
#define AC_ACCESS_REGISTER_POSTEXEC_OFFSET 18
|
||||
|
|
|
@ -3,6 +3,8 @@
|
|||
|
||||
enum gdb_regno {
|
||||
GDB_REGNO_XPR0 = 0,
|
||||
GDB_REGNO_X0 = GDB_REGNO_XPR0 + 0,
|
||||
GDB_REGNO_ZERO = GDB_REGNO_XPR0 + 0,
|
||||
GDB_REGNO_S0 = GDB_REGNO_XPR0 + 8,
|
||||
GDB_REGNO_S1 = GDB_REGNO_XPR0 + 9,
|
||||
GDB_REGNO_XPR31 = GDB_REGNO_XPR0 + 31,
|
||||
|
@ -16,6 +18,7 @@ enum gdb_regno {
|
|||
GDB_REGNO_MISA = CSR_MISA + GDB_REGNO_CSR0,
|
||||
GDB_REGNO_DPC = CSR_DPC + GDB_REGNO_CSR0,
|
||||
GDB_REGNO_DCSR = CSR_DCSR + GDB_REGNO_CSR0,
|
||||
GDB_REGNO_DSCRATCH = CSR_DSCRATCH + GDB_REGNO_CSR0,
|
||||
GDB_REGNO_MSTATUS = CSR_MSTATUS + GDB_REGNO_CSR0,
|
||||
GDB_REGNO_CSR4095 = GDB_REGNO_CSR0 + 4095,
|
||||
GDB_REGNO_PRIV = 4161,
|
||||
|
|
|
@ -125,6 +125,16 @@ static uint32_t csrr(unsigned int rd, unsigned int csr) {
|
|||
return (csr << 20) | (rd << 7) | MATCH_CSRRS;
|
||||
}
|
||||
|
||||
static uint32_t csrrs(unsigned int rd, unsigned int rs, unsigned int csr) __attribute__ ((unused));
|
||||
static uint32_t csrrs(unsigned int rd, unsigned int rs, unsigned int csr) {
|
||||
return (csr << 20) | (rs << 15) | (rd << 7) | MATCH_CSRRS;
|
||||
}
|
||||
|
||||
static uint32_t csrrw(unsigned int rd, unsigned int rs, unsigned int csr) __attribute__ ((unused));
|
||||
static uint32_t csrrw(unsigned int rd, unsigned int rs, unsigned int csr) {
|
||||
return (csr << 20) | (rs << 15) | (rd << 7) | MATCH_CSRRW;
|
||||
}
|
||||
|
||||
static uint32_t fsw(unsigned int src, unsigned int base, uint16_t offset) __attribute__ ((unused));
|
||||
static uint32_t fsw(unsigned int src, unsigned int base, uint16_t offset)
|
||||
{
|
||||
|
@ -206,7 +216,6 @@ static uint32_t fence_i(void)
|
|||
return MATCH_FENCE_I;
|
||||
}
|
||||
|
||||
/*
|
||||
static uint32_t lui(unsigned int dest, uint32_t imm) __attribute__ ((unused));
|
||||
static uint32_t lui(unsigned int dest, uint32_t imm)
|
||||
{
|
||||
|
@ -215,6 +224,7 @@ static uint32_t lui(unsigned int dest, uint32_t imm)
|
|||
MATCH_LUI;
|
||||
}
|
||||
|
||||
/*
|
||||
static uint32_t csrci(unsigned int csr, uint16_t imm) __attribute__ ((unused));
|
||||
static uint32_t csrci(unsigned int csr, uint16_t imm) {
|
||||
return (csr << 20) |
|
||||
|
@ -277,3 +287,9 @@ static uint32_t fence(void)
|
|||
{
|
||||
return MATCH_FENCE;
|
||||
}
|
||||
|
||||
static uint32_t auipc(unsigned int dest) __attribute__((unused));
|
||||
static uint32_t auipc(unsigned int dest)
|
||||
{
|
||||
return MATCH_AUIPC | (dest << 7);
|
||||
}
|
||||
|
|
|
@ -0,0 +1,402 @@
|
|||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include "target/target.h"
|
||||
#include "riscv.h"
|
||||
#include "program.h"
|
||||
#include "helper/log.h"
|
||||
|
||||
#include "asm.h"
|
||||
#include "encoding.h"
|
||||
|
||||
riscv_addr_t riscv_program_gah(struct riscv_program *p, riscv_addr_t addr);
|
||||
riscv_addr_t riscv_program_gal(struct riscv_program *p, riscv_addr_t addr);
|
||||
int riscv_program_lah(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr);
|
||||
int riscv_program_lal(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr);
|
||||
|
||||
int riscv_program_insert(struct riscv_program *p, riscv_insn_t i);
|
||||
|
||||
/* Program interface. */
|
||||
int riscv_program_init(struct riscv_program *p, struct target *target)
|
||||
{
|
||||
memset(p, 0, sizeof(*p));
|
||||
p->target = target;
|
||||
p->instruction_count = 0;
|
||||
p->data_count = 0;
|
||||
p->writes_memory = 0;
|
||||
p->target_xlen = riscv_xlen(target);
|
||||
for (size_t i = 0; i < RISCV_REGISTER_COUNT; ++i) {
|
||||
p->writes_xreg[i] = 0;
|
||||
p->in_use[i] = 0;
|
||||
}
|
||||
|
||||
for(size_t i = 0; i < RISCV_MAX_DEBUG_BUFFER_SIZE; ++i)
|
||||
p->debug_buffer[i] = -1;
|
||||
|
||||
if (riscv_debug_buffer_enter(target, p) != ERROR_OK) {
|
||||
LOG_ERROR("unable to write progam buffer enter code");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_exec(struct riscv_program *p, struct target *t)
|
||||
{
|
||||
if (riscv_debug_buffer_leave(t, p) != ERROR_OK) {
|
||||
LOG_ERROR("unable to write program buffer exit code");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
riscv_reg_t saved_registers[GDB_REGNO_XPR31 + 1];
|
||||
for (size_t i = GDB_REGNO_XPR0 + 1; i <= GDB_REGNO_XPR31; ++i) {
|
||||
if (p->writes_xreg[i]) {
|
||||
LOG_DEBUG("Saving register %d as used by program", i);
|
||||
saved_registers[i] = riscv_get_register(t, i);
|
||||
}
|
||||
}
|
||||
|
||||
if (p->writes_memory && (riscv_program_fence(p) != ERROR_OK)) {
|
||||
LOG_ERROR("Unable to write fence");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
if (riscv_program_ebreak(p) != ERROR_OK) {
|
||||
LOG_ERROR("Unable to write ebreak");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < riscv_debug_buffer_size(p->target); ++i)
|
||||
riscv_write_debug_buffer(t, i, p->debug_buffer[i]);
|
||||
|
||||
riscv_execute_debug_buffer(t);
|
||||
|
||||
for (size_t i = 0; i < riscv_debug_buffer_size(p->target); ++i)
|
||||
p->debug_buffer[i] = riscv_read_debug_buffer(t, i);
|
||||
|
||||
for (size_t i = GDB_REGNO_XPR0; i <= GDB_REGNO_XPR31; ++i)
|
||||
if (p->writes_xreg[i])
|
||||
riscv_set_register(t, i, saved_registers[i]);
|
||||
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
riscv_addr_t riscv_program_alloc_data(struct riscv_program *p, size_t bytes)
|
||||
{
|
||||
LOG_DEBUG("allocating %d bytes of data", bytes);
|
||||
|
||||
riscv_addr_t addr =
|
||||
riscv_debug_buffer_addr(p->target)
|
||||
+ riscv_debug_buffer_size(p->target) * sizeof(p->debug_buffer[0])
|
||||
- p->data_count * sizeof(p->debug_buffer[0])
|
||||
- bytes;
|
||||
while (addr % bytes != 0) addr--;
|
||||
|
||||
riscv_addr_t ptop =
|
||||
riscv_debug_buffer_addr(p->target)
|
||||
+ p->instruction_count * sizeof(p->debug_buffer[0]);
|
||||
|
||||
if (addr <= ptop) {
|
||||
LOG_DEBUG("unable to allocate %d bytes", bytes);
|
||||
return RISCV_PROGRAM_ALLOC_FAIL;
|
||||
}
|
||||
|
||||
LOG_DEBUG("allocated %d bytes at 0x%08lx", bytes, addr);
|
||||
return addr;
|
||||
}
|
||||
|
||||
riscv_addr_t riscv_program_alloc_x(struct riscv_program *p)
|
||||
{
|
||||
return riscv_program_alloc_data(p, p->target_xlen / 8);
|
||||
}
|
||||
|
||||
riscv_addr_t riscv_program_alloc_d(struct riscv_program *p)
|
||||
{
|
||||
return riscv_program_alloc_data(p, 8);
|
||||
}
|
||||
|
||||
riscv_addr_t riscv_program_alloc_w(struct riscv_program *p)
|
||||
{
|
||||
return riscv_program_alloc_data(p, 4);
|
||||
}
|
||||
|
||||
riscv_addr_t riscv_program_alloc_h(struct riscv_program *p)
|
||||
{
|
||||
return riscv_program_alloc_data(p, 2);
|
||||
}
|
||||
|
||||
riscv_addr_t riscv_program_alloc_b(struct riscv_program *p)
|
||||
{
|
||||
return riscv_program_alloc_data(p, 1);
|
||||
}
|
||||
|
||||
riscv_insn_t riscv_program_read_ram(struct riscv_program *p, riscv_addr_t addr)
|
||||
{
|
||||
if (addr < riscv_debug_buffer_addr(p->target))
|
||||
return -1;
|
||||
if (addr > riscv_debug_buffer_addr(p->target) + (riscv_debug_buffer_size(p->target) * sizeof(p->debug_buffer[0])))
|
||||
return -1;
|
||||
|
||||
int off = (addr - riscv_debug_buffer_addr(p->target)) / sizeof(p->debug_buffer[0]);
|
||||
return p->debug_buffer[off];
|
||||
}
|
||||
|
||||
void riscv_program_write_ram(struct riscv_program *p, riscv_addr_t addr, uint64_t d)
|
||||
{
|
||||
if (addr < riscv_debug_buffer_addr(p->target))
|
||||
return -1;
|
||||
if (addr > riscv_debug_buffer_addr(p->target) + (riscv_debug_buffer_size(p->target) * sizeof(p->debug_buffer[0])))
|
||||
return -1;
|
||||
|
||||
int off = (addr - riscv_debug_buffer_addr(p->target)) / sizeof(p->debug_buffer[0]);
|
||||
p->debug_buffer[off] = d;
|
||||
}
|
||||
|
||||
int riscv_program_lx(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
switch (p->target_xlen) {
|
||||
case 64: return riscv_program_ld(p, d, addr);
|
||||
case 32: return riscv_program_lw(p, d, addr);
|
||||
}
|
||||
|
||||
LOG_ERROR("unknown xlen %d", p->target_xlen);
|
||||
abort();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int riscv_program_ld(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
enum gdb_regno t = riscv_program_gah(p, addr) == 0 ? GDB_REGNO_X0 : d;
|
||||
if (riscv_program_lah(p, d, addr) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_insert(p, ld(d, t, riscv_program_gal(p, addr))) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_lw(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
enum gdb_regno t = riscv_program_gah(p, addr) == 0 ? GDB_REGNO_X0 : d;
|
||||
if (riscv_program_lah(p, d, addr) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_insert(p, lw(d, t, riscv_program_gal(p, addr))) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_lh(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
enum gdb_regno t = riscv_program_gah(p, addr) == 0 ? GDB_REGNO_X0 : d;
|
||||
if (riscv_program_lah(p, d, addr) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_insert(p, lh(d, t, riscv_program_gal(p, addr))) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_lb(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
enum gdb_regno t = riscv_program_gah(p, addr) == 0 ? GDB_REGNO_X0 : d;
|
||||
if (riscv_program_lah(p, t, addr) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_insert(p, lb(d, t, riscv_program_gal(p, addr))) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_sx(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
switch (p->target_xlen) {
|
||||
case 64: return riscv_program_sd(p, d, addr);
|
||||
case 32: return riscv_program_sw(p, d, addr);
|
||||
}
|
||||
|
||||
LOG_ERROR("unknown xlen %d", p->target_xlen);
|
||||
abort();
|
||||
return -1;
|
||||
}
|
||||
|
||||
int riscv_program_sd(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
enum gdb_regno t = riscv_program_gah(p, addr) == 0
|
||||
? GDB_REGNO_X0
|
||||
: riscv_program_gettemp(p);
|
||||
if (riscv_program_lah(p, t, addr) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_insert(p, sd(d, t, riscv_program_gal(p, addr))) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
riscv_program_puttemp(p, t);
|
||||
p->writes_memory = true;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_sw(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
enum gdb_regno t = riscv_program_gah(p, addr) == 0
|
||||
? GDB_REGNO_X0
|
||||
: riscv_program_gettemp(p);
|
||||
if (riscv_program_lah(p, t, addr) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_insert(p, sw(d, t, riscv_program_gal(p, addr))) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
riscv_program_puttemp(p, t);
|
||||
p->writes_memory = true;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_sh(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
enum gdb_regno t = riscv_program_gah(p, addr) == 0
|
||||
? GDB_REGNO_X0
|
||||
: riscv_program_gettemp(p);
|
||||
if (riscv_program_lah(p, t, addr) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_insert(p, sh(d, t, riscv_program_gal(p, addr))) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
riscv_program_puttemp(p, t);
|
||||
p->writes_memory = true;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_sb(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
enum gdb_regno t = riscv_program_gah(p, addr) == 0
|
||||
? GDB_REGNO_X0
|
||||
: riscv_program_gettemp(p);
|
||||
if (riscv_program_lah(p, t, addr) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_insert(p, sb(d, t, riscv_program_gal(p, addr))) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
riscv_program_puttemp(p, t);
|
||||
p->writes_memory = true;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_csrr(struct riscv_program *p, enum gdb_regno d, enum gdb_regno csr)
|
||||
{
|
||||
assert(csr >= GDB_REGNO_CSR0);
|
||||
return riscv_program_insert(p, csrrs(d, GDB_REGNO_X0, csr - GDB_REGNO_CSR0));
|
||||
}
|
||||
|
||||
int riscv_program_csrw(struct riscv_program *p, enum gdb_regno s, enum gdb_regno csr)
|
||||
{
|
||||
assert(csr >= GDB_REGNO_CSR0);
|
||||
return riscv_program_insert(p, csrrw(GDB_REGNO_X0, s, csr - GDB_REGNO_CSR0));
|
||||
}
|
||||
|
||||
int riscv_program_csrrw(struct riscv_program *p, enum gdb_regno d, enum gdb_regno s, enum gdb_regno csr)
|
||||
{
|
||||
assert(csr >= GDB_REGNO_CSR0);
|
||||
return riscv_program_insert(p, csrrw(d, s, csr - GDB_REGNO_CSR0));
|
||||
}
|
||||
|
||||
int riscv_program_fence_i(struct riscv_program *p)
|
||||
{
|
||||
return riscv_program_insert(p, fence_i());
|
||||
}
|
||||
|
||||
int riscv_program_fence(struct riscv_program *p)
|
||||
{
|
||||
return riscv_program_insert(p, fence());
|
||||
}
|
||||
|
||||
int riscv_program_ebreak(struct riscv_program *p)
|
||||
{
|
||||
return riscv_program_insert(p, ebreak());
|
||||
}
|
||||
|
||||
int riscv_program_lui(struct riscv_program *p, enum gdb_regno d, int32_t u)
|
||||
{
|
||||
return riscv_program_insert(p, lui(d, u));
|
||||
}
|
||||
|
||||
int riscv_program_addi(struct riscv_program *p, enum gdb_regno d, enum gdb_regno s, int16_t u)
|
||||
{
|
||||
return riscv_program_insert(p, addi(d, s, u));
|
||||
}
|
||||
|
||||
int riscv_program_li(struct riscv_program *p, enum gdb_regno d, riscv_reg_t c)
|
||||
{
|
||||
if (riscv_program_lui(p, d, c >> 12) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
if (riscv_program_addi(p, d, d, c & 0xFFF) != ERROR_OK)
|
||||
return ERROR_FAIL;
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_program_dont_restore_register(struct riscv_program *p, enum gdb_regno r)
|
||||
{
|
||||
assert(r < RISCV_REGISTER_COUNT);
|
||||
p->writes_xreg[r] = 0;
|
||||
}
|
||||
|
||||
int riscv_program_do_restore_register(struct riscv_program *p, enum gdb_regno r)
|
||||
{
|
||||
assert(r < RISCV_REGISTER_COUNT);
|
||||
p->writes_xreg[r] = 1;
|
||||
}
|
||||
|
||||
void riscv_program_reserve_register(struct riscv_program *p, enum gdb_regno r)
|
||||
{
|
||||
assert(r < RISCV_REGISTER_COUNT);
|
||||
assert(p->in_use[r] == 0);
|
||||
p->in_use[r] = 1;
|
||||
}
|
||||
|
||||
enum gdb_regno riscv_program_gettemp(struct riscv_program *p)
|
||||
{
|
||||
for (size_t i = GDB_REGNO_S0; i <= GDB_REGNO_XPR31; ++i) {
|
||||
if (p->in_use[i]) continue;
|
||||
|
||||
riscv_program_do_restore_register(p, i);
|
||||
p->in_use[i] = 1;
|
||||
return i;
|
||||
}
|
||||
|
||||
LOG_ERROR("You've run out of temporary registers. This is impossible.");
|
||||
abort();
|
||||
}
|
||||
|
||||
void riscv_program_puttemp(struct riscv_program *p, enum gdb_regno r)
|
||||
{
|
||||
assert(r < RISCV_REGISTER_COUNT);
|
||||
p->in_use[r] = 0;
|
||||
}
|
||||
|
||||
/* Helper functions. */
|
||||
riscv_addr_t riscv_program_gah(struct riscv_program *p, riscv_addr_t addr)
|
||||
{
|
||||
return addr >> 12;
|
||||
}
|
||||
|
||||
riscv_addr_t riscv_program_gal(struct riscv_program *p, riscv_addr_t addr)
|
||||
{
|
||||
return ((addr > 0) ? 1 : 0) * (abs(addr) & 0x7FF);
|
||||
}
|
||||
|
||||
int riscv_program_lah(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
riscv_addr_t ah = riscv_program_gah(p, addr);
|
||||
if (ah == 0)
|
||||
return ERROR_OK;
|
||||
return riscv_program_lui(p, d, ah);
|
||||
}
|
||||
|
||||
int riscv_program_lal(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr)
|
||||
{
|
||||
riscv_addr_t al = riscv_program_gal(p, addr);
|
||||
if (al == 0)
|
||||
return ERROR_OK;
|
||||
return riscv_program_addi(p, d, d, al);
|
||||
}
|
||||
|
||||
int riscv_program_insert(struct riscv_program *p, riscv_insn_t i)
|
||||
{
|
||||
if (p->instruction_count + p->data_count + 1 > riscv_debug_buffer_size(p->target))
|
||||
return ERROR_FAIL;
|
||||
|
||||
LOG_DEBUG("PROGBUF[%d] = DASM(0x%08x) [0x%08x]", p->instruction_count, i, i);
|
||||
p->debug_buffer[p->instruction_count] = i;
|
||||
p->instruction_count++;
|
||||
}
|
|
@ -0,0 +1,123 @@
|
|||
#ifndef TARGET__RISCV__PROGRAM_H
|
||||
#define TARGET__RISCV__PROGRAM_H
|
||||
|
||||
#include "riscv.h"
|
||||
|
||||
#define RISCV_MAX_DEBUG_BUFFER_SIZE 16
|
||||
#define RISCV_REGISTER_COUNT 32
|
||||
#define RISCV_DSCRATCH_COUNT 2
|
||||
|
||||
/* The various RISC-V debug specifications all revolve around setting up
|
||||
* program buffers and executing them on the target. This structure contains a
|
||||
* single program, which can then be executed on targets. */
|
||||
struct riscv_program {
|
||||
struct target *target;
|
||||
|
||||
uint32_t debug_buffer[RISCV_MAX_DEBUG_BUFFER_SIZE];
|
||||
|
||||
/* The debug buffer is allocated in two directions: instructions go at
|
||||
* the start, while data goes at the end. When they meet in the middle
|
||||
* this blows up. */
|
||||
size_t instruction_count;
|
||||
size_t data_count;
|
||||
|
||||
/* Side effects of executing this program. These must be accounted for
|
||||
* in order to maintain correct executing of the target system. */
|
||||
bool writes_xreg[RISCV_REGISTER_COUNT];
|
||||
bool writes_memory;
|
||||
|
||||
/* When a register is used it will be set in this array. */
|
||||
bool in_use[RISCV_REGISTER_COUNT];
|
||||
|
||||
/* Remembers the registers that have been saved into dscratch
|
||||
* registers. These are restored */
|
||||
enum gdb_regno dscratch_saved[RISCV_DSCRATCH_COUNT];
|
||||
|
||||
/* XLEN on the target. */
|
||||
int target_xlen;
|
||||
};
|
||||
|
||||
/* Initializes a program with the header. */
|
||||
int riscv_program_init(struct riscv_program *p, struct target *t);
|
||||
|
||||
/* Executes a program, returning 0 if the program successfully executed. Note
|
||||
* that this may cause registers to be saved or restored, which could result to
|
||||
* calls to things like riscv_save_register which itself could require a
|
||||
* program to execute. That's OK, just make sure this eventually terminates.
|
||||
* */
|
||||
int riscv_program_exec(struct riscv_program *p, struct target *t);
|
||||
|
||||
/* Clears a program, removing all the state associated with it. */
|
||||
int riscv_program_clear(struct riscv_program *p, struct target *t);
|
||||
|
||||
/* A lower level interface, you shouldn't use this unless you have a reason. */
|
||||
int riscv_program_insert(struct riscv_program *p, riscv_insn_t i);
|
||||
|
||||
/* There is hardware support for saving at least one register. This register
|
||||
* doesn't need to be saved/restored the usual way, which is useful during
|
||||
* early initialization when we can't save/restore arbitrary registerrs to host
|
||||
* memory. */
|
||||
int riscv_program_save_to_dscratch(struct riscv_program *p, enum gdb_regno to_save);
|
||||
|
||||
/* Allocates data of various sizes. Either returns the absolute physical
|
||||
* address or RISCV_PROGRAM_ALLOC_FAIL on failure. */
|
||||
riscv_addr_t riscv_program_alloc_data(struct riscv_program *p, size_t bytes);
|
||||
riscv_addr_t riscv_program_alloc_x(struct riscv_program *p);
|
||||
riscv_addr_t riscv_program_alloc_d(struct riscv_program *p);
|
||||
riscv_addr_t riscv_program_alloc_w(struct riscv_program *p);
|
||||
riscv_addr_t riscv_program_alloc_h(struct riscv_program *p);
|
||||
riscv_addr_t riscv_program_alloc_b(struct riscv_program *p);
|
||||
#define RISCV_PROGRAM_ALLOC_FAIL ((riscv_addr_t)(-1))
|
||||
|
||||
/* Reads a word of memory from this program's internal view of the debug RAM.
|
||||
* This is what you want to use to get data back from the program after it
|
||||
* executes. */
|
||||
riscv_insn_t riscv_program_read_ram(struct riscv_program *p, riscv_addr_t addr);
|
||||
void riscv_program_write_ram(struct riscv_program *p, riscv_addr_t a, uint64_t d);
|
||||
|
||||
/* Helpers to assembly various instructions. Return 0 on success. These might
|
||||
* assembly into a multi-instruction sequence that overwrites some other
|
||||
* register, but those will be properly saved and restored. */
|
||||
int riscv_program_lx(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr);
|
||||
int riscv_program_ld(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr);
|
||||
int riscv_program_lw(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr);
|
||||
int riscv_program_lh(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr);
|
||||
int riscv_program_lb(struct riscv_program *p, enum gdb_regno d, riscv_addr_t addr);
|
||||
|
||||
int riscv_program_sx(struct riscv_program *p, enum gdb_regno s, riscv_addr_t addr);
|
||||
int riscv_program_sd(struct riscv_program *p, enum gdb_regno s, riscv_addr_t addr);
|
||||
int riscv_program_sw(struct riscv_program *p, enum gdb_regno s, riscv_addr_t addr);
|
||||
int riscv_program_sh(struct riscv_program *p, enum gdb_regno s, riscv_addr_t addr);
|
||||
int riscv_program_sb(struct riscv_program *p, enum gdb_regno s, riscv_addr_t addr);
|
||||
|
||||
int riscv_program_csrr(struct riscv_program *p, enum gdb_regno d, enum gdb_regno csr);
|
||||
int riscv_program_csrw(struct riscv_program *p, enum gdb_regno s, enum gdb_regno csr);
|
||||
int riscv_program_csrrw(struct riscv_program *p, enum gdb_regno d, enum gdb_regno s, enum gdb_regno csr);
|
||||
|
||||
int riscv_program_fence_i(struct riscv_program *p);
|
||||
int riscv_program_fence(struct riscv_program *p);
|
||||
int riscv_program_ebreak(struct riscv_program *p);
|
||||
|
||||
int riscv_program_lui(struct riscv_program *p, enum gdb_regno d, int32_t u);
|
||||
int riscv_program_addi(struct riscv_program *p, enum gdb_regno d, enum gdb_regno s, int16_t i);
|
||||
|
||||
/* Assembler macros. */
|
||||
int riscv_program_li(struct riscv_program *p, enum gdb_regno d, riscv_reg_t c);
|
||||
int riscv_program_la(struct riscv_program *p, enum gdb_regno d, riscv_addr_t a);
|
||||
|
||||
/* Register allocation. The user is expected to have obtained temporary
|
||||
* registers using these fuctions. Additionally, there is an interface for
|
||||
* reserving registers -- it's expected that this has been called as the first
|
||||
* thing in the program's execution to reserve registers that can't be touched
|
||||
* by the program's execution. */
|
||||
void riscv_program_reserve_register(struct riscv_program *p, enum gdb_regno r);
|
||||
enum gdb_regno riscv_program_gettemp(struct riscv_program *p);
|
||||
void riscv_program_puttemp(struct riscv_program *p, enum gdb_regno r);
|
||||
|
||||
/* Executing a program usually causes the registers that get overwritten to be
|
||||
* saved and restored. Calling this prevents the given register from actually
|
||||
* being restored as a result of all activity in this program. */
|
||||
int riscv_program_dont_restore_register(struct riscv_program *p, enum gdb_regno r);
|
||||
int riscv_program_do_restore_register(struct riscv_program *p, enum gdb_regno r);
|
||||
|
||||
#endif
|
|
@ -22,9 +22,16 @@
|
|||
#include "riscv.h"
|
||||
#include "debug_defines.h"
|
||||
#include "rtos/rtos.h"
|
||||
#include "program.h"
|
||||
#include "asm.h"
|
||||
|
||||
#define DMI_DATA1 (DMI_DATA0 + 1)
|
||||
|
||||
static void riscv013_on_step_or_resume(struct target *target, bool step);
|
||||
static void riscv013_step_or_resume_current_hart(struct target *target, bool step);
|
||||
static size_t riscv013_progbuf_size(struct target *target);
|
||||
static size_t riscv013_data_size(struct target *target);
|
||||
static size_t riscv013_data_addr(struct target *target);
|
||||
|
||||
/* Implementations of the functions in riscv_info_t. */
|
||||
static riscv_reg_t riscv013_get_register(struct target *target, int hartid, int regid);
|
||||
|
@ -38,6 +45,11 @@ static void riscv013_on_step(struct target *target);
|
|||
static void riscv013_on_resume(struct target *target);
|
||||
static bool riscv013_is_halted(struct target *target);
|
||||
static enum riscv_halt_reason riscv013_halt_reason(struct target *target);
|
||||
static void riscv013_debug_buffer_enter(struct target *target, struct riscv_program *p);
|
||||
static void riscv013_debug_buffer_leave(struct target *target, struct riscv_program *p);
|
||||
static void riscv013_write_debug_buffer(struct target *target, int i, riscv_insn_t d);
|
||||
static riscv_insn_t riscv013_read_debug_buffer(struct target *target, int i);
|
||||
static void riscv013_execute_debug_buffer(struct target *target);
|
||||
|
||||
/**
|
||||
* Since almost everything can be accomplish by scanning the dbus register, all
|
||||
|
@ -470,98 +482,6 @@ static int execute_abstract_command(struct target *target, uint32_t command)
|
|||
return ERROR_OK;
|
||||
}
|
||||
|
||||
/*** program "class" ***/
|
||||
/* This class allows a debug program to be built up piecemeal, and then be
|
||||
* executed. If necessary, the program is split up to fit in the program
|
||||
* buffer. */
|
||||
|
||||
typedef struct {
|
||||
uint8_t code[12 * 4];
|
||||
unsigned length;
|
||||
bool write;
|
||||
unsigned regno;
|
||||
uint64_t write_value;
|
||||
} program_t;
|
||||
|
||||
static void program_add32(program_t *program, uint32_t instruction);
|
||||
|
||||
static program_t *program_new(void)
|
||||
{
|
||||
program_t *program = malloc(sizeof(program_t));
|
||||
if (program) {
|
||||
program->length = 0;
|
||||
// Default to read zero.
|
||||
program->write = false;
|
||||
program->regno = 0x1000;
|
||||
}
|
||||
program_add32(program, fence_i());
|
||||
return program;
|
||||
}
|
||||
|
||||
static void program_delete(program_t *program)
|
||||
{
|
||||
free(program);
|
||||
}
|
||||
|
||||
static void program_add32(program_t *program, uint32_t instruction)
|
||||
{
|
||||
assert(program->length + 4 < sizeof(program->code));
|
||||
program->code[program->length++] = instruction & 0xff;
|
||||
program->code[program->length++] = (instruction >> 8) & 0xff;
|
||||
program->code[program->length++] = (instruction >> 16) & 0xff;
|
||||
program->code[program->length++] = (instruction >> 24) & 0xff;
|
||||
}
|
||||
|
||||
static void program_set_read(program_t *program, unsigned reg_num)
|
||||
{
|
||||
program->write = false;
|
||||
program->regno = reg_number_to_no(reg_num);
|
||||
}
|
||||
|
||||
static void program_set_write(program_t *program, unsigned reg_num, uint64_t value)
|
||||
{
|
||||
program->write = true;
|
||||
program->regno = reg_number_to_no(reg_num);
|
||||
program->write_value = value;
|
||||
}
|
||||
|
||||
/*** end of program class ***/
|
||||
|
||||
static void write_program(struct target *target, const program_t *program)
|
||||
{
|
||||
riscv013_info_t *info = get_info(target);
|
||||
|
||||
assert(program->length <= info->progsize * 4);
|
||||
for (unsigned i = 0; i < program->length; i += 4) {
|
||||
uint32_t value =
|
||||
program->code[i] |
|
||||
((uint32_t) program->code[i+1] << 8) |
|
||||
((uint32_t) program->code[i+2] << 16) |
|
||||
((uint32_t) program->code[i+3] << 24);
|
||||
dmi_write(target, DMI_PROGBUF0 + i / 4, value);
|
||||
}
|
||||
}
|
||||
|
||||
static int execute_program(struct target *target, const program_t *program)
|
||||
{
|
||||
write_program(target, program);
|
||||
|
||||
uint32_t command = 0;
|
||||
if (program->write) {
|
||||
if (get_field(command, AC_ACCESS_REGISTER_SIZE) > 2) {
|
||||
dmi_write(target, DMI_DATA1, program->write_value >> 32);
|
||||
}
|
||||
dmi_write(target, DMI_DATA0, program->write_value);
|
||||
command |= AC_ACCESS_REGISTER_WRITE | AC_ACCESS_REGISTER_POSTEXEC;
|
||||
} else {
|
||||
command |= AC_ACCESS_REGISTER_PREEXEC;
|
||||
}
|
||||
command |= abstract_register_size(riscv_xlen(target));
|
||||
command |= program->regno;
|
||||
|
||||
return execute_abstract_command(target, command);
|
||||
}
|
||||
|
||||
static int abstract_read_register(struct target *target,
|
||||
uint64_t *value,
|
||||
uint32_t reg_number,
|
||||
|
@ -570,6 +490,7 @@ static int abstract_read_register(struct target *target,
|
|||
uint32_t command = abstract_register_size(width);
|
||||
|
||||
command |= reg_number_to_no(reg_number);
|
||||
command |= AC_ACCESS_REGISTER_TRANSFER;
|
||||
|
||||
int result = execute_abstract_command(target, command);
|
||||
if (result != ERROR_OK) {
|
||||
|
@ -601,6 +522,7 @@ static int abstract_write_register(struct target *target,
|
|||
|
||||
command |= reg_number_to_no(reg_number);
|
||||
command |= AC_ACCESS_REGISTER_WRITE;
|
||||
command |= AC_ACCESS_REGISTER_TRANSFER;
|
||||
|
||||
switch (width) {
|
||||
case 128:
|
||||
|
@ -638,107 +560,69 @@ static int update_mstatus_actual(struct target *target)
|
|||
static int register_write_direct(struct target *target, unsigned number,
|
||||
uint64_t value)
|
||||
{
|
||||
riscv013_info_t *info = get_info(target);
|
||||
LOG_DEBUG("register 0x%x <- 0x%" PRIx64, number, value);
|
||||
struct riscv_program program;
|
||||
riscv_program_init(&program, target);
|
||||
|
||||
if (number == GDB_REGNO_MSTATUS) {
|
||||
info->mstatus_actual = value;
|
||||
riscv_addr_t input = riscv_program_alloc_x(&program);
|
||||
switch (riscv_xlen(target)) {
|
||||
case 64:
|
||||
riscv_program_write_ram(&program, input + 4, value >> 32);
|
||||
case 32:
|
||||
riscv_program_write_ram(&program, input, value);
|
||||
}
|
||||
|
||||
int result = abstract_write_register(target, number, riscv_xlen(target), value);
|
||||
if (result == ERROR_OK)
|
||||
return result;
|
||||
|
||||
// Fall back to program buffer.
|
||||
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
|
||||
result = update_mstatus_actual(target);
|
||||
if (result != ERROR_OK) {
|
||||
return result;
|
||||
}
|
||||
if ((info->mstatus_actual & MSTATUS_FS) == 0) {
|
||||
result = register_write_direct(target, GDB_REGNO_MSTATUS,
|
||||
set_field(info->mstatus_actual, MSTATUS_FS, 1));
|
||||
if (result != ERROR_OK)
|
||||
return result;
|
||||
}
|
||||
|
||||
program_t *program = program_new();
|
||||
// TODO: Fully support D extension on RV32.
|
||||
if (supports_extension(target, 'D') && riscv_xlen(target) >= 64) {
|
||||
program_add32(program, fmv_d_x(number - GDB_REGNO_FPR0, S0));
|
||||
} else {
|
||||
program_add32(program, fmv_s_x(number - GDB_REGNO_FPR0, S0));
|
||||
}
|
||||
program_add32(program, ebreak());
|
||||
program_set_write(program, S0, value);
|
||||
result = execute_program(target, program);
|
||||
program_delete(program);
|
||||
if (number >= GDB_REGNO_XPR0 && number <= GDB_REGNO_XPR31) {
|
||||
riscv_program_lx(&program, number, input);
|
||||
} else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
|
||||
LOG_ERROR("FIXME: I don't support floating-point");
|
||||
abort();
|
||||
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
|
||||
program_t *program = program_new();
|
||||
program_add32(program, csrw(S0, number - GDB_REGNO_CSR0));
|
||||
program_add32(program, ebreak());
|
||||
program_set_write(program, S0, value);
|
||||
result = execute_program(target, program);
|
||||
program_delete(program);
|
||||
enum gdb_regno temp = riscv_program_gettemp(&program);
|
||||
riscv_program_lx(&program, temp, input);
|
||||
riscv_program_csrw(&program, temp, number);
|
||||
} else {
|
||||
return result;
|
||||
LOG_ERROR("Unsupported register (enum gdb_regno)(%d)", number);
|
||||
abort();
|
||||
}
|
||||
|
||||
return result;
|
||||
int exec_out = riscv_program_exec(&program, target);
|
||||
if (exec_out != ERROR_OK) {
|
||||
LOG_ERROR("Unable to execute program");
|
||||
return exec_out;
|
||||
}
|
||||
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
/** Actually read registers from the target right now. */
|
||||
static int register_read_direct(struct target *target, uint64_t *value, uint32_t number)
|
||||
{
|
||||
riscv013_info_t *info = get_info(target);
|
||||
int result = abstract_read_register(target, value, number, riscv_xlen(target));
|
||||
if (result == ERROR_OK)
|
||||
return result;
|
||||
struct riscv_program program;
|
||||
riscv_program_init(&program, target);
|
||||
riscv_addr_t output = riscv_program_alloc_d(&program);
|
||||
|
||||
// Fall back to program buffer.
|
||||
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
|
||||
result = update_mstatus_actual(target);
|
||||
if (result != ERROR_OK) {
|
||||
return result;
|
||||
}
|
||||
if ((info->mstatus_actual & MSTATUS_FS) == 0) {
|
||||
result = register_write_direct(target, GDB_REGNO_MSTATUS,
|
||||
set_field(info->mstatus_actual, MSTATUS_FS, 1));
|
||||
if (result != ERROR_OK)
|
||||
return result;
|
||||
}
|
||||
LOG_DEBUG("mstatus_actual=0x%lx", info->mstatus_actual);
|
||||
|
||||
program_t *program = program_new();
|
||||
if (supports_extension(target, 'D') && riscv_xlen(target) >= 64) {
|
||||
program_add32(program, fmv_x_d(S0, number - GDB_REGNO_FPR0));
|
||||
} else {
|
||||
program_add32(program, fmv_x_s(S0, number - GDB_REGNO_FPR0));
|
||||
}
|
||||
program_add32(program, ebreak());
|
||||
program_set_read(program, S0);
|
||||
result = execute_program(target, program);
|
||||
program_delete(program);
|
||||
if (number >= GDB_REGNO_XPR0 && number <= GDB_REGNO_XPR31) {
|
||||
riscv_program_sx(&program, number, output);
|
||||
} else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
|
||||
LOG_ERROR("FIXME: I don't support floating-point");
|
||||
abort();
|
||||
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
|
||||
program_t *program = program_new();
|
||||
program_add32(program, csrr(S0, number - GDB_REGNO_CSR0));
|
||||
program_add32(program, ebreak());
|
||||
program_set_read(program, S0);
|
||||
result = execute_program(target, program);
|
||||
program_delete(program);
|
||||
enum gdb_regno temp = riscv_program_gettemp(&program);
|
||||
riscv_program_csrr(&program, temp, number);
|
||||
riscv_program_sx(&program, temp, output);
|
||||
} else {
|
||||
return result;
|
||||
LOG_ERROR("Unsupported register (enum gdb_regno)(%d)", number);
|
||||
abort();
|
||||
}
|
||||
|
||||
if (result != ERROR_OK)
|
||||
return result;
|
||||
|
||||
result = register_read_direct(target, value, S0);
|
||||
if (result != ERROR_OK)
|
||||
return result;
|
||||
int exec_out = riscv_program_exec(&program, target);
|
||||
if (exec_out != ERROR_OK) {
|
||||
LOG_ERROR("Unable to execute program");
|
||||
return exec_out;
|
||||
}
|
||||
|
||||
*value = riscv_program_read_ram(&program, output);
|
||||
LOG_DEBUG("register 0x%x = 0x%" PRIx64, number, *value);
|
||||
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
|
@ -783,13 +667,13 @@ static int register_get(struct reg *reg)
|
|||
register_read_direct(target, reg->value, reg->number);
|
||||
return ERROR_OK;
|
||||
} else if (reg->number == GDB_REGNO_PC) {
|
||||
buf_set_u32(reg->value, 0, 32, riscv_peek_register(target, GDB_REGNO_DPC));
|
||||
buf_set_u32(reg->value, 0, 32, riscv_get_register(target, GDB_REGNO_DPC));
|
||||
reg->valid = true;
|
||||
return ERROR_OK;
|
||||
} else if (reg->number == GDB_REGNO_PRIV) {
|
||||
uint64_t dcsr = riscv_peek_register(target, CSR_DCSR);
|
||||
uint64_t dcsr = riscv_get_register(target, CSR_DCSR);
|
||||
buf_set_u64(reg->value, 0, 8, get_field(dcsr, CSR_DCSR_PRV));
|
||||
riscv_overwrite_register(target, CSR_DCSR, dcsr);
|
||||
riscv_set_register(target, CSR_DCSR, dcsr);
|
||||
return ERROR_OK;
|
||||
} else {
|
||||
uint64_t value;
|
||||
|
@ -815,11 +699,11 @@ static int register_write(struct target *target, unsigned int number,
|
|||
maybe_write_tselect(target);
|
||||
|
||||
if (number == GDB_REGNO_PC) {
|
||||
riscv_overwrite_register(target, GDB_REGNO_DPC, value);
|
||||
riscv_set_register(target, GDB_REGNO_DPC, value);
|
||||
} else if (number == GDB_REGNO_PRIV) {
|
||||
uint64_t dcsr = riscv_peek_register(target, CSR_DCSR);
|
||||
uint64_t dcsr = riscv_get_register(target, CSR_DCSR);
|
||||
dcsr = set_field(dcsr, CSR_DCSR_PRV, value);
|
||||
riscv_overwrite_register(target, GDB_REGNO_DCSR, dcsr);
|
||||
riscv_set_register(target, GDB_REGNO_DCSR, dcsr);
|
||||
} else {
|
||||
return register_write_direct(target, number, value);
|
||||
}
|
||||
|
@ -864,6 +748,11 @@ static int init_target(struct command_context *cmd_ctx,
|
|||
generic_info->on_resume = &riscv013_on_resume;
|
||||
generic_info->on_step = &riscv013_on_step;
|
||||
generic_info->halt_reason = &riscv013_halt_reason;
|
||||
generic_info->debug_buffer_enter = &riscv013_debug_buffer_enter;
|
||||
generic_info->debug_buffer_leave = &riscv013_debug_buffer_leave;
|
||||
generic_info->read_debug_buffer = &riscv013_read_debug_buffer;
|
||||
generic_info->write_debug_buffer = &riscv013_write_debug_buffer;
|
||||
generic_info->execute_debug_buffer = &riscv013_execute_debug_buffer;
|
||||
|
||||
generic_info->version_specific = calloc(1, sizeof(riscv013_info_t));
|
||||
if (!generic_info->version_specific)
|
||||
|
@ -1234,19 +1123,64 @@ static int examine(struct target *target)
|
|||
/* Halt every hart so we can probe them. */
|
||||
riscv_halt_all_harts(target);
|
||||
|
||||
/* Examines every hart, first checking XLEN. */
|
||||
/* Find the address of the program buffer, which must be done without
|
||||
* knowing anything about the target. */
|
||||
for (int i = 0; i < riscv_count_harts(target); ++i) {
|
||||
riscv_set_current_hartid(target, i);
|
||||
|
||||
if (abstract_read_register(target, NULL, S0, 128) == ERROR_OK) {
|
||||
r->xlen[i] = 128;
|
||||
} else if (abstract_read_register(target, NULL, S0, 64) == ERROR_OK) {
|
||||
/* Without knowing anything else we can at least mess with the
|
||||
* program buffer. */
|
||||
r->debug_buffer_size[i] = riscv013_progbuf_size(target);
|
||||
|
||||
/* First find the low 32 bits of the program buffer. This is
|
||||
* used to check for alignment. */
|
||||
struct riscv_program program32;
|
||||
riscv_program_init(&program32, target);
|
||||
riscv_program_csrrw(&program32, GDB_REGNO_S0, GDB_REGNO_S0, GDB_REGNO_DSCRATCH);
|
||||
riscv_program_insert(&program32, auipc(GDB_REGNO_S0));
|
||||
riscv_program_insert(&program32, sw(GDB_REGNO_S0, GDB_REGNO_S0, -4));
|
||||
riscv_program_csrrw(&program32, GDB_REGNO_S0, GDB_REGNO_S0, GDB_REGNO_DSCRATCH);
|
||||
riscv_program_fence(&program32);
|
||||
riscv_program_exec(&program32, target);
|
||||
|
||||
riscv_addr_t progbuf_addr = dmi_read(target, DMI_PROGBUF0) - 4;
|
||||
if (get_field(dmi_read(target, DMI_ABSTRACTCS), DMI_ABSTRACTCS_CMDERR) != 0) {
|
||||
LOG_ERROR("Unable to find the address of the program buffer on hart %d", i);
|
||||
r->xlen[i] = -1;
|
||||
continue;
|
||||
}
|
||||
r->xlen[i] = 32;
|
||||
r->debug_buffer_addr[i] = progbuf_addr;
|
||||
|
||||
/* Check to see if the core can execute 64 bit instructions.
|
||||
* In order to make this work we first need to */
|
||||
int offset = (progbuf_addr % 8 == 0) ? -4 : 0;
|
||||
|
||||
struct riscv_program program64;
|
||||
riscv_program_init(&program64, target);
|
||||
riscv_program_csrrw(&program64, GDB_REGNO_S0, GDB_REGNO_S0, GDB_REGNO_DSCRATCH);
|
||||
riscv_program_insert(&program64, auipc(GDB_REGNO_S0));
|
||||
riscv_program_insert(&program64, sd(GDB_REGNO_S0, GDB_REGNO_S0, offset));
|
||||
riscv_program_csrrw(&program64, GDB_REGNO_S0, GDB_REGNO_S0, GDB_REGNO_DSCRATCH);
|
||||
riscv_program_fence(&program64);
|
||||
riscv_program_exec(&program64, target);
|
||||
|
||||
if (get_field(dmi_read(target, DMI_ABSTRACTCS), DMI_ABSTRACTCS_CMDERR) == 0) {
|
||||
r->debug_buffer_addr[i] =
|
||||
(dmi_read(target, DMI_PROGBUF0 + (8 + offset) / 4) << 32)
|
||||
+ dmi_read(target, DMI_PROGBUF0 + (4 + offset) / 4)
|
||||
- 4;
|
||||
r->xlen[i] = 64;
|
||||
} else if (abstract_read_register(target, NULL, S0, 32) == ERROR_OK) {
|
||||
r->xlen[i] = 32;
|
||||
} else {
|
||||
LOG_ERROR("Failed to discover size using abstract register reads.");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
LOG_DEBUG("hart %d has XLEN=%d", i, r->xlen[i]);
|
||||
LOG_DEBUG("found program buffer at 0x%08lx", (long)(r->debug_buffer_addr[i]));
|
||||
|
||||
/* Check to see if we can use the data words as an extended
|
||||
* program buffer or not. */
|
||||
if (r->debug_buffer_addr[i] + (4 * r->debug_buffer_size[i]) == riscv013_data_addr(target)) {
|
||||
r->debug_buffer_size[i] += riscv013_data_size(target);
|
||||
LOG_DEBUG("extending the debug buffer using data words, total size %d", r->debug_buffer_size[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1308,64 +1242,60 @@ static int read_memory(struct target *target, uint32_t address,
|
|||
uint32_t t_addr = address + offset;
|
||||
uint8_t *t_buffer = buffer + offset;
|
||||
|
||||
abstract_write_register(target, S0, riscv_xlen(target), t_addr);
|
||||
struct riscv_program program;
|
||||
riscv_program_init(&program, target);
|
||||
enum gdb_regno temp = riscv_program_gettemp(&program);
|
||||
riscv_addr_t outaddr;
|
||||
|
||||
program_t *program = program_new();
|
||||
switch (size) {
|
||||
case 1:
|
||||
program_add32(program, lb(S1, S0, 0));
|
||||
riscv_program_lb(&program, temp, t_addr);
|
||||
outaddr = riscv_program_alloc_b(&program);
|
||||
riscv_program_sb(&program, temp, outaddr);
|
||||
break;
|
||||
case 2:
|
||||
program_add32(program, lh(S1, S0, 0));
|
||||
riscv_program_lh(&program, temp, t_addr);
|
||||
outaddr = riscv_program_alloc_h(&program);
|
||||
riscv_program_sh(&program, temp, outaddr);
|
||||
break;
|
||||
case 4:
|
||||
program_add32(program, lw(S1, S0, 0));
|
||||
riscv_program_lw(&program, temp, t_addr);
|
||||
outaddr = riscv_program_alloc_w(&program);
|
||||
riscv_program_sw(&program, temp, outaddr);
|
||||
break;
|
||||
default:
|
||||
LOG_ERROR("Unsupported size: %d", size);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
program_add32(program, fence());
|
||||
program_add32(program, ebreak());
|
||||
program_set_read(program, S1);
|
||||
write_program(target, program);
|
||||
execute_program(target, program);
|
||||
uint32_t abstractcs;
|
||||
wait_for_idle(target, &abstractcs);
|
||||
program_delete(program);
|
||||
|
||||
uint32_t value = dmi_read(target, DMI_DATA0);
|
||||
|
||||
if (riscv_program_exec(&program, target) != ERROR_OK) {
|
||||
LOG_ERROR("failed to execute program");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
uint64_t value = riscv_program_read_ram(&program, outaddr);
|
||||
switch (size) {
|
||||
case 1:
|
||||
t_buffer[0] = value;
|
||||
break;
|
||||
case 2:
|
||||
t_buffer[0] = value;
|
||||
t_buffer[1] = value >> 8;
|
||||
break;
|
||||
t_buffer[0] = value;
|
||||
t_buffer[1] = value >> 8;
|
||||
break;
|
||||
case 4:
|
||||
t_buffer[0] = value;
|
||||
t_buffer[1] = value >> 8;
|
||||
t_buffer[2] = value >> 16;
|
||||
t_buffer[3] = value >> 24;
|
||||
break;
|
||||
t_buffer[0] = value;
|
||||
t_buffer[1] = value >> 8;
|
||||
t_buffer[2] = value >> 16;
|
||||
t_buffer[3] = value >> 24;
|
||||
break;
|
||||
default:
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
if (check_dmi_error(target)) {
|
||||
LOG_ERROR("DMI error");
|
||||
LOG_ERROR("unsupported access size: %d", size);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
}
|
||||
|
||||
program_t *program = program_new();
|
||||
program_add32(program, ebreak());
|
||||
program_add32(program, ebreak());
|
||||
program_add32(program, ebreak());
|
||||
program_add32(program, ebreak());
|
||||
write_program(target, program);
|
||||
program_delete(program);
|
||||
LOG_DEBUG("M[0x%08lx] reads 0x%08lx", t_addr, value);
|
||||
}
|
||||
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
@ -1381,25 +1311,6 @@ static int write_memory(struct target *target, uint32_t address,
|
|||
uint32_t t_addr = address + offset;
|
||||
const uint8_t *t_buffer = buffer + offset;
|
||||
|
||||
abstract_write_register(target, S0, riscv_xlen(target), t_addr);
|
||||
program_t *program = program_new();
|
||||
switch (size) {
|
||||
case 1:
|
||||
program_add32(program, sb(S1, S0, 0));
|
||||
break;
|
||||
case 2:
|
||||
program_add32(program, sh(S1, S0, 0));
|
||||
break;
|
||||
case 4:
|
||||
program_add32(program, sw(S1, S0, 0));
|
||||
break;
|
||||
default:
|
||||
LOG_ERROR("Unsupported size: %d", size);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
program_add32(program, fence());
|
||||
program_add32(program, ebreak());
|
||||
|
||||
uint32_t value;
|
||||
switch (size) {
|
||||
case 1:
|
||||
|
@ -1415,30 +1326,38 @@ static int write_memory(struct target *target, uint32_t address,
|
|||
((uint32_t) t_buffer[3] << 24);
|
||||
break;
|
||||
default:
|
||||
LOG_ERROR("unsupported access size: %d", size);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
abstract_write_register(target, S1, riscv_xlen(target), value);
|
||||
program_set_write(program, S1, value);
|
||||
|
||||
write_program(target, program);
|
||||
execute_program(target, program);
|
||||
uint32_t abstractcs;
|
||||
wait_for_idle(target, &abstractcs);
|
||||
program_delete(program);
|
||||
struct riscv_program program;
|
||||
riscv_program_init(&program, target);
|
||||
enum gdb_regno data = riscv_program_gettemp(&program);
|
||||
riscv_program_li(&program, data, value);
|
||||
|
||||
if (check_dmi_error(target)) {
|
||||
LOG_ERROR("DMI error");
|
||||
switch (size) {
|
||||
case 1:
|
||||
riscv_program_sb(&program, data, t_addr);
|
||||
break;
|
||||
case 2:
|
||||
riscv_program_sh(&program, data, t_addr);
|
||||
break;
|
||||
case 4:
|
||||
riscv_program_sw(&program, data, t_addr);
|
||||
break;
|
||||
default:
|
||||
LOG_ERROR("Unsupported size: %d", size);
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
if (riscv_program_exec(&program, target) != ERROR_OK) {
|
||||
LOG_ERROR("failed to execute program");
|
||||
return ERROR_FAIL;
|
||||
}
|
||||
|
||||
LOG_DEBUG("M[0x%08lx] writes 0x%08lx", t_addr, value);
|
||||
}
|
||||
|
||||
program_t *program = program_new();
|
||||
program_add32(program, ebreak());
|
||||
program_add32(program, ebreak());
|
||||
program_add32(program, ebreak());
|
||||
program_add32(program, ebreak());
|
||||
write_program(target, program);
|
||||
program_delete(program);
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
|
@ -1551,23 +1470,21 @@ static void riscv013_on_step(struct target *target)
|
|||
|
||||
static void riscv013_on_halt(struct target *target)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
LOG_DEBUG("saving register state for hart %d", r->current_hartid);
|
||||
riscv_save_register(target, GDB_REGNO_S0);
|
||||
riscv_save_register(target, GDB_REGNO_S1);
|
||||
riscv_save_register(target, GDB_REGNO_DPC);
|
||||
riscv_save_register(target, GDB_REGNO_DCSR);
|
||||
}
|
||||
|
||||
static bool riscv013_is_halted(struct target *target)
|
||||
{
|
||||
uint32_t dmstatus = dmi_read(target, DMI_DMSTATUS);
|
||||
if (get_field(dmstatus, DMI_DMSTATUS_ANYUNAVAIL))
|
||||
LOG_ERROR("hart %d is unavailiable", riscv_current_hartid(target));
|
||||
if (get_field(dmstatus, DMI_DMSTATUS_ANYNONEXISTENT))
|
||||
LOG_ERROR("hart %d doesn't exist", riscv_current_hartid(target));
|
||||
return get_field(dmstatus, DMI_DMSTATUS_ALLHALTED);
|
||||
}
|
||||
|
||||
static enum riscv_halt_reason riscv013_halt_reason(struct target *target)
|
||||
{
|
||||
uint64_t dcsr = riscv_peek_register(target, GDB_REGNO_DCSR);
|
||||
uint64_t dcsr = riscv_get_register(target, GDB_REGNO_DCSR);
|
||||
switch (get_field(dcsr, CSR_DCSR_CAUSE)) {
|
||||
case CSR_DCSR_CAUSE_SWBP:
|
||||
case CSR_DCSR_CAUSE_TRIGGER:
|
||||
|
@ -1580,37 +1497,76 @@ static enum riscv_halt_reason riscv013_halt_reason(struct target *target)
|
|||
}
|
||||
|
||||
LOG_ERROR("Unknown DCSR cause field: %x", (int)get_field(dcsr, CSR_DCSR_CAUSE));
|
||||
LOG_ERROR(" dcsr=0x%08x", dcsr);
|
||||
abort();
|
||||
}
|
||||
|
||||
void riscv013_debug_buffer_enter(struct target *target, struct riscv_program *program)
|
||||
{
|
||||
}
|
||||
|
||||
void riscv013_debug_buffer_leave(struct target *target, struct riscv_program *program)
|
||||
{
|
||||
}
|
||||
|
||||
void riscv013_write_debug_buffer(struct target *target, int index, riscv_insn_t data)
|
||||
{
|
||||
if (index > riscv013_progbuf_size(target))
|
||||
return dmi_write(target, DMI_DATA0 + index - riscv013_progbuf_size(target), data);
|
||||
return dmi_write(target, DMI_PROGBUF0 + index, data);
|
||||
}
|
||||
|
||||
riscv_insn_t riscv013_read_debug_buffer(struct target *target, int index)
|
||||
{
|
||||
if (index > riscv013_progbuf_size(target))
|
||||
return dmi_read(target, DMI_DATA0 + index - riscv013_progbuf_size(target));
|
||||
return dmi_read(target, DMI_PROGBUF0 + index);
|
||||
}
|
||||
|
||||
void riscv013_execute_debug_buffer(struct target *target)
|
||||
{
|
||||
uint32_t abstractcs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
set_field(abstractcs, DMI_ABSTRACTCS_CMDERR, 0);
|
||||
dmi_write(target, DMI_ABSTRACTCS, abstractcs);
|
||||
|
||||
uint32_t run_program = 0;
|
||||
run_program = set_field(run_program, AC_ACCESS_REGISTER_SIZE, 2);
|
||||
run_program = set_field(run_program, AC_ACCESS_REGISTER_POSTEXEC, 1);
|
||||
run_program = set_field(run_program, AC_ACCESS_REGISTER_TRANSFER, 0);
|
||||
run_program = set_field(run_program, AC_ACCESS_REGISTER_REGNO, 0x1000);
|
||||
dmi_write(target, DMI_COMMAND, run_program);
|
||||
|
||||
{
|
||||
uint32_t dmstatus = 0;
|
||||
wait_for_idle(target, &dmstatus);
|
||||
}
|
||||
|
||||
uint32_t cs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
if (get_field(cs, DMI_ABSTRACTCS_CMDERR) != 0) {
|
||||
LOG_ERROR("unable to execute program: (abstractcs=0x%08x)", cs);
|
||||
dmi_read(target, DMI_DMSTATUS);
|
||||
}
|
||||
}
|
||||
|
||||
/* Helper Functions. */
|
||||
static void riscv013_on_step_or_resume(struct target *target, bool step)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
LOG_DEBUG("restoring register state for hart %d", r->current_hartid);
|
||||
|
||||
program_t *program = program_new();
|
||||
program_add32(program, fence_i());
|
||||
program_add32(program, ebreak());
|
||||
write_program(target, program);
|
||||
if (execute_program(target, program) != ERROR_OK) {
|
||||
struct riscv_program program;
|
||||
riscv_program_init(&program, target);
|
||||
riscv_program_fence_i(&program);
|
||||
if (riscv_program_exec(&program, target) != ERROR_OK)
|
||||
LOG_ERROR("Unable to execute fence.i");
|
||||
}
|
||||
program_delete(program);
|
||||
|
||||
/* We want to twiddle some bits in the debug CSR so debugging works. */
|
||||
uint64_t dcsr = riscv_peek_register(target, GDB_REGNO_DCSR);
|
||||
uint64_t dcsr = riscv_get_register(target, GDB_REGNO_DCSR);
|
||||
dcsr = set_field(dcsr, CSR_DCSR_STEP, step);
|
||||
dcsr = set_field(dcsr, CSR_DCSR_EBREAKM, 1);
|
||||
dcsr = set_field(dcsr, CSR_DCSR_EBREAKH, 1);
|
||||
dcsr = set_field(dcsr, CSR_DCSR_EBREAKS, 1);
|
||||
dcsr = set_field(dcsr, CSR_DCSR_EBREAKU, 1);
|
||||
riscv_overwrite_register(target, GDB_REGNO_DCSR, dcsr);
|
||||
|
||||
riscv_restore_register(target, GDB_REGNO_DCSR);
|
||||
riscv_restore_register(target, GDB_REGNO_DPC);
|
||||
riscv_restore_register(target, GDB_REGNO_S1);
|
||||
riscv_restore_register(target, GDB_REGNO_S0);
|
||||
riscv_set_register(target, GDB_REGNO_DCSR, dcsr);
|
||||
}
|
||||
|
||||
static void riscv013_step_or_resume_current_hart(struct target *target, bool step)
|
||||
|
@ -1624,31 +1580,38 @@ static void riscv013_step_or_resume_current_hart(struct target *target, bool ste
|
|||
dmcontrol = set_field(dmcontrol, DMI_DMCONTROL_RESUMEREQ, 1);
|
||||
dmi_write(target, DMI_DMCONTROL, dmcontrol);
|
||||
|
||||
#if 1
|
||||
/* FIXME: ... well, after a short time. */
|
||||
usleep(100);
|
||||
#else
|
||||
/* FIXME: there's a race condition in stepping now, so just return
|
||||
* right away... */
|
||||
for (size_t i = 0; i < 256; ++i) {
|
||||
if (!riscv_is_halted(target))
|
||||
break;
|
||||
}
|
||||
|
||||
if (riscv_is_halted(target)) {
|
||||
uint32_t dmstatus = dmi_read(target, DMI_DMSTATUS);
|
||||
dmcontrol = dmi_read(target, DMI_DMCONTROL);
|
||||
if (get_field(dmstatus, DMI_DMSTATUS_ALLRESUMEACK) == 0)
|
||||
continue;
|
||||
|
||||
LOG_ERROR("unable to resume hart %d", r->current_hartid);
|
||||
LOG_ERROR(" dmcontrol=0x%08x", dmcontrol);
|
||||
LOG_ERROR(" dmstatus =0x%08x", dmstatus);
|
||||
abort();
|
||||
dmcontrol = set_field(dmcontrol, DMI_DMCONTROL_RESUMEREQ, 0);
|
||||
dmi_write(target, DMI_DMCONTROL, dmcontrol);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
dmcontrol = set_field(dmcontrol, DMI_DMCONTROL_RESUMEREQ, 0);
|
||||
dmi_write(target, DMI_DMCONTROL, dmcontrol);
|
||||
|
||||
/* When stepping we need to go and restore the relevant registers. */
|
||||
if (step) riscv013_on_halt(target);
|
||||
uint32_t dmstatus = dmi_read(target, DMI_DMSTATUS);
|
||||
dmcontrol = dmi_read(target, DMI_DMCONTROL);
|
||||
LOG_ERROR("unable to resume hart %d", r->current_hartid);
|
||||
LOG_ERROR(" dmcontrol=0x%08x", dmcontrol);
|
||||
LOG_ERROR(" dmstatus =0x%08x", dmstatus);
|
||||
abort();
|
||||
}
|
||||
|
||||
size_t riscv013_progbuf_size(struct target *target)
|
||||
{
|
||||
uint32_t acs = dmi_read(target, DMI_ABSTRACTCS);
|
||||
return get_field(acs, DMI_ABSTRACTCS_PROGSIZE);
|
||||
}
|
||||
|
||||
size_t riscv013_data_size(struct target *target)
|
||||
{
|
||||
uint32_t acs = dmi_read(target, DMI_HARTINFO);
|
||||
return get_field(acs, DMI_HARTINFO_DATASIZE);
|
||||
}
|
||||
|
||||
size_t riscv013_data_addr(struct target *target)
|
||||
{
|
||||
uint32_t acs = dmi_read(target, DMI_HARTINFO);
|
||||
return get_field(acs, DMI_HARTINFO_DATAACCESS) ? get_field(acs, DMI_HARTINFO_DATAADDR) : 0;
|
||||
}
|
||||
|
|
|
@ -618,9 +618,17 @@ static int riscv_poll_hart(struct target *target, int hartid)
|
|||
RISCV_INFO(r);
|
||||
LOG_DEBUG("polling hart %d", hartid);
|
||||
|
||||
/* If there's no new event then there's nothing to do. */
|
||||
/* Polling can only detect one state change: a hart that was previously
|
||||
* running but has gone to sleep. A state change in the other
|
||||
* direction is invalid and indicates that one of the previous calls
|
||||
* didn't correctly block. */
|
||||
riscv_set_current_hartid(target, hartid);
|
||||
assert((riscv_was_halted(target) && riscv_is_halted(target)) || !riscv_was_halted(target));
|
||||
if (riscv_was_halted(target) && !riscv_is_halted(target)) {
|
||||
LOG_ERROR("unexpected wakeup on hart %d", hartid);
|
||||
abort();
|
||||
}
|
||||
|
||||
/* If there's no new event then there's nothing to do. */
|
||||
if (riscv_was_halted(target) || !riscv_is_halted(target))
|
||||
return 0;
|
||||
|
||||
|
@ -696,7 +704,9 @@ int riscv_openocd_halt(struct target *target)
|
|||
if (out != ERROR_OK)
|
||||
return out;
|
||||
|
||||
target->state = TARGET_HALTED;
|
||||
/* Don't change the target state right here, it'll get updated by the
|
||||
* poll. */
|
||||
riscv_openocd_poll(target);
|
||||
return out;
|
||||
}
|
||||
|
||||
|
@ -717,6 +727,7 @@ int riscv_openocd_resume(
|
|||
return out;
|
||||
|
||||
target->state = TARGET_RUNNING;
|
||||
riscv_openocd_poll(target);
|
||||
return out;
|
||||
}
|
||||
|
||||
|
@ -738,7 +749,7 @@ int riscv_openocd_step(
|
|||
return out;
|
||||
|
||||
/* step_rtos_hart blocks until the hart has actually stepped, but we
|
||||
* need to cycle through OpenOCD to */
|
||||
* need to cycle through OpenOCD to actually get this to trigger. */
|
||||
target->state = TARGET_RUNNING;
|
||||
riscv_openocd_poll(target);
|
||||
|
||||
|
@ -761,50 +772,13 @@ void riscv_info_init(riscv_info_t *r)
|
|||
* XLEN to 64 for all cores at reset. */
|
||||
r->xlen[h] = 64;
|
||||
r->hart_state[h] = RISCV_HART_UNKNOWN;
|
||||
r->debug_buffer_addr[h] = -1;
|
||||
|
||||
for (size_t e = 0; e < RISCV_MAX_REGISTERS; ++e)
|
||||
r->valid_saved_registers[h][e] = false;
|
||||
}
|
||||
}
|
||||
|
||||
void riscv_save_register(struct target *target, int regno)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
int hartno = r->current_hartid;
|
||||
LOG_DEBUG("riscv_save_register(%d, %d)", hartno, regno);
|
||||
assert(r->valid_saved_registers[hartno][regno] == false);
|
||||
r->valid_saved_registers[hartno][regno] = true;
|
||||
r->saved_registers[hartno][regno] = riscv_get_register(target, hartno, regno);
|
||||
}
|
||||
|
||||
uint64_t riscv_peek_register(struct target *target, int regno)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
int hartno = r->current_hartid;
|
||||
LOG_DEBUG("riscv_peek_register(%d, %d)", hartno, regno);
|
||||
assert(r->valid_saved_registers[hartno][regno] == true);
|
||||
return r->saved_registers[hartno][regno];
|
||||
}
|
||||
|
||||
void riscv_overwrite_register(struct target *target, int regno, uint64_t newval)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
int hartno = r->current_hartid;
|
||||
LOG_DEBUG("riscv_overwrite_register(%d, %d)", hartno, regno);
|
||||
assert(r->valid_saved_registers[hartno][regno] == true);
|
||||
r->saved_registers[hartno][regno] = newval;
|
||||
}
|
||||
|
||||
void riscv_restore_register(struct target *target, int regno)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
int hartno = r->current_hartid;
|
||||
LOG_DEBUG("riscv_restore_register(%d, %d)", hartno, regno);
|
||||
assert(r->valid_saved_registers[hartno][regno] == true);
|
||||
r->valid_saved_registers[hartno][regno] = false;
|
||||
riscv_set_register(target, hartno, regno, r->saved_registers[hartno][regno]);
|
||||
}
|
||||
|
||||
int riscv_halt_all_harts(struct target *target)
|
||||
{
|
||||
if (riscv_rtos_enabled(target)) {
|
||||
|
@ -837,6 +811,8 @@ int riscv_halt_one_hart(struct target *target, int hartid)
|
|||
}
|
||||
|
||||
r->halt_current_hart(target);
|
||||
/* Here we don't actually update 'hart_state' because we want poll to
|
||||
* pick that up. We can't actually wait until */
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
|
@ -894,6 +870,10 @@ int riscv_step_rtos_hart(struct target *target)
|
|||
assert(r->hart_state[hartid] == RISCV_HART_HALTED);
|
||||
r->on_step(target);
|
||||
r->step_current_hart(target);
|
||||
r->hart_state[hartid] = RISCV_HART_RUNNING;
|
||||
r->on_halt(target);
|
||||
r->hart_state[hartid] = RISCV_HART_HALTED;
|
||||
assert(riscv_is_halted(target));
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
|
@ -979,14 +959,24 @@ bool riscv_has_register(struct target *target, int hartid, int regid)
|
|||
return 1;
|
||||
}
|
||||
|
||||
void riscv_set_register(struct target *target, int hartid, enum gdb_regno regid, uint64_t value)
|
||||
void riscv_set_register(struct target *target, enum gdb_regno r, riscv_reg_t v)
|
||||
{
|
||||
return riscv_set_register_on_hart(target, riscv_current_hartid(target), r, v);
|
||||
}
|
||||
|
||||
void riscv_set_register_on_hart(struct target *target, int hartid, enum gdb_regno regid, uint64_t value)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
LOG_DEBUG("writing register %d on hart %d", regid, hartid);
|
||||
return r->set_register(target, hartid, regid, value);
|
||||
}
|
||||
|
||||
uint64_t riscv_get_register(struct target *target, int hartid, enum gdb_regno regid)
|
||||
riscv_reg_t riscv_get_register(struct target *target, enum gdb_regno r)
|
||||
{
|
||||
return riscv_get_register_on_hart(target, riscv_current_hartid(target), r);
|
||||
}
|
||||
|
||||
uint64_t riscv_get_register_on_hart(struct target *target, int hartid, enum gdb_regno regid)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
LOG_DEBUG("reading register %d on hart %d", regid, hartid);
|
||||
|
@ -1025,3 +1015,51 @@ int riscv_count_triggers_of_hart(struct target *target, int hartid)
|
|||
assert(hartid < riscv_count_harts(target));
|
||||
return r->trigger_count[hartid];
|
||||
}
|
||||
|
||||
size_t riscv_debug_buffer_size(struct target *target)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
return r->debug_buffer_size[riscv_current_hartid(target)];
|
||||
}
|
||||
|
||||
riscv_addr_t riscv_debug_buffer_addr(struct target *target)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
riscv_addr_t out = r->debug_buffer_addr[riscv_current_hartid(target)];
|
||||
assert(out != -1);
|
||||
return out;
|
||||
}
|
||||
|
||||
int riscv_debug_buffer_enter(struct target *target, struct riscv_program *program)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
r->debug_buffer_enter(target, program);
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_debug_buffer_leave(struct target *target, struct riscv_program *program)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
r->debug_buffer_leave(target, program);
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
int riscv_write_debug_buffer(struct target *target, int index, riscv_insn_t insn)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
r->write_debug_buffer(target, index, insn);
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
||||
riscv_insn_t riscv_read_debug_buffer(struct target *target, int index)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
return r->read_debug_buffer(target, index);
|
||||
}
|
||||
|
||||
int riscv_execute_debug_buffer(struct target *target)
|
||||
{
|
||||
RISCV_INFO(r);
|
||||
r->execute_debug_buffer(target);
|
||||
return ERROR_OK;
|
||||
}
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
#ifndef RISCV_H
|
||||
#define RISCV_H
|
||||
|
||||
struct riscv_program;
|
||||
|
||||
#include <stdint.h>
|
||||
#include "opcodes.h"
|
||||
#include "gdb_regs.h"
|
||||
|
||||
|
@ -16,6 +19,8 @@ extern struct target_type riscv013_target;
|
|||
* Definitions shared by code supporting all RISC-V versions.
|
||||
*/
|
||||
typedef uint64_t riscv_reg_t;
|
||||
typedef uint32_t riscv_insn_t;
|
||||
typedef int64_t riscv_addr_t;
|
||||
|
||||
enum riscv_hart_state {
|
||||
RISCV_HART_UNKNOWN,
|
||||
|
@ -68,6 +73,12 @@ typedef struct {
|
|||
/* The number of triggers per hart. */
|
||||
int trigger_count[RISCV_MAX_HARTS];
|
||||
|
||||
/* The address of the debug RAM buffer. */
|
||||
riscv_addr_t debug_buffer_addr[RISCV_MAX_HARTS];
|
||||
|
||||
/* The number of entries in the debug buffer. */
|
||||
int debug_buffer_size[RISCV_MAX_HARTS];
|
||||
|
||||
/* Helper functions that target the various RISC-V debug spec
|
||||
* implementations. */
|
||||
riscv_reg_t (*get_register)(struct target *, int, int);
|
||||
|
@ -81,6 +92,11 @@ typedef struct {
|
|||
void (*on_resume)(struct target *target);
|
||||
void (*on_step)(struct target *target);
|
||||
enum riscv_halt_reason (*halt_reason)(struct target *target);
|
||||
void (*debug_buffer_enter)(struct target *target, struct riscv_program *program);
|
||||
void (*debug_buffer_leave)(struct target *target, struct riscv_program *program);
|
||||
void (*write_debug_buffer)(struct target *target, int i, riscv_insn_t d);
|
||||
riscv_insn_t (*read_debug_buffer)(struct target *target, int i);
|
||||
void (*execute_debug_buffer)(struct target *target);
|
||||
} riscv_info_t;
|
||||
|
||||
/* Everything needs the RISC-V specific info structure, so here's a nice macro
|
||||
|
@ -122,12 +138,6 @@ int riscv_openocd_step(
|
|||
/* Initializes the shared RISC-V structure. */
|
||||
void riscv_info_init(riscv_info_t *r);
|
||||
|
||||
/* Functions that save and restore registers. */
|
||||
void riscv_save_register(struct target *target, int regno);
|
||||
uint64_t riscv_peek_register(struct target *target, int regno);
|
||||
void riscv_overwrite_register(struct target *target, int regno, uint64_t newval);
|
||||
void riscv_restore_register(struct target *target, int regno);
|
||||
|
||||
/* Run control, possibly for multiple harts. The _all_harts versions resume
|
||||
* all the enabled harts, which when running in RTOS mode is all the harts on
|
||||
* the system. */
|
||||
|
@ -172,8 +182,10 @@ bool riscv_has_register(struct target *target, int hartid, int regid);
|
|||
|
||||
/* Returns the value of the given register on the given hart. 32-bit registers
|
||||
* are zero extended to 64 bits. */
|
||||
void riscv_set_register(struct target *target, int hid, enum gdb_regno rid, uint64_t v);
|
||||
riscv_reg_t riscv_get_register(struct target *target, int hid, enum gdb_regno rid);
|
||||
void riscv_set_register(struct target *target, enum gdb_regno i, riscv_reg_t v);
|
||||
void riscv_set_register_on_hart(struct target *target, int hid, enum gdb_regno rid, uint64_t v);
|
||||
riscv_reg_t riscv_get_register(struct target *target, enum gdb_regno i);
|
||||
riscv_reg_t riscv_get_register_on_hart(struct target *target, int hid, enum gdb_regno rid);
|
||||
|
||||
/* Checks the state of the current hart -- "is_halted" checks the actual
|
||||
* on-device register, while "was_halted" checks the machine's state. */
|
||||
|
@ -186,4 +198,16 @@ enum riscv_halt_reason riscv_halt_reason(struct target *target, int hartid);
|
|||
int riscv_count_triggers(struct target *target);
|
||||
int riscv_count_triggers_of_hart(struct target *target, int hartid);
|
||||
|
||||
/* These helper functions let the generic program interface get target-specific
|
||||
* information. */
|
||||
size_t riscv_debug_buffer_size(struct target *target);
|
||||
riscv_addr_t riscv_debug_buffer_addr(struct target *target);
|
||||
|
||||
int riscv_debug_buffer_enter(struct target *target, struct riscv_program *program);
|
||||
int riscv_debug_buffer_leave(struct target *target, struct riscv_program *program);
|
||||
|
||||
riscv_insn_t riscv_read_debug_buffer(struct target *target, int index);
|
||||
int riscv_write_debug_buffer(struct target *target, int index, riscv_insn_t insn);
|
||||
int riscv_execute_debug_buffer(struct target *target);
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue