ARM ADIv5: "dap info" gets more readable

Make the "dap info" output more comprehensible:

 - Don't show CIDs unless they're incorrect (only four bits matter)
 - For CoreSight parts, interpret the part type
 - Interpret the part number
 - Show all five PID bytes together
 - Other minor cleanups

Also some whitespace fixes, and shrink a few overlong source lines.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
This commit is contained in:
David Brownell 2009-10-26 16:02:45 -07:00
parent 8f3b28ff41
commit ddade10d4a
1 changed files with 267 additions and 32 deletions

View File

@ -1007,11 +1007,20 @@ int ahbap_debugport_init(swjdp_common_t *swjdp)
return ERROR_OK;
}
/* CID interpretation -- see ARM IHI 0029B section 3 */
static const char *class_description[16] ={
"Reserved", "ROM table", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
"Reserved", "DESS", "Generic IP component", "PrimeCell or System component"
};
char * class_description[16] ={
"Reserved",
"ROM table","Reserved","Reserved","Reserved","Reserved","Reserved","Reserved","Reserved",
"CoreSight component","Reserved","Peripheral Test Block","Reserved","DESS","Generic IP component","Non standard layout"};
static bool
is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
{
return cid3 == 0xb1 && cid2 == 0x05
&& ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
}
int dap_info_command(struct command_context_s *cmd_ctx, swjdp_common_t *swjdp, int apsel)
{
@ -1058,15 +1067,13 @@ int dap_info_command(struct command_context_s *cmd_ctx, swjdp_common_t *swjdp, i
{
uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
uint16_t entry_offset;
/* bit 16 of apid indicates a memory access port */
if (dbgbase&0x02)
{
if (dbgbase & 0x02)
command_print(cmd_ctx, "\tValid ROM table present");
}
else
{
command_print(cmd_ctx, "\tROM table in legacy format");
}
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
@ -1074,15 +1081,17 @@ int dap_info_command(struct command_context_s *cmd_ctx, swjdp_common_t *swjdp, i
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
swjdp_transaction_endcheck(swjdp);
command_print(cmd_ctx, "\tCID3 0x%" PRIx32 ", CID2 0x%" PRIx32 ", CID1 0x%" PRIx32 " CID0, 0x%" PRIx32,cid3,cid2,cid1,cid0);
if (memtype&0x01)
{
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx, "\tCID3 0x%2.2" PRIx32
", CID2 0x%2.2" PRIx32
", CID1 0x%2.2" PRIx32
", CID0 0x%2.2" PRIx32,
cid3, cid2, cid1, cid0);
if (memtype & 0x01)
command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
}
else
{
command_print(cmd_ctx, "\tMEMTYPE system memory not present. Dedicated debug bus");
}
command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
"Dedicated debug bus.");
/* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
entry_offset = 0;
@ -1092,23 +1101,249 @@ int dap_info_command(struct command_context_s *cmd_ctx, swjdp_common_t *swjdp, i
command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
if (romentry&0x01)
{
uint32_t c_cid0,c_cid1,c_cid2,c_cid3,c_pid0,c_pid1,c_pid2,c_pid3,c_pid4,component_start;
uint32_t component_base = (uint32_t)((dbgbase&0xFFFFF000) + (int)(romentry&0xFFFFF000));
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFE0, &c_pid0);
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFE4, &c_pid1);
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFE8, &c_pid2);
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFEC, &c_pid3);
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFD0, &c_pid4);
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFF0, &c_cid0);
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFF4, &c_cid1);
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFF8, &c_cid2);
mem_ap_read_atomic_u32(swjdp, (component_base&0xFFFFF000) | 0xFFC, &c_cid3);
uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
uint32_t component_start, component_base;
unsigned part_num;
char *type, *full;
component_base = (uint32_t)((dbgbase & 0xFFFFF000)
+ (int)(romentry & 0xFFFFF000));
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFE0, &c_pid0);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFE4, &c_pid1);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFE8, &c_pid2);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFEC, &c_pid3);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFD0, &c_pid4);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
component_start = component_base - 0x1000*(c_pid4 >> 4);
command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", pid4 0x%" PRIx32 ", start address 0x%" PRIx32 "",component_base,c_pid4,component_start);
command_print(cmd_ctx, "\t\tComponent cid1 0x%" PRIx32 ", class is %s",c_cid1,class_description[(c_cid1 >> 4)&0xF]); /* Se ARM DDI 0314 C Table 2.2 */
command_print(cmd_ctx, "\t\tCID3 0x%" PRIx32 ", CID2 0x%" PRIx32 ", CID1 0x%" PRIx32 ", CID0, 0x%" PRIx32 "",c_cid3,c_cid2,c_cid1,c_cid0);
command_print(cmd_ctx, "\t\tPID3 0x%" PRIx32 ", PID2 0x%" PRIx32 ", PID1 0x%" PRIx32 ", PID0, 0x%" PRIx32 "",c_pid3,c_pid2,c_pid1,c_pid0);
/* For CoreSight components, (c_cid1 >> 4)&0xF == 9 , we also read 0xFC8 DevId and 0xFCC DevType */
command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
", start address 0x%" PRIx32,
component_base, component_start);
command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
(int) (c_cid1 >> 4) & 0xf,
/* See ARM IHI 0029B Table 3-3 */
class_description[(c_cid1 >> 4) & 0xf]);
/* CoreSight component? */
if (((c_cid1 >> 4) & 0x0f) == 9) {
uint32_t devtype;
unsigned minor;
char *major = "Reserved", *subtype = "Reserved";
mem_ap_read_atomic_u32(swjdp,
(component_base & 0xfffff000) | 0xfcc,
&devtype);
minor = (devtype >> 4) & 0x0f;
switch (devtype & 0x0f) {
case 0:
major = "Miscellaneous";
switch (minor) {
case 0:
subtype = "other";
break;
case 4:
subtype = "Validation component";
break;
}
break;
case 1:
major = "Trace Sink";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Port";
break;
case 2:
subtype = "Buffer";
break;
}
break;
case 2:
major = "Trace Link";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Funnel, router";
break;
case 2:
subtype = "Filter";
break;
case 3:
subtype = "FIFO, buffer";
break;
}
break;
case 3:
major = "Trace Source";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
case 4:
subtype = "Bus";
break;
}
break;
case 4:
major = "Debug Control";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Trigger Matrix";
break;
case 2:
subtype = "Debug Auth";
break;
}
break;
case 5:
major = "Debug Logic";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
}
break;
}
command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
(unsigned) (devtype & 0xff),
major, subtype);
/* REVISIT also show 0xfc8 DevId */
}
if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
command_print(cmd_ctx, "\t\tCID3 0x%2.2" PRIx32
", CID2 0x%2.2" PRIx32
", CID1 0x%2.2" PRIx32
", CID0 0x%2.2" PRIx32,
c_cid3, c_cid2, c_cid1, c_cid0);
command_print(cmd_ctx, "\t\tPeripheral ID[4..0] = hex "
"%2.2x %2.2x %2.2x %2.2x %2.2x",
(int) c_pid4,
(int) c_pid3, (int) c_pid2,
(int) c_pid1, (int) c_pid0);
/* Part number interpretations are from Cortex
* core specs, the CoreSight components TRM
* (ARM DDI 0314H), and ETM specs; also from
* chip observation (e.g. TI SDTI).
*/
part_num = c_pid0 & 0xff;
part_num |= (c_pid1 & 0x0f) << 8;
switch (part_num) {
case 0x000:
type = "Cortex-M3 NVIC";
full = "(Interrupt Controller)";
break;
case 0x001:
type = "Cortex-M3 ITM";
full = "(Instrumentation Trace Module)";
break;
case 0x002:
type = "Cortex-M3 DWT";
full = "(Data Watchpoint and Trace)";
break;
case 0x003:
type = "Cortex-M3 FBP";
full = "(Flash Patch and Breakpoint)";
break;
case 0x00d:
type = "CoreSight ETM11";
full = "(Embedded Trace)";
break;
// case 0x113: what?
case 0x120: /* from OMAP3 memmap */
type = "TI SDTI";
full = "(System Debug Trace Interface)";
break;
case 0x343: /* from OMAP3 memmap */
type = "TI DAPCTL";
full = "";
break;
case 0x4e0:
type = "Cortex-M3 ETM";
full = "(Embedded Trace)";
break;
case 0x906:
type = "Coresight CTI";
full = "(Cross Trigger)";
break;
case 0x907:
type = "Coresight ETB";
full = "(Trace Buffer)";
break;
case 0x908:
type = "Coresight CSTF";
full = "(Trace Funnel)";
break;
case 0x910:
type = "CoreSight ETM9";
full = "(Embedded Trace)";
break;
case 0x912:
type = "Coresight TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0x921:
type = "Cortex-A8 ETM";
full = "(Embedded Trace)";
break;
case 0x922:
type = "Cortex-A8 CTI";
full = "(Cross Trigger)";
break;
case 0x923:
type = "Cortex-M3 TPIU";
full = "(Trace Port Interface Unit)";
break;
case 0xc08:
type = "Cortex-A8 Debug";
full = "(Debug Unit)";
break;
default:
type = "-*- unrecognized -*-";
full = "";
break;
}
command_print(cmd_ctx, "\t\tPart is %s %s",
type, full);
}
else
{