Merge commit '228fe7300c7df7aa05ba2c0bc19edde6d0156401' into from_upstream

Conflicts:
	doc/openocd.texi
	src/jtag/aice/aice_pipe.c
	src/jtag/aice/aice_usb.c
	src/rtos/FreeRTOS.c
	src/rtos/hwthread.c
	src/rtos/rtos_standard_stackings.c
	src/target/riscv/riscv.c

Change-Id: I0c6228c499d60274325be895fbcd8007ed1699bc
This commit is contained in:
Tim Newsome 2023-05-01 10:17:24 -07:00
commit da44fb5407
114 changed files with 2573 additions and 19566 deletions

99
NEWS
View File

@ -2,126 +2,29 @@ This file includes highlights of the changes made in the OpenOCD
source archive release.
JTAG Layer:
* add default to adapter speed when unspecified (100 kHz)
* AM335X gpio (BeagleBones) adapter driver
* BCM2835 support for SWD
* Cadence Virtual Debug (vdebug) adapter driver
* CMSIS-DAP support for SWO and SWD multidrop
* Espressif USB JTAG Programmer adapter driver
* Remote bitbang support for Windows host
* ST-LINK add TCP server support to adapter driver
* SWD multidrop support
Boundary Scan:
Target Layer:
* aarch64: support watchpoints
* arm: support independent TPIU and SWO for trace
* arm adi v5: support Large Physical Address Extension
* arm adi v6: support added, for jtag and swd transport
* cortex_a: support watchpoints
* elf 64bit load support
* Espressif: support ESP32, ESP32-S2 and ESP32-S3 cores
* semihosting: support user defined operations
* Xtensa: support Xtensa LX architecture via JTAG and ADIv5 DAP
Flash Layer:
* Atmel/Microchip SAM E51G18A, E51G19A, R35J18B, LAN9255 support
* GigaDevice GD32E23x, GD32F1x0/3x0, GD32VF103 support
* Nuvoton NPCX series support
* onsemi RSL10 support
* Raspberry Pi Pico RP2040 support
* ST BlueNRG-LPS support
* ST STM32 G05x, G06x, G0Bx, G0Cx, U57x, U58x, WB1x, WL5x support
* ST STM32 G0, G4, L4, L4+, L5, WB, WL OTP support
Board, Target, and Interface Configuration Scripts:
* Ampere Computing eMAG8180, Altra ("Quicksilver") and Altra Max ("Mystique") board config
* Cadence KC705 FPGA (Xtensa Development Platform) via JTAG and ADIv5 DAP board config
* Digilent Nexys Video board config
* Espressif ESP32 ETHERNET-KIT and WROVER-KIT board config
* Espressif ESP32 via ESP USB Bridge generic board config
* Espressif ESP32-S2 Kaluga 1 board config
* Espressif ESP32-S2 with ESP USB Bridge board config
* Espressif ESP32-S3 example board config
* Kontron SMARC-sAL28 board config
* LambdaConcept ECPIX-5 board config
* Microchip ATSAMA5D27-SOM1-EK1 board config
* Microchip EVB-LAN9255 board config
* Microchip SAME51 Curiosity Nano board config
* NXP FRDM-K64F, LS1046ARDB and LS1088ARDB board config
* NXP RT6XX board config
* Olimex H405 board config
* Radiona ULX3S board config
* Raspberry Pi 3 and Raspberry Pi 4 model B board config
* Raspberry Pi Pico-Debug board config
* Renesas R-Car V3U Falcon board config
* ST BlueNRG-LPS steval-idb012v1 board config
* ST NUCLEO-8S208RB board config
* ST NUCLEO-G031K8, NUCLEO-G070RB, NUCLEO-G071RB board config
* ST NUCLEO-G431KB, NUCLEO-G431RB, NUCLEO-G474RE board config
* ST STM32MP13x-DK board config
* TI AM625 EVM, AM642 EVM and AM654 EVM board config
* TI J721E EVM, J721S2 EVM and J7200 EVM board config
* Ampere Computing eMAG, Altra ("Quicksilver") and Altra Max ("Mystique") target config
* Cadence Xtensa generic and Xtensa VDebug target config
* Broadcom BCM2711, BCM2835, BCM2836 and BCM2837 target config
* Espressif ESP32, ESP32-S2 and ESP32-S3 target config
* Microchip ATSAMA5D2 series target config
* NanoXplore NG-Ultra SoC target config
* NXP IMX8QM target config
* NXP LS1028A, LS1046A and LS1088A target config
* NXP RT600 (Xtensa HiFi DSP) target config
* onsemi RSL10 target config
* Raspberry Pi Pico RP2040 target config
* Renesas R8A779A0 V3U target config
* Renesas RZ/Five target config
* Renesas RZ/G2 MPU family target config
* Rockchip RK3399 target config
* ST BlueNRG-LPS target config
* ST STM32MP13x target config
* TI AM625, AM654, J721E and J721S2 target config
* Ashling Opella-LD interface config
* Aspeed AST2600 linuxgpiod based interface config
* Blinkinlabs JTAG_Hat interface config
* Cadence Virtual Debug (vdebug) interface config
* Espressif ESP32-S2 Kaluga 1 board's interface config
* Espressif USB Bridge jtag interface config
* Infineon DAP miniWiggler V3 interface config
* PLS SPC5 interface config
* Tigard interface config
* Lattice MachXO3 family FPGA config
Server Layer:
* GDB: add per-target remote protocol extensions
* GDB: more 'Z' packets support
* IPDBG JtagHost server functionality
* semihosting: I/O redirection to TCP server
* telnet: support for command's autocomplete
RTOS:
* 'none' rtos support
* Zephyr rtos support
Documentation:
Build and Release:
* Add json extension to jimtcl build
* Drop dependency from libusb0
* Drop repository repo.or.cz for submodules
* Move gerrit to https://review.openocd.org/
* Require autoconf 2.69 or newer
* Update jep106 to revision JEP106BE
* Update jimtcl to version 0.81
* Update libjaylink to version 0.3.1
* New configure flag '--enable-jimtcl-maintainer' for jimtcl build
This release also contains a number of other important functional and
cosmetic bugfixes. For more details about what has changed since the
last release, see the git repository history:
http://sourceforge.net/p/openocd/code/ci/v0.12.0-rc1/log/?path=
http://sourceforge.net/p/openocd/code/ci/v0.x.0/log/?path=
For older NEWS, see the NEWS files associated with each release

132
NEWS-0.12.0 Normal file
View File

@ -0,0 +1,132 @@
This file includes highlights of the changes made in the OpenOCD
source archive release.
JTAG Layer:
* add default to adapter speed when unspecified (100 kHz)
* AM335X gpio (BeagleBones) adapter driver
* BCM2835 support for SWD
* Cadence Virtual Debug (vdebug) adapter driver
* CMSIS-DAP support for SWO and SWD multidrop
* Espressif USB JTAG Programmer adapter driver
* Remote bitbang support for Windows host
* ST-LINK add TCP server support to adapter driver
* SWD multidrop support
Boundary Scan:
Target Layer:
* aarch64: support watchpoints
* arm: support independent TPIU and SWO for trace
* arm adi v5: support Large Physical Address Extension
* arm adi v6: support added, for jtag and swd transport
* cortex_a: support watchpoints
* elf 64bit load support
* Espressif: support ESP32, ESP32-S2 and ESP32-S3 cores
* semihosting: support user defined operations
* Xtensa: support Xtensa LX architecture via JTAG and ADIv5 DAP
Flash Layer:
* Atmel/Microchip SAM E51G18A, E51G19A, R35J18B, LAN9255 support
* GigaDevice GD32E23x, GD32F1x0/3x0, GD32VF103 support
* Nuvoton NPCX series support
* onsemi RSL10 support
* Raspberry Pi Pico RP2040 support
* ST BlueNRG-LPS support
* ST STM32 G05x, G06x, G0Bx, G0Cx, U57x, U58x, WB1x, WL5x support
* ST STM32 G0, G4, L4, L4+, L5, WB, WL OTP support
Board, Target, and Interface Configuration Scripts:
* Ampere Computing eMAG8180, Altra ("Quicksilver") and Altra Max ("Mystique") board config
* Cadence KC705 FPGA (Xtensa Development Platform) via JTAG and ADIv5 DAP board config
* Digilent Nexys Video board config
* Espressif ESP32 ETHERNET-KIT and WROVER-KIT board config
* Espressif ESP32 via ESP USB Bridge generic board config
* Espressif ESP32-S2 Kaluga 1 board config
* Espressif ESP32-S2 with ESP USB Bridge board config
* Espressif ESP32-S3 example board config
* Kontron SMARC-sAL28 board config
* LambdaConcept ECPIX-5 board config
* Microchip ATSAMA5D27-SOM1-EK1 board config
* Microchip EVB-LAN9255 board config
* Microchip SAME51 Curiosity Nano board config
* NXP FRDM-K64F, LS1046ARDB and LS1088ARDB board config
* NXP RT6XX board config
* Olimex H405 board config
* Radiona ULX3S board config
* Raspberry Pi 3 and Raspberry Pi 4 model B board config
* Raspberry Pi Pico-Debug board config
* Renesas R-Car V3U Falcon board config
* ST BlueNRG-LPS steval-idb012v1 board config
* ST NUCLEO-8S208RB board config
* ST NUCLEO-G031K8, NUCLEO-G070RB, NUCLEO-G071RB board config
* ST NUCLEO-G431KB, NUCLEO-G431RB, NUCLEO-G474RE board config
* ST STM32MP13x-DK board config
* TI AM625 EVM, AM642 EVM and AM654 EVM board config
* TI J721E EVM, J721S2 EVM and J7200 EVM board config
* Ampere Computing eMAG, Altra ("Quicksilver") and Altra Max ("Mystique") target config
* Cadence Xtensa generic and Xtensa VDebug target config
* Broadcom BCM2711, BCM2835, BCM2836 and BCM2837 target config
* Espressif ESP32, ESP32-S2 and ESP32-S3 target config
* Microchip ATSAMA5D2 series target config
* NanoXplore NG-Ultra SoC target config
* NXP IMX8QM target config
* NXP LS1028A, LS1046A and LS1088A target config
* NXP RT600 (Xtensa HiFi DSP) target config
* onsemi RSL10 target config
* Raspberry Pi Pico RP2040 target config
* Renesas R8A779A0 V3U target config
* Renesas RZ/Five target config
* Renesas RZ/G2 MPU family target config
* Rockchip RK3399 target config
* ST BlueNRG-LPS target config
* ST STM32MP13x target config
* TI AM625, AM654, J721E and J721S2 target config
* Ashling Opella-LD interface config
* Aspeed AST2600 linuxgpiod based interface config
* Blinkinlabs JTAG_Hat interface config
* Cadence Virtual Debug (vdebug) interface config
* Espressif ESP32-S2 Kaluga 1 board's interface config
* Espressif USB Bridge jtag interface config
* Infineon DAP miniWiggler V3 interface config
* PLS SPC5 interface config
* Tigard interface config
* Lattice MachXO3 family FPGA config
Server Layer:
* GDB: add per-target remote protocol extensions
* GDB: more 'Z' packets support
* IPDBG JtagHost server functionality
* semihosting: I/O redirection to TCP server
* telnet: support for command's autocomplete
RTOS:
* 'none' rtos support
* Zephyr rtos support
Documentation:
Build and Release:
* Add json extension to jimtcl build
* Drop dependency from libusb0
* Drop repository repo.or.cz for submodules
* Move gerrit to https://review.openocd.org/
* Require autoconf 2.69 or newer
* Update jep106 to revision JEP106BF.01
* Update jimtcl to version 0.81
* Update libjaylink to version 0.3.1
* New configure flag '--enable-jimtcl-maintainer' for jimtcl build
This release also contains a number of other important functional and
cosmetic bugfixes. For more details about what has changed since the
last release, see the git repository history:
http://sourceforge.net/p/openocd/code/ci/v0.12.0/log/?path=
For older NEWS, see the NEWS files associated with each release
(i.e. NEWS-<version>).
For more information about contributing test reports, bug fixes, or new
features and device support, please read the new Developer Manual (or
the BUGS and PATCHES.txt files in the source archive).

29
README
View File

@ -101,7 +101,7 @@ Supported hardware
JTAG adapters
-------------
AICE, AM335x, ARM-JTAG-EW, ARM-USB-OCD, ARM-USB-TINY, AT91RM9200, axm0432, BCM2835,
AM335x, ARM-JTAG-EW, ARM-USB-OCD, ARM-USB-TINY, AT91RM9200, axm0432, BCM2835,
Bus Blaster, Buspirate, Cadence DPI, Cadence vdebug, Chameleon, CMSIS-DAP,
Cortino, Cypress KitProg, DENX, Digilent JTAG-SMT2, DLC 5, DLP-USB1232H,
embedded projects, Espressif USB JTAG Programmer,
@ -122,7 +122,7 @@ Debug targets
ARM: AArch64, ARM11, ARM7, ARM9, Cortex-A/R (v7-A/R), Cortex-M (ARMv{6/7/8}-M),
FA526, Feroceon/Dragonite, XScale.
ARCv2, AVR32, DSP563xx, DSP5680xx, EnSilica eSi-RISC, EJTAG (MIPS32, MIPS64),
ESP32, ESP32-S2, ESP32-S3, Intel Quark, LS102x-SAP, NDS32, RISC-V, ST STM8,
ESP32, ESP32-S2, ESP32-S3, Intel Quark, LS102x-SAP, RISC-V, ST STM8,
Xtensa.
Flash drivers
@ -219,7 +219,10 @@ You'll also need:
- make
- libtool
- pkg-config >= 0.23 (or compatible)
- pkg-config >= 0.23 or pkgconf
OpenOCD uses jimtcl library; build from git can retrieve jimtcl as git
submodule.
Additionally, for building from git:
@ -227,14 +230,26 @@ Additionally, for building from git:
- automake >= 1.14
- texinfo >= 5.0
USB-based adapters depend on libusb-1.0. A compatible implementation, such as
FreeBSD's, additionally needs the corresponding .pc files.
Optional USB-based adapter drivers need libusb-1.0.
USB-Blaster, ASIX Presto and OpenJTAG interface adapter
Optional USB-Blaster, ASIX Presto and OpenJTAG interface adapter
drivers need:
- libftdi: http://www.intra2net.com/en/developer/libftdi/index.php
CMSIS-DAP support needs HIDAPI library.
Optional CMSIS-DAP adapter driver needs HIDAPI library.
Optional linuxgpiod adapter driver needs libgpiod library.
Optional JLink adapter driver needs libjaylink; build from git can
retrieve libjaylink as git submodule.
Optional ARM disassembly needs capstone library.
Optional development script checkpatch needs:
- perl
- python
- python-ply
Permissions delegation
----------------------

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0-or-later
AC_PREREQ([2.69])
AC_INIT([openocd], [0.12.0-rc1+dev],
AC_INIT([openocd], [0.12.0+dev],
[OpenOCD Mailing List <openocd-devel@lists.sourceforge.net>])
AC_CONFIG_SRCDIR([src/openocd.c])
AC_CONFIG_AUX_DIR([build-aux])
@ -131,9 +131,6 @@ m4_define([USB1_ADAPTERS],
[[usbprog], [USBProg JTAG Programmer], [USBPROG]],
[[esp_usb_jtag], [Espressif JTAG Programmer], [ESP_USB_JTAG]]])
m4_define([DEPRECATED_USB1_ADAPTERS],
[[[aice], [Andes JTAG Programmer (deprecated)], [AICE]]])
m4_define([HIDAPI_ADAPTERS],
[[[cmsis_dap], [CMSIS-DAP Compliant Debugger], [CMSIS_DAP_HID]],
[[nulink], [Nu-Link Programmer], [HLADAPTER_NULINK]]])
@ -265,8 +262,6 @@ AC_ARG_ADAPTERS([
LIBJAYLINK_ADAPTERS
],[auto])
AC_ARG_ADAPTERS([DEPRECATED_USB1_ADAPTERS],[no])
AC_ARG_ENABLE([parport],
AS_HELP_STRING([--enable-parport], [Enable building the pc parallel port driver]),
[build_parport=$enableval], [build_parport=no])
@ -374,9 +369,9 @@ AC_ARG_ENABLE([jimtcl-maintainer],
[use_internal_jimtcl_maintainer=$enableval], [use_internal_jimtcl_maintainer=no])
AC_ARG_ENABLE([internal-libjaylink],
AS_HELP_STRING([--disable-internal-libjaylink],
[Disable building internal libjaylink]),
[use_internal_libjaylink=$enableval], [use_internal_libjaylink=yes])
AS_HELP_STRING([--enable-internal-libjaylink],
[Enable building internal libjaylink]),
[use_internal_libjaylink=$enableval], [use_internal_libjaylink=no])
AC_ARG_ENABLE([remote-bitbang],
AS_HELP_STRING([--enable-remote-bitbang], [Enable building support for the Remote Bitbang jtag driver]),
@ -575,7 +570,7 @@ AS_IF([test "x$enable_buspirate" != "xno"], [
])
AS_IF([test "x$use_internal_jimtcl" = "xyes"], [
AS_IF([test -f "$srcdir/jimtcl/configure.ac"], [
AS_IF([test -f "$srcdir/jimtcl/configure"], [
AS_IF([test "x$use_internal_jimtcl_maintainer" = "xyes"], [
jimtcl_config_options="--disable-install-jim --with-ext=json --maintainer"
], [
@ -632,7 +627,6 @@ AS_IF([test "x$enable_capstone" != xno], [
PKG_CHECK_MODULES([CAPSTONE], [capstone], [
AC_DEFINE([HAVE_CAPSTONE], [1], [1 if you have Capstone disassembly framework.])
], [
AC_DEFINE([HAVE_CAPSTONE], [0], [0 if you don't have Capstone disassembly framework.])
if test "x$enable_capstone" != xauto; then
AC_MSG_ERROR([--with-capstone was given, but test for Capstone failed])
fi
@ -640,6 +634,10 @@ AS_IF([test "x$enable_capstone" != xno], [
])
])
AS_IF([test "x$enable_capstone" == xno], [
AC_DEFINE([HAVE_CAPSTONE], [0], [0 if you don't have Capstone disassembly framework.])
])
for hidapi_lib in hidapi hidapi-hidraw hidapi-libusb; do
PKG_CHECK_MODULES([HIDAPI],[$hidapi_lib],[
use_hidapi=yes
@ -682,7 +680,6 @@ m4_define([PROCESS_ADAPTERS], [
])
PROCESS_ADAPTERS([USB1_ADAPTERS], ["x$use_libusb1" = "xyes"], [libusb-1.x])
PROCESS_ADAPTERS([DEPRECATED_USB1_ADAPTERS], ["x$use_libusb1" = "xyes"], [libusb-1.x])
PROCESS_ADAPTERS([HIDAPI_ADAPTERS], ["x$use_hidapi" = "xyes"], [hidapi])
PROCESS_ADAPTERS([HIDAPI_USB1_ADAPTERS], ["x$use_hidapi" = "xyes" -a "x$use_libusb1" = "xyes"], [hidapi and libusb-1.x])
PROCESS_ADAPTERS([LIBFTDI_ADAPTERS], ["x$use_libftdi" = "xyes"], [libftdi])
@ -711,7 +708,7 @@ AS_IF([test "x$enable_jlink" != "xno"], [
AX_CONFIG_SUBDIR_OPTION([src/jtag/drivers/libjaylink],
[--enable-subproject-build])
], [
AC_MSG_ERROR([Internal libjaylink not found, run either 'git submodule init' and 'git submodule update' or disable internal libjaylink with --disable-internal-libjaylink.])
AC_MSG_ERROR([Internal libjaylink not found, run 'git submodule init' and 'git submodule update'.])
])
])
])
@ -821,12 +818,17 @@ AC_CONFIG_FILES([
])
AC_OUTPUT
AS_IF([test "x$enable_jlink" != "xno"], [
AS_IF([test "x$use_internal_libjaylink" = "xyes"], [
AC_MSG_WARN([Using the internal libjaylink is deprecated and will not be possible in the future.])
]])
)
echo
echo
echo OpenOCD configuration summary
echo --------------------------------------------------
m4_foreach([adapter], [USB1_ADAPTERS,
DEPRECATED_USB1_ADAPTERS,
HIDAPI_ADAPTERS, HIDAPI_USB1_ADAPTERS, LIBFTDI_ADAPTERS,
LIBFTDI_USB1_ADAPTERS,
LIBGPIOD_ADAPTERS,

View File

@ -12,7 +12,6 @@ BR2_PACKAGE_OPENOCD_UBLASTER2=y
BR2_PACKAGE_OPENOCD_JLINK=y
BR2_PACKAGE_OPENOCD_OSDBM=y
BR2_PACKAGE_OPENOCD_OPENDOUS=y
BR2_PACKAGE_OPENOCD_AICE=y
BR2_PACKAGE_OPENOCD_VSLLINK=y
BR2_PACKAGE_OPENOCD_USBPROG=y
BR2_PACKAGE_OPENOCD_RLINK=y

View File

@ -1785,7 +1785,6 @@ $_TARGETNAME configure -work-area-phys 0x00200000 \
-work-area-size 0x4000 -work-area-backup 0
@end example
@anchor{definecputargetsworkinginsmp}
@subsection Define CPU targets working in SMP
@cindex SMP
After setting targets, you can define a list of targets working in SMP.
@ -1939,7 +1938,6 @@ For an example of this scheme see LPC2000 target config files.
The @code{init_boards} procedure is a similar concept concerning board config files
(@xref{theinitboardprocedure,,The init_board procedure}.)
@anchor{theinittargeteventsprocedure}
@subsection The init_target_events procedure
@cindex init_target_events procedure
@ -2468,7 +2466,6 @@ the generic mapping may not support all of the listed options.
Returns the name of the debug adapter driver being used.
@end deffn
@anchor{adapter_usb_location}
@deffn {Config Command} {adapter usb location} [<bus>-<port>[.<port>]...]
Displays or specifies the physical USB port of the adapter to use. The path
roots at @var{bus} and walks down the physical ports, with each
@ -2483,7 +2480,7 @@ This command is only available if your libusb1 is at least version 1.0.16.
Specifies the @var{serial_string} of the adapter to use.
If this command is not specified, serial strings are not checked.
Only the following adapter drivers use the serial string from this command:
aice (aice_usb), arm-jtag-ew, cmsis_dap, ft232r, ftdi, hla (stlink, ti-icdi), jlink, kitprog, opendus,
arm-jtag-ew, cmsis_dap, ft232r, ftdi, hla (stlink, ti-icdi), jlink, kitprog, opendus,
openjtag, osbdm, presto, rlink, st-link, usb_blaster (ublast2), usbprog, vsllink, xds110.
@end deffn
@ -3533,11 +3530,11 @@ Espressif JTAG driver to communicate with ESP32-C3, ESP32-S3 chips and ESP USB B
These chips have built-in JTAG circuitry and can be debugged without any additional hardware.
Only an USB cable connected to the D+/D- pins is necessary.
@deffn {Config Command} {espusbjtag tdo}
@deffn {Command} {espusbjtag tdo}
Returns the current state of the TDO line
@end deffn
@deffn {Config Command} {espusbjtag setio} setio
@deffn {Command} {espusbjtag setio} setio
Manually set the status of the output lines with the order of (tdi tms tck trst srst)
@example
espusbjtag setio 0 1 0 1 0
@ -4859,9 +4856,6 @@ specified, @xref{gdbportoverride,,option -gdb-port}.), and a fake ARM core will
be emulated to comply to GDB remote protocol.
@item @code{mips_m4k} -- a MIPS core.
@item @code{mips_mips64} -- a MIPS64 core.
@item @code{nds32_v2} -- this is an Andes NDS32 v2 core (deprecated; would be removed in v0.13.0).
@item @code{nds32_v3} -- this is an Andes NDS32 v3 core (deprecated; would be removed in v0.13.0).
@item @code{nds32_v3m} -- this is an Andes NDS32 v3m core (deprecated; would be removed in v0.13.0).
@item @code{or1k} -- this is an OpenRISC 1000 core.
The current implementation supports three JTAG TAP cores:
@itemize @minus
@ -6236,7 +6230,6 @@ the flash.
@end deffn
@end deffn
@anchor{at91samd}
@deffn {Flash Driver} {at91samd}
@cindex at91samd
All members of the ATSAM D2x, D1x, D0x, ATSAMR, ATSAML and ATSAMC microcontroller
@ -8513,12 +8506,20 @@ that particular type of PLD.
@deffn {FPGA Driver} {virtex2} [no_jstart]
Virtex-II is a family of FPGAs sold by Xilinx.
This driver can also be used to load Series3, Series6, Series7 and Zynq 7000 devices.
It supports the IEEE 1532 standard for In-System Configuration (ISC).
If @var{no_jstart} is non-zero, the JSTART instruction is not used after
loading the bitstream. While required for Series2, Series3, and Series6, it
breaks bitstream loading on Series7.
@example
openocd -f board/digilent_zedboard.cfg -c "init" \
-c "pld load 0 zedboard_bitstream.bit"
@end example
@deffn {Command} {virtex2 read_stat} num
Reads and displays the Virtex-II status register (STAT)
for FPGA @var{num}.
@ -8550,7 +8551,7 @@ command. All output is relayed through the GDB session.
@item @b{Machine Interface}
The Tcl interface's intent is to be a machine interface. The default Tcl
port is 5555.
port is 6666.
@end itemize
@ -9533,14 +9534,14 @@ requests by using a special SVC instruction that is trapped at the
Supervisor Call vector by OpenOCD.
@end deffn
@deffn {Command} {arm semihosting_redirect} (@option{disable} | @option{tcp} <port>
[@option{debug}|@option{stdio}|@option{all})
@deffn {Command} {arm semihosting_redirect} (@option{disable} | @option{tcp} <port> [@option{debug}|@option{stdio}|@option{all}])
@cindex ARM semihosting
Redirect semihosting messages to a specified TCP port.
This command redirects debug (READC, WRITEC and WRITE0) and stdio (READ, WRITE)
semihosting operations to the specified TCP port.
The command allows to select which type of operations to redirect (debug, stdio, all (default)).
Note: for stdio operations, only I/O from/to ':tt' file descriptors are redirected.
@end deffn
@ -10327,6 +10328,16 @@ the target, the exception catch must be disabled again with @command{$target_nam
Issuing the command without options prints the current configuration.
@end deffn
@deffn {Command} {$target_name pauth} [@option{off}|@option{on}]
Enable or disable pointer authentication features.
When pointer authentication is used on ARM cores, GDB asks GDB servers for an 8-bytes mask to remove signature bits added by pointer authentication.
If this feature is enabled, OpenOCD provides GDB with an 8-bytes mask.
Pointer authentication feature is broken until gdb 12.1, going to be fixed.
Consider using a newer version of gdb if you want to enable pauth feature.
The default configuration is @option{off}.
@end deffn
@section EnSilica eSi-RISC Architecture
eSi-RISC is a highly configurable microprocessor architecture for embedded systems
@ -10724,6 +10735,16 @@ to read out a buffer that's memory-mapped to be accessed through a single
address, or to sample a changing value in a memory-mapped device.
@end deffn
@deffn {Command} {riscv info}
Displays some information OpenOCD detected about the target.
@end deffn
@deffn {Command} {riscv reset_delays} [wait]
OpenOCD learns how many Run-Test/Idle cycles are required between scans to avoid
encountering the target being busy. This command resets those learned values
after `wait` scans. It's only useful for testing OpenOCD itself.
@end deffn
@deffn {Command} {riscv set_command_timeout_sec} [seconds]
Set the wall-clock timeout (in seconds) for individual commands. The default
should work fine for all but the slowest targets (eg. simulators).
@ -10739,7 +10760,7 @@ Set the address of 16 bytes of scratch RAM the debugger can use, or 'none'.
This is used to access 64-bit floating point registers on 32-bit targets.
@end deffn
@deffn Command {riscv set_mem_access} method1 [method2] [method3]
@deffn {Command} {riscv set_mem_access} method1 [method2] [method3]
Specify which RISC-V memory access method(s) shall be used, and in which order
of priority. At least one method must be specified.
@ -11164,12 +11185,12 @@ NXP}.
@subsection Xtensa Configuration Commands
@deffn {Command} {xtensa xtdef} (@option{LX}|@option{NX})
@deffn {Config Command} {xtensa xtdef} (@option{LX}|@option{NX})
Configure the Xtensa target architecture. Currently, Xtensa support is limited
to LX6, LX7, and NX cores.
@end deffn
@deffn {Command} {xtensa xtopt} option value
@deffn {Config Command} {xtensa xtopt} option value
Configure Xtensa target options that are relevant to the debug subsystem.
@var{option} is one of: @option{arnum}, @option{windowed},
@option{cpenable}, @option{exceptions}, @option{intnum}, @option{hipriints},
@ -11181,35 +11202,35 @@ NOTE: Some options are specific to Xtensa LX or Xtensa NX architecture, while
others may be common to both but have different valid ranges.
@end deffn
@deffn {Command} {xtensa xtmem} (@option{iram}|@option{dram}|@option{sram}|@option{irom}|@option{drom}|@option{srom}) baseaddr bytes
@deffn {Config Command} {xtensa xtmem} (@option{iram}|@option{dram}|@option{sram}|@option{irom}|@option{drom}|@option{srom}) baseaddr bytes
Configure Xtensa target memory. Memory type determines access rights,
where RAMs are read/write while ROMs are read-only. @var{baseaddr} and
@var{bytes} are both integers, typically hexadecimal and decimal, respectively.
@end deffn
@deffn {Command} {xtensa xtmem} (@option{icache}|@option{dcache}) linebytes cachebytes ways [writeback]
@deffn {Config Command} {xtensa xtmem} (@option{icache}|@option{dcache}) linebytes cachebytes ways [writeback]
Configure Xtensa processor cache. All parameters are required except for
the optional @option{writeback} parameter; all are integers.
@end deffn
@deffn {Command} {xtensa xtmpu} numfgseg minsegsz lockable execonly
@deffn {Config Command} {xtensa xtmpu} numfgseg minsegsz lockable execonly
Configure an Xtensa Memory Protection Unit (MPU). MPUs can restrict access
and/or control cacheability of specific address ranges, but are lighter-weight
than a full traditional MMU. All parameters are required; all are integers.
@end deffn
@deffn {Command} {xtensa xtmmu} numirefillentries numdrefillentries
@deffn {Config Command} {xtensa xtmmu} numirefillentries numdrefillentries
(Xtensa-LX only) Configure an Xtensa Memory Management Unit (MMU). Both
parameters are required; both are integers.
@end deffn
@deffn {Command} {xtensa xtregs} numregs
@deffn {Config Command} {xtensa xtregs} numregs
Configure the total number of registers for the Xtensa core. Configuration
logic expects to subsequently process this number of @code{xtensa xtreg}
definitions. @var{numregs} is an integer.
@end deffn
@deffn {Command} {xtensa xtregfmt} (@option{sparse}|@option{contiguous}) [general]
@deffn {Config Command} {xtensa xtregfmt} (@option{sparse}|@option{contiguous}) [general]
Configure the type of register map used by GDB to access the Xtensa core.
Generic Xtensa tools (e.g. xt-gdb) require @option{sparse} mapping (default) while
Espressif tools expect @option{contiguous} mapping. Contiguous mapping takes an
@ -11217,7 +11238,7 @@ additional, optional integer parameter @option{numgregs}, which specifies the nu
of general registers used in handling g/G packets.
@end deffn
@deffn {Command} {xtensa xtreg} name offset
@deffn {Config Command} {xtensa xtreg} name offset
Configure an Xtensa core register. All core registers are 32 bits wide,
while TIE and user registers may have variable widths. @var{name} is a
character string identifier while @var{offset} is a hexadecimal integer.

View File

@ -12,6 +12,7 @@
#include "imp.h"
#include "helper/binarybuffer.h"
#include <helper/time_support.h>
#include <jtag/jtag.h>
#include <target/cortex_m.h>
@ -31,7 +32,7 @@
#define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
#define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
#define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
#define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interrupt Flag Status & Clear */
#define SAMD_NVMCTRL_INTFLAG 0x14 /* NVM Interrupt Flag Status & Clear */
#define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
#define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
#define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
@ -55,6 +56,9 @@
/* NVMCTRL bits */
#define SAMD_NVM_CTRLB_MANW 0x80
/* NVMCTRL_INTFLAG bits */
#define SAMD_NVM_INTFLAG_READY 0x01
/* Known identifiers */
#define SAMD_PROCESSOR_M0 0x01
#define SAMD_FAMILY_D 0x00
@ -497,7 +501,27 @@ static int samd_probe(struct flash_bank *bank)
static int samd_check_error(struct target *target)
{
int ret, ret2;
uint8_t intflag;
uint16_t status;
int timeout_ms = 1000;
int64_t ts_start = timeval_ms();
do {
ret = target_read_u8(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_INTFLAG, &intflag);
if (ret != ERROR_OK) {
LOG_ERROR("Can't read NVM intflag");
return ret;
}
if (intflag & SAMD_NVM_INTFLAG_READY)
break;
keep_alive();
} while (timeval_ms() - ts_start < timeout_ms);
if (!(intflag & SAMD_NVM_INTFLAG_READY)) {
LOG_ERROR("SAMD: NVM programming timed out");
return ERROR_FLASH_OPERATION_FAILED;
}
ret = target_read_u16(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
@ -543,7 +567,8 @@ static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
}
/* Issue the NVM command */
res = target_write_u16(target,
/* 32-bit write is used to ensure atomic operation on ST-Link */
res = target_write_u32(target,
SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
if (res != ERROR_OK)
return res;

View File

@ -64,6 +64,7 @@ static const struct avrf_type avft_chips_info[] = {
{"atmega324pa", 0x9511, 128, 256, 4, 256},
{"atmega644p", 0x960a, 256, 256, 8, 256},
{"atmega1284p", 0x9705, 256, 512, 8, 512},
{"atmega32u4", 0x9587, 128, 256, 4, 256},
};
/* avr program functions */

View File

@ -1132,9 +1132,9 @@ static int lpc2900_write(struct flash_bank *bank, const uint8_t *buffer,
* reduced size if that fails. */
struct working_area *warea;
uint32_t buffer_size = lpc2900_info->max_ram_block - 1 * KiB;
while ((retval = target_alloc_working_area_try(target,
while (target_alloc_working_area_try(target,
buffer_size + target_code_size,
&warea)) != ERROR_OK) {
&warea) != ERROR_OK) {
/* Try a smaller buffer now, and stop if it's too small. */
buffer_size -= 1 * KiB;
if (buffer_size < 2 * KiB) {

View File

@ -50,6 +50,10 @@ struct rp2040_flash_bank {
const struct flash_device *dev;
};
/* guessed SPI flash description if autodetection disabled (same as win w25q16jv) */
static const struct flash_device rp2040_default_spi_device =
FLASH_ID("autodetect disabled", 0x03, 0x00, 0x02, 0xd8, 0xc7, 0, 0x100, 0x10000, 0);
static uint32_t rp2040_lookup_symbol(struct target *target, uint32_t tag, uint16_t *symbol)
{
uint32_t magic;
@ -87,7 +91,7 @@ static uint32_t rp2040_lookup_symbol(struct target *target, uint32_t tag, uint16
}
static int rp2040_call_rom_func(struct target *target, struct rp2040_flash_bank *priv,
uint16_t func_offset, uint32_t argdata[], unsigned int n_args)
uint16_t func_offset, uint32_t argdata[], unsigned int n_args, int timeout_ms)
{
char *regnames[4] = { "r0", "r1", "r2", "r3" };
@ -99,8 +103,7 @@ static int rp2040_call_rom_func(struct target *target, struct rp2040_flash_bank
}
target_addr_t stacktop = priv->stack->address + priv->stack->size;
LOG_DEBUG("Calling ROM func @0x%" PRIx16 " with %d arguments", func_offset, n_args);
LOG_DEBUG("Calling on core \"%s\"", target->cmd_name);
LOG_TARGET_DEBUG(target, "Calling ROM func @0x%" PRIx16 " with %u arguments", func_offset, n_args);
struct reg_param args[ARRAY_SIZE(regnames) + 2];
struct armv7m_algorithm alg_info;
@ -112,11 +115,12 @@ static int rp2040_call_rom_func(struct target *target, struct rp2040_flash_bank
/* Pass function pointer in r7 */
init_reg_param(&args[n_args], "r7", 32, PARAM_OUT);
buf_set_u32(args[n_args].value, 0, 32, func_offset);
/* Setup stack */
init_reg_param(&args[n_args + 1], "sp", 32, PARAM_OUT);
buf_set_u32(args[n_args + 1].value, 0, 32, stacktop);
unsigned int n_reg_params = n_args + 2; /* User arguments + r7 + sp */
for (unsigned int i = 0; i < n_args + 2; ++i)
for (unsigned int i = 0; i < n_reg_params; ++i)
LOG_DEBUG("Set %s = 0x%" PRIx32, args[i].reg_name, buf_get_u32(args[i].value, 0, 32));
/* Actually call the function */
@ -125,42 +129,82 @@ static int rp2040_call_rom_func(struct target *target, struct rp2040_flash_bank
int err = target_run_algorithm(
target,
0, NULL, /* No memory arguments */
n_args + 1, args, /* User arguments + r7 */
n_reg_params, args, /* User arguments + r7 + sp */
priv->jump_debug_trampoline, priv->jump_debug_trampoline_end,
3000, /* 3s timeout */
timeout_ms,
&alg_info
);
for (unsigned int i = 0; i < n_args + 2; ++i)
destroy_reg_param(&args[i]);
if (err != ERROR_OK)
LOG_ERROR("Failed to invoke ROM function @0x%" PRIx16 "\n", func_offset);
return err;
for (unsigned int i = 0; i < n_reg_params; ++i)
destroy_reg_param(&args[i]);
if (err != ERROR_OK)
LOG_ERROR("Failed to invoke ROM function @0x%" PRIx16, func_offset);
return err;
}
static int stack_grab_and_prep(struct flash_bank *bank)
/* Finalize flash write/erase/read ID
* - flush cache
* - enters memory-mapped (XIP) mode to make flash data visible
* - deallocates target ROM func stack if previously allocated
*/
static int rp2040_finalize_stack_free(struct flash_bank *bank)
{
struct rp2040_flash_bank *priv = bank->driver_priv;
struct target *target = bank->target;
/* Always flush before returning to execute-in-place, to invalidate stale
* cache contents. The flush call also restores regular hardware-controlled
* chip select following a rp2040_flash_exit_xip().
*/
LOG_DEBUG("Flushing flash cache after write behind");
int err = rp2040_call_rom_func(target, priv, priv->jump_flush_cache, NULL, 0, 1000);
if (err != ERROR_OK) {
LOG_ERROR("Failed to flush flash cache");
/* Intentionally continue after error and try to setup xip anyway */
}
LOG_DEBUG("Configuring SSI for execute-in-place");
err = rp2040_call_rom_func(target, priv, priv->jump_enter_cmd_xip, NULL, 0, 1000);
if (err != ERROR_OK)
LOG_ERROR("Failed to set SSI to XIP mode");
target_free_working_area(target, priv->stack);
priv->stack = NULL;
return err;
}
/* Prepare flash write/erase/read ID
* - allocates a stack for target ROM func
* - switches the SPI interface from memory-mapped mode to direct command mode
* Always pair with a call of rp2040_finalize_stack_free()
* after flash operation finishes or fails.
*/
static int rp2040_stack_grab_and_prep(struct flash_bank *bank)
{
struct rp2040_flash_bank *priv = bank->driver_priv;
struct target *target = bank->target;
/* target_alloc_working_area always allocates multiples of 4 bytes, so no worry about alignment */
const int STACK_SIZE = 256;
int err = target_alloc_working_area(bank->target, STACK_SIZE, &priv->stack);
int err = target_alloc_working_area(target, STACK_SIZE, &priv->stack);
if (err != ERROR_OK) {
LOG_ERROR("Could not allocate stack for flash programming code");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
LOG_DEBUG("Connecting internal flash");
err = rp2040_call_rom_func(bank->target, priv, priv->jump_connect_internal_flash, NULL, 0);
err = rp2040_call_rom_func(target, priv, priv->jump_connect_internal_flash, NULL, 0, 1000);
if (err != ERROR_OK) {
LOG_ERROR("RP2040 erase: failed to connect internal flash");
LOG_ERROR("Failed to connect internal flash");
return err;
}
LOG_DEBUG("Kicking flash out of XIP mode");
err = rp2040_call_rom_func(bank->target, priv, priv->jump_flash_exit_xip, NULL, 0);
err = rp2040_call_rom_func(target, priv, priv->jump_flash_exit_xip, NULL, 0, 1000);
if (err != ERROR_OK) {
LOG_ERROR("RP2040 erase: failed to exit flash XIP mode");
LOG_ERROR("Failed to exit flash XIP mode");
return err;
}
@ -173,16 +217,27 @@ static int rp2040_flash_write(struct flash_bank *bank, const uint8_t *buffer, ui
struct rp2040_flash_bank *priv = bank->driver_priv;
struct target *target = bank->target;
struct working_area *bounce;
int err = stack_grab_and_prep(bank);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct working_area *bounce = NULL;
int err = rp2040_stack_grab_and_prep(bank);
if (err != ERROR_OK)
return err;
goto cleanup;
const unsigned int chunk_size = target_get_working_area_avail(target);
if (target_alloc_working_area(target, chunk_size, &bounce) != ERROR_OK) {
unsigned int avail_pages = target_get_working_area_avail(target) / priv->dev->pagesize;
/* We try to allocate working area rounded down to device page size,
* al least 1 page, at most the write data size
*/
unsigned int chunk_size = MIN(MAX(avail_pages, 1) * priv->dev->pagesize, count);
err = target_alloc_working_area(target, chunk_size, &bounce);
if (err != ERROR_OK) {
LOG_ERROR("Could not allocate bounce buffer for flash programming. Can't continue");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup;
}
LOG_DEBUG("Allocated flash bounce buffer @" TARGET_ADDR_FMT, bounce->address);
@ -200,7 +255,8 @@ static int rp2040_flash_write(struct flash_bank *bank, const uint8_t *buffer, ui
bounce->address, /* data */
write_size /* count */
};
err = rp2040_call_rom_func(target, priv, priv->jump_flash_range_program, args, ARRAY_SIZE(args));
err = rp2040_call_rom_func(target, priv, priv->jump_flash_range_program,
args, ARRAY_SIZE(args), 3000);
if (err != ERROR_OK) {
LOG_ERROR("Failed to invoke flash programming code on target");
break;
@ -210,36 +266,32 @@ static int rp2040_flash_write(struct flash_bank *bank, const uint8_t *buffer, ui
offset += write_size;
count -= write_size;
}
cleanup:
target_free_working_area(target, bounce);
if (err != ERROR_OK)
return err;
rp2040_finalize_stack_free(bank);
/* Flash is successfully programmed. We can now do a bit of poking to make the flash
contents visible to us via memory-mapped (XIP) interface in the 0x1... memory region */
LOG_DEBUG("Flushing flash cache after write behind");
err = rp2040_call_rom_func(bank->target, priv, priv->jump_flush_cache, NULL, 0);
if (err != ERROR_OK) {
LOG_ERROR("RP2040 write: failed to flush flash cache");
return err;
}
LOG_DEBUG("Configuring SSI for execute-in-place");
err = rp2040_call_rom_func(bank->target, priv, priv->jump_enter_cmd_xip, NULL, 0);
if (err != ERROR_OK)
LOG_ERROR("RP2040 write: failed to flush flash cache");
return err;
}
static int rp2040_flash_erase(struct flash_bank *bank, unsigned int first, unsigned int last)
{
struct rp2040_flash_bank *priv = bank->driver_priv;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint32_t start_addr = bank->sectors[first].offset;
uint32_t length = bank->sectors[last].offset + bank->sectors[last].size - start_addr;
LOG_DEBUG("RP2040 erase %d bytes starting at 0x%" PRIx32, length, start_addr);
int err = stack_grab_and_prep(bank);
int err = rp2040_stack_grab_and_prep(bank);
if (err != ERROR_OK)
return err;
goto cleanup;
LOG_DEBUG("Remote call flash_range_erase");
@ -257,10 +309,15 @@ static int rp2040_flash_erase(struct flash_bank *bank, unsigned int first, unsig
https://github.com/raspberrypi/pico-bootrom/blob/master/bootrom/program_flash_generic.c
In theory, the function algorithm provides for erasing both a smaller "sector" (4096 bytes) and
an optional larger "block" (size and command provided in args). OpenOCD's spi.c only uses "block" sizes.
an optional larger "block" (size and command provided in args).
*/
err = rp2040_call_rom_func(bank->target, priv, priv->jump_flash_range_erase, args, ARRAY_SIZE(args));
int timeout_ms = 2000 * (last - first) + 1000;
err = rp2040_call_rom_func(target, priv, priv->jump_flash_range_erase,
args, ARRAY_SIZE(args), timeout_ms);
cleanup:
rp2040_finalize_stack_free(bank);
return err;
}
@ -289,11 +346,46 @@ static int rp2040_ssel_active(struct target *target, bool active)
return ERROR_OK;
}
static int rp2040_spi_read_flash_id(struct target *target, uint32_t *devid)
{
uint32_t device_id = 0;
const target_addr_t ssi_dr0 = 0x18000060;
int err = rp2040_ssel_active(target, true);
/* write RDID request into SPI peripheral's FIFO */
for (int count = 0; (count < 4) && (err == ERROR_OK); count++)
err = target_write_u32(target, ssi_dr0, SPIFLASH_READ_ID);
/* by this time, there is a receive FIFO entry for every write */
for (int count = 0; (count < 4) && (err == ERROR_OK); count++) {
uint32_t status;
err = target_read_u32(target, ssi_dr0, &status);
device_id >>= 8;
device_id |= (status & 0xFF) << 24;
}
if (err == ERROR_OK)
*devid = device_id >> 8;
int err2 = rp2040_ssel_active(target, false);
if (err2 != ERROR_OK)
LOG_ERROR("SSEL inactive failed");
return err;
}
static int rp2040_flash_probe(struct flash_bank *bank)
{
struct rp2040_flash_bank *priv = bank->driver_priv;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int err = rp2040_lookup_symbol(target, FUNC_DEBUG_TRAMPOLINE, &priv->jump_debug_trampoline);
if (err != ERROR_OK) {
LOG_ERROR("Debug trampoline not found in RP2040 ROM.");
@ -344,34 +436,23 @@ static int rp2040_flash_probe(struct flash_bank *bank)
return err;
}
err = stack_grab_and_prep(bank);
if (err != ERROR_OK)
return err;
if (bank->size) {
/* size overridden, suppress reading SPI flash ID */
priv->dev = &rp2040_default_spi_device;
LOG_DEBUG("SPI flash autodetection disabled, using configured size");
} else {
/* zero bank size in cfg, read SPI flash ID and autodetect */
err = rp2040_stack_grab_and_prep(bank);
uint32_t device_id = 0;
const target_addr_t ssi_dr0 = 0x18000060;
if (err == ERROR_OK)
err = rp2040_spi_read_flash_id(target, &device_id);
err = rp2040_ssel_active(target, true);
rp2040_finalize_stack_free(bank);
/* write RDID request into SPI peripheral's FIFO */
for (int count = 0; (count < 4) && (err == ERROR_OK); count++)
err = target_write_u32(target, ssi_dr0, SPIFLASH_READ_ID);
/* by this time, there is a receive FIFO entry for every write */
for (int count = 0; (count < 4) && (err == ERROR_OK); count++) {
uint32_t status;
err = target_read_u32(target, ssi_dr0, &status);
device_id >>= 8;
device_id |= (status & 0xFF) << 24;
}
device_id >>= 8;
err = rp2040_ssel_active(target, false);
if (err != ERROR_OK) {
LOG_ERROR("SSEL inactive failed");
if (err != ERROR_OK)
return err;
}
/* search for a SPI flash Device ID match */
priv->dev = NULL;
@ -385,18 +466,18 @@ static int rp2040_flash_probe(struct flash_bank *bank)
LOG_ERROR("Unknown flash device (ID 0x%08" PRIx32 ")", device_id);
return ERROR_FAIL;
}
LOG_INFO("Found flash device \'%s\' (ID 0x%08" PRIx32 ")",
LOG_INFO("Found flash device '%s' (ID 0x%08" PRIx32 ")",
priv->dev->name, priv->dev->device_id);
bank->size = priv->dev->size_in_bytes;
}
/* the Boot ROM flash_range_program() routine requires page alignment */
bank->write_start_alignment = priv->dev->pagesize;
bank->write_end_alignment = priv->dev->pagesize;
bank->size = priv->dev->size_in_bytes;
bank->num_sectors = bank->size / priv->dev->sectorsize;
LOG_INFO("RP2040 B0 Flash Probe: %d bytes @" TARGET_ADDR_FMT ", in %d sectors\n",
LOG_INFO("RP2040 B0 Flash Probe: %" PRIu32 " bytes @" TARGET_ADDR_FMT ", in %u sectors\n",
bank->size, bank->base, bank->num_sectors);
bank->sectors = alloc_block_array(0, priv->dev->sectorsize, bank->num_sectors);
if (!bank->sectors)

View File

@ -112,6 +112,7 @@ const struct flash_device flash_devices[] = {
FLASH_ID("gd gd25q128c", 0x03, 0xeb, 0x02, 0xd8, 0xc7, 0x001840c8, 0x100, 0x10000, 0x1000000),
FLASH_ID("gd gd25q256c", 0x13, 0x00, 0x12, 0xdc, 0xc7, 0x001940c8, 0x100, 0x10000, 0x2000000),
FLASH_ID("gd gd25q512mc", 0x13, 0x00, 0x12, 0xdc, 0xc7, 0x002040c8, 0x100, 0x10000, 0x4000000),
FLASH_ID("issi is25lq040b", 0x03, 0xeb, 0x02, 0x20, 0xc7, 0x0013409d, 0x100, 0x1000, 0x80000),
FLASH_ID("issi is25lp032", 0x03, 0x00, 0x02, 0xd8, 0xc7, 0x0016609d, 0x100, 0x10000, 0x400000),
FLASH_ID("issi is25lp064", 0x03, 0x00, 0x02, 0xd8, 0xc7, 0x0017609d, 0x100, 0x10000, 0x800000),
FLASH_ID("issi is25lp128d", 0x03, 0xeb, 0x02, 0xd8, 0xc7, 0x0018609d, 0x100, 0x10000, 0x1000000),

View File

@ -473,7 +473,7 @@ static int stm32x_write_block_async(struct flash_bank *bank, const uint8_t *buff
/* memory buffer */
buffer_size = target_get_working_area_avail(target);
buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
buffer_size = MIN(hwords_count * 2 + 8, MAX(buffer_size, 256));
/* Normally we allocate all available working area.
* MIN shrinks buffer_size if the size of the written block is smaller.
* MAX prevents using async algo if the available working area is smaller

View File

@ -132,7 +132,7 @@ static const struct stm32lx_rev stm32_417_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" }
};
static const struct stm32lx_rev stm32_425_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" },
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" }, { 0x2018, "1, X" },
};
static const struct stm32lx_rev stm32_427_revs[] = {
{ 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" }, { 0x10f8, "V" },

View File

@ -616,8 +616,6 @@ COMMAND_HANDLER(stmqspi_handle_set)
LOG_DEBUG("%s", __func__);
dual = (stmqspi_info->saved_cr & BIT(SPI_DUAL_FLASH)) ? 1 : 0;
/* chip_erase_cmd, sectorsize and erase_cmd are optional */
if ((CMD_ARGC < 7) || (CMD_ARGC > 10))
return ERROR_COMMAND_SYNTAX_ERROR;
@ -628,8 +626,9 @@ COMMAND_HANDLER(stmqspi_handle_set)
target = bank->target;
stmqspi_info = bank->driver_priv;
dual = (stmqspi_info->saved_cr & BIT(SPI_DUAL_FLASH)) ? 1 : 0;
/* invalidate all old info */
/* invalidate all flash device info */
if (stmqspi_info->probed)
free(bank->sectors);
bank->size = 0;
@ -721,10 +720,8 @@ COMMAND_HANDLER(stmqspi_handle_set)
uint32_t dcr;
retval = target_read_u32(target, io_base + SPI_DCR, &dcr);
if (retval != ERROR_OK)
return retval;
fsize = (dcr >> SPI_FSIZE_POS) & (BIT(SPI_FSIZE_LEN) - 1);
LOG_DEBUG("FSIZE = 0x%04x", fsize);
@ -1799,7 +1796,6 @@ static int find_sfdp_dummy(struct flash_bank *bank, int len)
}
}
retval = ERROR_FAIL;
LOG_DEBUG("no start of SFDP header even after %u dummy bytes", count);
err:
@ -2081,16 +2077,17 @@ static int stmqspi_probe(struct flash_bank *bank)
bool octal_dtr;
int retval;
if (stmqspi_info->probed) {
/* invalidate all flash device info */
if (stmqspi_info->probed)
free(bank->sectors);
bank->size = 0;
bank->num_sectors = 0;
free(bank->sectors);
bank->sectors = NULL;
memset(&stmqspi_info->dev, 0, sizeof(stmqspi_info->dev));
stmqspi_info->sfdp_dummy1 = 0;
stmqspi_info->sfdp_dummy2 = 0;
stmqspi_info->probed = false;
}
memset(&stmqspi_info->dev, 0, sizeof(stmqspi_info->dev));
stmqspi_info->dev.name = "unknown";
/* Abort any previous operation */
retval = stmqspi_abort(bank);
@ -2105,8 +2102,8 @@ static int stmqspi_probe(struct flash_bank *bank)
/* check whether QSPI_ABR is writeable and readback returns the value written */
retval = target_write_u32(target, io_base + QSPI_ABR, magic);
if (retval == ERROR_OK) {
retval = target_read_u32(target, io_base + QSPI_ABR, &data);
retval = target_write_u32(target, io_base + QSPI_ABR, 0);
(void)target_read_u32(target, io_base + QSPI_ABR, &data);
(void)target_write_u32(target, io_base + QSPI_ABR, 0);
}
if (data == magic) {

View File

@ -936,19 +936,7 @@ static int jim_command_dispatch(Jim_Interp *interp, int argc, Jim_Obj * const *a
if (!command_can_run(cmd_ctx, c, Jim_GetString(argv[0], NULL)))
return JIM_ERR;
/*
* TODO: to be removed after v0.12.0
* workaround for https://sourceforge.net/p/openocd/tickets/362/
* After syntax change of "expr" in jimtcl 0.81
* the replacement of jimtcl "expr" with openocd version in
* https://review.openocd.org/6510/
* introduces too many target polling during math expressions with
* "expr" commands.
* After v0.12.0 replace the following two lines with
* target_call_timer_callbacks();
*/
if (strcmp(c->name, "expr"))
target_call_timer_callbacks_now();
target_call_timer_callbacks();
/*
* Black magic of overridden current target:

View File

@ -8,7 +8,7 @@
* identification code list, please visit the JEDEC website at www.jedec.org .
*/
/* This file is aligned to revision JEP106BE January 2022. */
/* This file is aligned to revision JEP106BF.01 October 2022. */
[0][0x01 - 1] = "AMD",
[0][0x02 - 1] = "AMI",
@ -149,7 +149,7 @@
[1][0x0b - 1] = "Bestlink Systems",
[1][0x0c - 1] = "Graychip",
[1][0x0d - 1] = "GENNUM",
[1][0x0e - 1] = "VideoLogic",
[1][0x0e - 1] = "Imagination Technologies Limited",
[1][0x0f - 1] = "Robert Bosch",
[1][0x10 - 1] = "Chip Express",
[1][0x11 - 1] = "DATARAM",
@ -1501,7 +1501,7 @@
[11][0x67 - 1] = "Guangzhou Shuvrwine Technology Co",
[11][0x68 - 1] = "Shenzhen Hangshun Chip Technology",
[11][0x69 - 1] = "Chengboliwei Electronic Business",
[11][0x6a - 1] = "Kowin Memory Technology Co Ltd",
[11][0x6a - 1] = "Kowin Technology HK Limited",
[11][0x6b - 1] = "Euronet Technology Inc",
[11][0x6c - 1] = "SCY",
[11][0x6d - 1] = "Shenzhen Xinhongyusheng Electrical",
@ -1705,4 +1705,85 @@
[13][0x37 - 1] = "ORICO Technologies Co. Ltd.",
[13][0x38 - 1] = "Space Exploration Technologies Corp",
[13][0x39 - 1] = "AONDEVICES Inc",
[13][0x3a - 1] = "Shenzhen Netforward Micro Electronic",
[13][0x3b - 1] = "Syntacore Ltd",
[13][0x3c - 1] = "Shenzhen Secmem Microelectronics Co",
[13][0x3d - 1] = "ONiO As",
[13][0x3e - 1] = "Shenzhen Peladn Technology Co Ltd",
[13][0x3f - 1] = "O-Cubes Shanghai Microelectronics",
[13][0x40 - 1] = "ASTC",
[13][0x41 - 1] = "UMIS",
[13][0x42 - 1] = "Paradromics",
[13][0x43 - 1] = "Sinh Micro Co Ltd",
[13][0x44 - 1] = "Metorage Semiconductor Technology Co",
[13][0x45 - 1] = "Aeva Inc",
[13][0x46 - 1] = "HongKong Hyunion Electronics Co Ltd",
[13][0x47 - 1] = "China Flash Co Ltd",
[13][0x48 - 1] = "Sunplus Technology Co Ltd",
[13][0x49 - 1] = "Idaho Scientific",
[13][0x4a - 1] = "Suzhou SF Micro Electronics Co Ltd",
[13][0x4b - 1] = "IMEX Cap AG",
[13][0x4c - 1] = "Fitipower Integrated Technology Co Ltd",
[13][0x4d - 1] = "ShenzhenWooacme Technology Co Ltd",
[13][0x4e - 1] = "KeepData Original Chips",
[13][0x4f - 1] = "Rivos Inc",
[13][0x50 - 1] = "Big Innovation Company Limited",
[13][0x51 - 1] = "Wuhan YuXin Semiconductor Co Ltd",
[13][0x52 - 1] = "United Memory Technology (Jiangsu)",
[13][0x53 - 1] = "PQShield Ltd",
[13][0x54 - 1] = "ArchiTek Corporation",
[13][0x55 - 1] = "ShenZhen AZW Technology Co Ltd",
[13][0x56 - 1] = "Hengchi Zhixin (Dongguan) Technology",
[13][0x57 - 1] = "Eggtronic Engineering Spa",
[13][0x58 - 1] = "Fusontai Technology",
[13][0x59 - 1] = "PULP Platform",
[13][0x5a - 1] = "Koitek Electronic Technology (Shenzhen) Co",
[13][0x5b - 1] = "Shenzhen Jiteng Network Technology Co",
[13][0x5c - 1] = "Aviva Links Inc",
[13][0x5d - 1] = "Trilinear Technologies Inc",
[13][0x5e - 1] = "Shenzhen Developer Microelectronics Co",
[13][0x5f - 1] = "Guangdong OPPO Mobile Telecommunication",
[13][0x60 - 1] = "Akeana",
[13][0x61 - 1] = "Lyczar",
[13][0x62 - 1] = "Shenzhen Qiji Technology Co Ltd",
[13][0x63 - 1] = "Shenzhen Shangzhaoyuan Technology",
[13][0x64 - 1] = "Han Stor",
[13][0x65 - 1] = "China Micro Semicon Co., Ltd.",
[13][0x66 - 1] = "Shenzhen Zhuqin Technology Co Ltd",
[13][0x67 - 1] = "Shanghai Ningyuan Electronic Technology",
[13][0x68 - 1] = "Auradine",
[13][0x69 - 1] = "Suzhou Yishuo Electronics Co Ltd",
[13][0x6a - 1] = "Faurecia Clarion Electronics",
[13][0x6b - 1] = "SiMa Technologies",
[13][0x6c - 1] = "CFD Sales Inc",
[13][0x6d - 1] = "Suzhou Comay Information Co Ltd",
[13][0x6e - 1] = "Yentek",
[13][0x6f - 1] = "Qorvo Inc",
[13][0x70 - 1] = "Shenzhen Youzhi Computer Technology",
[13][0x71 - 1] = "Sychw Technology (Shenzhen) Co Ltd",
[13][0x72 - 1] = "MK Founder Technology Co Ltd",
[13][0x73 - 1] = "Siliconwaves Technologies Co Ltd",
[13][0x74 - 1] = "Hongkong Hyunion Electronics Co Ltd",
[13][0x75 - 1] = "Shenzhen Xinxinzhitao Electronics Business",
[13][0x76 - 1] = "Shenzhen HenQi Electronic Commerce Co",
[13][0x77 - 1] = "Shenzhen Jingyi Technology Co Ltd",
[13][0x78 - 1] = "Xiaohua Semiconductor Co. Ltd.",
[13][0x79 - 1] = "Shenzhen Dalu Semiconductor Technology",
[13][0x7a - 1] = "Shenzhen Ninespeed Electronics Co Ltd",
[13][0x7b - 1] = "ICYC Semiconductor Co Ltd",
[13][0x7c - 1] = "Shenzhen Jaguar Microsystems Co Ltd",
[13][0x7d - 1] = "Beijing EC-Founder Co Ltd",
[13][0x7e - 1] = "Shenzhen Taike Industrial Automation Co",
[14][0x01 - 1] = "Kalray SA",
[14][0x02 - 1] = "Shanghai Iluvatar CoreX Semiconductor Co",
[14][0x03 - 1] = "Fungible Inc",
[14][0x04 - 1] = "Song Industria E Comercio de Eletronicos",
[14][0x05 - 1] = "DreamBig Semiconductor Inc",
[14][0x06 - 1] = "ChampTek Electronics Corp",
[14][0x07 - 1] = "Fusontai Technology",
[14][0x08 - 1] = "Endress Hauser AG",
[14][0x09 - 1] = "altec ComputerSysteme GmbH",
[14][0x0a - 1] = "UltraRISC Technology (Shanghai) Co Ltd",
[14][0x0b - 1] = "Shenzhen Jing Da Kang Technology Co Ltd",
[14][0x0c - 1] = "Hangzhou Hongjun Microelectronics Co Ltd",
/* EOF */

View File

@ -151,7 +151,7 @@ static inline uint16_t be_to_h_u16(const uint8_t *buf)
return (uint16_t)((uint16_t)buf[1] | (uint16_t)buf[0] << 8);
}
static inline void h_u64_to_le(uint8_t *buf, int64_t val)
static inline void h_u64_to_le(uint8_t *buf, uint64_t val)
{
buf[7] = (uint8_t) (val >> 56);
buf[6] = (uint8_t) (val >> 48);
@ -163,7 +163,7 @@ static inline void h_u64_to_le(uint8_t *buf, int64_t val)
buf[0] = (uint8_t) (val >> 0);
}
static inline void h_u64_to_be(uint8_t *buf, int64_t val)
static inline void h_u64_to_be(uint8_t *buf, uint64_t val)
{
buf[0] = (uint8_t) (val >> 56);
buf[1] = (uint8_t) (val >> 48);
@ -175,7 +175,7 @@ static inline void h_u64_to_be(uint8_t *buf, int64_t val)
buf[7] = (uint8_t) (val >> 0);
}
static inline void h_u32_to_le(uint8_t *buf, int val)
static inline void h_u32_to_le(uint8_t *buf, uint32_t val)
{
buf[3] = (uint8_t) (val >> 24);
buf[2] = (uint8_t) (val >> 16);
@ -183,7 +183,7 @@ static inline void h_u32_to_le(uint8_t *buf, int val)
buf[0] = (uint8_t) (val >> 0);
}
static inline void h_u32_to_be(uint8_t *buf, int val)
static inline void h_u32_to_be(uint8_t *buf, uint32_t val)
{
buf[0] = (uint8_t) (val >> 24);
buf[1] = (uint8_t) (val >> 16);
@ -191,27 +191,27 @@ static inline void h_u32_to_be(uint8_t *buf, int val)
buf[3] = (uint8_t) (val >> 0);
}
static inline void h_u24_to_le(uint8_t *buf, int val)
static inline void h_u24_to_le(uint8_t *buf, unsigned int val)
{
buf[2] = (uint8_t) (val >> 16);
buf[1] = (uint8_t) (val >> 8);
buf[0] = (uint8_t) (val >> 0);
}
static inline void h_u24_to_be(uint8_t *buf, int val)
static inline void h_u24_to_be(uint8_t *buf, unsigned int val)
{
buf[0] = (uint8_t) (val >> 16);
buf[1] = (uint8_t) (val >> 8);
buf[2] = (uint8_t) (val >> 0);
}
static inline void h_u16_to_le(uint8_t *buf, int val)
static inline void h_u16_to_le(uint8_t *buf, uint16_t val)
{
buf[1] = (uint8_t) (val >> 8);
buf[0] = (uint8_t) (val >> 0);
}
static inline void h_u16_to_be(uint8_t *buf, int val)
static inline void h_u16_to_be(uint8_t *buf, uint16_t val)
{
buf[0] = (uint8_t) (val >> 8);
buf[1] = (uint8_t) (val >> 0);

View File

@ -9,11 +9,6 @@ include %D%/hla/Makefile.am
%C%_libjtag_la_LIBADD += $(top_builddir)/%D%/hla/libocdhla.la
endif
if AICE
include %D%/aice/Makefile.am
%C%_libjtag_la_LIBADD += $(top_builddir)/%D%/aice/libocdaice.la
endif
include %D%/drivers/Makefile.am
%C%_libjtag_la_LIBADD += $(top_builddir)/%D%/drivers/libocdjtagdrivers.la

View File

@ -1,16 +0,0 @@
# SPDX-License-Identifier: GPL-2.0-or-later
noinst_LTLIBRARIES += %D%/libocdaice.la
%C%_libocdaice_la_CPPFLAGS = -I$(top_srcdir)/src/jtag/drivers $(AM_CPPFLAGS) $(LIBUSB1_CFLAGS)
%C%_libocdaice_la_SOURCES = \
%D%/aice_transport.c \
%D%/aice_interface.c \
%D%/aice_port.c \
%D%/aice_usb.c \
%D%/aice_pipe.c \
%D%/aice_transport.h \
%D%/aice_interface.h \
%D%/aice_port.h \
%D%/aice_usb.h \
%D%/aice_pipe.h

View File

@ -1,507 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <jtag/adapter.h>
#include <jtag/interface.h>
#include <jtag/commands.h>
#include <transport/transport.h>
#include <target/target.h>
#include <jtag/aice/aice_transport.h>
#include "aice_usb.h"
#define AICE_KHZ_TO_SPEED_MAP_SIZE 16
static const int aice_khz_to_speed_map[AICE_KHZ_TO_SPEED_MAP_SIZE] = {
30000,
15000,
7500,
3750,
1875,
937,
468,
234,
48000,
24000,
12000,
6000,
3000,
1500,
750,
375,
};
static const struct aice_port *aice_port;
static struct aice_port_param_s param;
static uint32_t retry_times;
static uint32_t count_to_check_dbger;
/***************************************************************************/
/* External interface implementation */
static uint32_t aice_target_id_codes[AICE_MAX_NUM_CORE];
static uint8_t aice_num_of_target_id_codes;
/***************************************************************************/
/* AICE operations */
int aice_init_targets(void)
{
int res;
struct target *target;
struct aice_port_s *aice;
LOG_DEBUG("aice_init_targets");
if (aice_num_of_target_id_codes == 0) {
res = aice_port->api->idcode(aice_target_id_codes, &aice_num_of_target_id_codes);
if (res != ERROR_OK) {
LOG_ERROR("<-- TARGET ERROR! Failed to identify AndesCore "
"JTAG Manufacture ID in the JTAG scan chain. "
"Failed to access EDM registers. -->");
return res;
}
}
for (target = all_targets; target; target = target->next) {
target->tap->idcode = aice_target_id_codes[target->tap->abs_chain_position];
unsigned ii, limit = target->tap->expected_ids_cnt;
int found = 0;
for (ii = 0; ii < limit; ii++) {
uint32_t expected = target->tap->expected_ids[ii];
/* treat "-expected-id 0" as a "don't-warn" wildcard */
if (!expected || (target->tap->idcode == expected)) {
found = 1;
break;
}
}
if (found == 0) {
LOG_ERROR
("aice_init_targets: target not found: idcode: %" PRIx32,
target->tap->idcode);
return ERROR_FAIL;
}
aice = calloc(1, sizeof(struct aice_port_s));
aice->port = aice_port;
aice->coreid = target->tap->abs_chain_position;
target->tap->priv = aice;
target->tap->hasidcode = 1;
}
return ERROR_OK;
}
/***************************************************************************/
/* End of External interface implementation */
/* initial aice
* 1. open usb
* 2. get/show version number
* 3. reset
*/
static int aice_init(void)
{
if (aice_port->api->open(&param) != ERROR_OK) {
LOG_ERROR("Cannot find AICE Interface! Please check "
"connection and permissions.");
return ERROR_JTAG_INIT_FAILED;
}
aice_port->api->set_retry_times(retry_times);
aice_port->api->set_count_to_check_dbger(count_to_check_dbger);
LOG_INFO("AICE JTAG Interface ready");
return ERROR_OK;
}
/* cleanup aice resource
* close usb
*/
static int aice_quit(void)
{
aice_port->api->close();
return ERROR_OK;
}
static int aice_execute_reset(struct jtag_command *cmd)
{
static int last_trst;
int retval = ERROR_OK;
LOG_DEBUG_IO("reset trst: %d", cmd->cmd.reset->trst);
if (cmd->cmd.reset->trst != last_trst) {
if (cmd->cmd.reset->trst)
retval = aice_port->api->reset();
last_trst = cmd->cmd.reset->trst;
}
return retval;
}
static int aice_execute_command(struct jtag_command *cmd)
{
int retval;
switch (cmd->type) {
case JTAG_RESET:
retval = aice_execute_reset(cmd);
break;
default:
retval = ERROR_OK;
break;
}
return retval;
}
/* aice has no need to implement jtag execution model
*/
static int aice_execute_queue(void)
{
struct jtag_command *cmd = jtag_command_queue; /* currently processed command */
int retval;
retval = ERROR_OK;
while (cmd) {
if (aice_execute_command(cmd) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
cmd = cmd->next;
}
return retval;
}
/* set jtag frequency(base frequency/frequency divider) to your jtag adapter */
static int aice_speed(int speed)
{
return aice_port->api->set_jtag_clock(speed);
}
/* convert jtag adapter frequency(base frequency/frequency divider) to
* human readable KHz value */
static int aice_speed_div(int speed, int *khz)
{
*khz = aice_khz_to_speed_map[speed];
return ERROR_OK;
}
/* convert human readable KHz value to jtag adapter frequency
* (base frequency/frequency divider) */
static int aice_khz(int khz, int *jtag_speed)
{
int i;
for (i = 0 ; i < AICE_KHZ_TO_SPEED_MAP_SIZE ; i++) {
if (khz == aice_khz_to_speed_map[i]) {
if (i >= 8)
*jtag_speed = i | AICE_TCK_CONTROL_TCK3048;
else
*jtag_speed = i;
break;
}
}
if (i == AICE_KHZ_TO_SPEED_MAP_SIZE) {
LOG_INFO("No support the jtag clock: %d", khz);
LOG_INFO("Supported jtag clocks are:");
for (i = 0 ; i < AICE_KHZ_TO_SPEED_MAP_SIZE ; i++)
LOG_INFO("* %d", aice_khz_to_speed_map[i]);
return ERROR_FAIL;
}
return ERROR_OK;
}
int aice_scan_jtag_chain(void)
{
LOG_DEBUG("=== %s ===", __func__);
uint8_t num_of_idcode = 0;
struct target *target;
int res = aice_port->api->idcode(aice_target_id_codes, &num_of_idcode);
if (res != ERROR_OK) {
LOG_ERROR("<-- TARGET ERROR! Failed to identify AndesCore "
"JTAG Manufacture ID in the JTAG scan chain. "
"Failed to access EDM registers. -->");
return res;
}
for (unsigned int i = 0; i < num_of_idcode; i++)
LOG_DEBUG("id_codes[%u] = 0x%" PRIx32, i, aice_target_id_codes[i]);
/* Update tap idcode */
for (target = all_targets; target; target = target->next)
target->tap->idcode = aice_target_id_codes[target->tap->abs_chain_position];
return ERROR_OK;
}
/***************************************************************************/
/* Command handlers */
COMMAND_HANDLER(aice_handle_aice_info_command)
{
LOG_DEBUG("aice_handle_aice_info_command");
command_print(CMD, "Description: %s", param.device_desc);
command_print(CMD, "Serial number: %s", adapter_get_required_serial());
if (strncmp(aice_port->name, "aice_pipe", 9) == 0)
command_print(CMD, "Adapter: %s", param.adapter_name);
return ERROR_OK;
}
COMMAND_HANDLER(aice_handle_aice_port_command)
{
LOG_DEBUG("aice_handle_aice_port_command");
if (CMD_ARGC != 1) {
LOG_ERROR("Need exactly one argument to 'aice port'");
return ERROR_COMMAND_SYNTAX_ERROR;
}
for (const struct aice_port *l = aice_port_get_list(); l->name; l++) {
if (strcmp(l->name, CMD_ARGV[0]) == 0) {
aice_port = l;
return ERROR_OK;
}
}
LOG_ERROR("No AICE port '%s' found", CMD_ARGV[0]);
return ERROR_FAIL;
}
COMMAND_HANDLER(aice_handle_aice_desc_command)
{
LOG_DEBUG("aice_handle_aice_desc_command");
if (CMD_ARGC == 1)
param.device_desc = strdup(CMD_ARGV[0]);
else
LOG_ERROR("expected exactly one argument to aice desc <description>");
return ERROR_OK;
}
COMMAND_HANDLER(aice_handle_aice_vid_pid_command)
{
LOG_DEBUG("aice_handle_aice_vid_pid_command");
if (CMD_ARGC != 2) {
LOG_WARNING("ignoring extra IDs in aice vid_pid (maximum is 1 pair)");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], param.vid);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], param.pid);
return ERROR_OK;
}
COMMAND_HANDLER(aice_handle_aice_adapter_command)
{
LOG_DEBUG("aice_handle_aice_adapter_command");
if (CMD_ARGC == 1)
param.adapter_name = strdup(CMD_ARGV[0]);
else
LOG_ERROR("expected exactly one argument to aice adapter <adapter-name>");
return ERROR_OK;
}
COMMAND_HANDLER(aice_handle_aice_retry_times_command)
{
LOG_DEBUG("aice_handle_aice_retry_times_command");
if (CMD_ARGC == 1)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], retry_times);
else
LOG_ERROR("expected exactly one argument to aice retry_times <num_of_retry>");
return ERROR_OK;
}
COMMAND_HANDLER(aice_handle_aice_count_to_check_dbger_command)
{
LOG_DEBUG("aice_handle_aice_count_to_check_dbger_command");
if (CMD_ARGC == 1)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], count_to_check_dbger);
else
LOG_ERROR("expected exactly one argument to aice count_to_check_dbger "
"<count_of_checking>");
return ERROR_OK;
}
COMMAND_HANDLER(aice_handle_aice_custom_srst_script_command)
{
LOG_DEBUG("aice_handle_aice_custom_srst_script_command");
if (CMD_ARGC > 0) {
aice_port->api->set_custom_srst_script(CMD_ARGV[0]);
return ERROR_OK;
}
return ERROR_FAIL;
}
COMMAND_HANDLER(aice_handle_aice_custom_trst_script_command)
{
LOG_DEBUG("aice_handle_aice_custom_trst_script_command");
if (CMD_ARGC > 0) {
aice_port->api->set_custom_trst_script(CMD_ARGV[0]);
return ERROR_OK;
}
return ERROR_FAIL;
}
COMMAND_HANDLER(aice_handle_aice_custom_restart_script_command)
{
LOG_DEBUG("aice_handle_aice_custom_restart_script_command");
if (CMD_ARGC > 0) {
aice_port->api->set_custom_restart_script(CMD_ARGV[0]);
return ERROR_OK;
}
return ERROR_FAIL;
}
COMMAND_HANDLER(aice_handle_aice_reset_command)
{
LOG_DEBUG("aice_handle_aice_reset_command");
return aice_port->api->reset();
}
static const struct command_registration aice_subcommand_handlers[] = {
{
.name = "info",
.handler = &aice_handle_aice_info_command,
.mode = COMMAND_EXEC,
.help = "show aice info",
.usage = "",
},
{
.name = "port",
.handler = &aice_handle_aice_port_command,
.mode = COMMAND_CONFIG,
.help = "set the port of the AICE",
.usage = "['aice_pipe'|'aice_usb']",
},
{
.name = "desc",
.handler = &aice_handle_aice_desc_command,
.mode = COMMAND_CONFIG,
.help = "set the aice device description",
.usage = "[description string]",
},
{
.name = "vid_pid",
.handler = &aice_handle_aice_vid_pid_command,
.mode = COMMAND_CONFIG,
.help = "the vendor and product ID of the AICE device",
.usage = "(vid pid)*",
},
{
.name = "adapter",
.handler = &aice_handle_aice_adapter_command,
.mode = COMMAND_CONFIG,
.help = "set the file name of adapter",
.usage = "[adapter name]",
},
{
.name = "retry_times",
.handler = &aice_handle_aice_retry_times_command,
.mode = COMMAND_CONFIG,
.help = "set retry times as AICE timeout",
.usage = "num_of_retry",
},
{
.name = "count_to_check_dbger",
.handler = &aice_handle_aice_count_to_check_dbger_command,
.mode = COMMAND_CONFIG,
.help = "set retry times as checking $DBGER status",
.usage = "count_of_checking",
},
{
.name = "custom_srst_script",
.handler = &aice_handle_aice_custom_srst_script_command,
.mode = COMMAND_CONFIG,
.usage = "script_file_name",
.help = "set custom srst script",
},
{
.name = "custom_trst_script",
.handler = &aice_handle_aice_custom_trst_script_command,
.mode = COMMAND_CONFIG,
.usage = "script_file_name",
.help = "set custom trst script",
},
{
.name = "custom_restart_script",
.handler = &aice_handle_aice_custom_restart_script_command,
.mode = COMMAND_CONFIG,
.usage = "script_file_name",
.help = "set custom restart script",
},
{
.name = "reset",
.handler = &aice_handle_aice_reset_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "reset AICE",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration aice_command_handlers[] = {
{
.name = "aice",
.mode = COMMAND_ANY,
.help = "perform aice management",
.usage = "[subcommand]",
.chain = aice_subcommand_handlers,
},
COMMAND_REGISTRATION_DONE
};
/***************************************************************************/
/* End of Command handlers */
static struct jtag_interface aice_interface = {
.execute_queue = aice_execute_queue,
};
struct adapter_driver aice_adapter_driver = {
.name = "aice",
.transports = aice_transports,
.commands = aice_command_handlers,
.init = aice_init,
.quit = aice_quit,
.speed = aice_speed, /* set interface speed */
.khz = aice_khz, /* convert khz to interface speed value */
.speed_div = aice_speed_div, /* return readable value */
.jtag_ops = &aice_interface,
};

View File

@ -1,14 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_JTAG_AICE_AICE_INTERFACE_H
#define OPENOCD_JTAG_AICE_AICE_INTERFACE_H
int aice_init_targets(void);
int aice_scan_jtag_chain(void);
#endif /* OPENOCD_JTAG_AICE_AICE_INTERFACE_H */

View File

@ -1,885 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/system.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <signal.h>
#endif
#include <helper/log.h>
#include <helper/time_support.h>
#include <helper/system.h>
#include "aice_port.h"
#include "aice_pipe.h"
#define AICE_PIPE_MAXLINE 8192
#ifdef _WIN32
PROCESS_INFORMATION proc_info;
static HANDLE aice_pipe_output[2];
static HANDLE aice_pipe_input[2];
static int aice_pipe_write(const void *buffer, int count)
{
BOOL success;
DWORD written;
success = WriteFile(aice_pipe_output[1], buffer, count, &written, NULL);
if (!success) {
LOG_ERROR("(WIN32) write to pipe failed, error code: 0x%08l" PRIx32, GetLastError());
return -1;
}
return written;
}
static int aice_pipe_read(void *buffer, int count)
{
BOOL success;
DWORD has_read;
success = ReadFile(aice_pipe_input[0], buffer, count, &has_read, NULL);
if (!success || (has_read == 0)) {
LOG_ERROR("(WIN32) read from pipe failed, error code: 0x%08l" PRIx32, GetLastError());
return -1;
}
return has_read;
}
static int aice_pipe_child_init(struct aice_port_param_s *param)
{
STARTUPINFO start_info;
BOOL success;
ZeroMemory(&proc_info, sizeof(PROCESS_INFORMATION));
ZeroMemory(&start_info, sizeof(STARTUPINFO));
start_info.cb = sizeof(STARTUPINFO);
start_info.hStdError = aice_pipe_input[1];
start_info.hStdOutput = aice_pipe_input[1];
start_info.hStdInput = aice_pipe_output[0];
start_info.dwFlags |= STARTF_USESTDHANDLES;
success = CreateProcess(NULL,
param->adapter_name,
NULL,
NULL,
TRUE,
0,
NULL,
NULL,
&start_info,
&proc_info);
if (!success) {
LOG_ERROR("Create new process failed");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int aice_pipe_parent_init(struct aice_port_param_s *param)
{
/* send open to adapter */
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_OPEN;
set_u16(command + 1, param->vid);
set_u16(command + 3, param->pid);
if (aice_pipe_write(command, 5) != 5) {
LOG_ERROR("write failed\n");
return ERROR_FAIL;
}
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0) {
LOG_ERROR("read failed\n");
return ERROR_FAIL;
}
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_open(struct aice_port_param_s *param)
{
SECURITY_ATTRIBUTES attribute;
attribute.nLength = sizeof(SECURITY_ATTRIBUTES);
attribute.bInheritHandle = TRUE;
attribute.lpSecurityDescriptor = NULL;
if (!CreatePipe(&aice_pipe_output[0], &aice_pipe_output[1],
&attribute, AICE_PIPE_MAXLINE)) {
LOG_ERROR("Create pipes failed");
return ERROR_FAIL;
}
if (!CreatePipe(&aice_pipe_input[0], &aice_pipe_input[1],
&attribute, AICE_PIPE_MAXLINE)) {
LOG_ERROR("Create pipes failed");
return ERROR_FAIL;
}
/* do not inherit aice_pipe_output[1] & aice_pipe_input[0] to child process */
if (!SetHandleInformation(aice_pipe_output[1], HANDLE_FLAG_INHERIT, 0))
return ERROR_FAIL;
if (!SetHandleInformation(aice_pipe_input[0], HANDLE_FLAG_INHERIT, 0))
return ERROR_FAIL;
aice_pipe_child_init(param);
aice_pipe_parent_init(param);
return ERROR_OK;
}
#else
static int aice_pipe_output[2];
static int aice_pipe_input[2];
static int aice_pipe_write(const void *buffer, int count)
{
if (write(aice_pipe_output[1], buffer, count) != count) {
LOG_ERROR("write to pipe failed");
return -1;
}
return count;
}
static int aice_pipe_read(void *buffer, int count)
{
int n;
int64_t then, cur;
then = timeval_ms();
while (1) {
n = read(aice_pipe_input[0], buffer, count);
if ((n == -1) && (errno == EAGAIN)) {
cur = timeval_ms();
if (cur - then > 500)
keep_alive();
continue;
} else if (n > 0)
break;
else {
LOG_ERROR("read from pipe failed");
break;
}
}
return n;
}
static int aice_pipe_child_init(struct aice_port_param_s *param)
{
close(aice_pipe_output[1]);
close(aice_pipe_input[0]);
if (aice_pipe_output[0] != STDIN_FILENO) {
if (dup2(aice_pipe_output[0], STDIN_FILENO) != STDIN_FILENO) {
LOG_ERROR("Map aice_pipe to STDIN failed");
return ERROR_FAIL;
}
close(aice_pipe_output[0]);
}
if (aice_pipe_input[1] != STDOUT_FILENO) {
if (dup2(aice_pipe_input[1], STDOUT_FILENO) != STDOUT_FILENO) {
LOG_ERROR("Map aice_pipe to STDOUT failed");
return ERROR_FAIL;
}
close(aice_pipe_input[1]);
}
if (execl(param->adapter_name, param->adapter_name, (char *)0) < 0) {
LOG_ERROR("Execute aice_pipe failed");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int aice_pipe_parent_init(struct aice_port_param_s *param)
{
close(aice_pipe_output[0]);
close(aice_pipe_input[1]);
/* set read end of pipe as non-blocking */
if (fcntl(aice_pipe_input[0], F_SETFL, O_NONBLOCK))
return ERROR_FAIL;
/* send open to adapter */
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_OPEN;
set_u16(command + 1, param->vid);
set_u16(command + 3, param->pid);
if (aice_pipe_write(command, 5) != 5) {
LOG_ERROR("write failed\n");
return ERROR_FAIL;
}
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0) {
LOG_ERROR("read failed\n");
return ERROR_FAIL;
}
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static void sig_pipe(int signo)
{
exit(1);
}
static int aice_pipe_open(struct aice_port_param_s *param)
{
pid_t pid;
if (signal(SIGPIPE, sig_pipe) == SIG_ERR) {
LOG_ERROR("Register SIGPIPE handler failed");
return ERROR_FAIL;
}
if (pipe(aice_pipe_output) < 0 || pipe(aice_pipe_input) < 0) {
LOG_ERROR("Create pipes failed");
return ERROR_FAIL;
}
pid = fork();
if (pid < 0) {
LOG_ERROR("Fork new process failed");
return ERROR_FAIL;
} else if (pid == 0) {
if (aice_pipe_child_init(param) != ERROR_OK) {
LOG_ERROR("AICE_PIPE child process initial error");
return ERROR_FAIL;
} else {
if (aice_pipe_parent_init(param) != ERROR_OK) {
LOG_ERROR("AICE_PIPE parent process initial error");
return ERROR_FAIL;
}
}
}
return ERROR_OK;
}
#endif
static int aice_pipe_close(void)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_CLOSE;
if (aice_pipe_write(command, 1) != 1)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK) {
#ifdef _WIN32
WaitForSingleObject(proc_info.hProcess, INFINITE);
CloseHandle(proc_info.hProcess);
CloseHandle(proc_info.hThread);
#endif
return ERROR_OK;
} else
return ERROR_FAIL;
}
static int aice_pipe_idcode(uint32_t *idcode, uint8_t *num_of_idcode)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_IDCODE;
if (aice_pipe_write(command, 1) != 1)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
*num_of_idcode = line[0];
if ((*num_of_idcode == 0) || (*num_of_idcode >= 16))
return ERROR_FAIL;
for (int i = 0 ; i < *num_of_idcode ; i++)
idcode[i] = get_u32(line + i * 4 + 1);
return ERROR_OK;
}
static int aice_pipe_state(uint32_t coreid, enum aice_target_state_s *state)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_STATE;
if (aice_pipe_write(command, 1) != 1)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
*state = (enum aice_target_state_s)line[0];
return ERROR_OK;
}
static int aice_pipe_reset(void)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_RESET;
if (aice_pipe_write(command, 1) != 1)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_assert_srst(uint32_t coreid, enum aice_srst_type_s srst)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_ASSERT_SRST;
command[1] = srst;
if (aice_pipe_write(command, 2) != 2)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_run(uint32_t coreid)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_RUN;
if (aice_pipe_write(command, 1) != 1)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_halt(uint32_t coreid)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_HALT;
if (aice_pipe_write(command, 1) != 1)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_read_reg(uint32_t coreid, uint32_t num, uint32_t *val)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_READ_REG;
set_u32(command + 1, num);
if (aice_pipe_write(command, 5) != 5)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
*val = get_u32(line);
return ERROR_OK;
}
static int aice_pipe_write_reg(uint32_t coreid, uint32_t num, uint32_t val)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_WRITE_REG;
set_u32(command + 1, num);
set_u32(command + 5, val);
if (aice_pipe_write(command, 9) != 9)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_read_reg_64(uint32_t coreid, uint32_t num, uint64_t *val)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_READ_REG_64;
set_u32(command + 1, num);
if (aice_pipe_write(command, 5) != 5)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
*val = (((uint64_t)get_u32(line + 4)) << 32) | get_u32(line);
return ERROR_OK;
}
static int aice_pipe_write_reg_64(uint32_t coreid, uint32_t num, uint64_t val)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_WRITE_REG_64;
set_u32(command + 1, num);
set_u32(command + 5, val & 0xFFFFFFFF);
set_u32(command + 9, (val >> 32) & 0xFFFFFFFF);
if (aice_pipe_write(command, 13) != 9)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_step(uint32_t coreid)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_STEP;
if (aice_pipe_write(command, 1) != 1)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_read_mem_unit(uint32_t coreid, uint32_t addr, uint32_t size,
uint32_t count, uint8_t *buffer)
{
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_READ_MEM_UNIT;
set_u32(command + 1, addr);
set_u32(command + 5, size);
set_u32(command + 9, count);
if (aice_pipe_write(command, 13) != 13)
return ERROR_FAIL;
if (aice_pipe_read(buffer, size * count) < 0)
return ERROR_FAIL;
return ERROR_OK;
}
static int aice_pipe_write_mem_unit(uint32_t coreid, uint32_t addr, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_WRITE_MEM_UNIT;
set_u32(command + 1, addr);
set_u32(command + 5, size);
set_u32(command + 9, count);
/* WRITE_MEM_UNIT|addr|size|count|data */
memcpy(command + 13, buffer, size * count);
if (aice_pipe_write(command, 13 + size * count) < 0)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
return ERROR_OK;
}
static int aice_pipe_read_mem_bulk(uint32_t coreid, uint32_t addr,
uint32_t length, uint8_t *buffer)
{
char line[AICE_PIPE_MAXLINE + 1];
char command[AICE_PIPE_MAXLINE];
uint32_t remain_len = length;
uint32_t prepare_len;
char *received_line;
uint32_t received_len;
int read_len;
command[0] = AICE_READ_MEM_BULK;
set_u32(command + 1, addr);
set_u32(command + 5, length);
if (aice_pipe_write(command, 9) < 0)
return ERROR_FAIL;
while (remain_len > 0) {
if (remain_len > AICE_PIPE_MAXLINE)
prepare_len = AICE_PIPE_MAXLINE;
else
prepare_len = remain_len;
prepare_len++;
received_len = 0;
received_line = line;
do {
read_len = aice_pipe_read(received_line, prepare_len - received_len);
if (read_len < 0)
return ERROR_FAIL;
received_line += read_len;
received_len += read_len;
} while (received_len < prepare_len);
if (line[0] != AICE_OK)
return ERROR_FAIL;
prepare_len--;
memcpy(buffer, line + 1, prepare_len);
remain_len -= prepare_len;
buffer += prepare_len;
}
return ERROR_OK;
}
static int aice_pipe_write_mem_bulk(uint32_t coreid, uint32_t addr,
uint32_t length, const uint8_t *buffer)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE + 4];
uint32_t remain_len = length;
uint32_t written_len = 0;
uint32_t write_len;
command[0] = AICE_WRITE_MEM_BULK;
set_u32(command + 1, addr);
set_u32(command + 5, length);
/* Send command first */
if (aice_pipe_write(command, 9) < 0)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_ERROR)
return ERROR_FAIL;
while (remain_len > 0) {
if (remain_len > AICE_PIPE_MAXLINE)
write_len = AICE_PIPE_MAXLINE;
else
write_len = remain_len;
set_u32(command, write_len);
memcpy(command + 4, buffer + written_len, write_len); /* data only */
if (aice_pipe_write(command, write_len + 4) < 0)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_ERROR)
return ERROR_FAIL;
remain_len -= write_len;
written_len += write_len;
}
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_read_debug_reg(uint32_t coreid, uint32_t addr, uint32_t *val)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_READ_DEBUG_REG;
set_u32(command + 1, addr);
if (aice_pipe_write(command, 5) != 5)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
*val = get_u32(line);
return ERROR_OK;
}
static int aice_pipe_write_debug_reg(uint32_t coreid, uint32_t addr, const uint32_t val)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_WRITE_DEBUG_REG;
set_u32(command + 1, addr);
set_u32(command + 5, val);
if (aice_pipe_write(command, 9) != 9)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_set_jtag_clock(uint32_t a_clock)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_SET_JTAG_CLOCK;
set_u32(command + 1, a_clock);
if (aice_pipe_write(command, 5) != 5)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_memory_access(uint32_t coreid, enum nds_memory_access access_channel)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_MEMORY_ACCESS;
set_u32(command + 1, access_channel);
if (aice_pipe_write(command, 5) != 5)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_memory_mode(uint32_t coreid, enum nds_memory_select mem_select)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_MEMORY_MODE;
set_u32(command + 1, mem_select);
if (aice_pipe_write(command, 5) != 5)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_read_tlb(uint32_t coreid, target_addr_t virtual_address,
target_addr_t *physical_address)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_READ_TLB;
set_u32(command + 1, virtual_address);
if (aice_pipe_write(command, 5) != 5)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK) {
*physical_address = get_u32(line + 1);
return ERROR_OK;
} else
return ERROR_FAIL;
}
static int aice_pipe_cache_ctl(uint32_t coreid, uint32_t subtype, uint32_t address)
{
char line[AICE_PIPE_MAXLINE];
char command[AICE_PIPE_MAXLINE];
command[0] = AICE_CACHE_CTL;
set_u32(command + 1, subtype);
set_u32(command + 5, address);
if (aice_pipe_write(command, 9) != 9)
return ERROR_FAIL;
if (aice_pipe_read(line, AICE_PIPE_MAXLINE) < 0)
return ERROR_FAIL;
if (line[0] == AICE_OK)
return ERROR_OK;
else
return ERROR_FAIL;
}
static int aice_pipe_set_retry_times(uint32_t a_retry_times)
{
return ERROR_OK;
}
/** */
struct aice_port_api_s aice_pipe = {
/** */
.open = aice_pipe_open,
/** */
.close = aice_pipe_close,
/** */
.idcode = aice_pipe_idcode,
/** */
.set_jtag_clock = aice_pipe_set_jtag_clock,
/** */
.state = aice_pipe_state,
/** */
.reset = aice_pipe_reset,
/** */
.assert_srst = aice_pipe_assert_srst,
/** */
.run = aice_pipe_run,
/** */
.halt = aice_pipe_halt,
/** */
.step = aice_pipe_step,
/** */
.read_reg = aice_pipe_read_reg,
/** */
.write_reg = aice_pipe_write_reg,
/** */
.read_reg_64 = aice_pipe_read_reg_64,
/** */
.write_reg_64 = aice_pipe_write_reg_64,
/** */
.read_mem_unit = aice_pipe_read_mem_unit,
/** */
.write_mem_unit = aice_pipe_write_mem_unit,
/** */
.read_mem_bulk = aice_pipe_read_mem_bulk,
/** */
.write_mem_bulk = aice_pipe_write_mem_bulk,
/** */
.read_debug_reg = aice_pipe_read_debug_reg,
/** */
.write_debug_reg = aice_pipe_write_debug_reg,
/** */
.memory_access = aice_pipe_memory_access,
/** */
.memory_mode = aice_pipe_memory_mode,
/** */
.read_tlb = aice_pipe_read_tlb,
/** */
.cache_ctl = aice_pipe_cache_ctl,
/** */
.set_retry_times = aice_pipe_set_retry_times,
};

View File

@ -1,20 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_JTAG_AICE_AICE_PIPE_H
#define OPENOCD_JTAG_AICE_AICE_PIPE_H
#include <helper/types.h>
#define set_u32(buffer, value) h_u32_to_le((uint8_t *)buffer, value)
#define set_u16(buffer, value) h_u16_to_le((uint8_t *)buffer, value)
#define get_u32(buffer) le_to_h_u32((const uint8_t *)buffer)
#define get_u16(buffer) le_to_h_u16((const uint8_t *)buffer)
extern struct aice_port_api_s aice_pipe;
#endif /* OPENOCD_JTAG_AICE_AICE_PIPE_H */

View File

@ -1,34 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/log.h>
#include "aice_usb.h"
#include "aice_pipe.h"
#include "aice_port.h"
static const struct aice_port aice_ports[] = {
{
.name = "aice_usb",
.type = AICE_PORT_AICE_USB,
.api = &aice_usb_api,
},
{
.name = "aice_pipe",
.type = AICE_PORT_AICE_PIPE,
.api = &aice_pipe,
},
{.name = NULL, /* END OF TABLE */ },
};
/** */
const struct aice_port *aice_port_get_list(void)
{
return aice_ports;
}

View File

@ -1,224 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_JTAG_AICE_AICE_PORT_H
#define OPENOCD_JTAG_AICE_AICE_PORT_H
#include <target/nds32_edm.h>
#define AICE_MAX_NUM_CORE (0x10)
#define ERROR_AICE_DISCONNECT (-200)
#define ERROR_AICE_TIMEOUT (-201)
enum aice_target_state_s {
AICE_DISCONNECT = 0,
AICE_TARGET_DETACH,
AICE_TARGET_UNKNOWN,
AICE_TARGET_RUNNING,
AICE_TARGET_HALTED,
AICE_TARGET_RESET,
AICE_TARGET_DEBUG_RUNNING,
};
enum aice_srst_type_s {
AICE_SRST = 0x1,
AICE_RESET_HOLD = 0x8,
};
enum aice_target_endian {
AICE_LITTLE_ENDIAN = 0,
AICE_BIG_ENDIAN,
};
enum aice_api_s {
AICE_OPEN = 0x0,
AICE_CLOSE,
AICE_RESET,
AICE_IDCODE,
AICE_SET_JTAG_CLOCK,
AICE_ASSERT_SRST,
AICE_RUN,
AICE_HALT,
AICE_STEP,
AICE_READ_REG,
AICE_WRITE_REG,
AICE_READ_REG_64,
AICE_WRITE_REG_64,
AICE_READ_MEM_UNIT,
AICE_WRITE_MEM_UNIT,
AICE_READ_MEM_BULK,
AICE_WRITE_MEM_BULK,
AICE_READ_DEBUG_REG,
AICE_WRITE_DEBUG_REG,
AICE_STATE,
AICE_MEMORY_ACCESS,
AICE_MEMORY_MODE,
AICE_READ_TLB,
AICE_CACHE_CTL,
AICE_SET_RETRY_TIMES,
AICE_PROGRAM_EDM,
AICE_SET_COMMAND_MODE,
AICE_EXECUTE,
AICE_SET_CUSTOM_SRST_SCRIPT,
AICE_SET_CUSTOM_TRST_SCRIPT,
AICE_SET_CUSTOM_RESTART_SCRIPT,
AICE_SET_COUNT_TO_CHECK_DBGER,
AICE_SET_DATA_ENDIAN,
};
enum aice_error_s {
AICE_OK,
AICE_ACK,
AICE_ERROR,
};
enum aice_cache_ctl_type {
AICE_CACHE_CTL_L1D_INVALALL = 0,
AICE_CACHE_CTL_L1D_VA_INVAL,
AICE_CACHE_CTL_L1D_WBALL,
AICE_CACHE_CTL_L1D_VA_WB,
AICE_CACHE_CTL_L1I_INVALALL,
AICE_CACHE_CTL_L1I_VA_INVAL,
};
enum aice_command_mode {
AICE_COMMAND_MODE_NORMAL,
AICE_COMMAND_MODE_PACK,
AICE_COMMAND_MODE_BATCH,
};
struct aice_port_param_s {
/** */
const char *device_desc;
/** */
uint16_t vid;
/** */
uint16_t pid;
/** */
char *adapter_name;
};
struct aice_port_s {
/** */
uint32_t coreid;
/** */
const struct aice_port *port;
};
/** */
extern struct aice_port_api_s aice_usb_layout_api;
/** */
struct aice_port_api_s {
/** */
int (*open)(struct aice_port_param_s *param);
/** */
int (*close)(void);
/** */
int (*reset)(void);
/** */
int (*idcode)(uint32_t *idcode, uint8_t *num_of_idcode);
/** */
int (*set_jtag_clock)(uint32_t a_clock);
/** */
int (*assert_srst)(uint32_t coreid, enum aice_srst_type_s srst);
/** */
int (*run)(uint32_t coreid);
/** */
int (*halt)(uint32_t coreid);
/** */
int (*step)(uint32_t coreid);
/** */
int (*read_reg)(uint32_t coreid, uint32_t num, uint32_t *val);
/** */
int (*write_reg)(uint32_t coreid, uint32_t num, uint32_t val);
/** */
int (*read_reg_64)(uint32_t coreid, uint32_t num, uint64_t *val);
/** */
int (*write_reg_64)(uint32_t coreid, uint32_t num, uint64_t val);
/** */
int (*read_mem_unit)(uint32_t coreid, uint32_t addr, uint32_t size,
uint32_t count, uint8_t *buffer);
/** */
int (*write_mem_unit)(uint32_t coreid, uint32_t addr, uint32_t size,
uint32_t count, const uint8_t *buffer);
/** */
int (*read_mem_bulk)(uint32_t coreid, uint32_t addr, uint32_t length,
uint8_t *buffer);
/** */
int (*write_mem_bulk)(uint32_t coreid, uint32_t addr, uint32_t length,
const uint8_t *buffer);
/** */
int (*read_debug_reg)(uint32_t coreid, uint32_t addr, uint32_t *val);
/** */
int (*write_debug_reg)(uint32_t coreid, uint32_t addr, const uint32_t val);
/** */
int (*state)(uint32_t coreid, enum aice_target_state_s *state);
/** */
int (*memory_access)(uint32_t coreid, enum nds_memory_access a_access);
/** */
int (*memory_mode)(uint32_t coreid, enum nds_memory_select mem_select);
/** */
int (*read_tlb)(uint32_t coreid, target_addr_t virtual_address, target_addr_t *physical_address);
/** */
int (*cache_ctl)(uint32_t coreid, uint32_t subtype, uint32_t address);
/** */
int (*set_retry_times)(uint32_t a_retry_times);
/** */
int (*program_edm)(uint32_t coreid, char *command_sequence);
/** */
int (*set_command_mode)(enum aice_command_mode command_mode);
/** */
int (*execute)(uint32_t coreid, uint32_t *instructions, uint32_t instruction_num);
/** */
int (*set_custom_srst_script)(const char *script);
/** */
int (*set_custom_trst_script)(const char *script);
/** */
int (*set_custom_restart_script)(const char *script);
/** */
int (*set_count_to_check_dbger)(uint32_t count_to_check);
/** */
int (*set_data_endian)(uint32_t coreid, enum aice_target_endian target_data_endian);
/** */
int (*profiling)(uint32_t coreid, uint32_t interval, uint32_t iteration,
uint32_t reg_no, uint32_t *samples, uint32_t *num_samples);
};
#define AICE_PORT_UNKNOWN 0
#define AICE_PORT_AICE_USB 1
#define AICE_PORT_AICE_PIPE 2
/** */
struct aice_port {
/** */
const char *name;
/** */
int type;
/** */
struct aice_port_api_s *const api;
};
/** */
const struct aice_port *aice_port_get_list(void);
#endif /* OPENOCD_JTAG_AICE_AICE_PORT_H */

View File

@ -1,432 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/* project specific includes */
#include <jtag/interface.h>
#include <jtag/tcl.h>
#include <transport/transport.h>
#include <target/target.h>
#include <jtag/aice/aice_interface.h>
#include <jtag/aice/aice_transport.h>
#include <string.h>
/* */
static int jim_newtap_expected_id(struct jim_nvp *n, struct jim_getopt_info *goi,
struct jtag_tap *tap)
{
jim_wide w;
int e = jim_getopt_wide(goi, &w);
if (e != JIM_OK) {
Jim_SetResultFormatted(goi->interp, "option: %s bad parameter",
n->name);
return e;
}
unsigned expected_len = sizeof(uint32_t) * tap->expected_ids_cnt;
uint32_t *new_expected_ids = malloc(expected_len + sizeof(uint32_t));
if (!new_expected_ids) {
Jim_SetResultFormatted(goi->interp, "no memory");
return JIM_ERR;
}
assert(tap->expected_ids);
memcpy(new_expected_ids, tap->expected_ids, expected_len);
new_expected_ids[tap->expected_ids_cnt] = w;
free(tap->expected_ids);
tap->expected_ids = new_expected_ids;
tap->expected_ids_cnt++;
return JIM_OK;
}
#define NTAP_OPT_EXPECTED_ID 0
/* */
static int jim_aice_newtap_cmd(struct jim_getopt_info *goi)
{
struct jtag_tap *tap;
int x;
int e;
struct jim_nvp *n;
char *cp;
const struct jim_nvp opts[] = {
{.name = "-expected-id", .value = NTAP_OPT_EXPECTED_ID},
{.name = NULL, .value = -1},
};
tap = calloc(1, sizeof(struct jtag_tap));
if (!tap) {
Jim_SetResultFormatted(goi->interp, "no memory");
return JIM_ERR;
}
/*
* we expect CHIP + TAP + OPTIONS
* */
if (goi->argc < 3) {
Jim_SetResultFormatted(goi->interp,
"Missing CHIP TAP OPTIONS ....");
free(tap);
return JIM_ERR;
}
const char *tmp;
jim_getopt_string(goi, &tmp, NULL);
tap->chip = strdup(tmp);
jim_getopt_string(goi, &tmp, NULL);
tap->tapname = strdup(tmp);
/* name + dot + name + null */
x = strlen(tap->chip) + 1 + strlen(tap->tapname) + 1;
cp = malloc(x);
sprintf(cp, "%s.%s", tap->chip, tap->tapname);
tap->dotted_name = cp;
LOG_DEBUG("Creating New Tap, Chip: %s, Tap: %s, Dotted: %s, %d params",
tap->chip, tap->tapname, tap->dotted_name, goi->argc);
while (goi->argc) {
e = jim_getopt_nvp(goi, opts, &n);
if (e != JIM_OK) {
jim_getopt_nvp_unknown(goi, opts, 0);
free(cp);
free(tap);
return e;
}
LOG_DEBUG("Processing option: %s", n->name);
switch (n->value) {
case NTAP_OPT_EXPECTED_ID:
e = jim_newtap_expected_id(n, goi, tap);
if (e != JIM_OK) {
free(cp);
free(tap);
return e;
}
break;
} /* switch (n->value) */
} /* while (goi->argc) */
/* default is enabled-after-reset */
tap->enabled = !tap->disabled_after_reset;
jtag_tap_init(tap);
return JIM_OK;
}
/* */
static int jim_aice_newtap(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
return jim_aice_newtap_cmd(&goi);
}
/* */
COMMAND_HANDLER(handle_aice_init_command)
{
if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
static bool jtag_initialized;
if (jtag_initialized) {
LOG_INFO("'jtag init' has already been called");
return ERROR_OK;
}
jtag_initialized = true;
LOG_DEBUG("Initializing jtag devices...");
return jtag_init(CMD_CTX);
}
COMMAND_HANDLER(handle_scan_chain_command)
{
struct jtag_tap *tap;
char expected_id[12];
aice_scan_jtag_chain();
tap = jtag_all_taps();
command_print(CMD,
" TapName Enabled IdCode Expected IrLen IrCap IrMask");
command_print(CMD,
"-- ------------------- -------- ---------- ---------- ----- ----- ------");
while (tap) {
uint32_t expected, expected_mask, ii;
snprintf(expected_id, sizeof(expected_id), "0x%08x",
(unsigned)((tap->expected_ids_cnt > 0)
? tap->expected_ids[0]
: 0));
if (tap->ignore_version)
expected_id[2] = '*';
expected = buf_get_u32(tap->expected, 0, tap->ir_length);
expected_mask = buf_get_u32(tap->expected_mask, 0, tap->ir_length);
command_print(CMD,
"%2d %-18s %c 0x%08x %s %5d 0x%02x 0x%02x",
tap->abs_chain_position,
tap->dotted_name,
tap->enabled ? 'Y' : 'n',
(unsigned int)(tap->idcode),
expected_id,
(unsigned int)(tap->ir_length),
(unsigned int)(expected),
(unsigned int)(expected_mask));
for (ii = 1; ii < tap->expected_ids_cnt; ii++) {
snprintf(expected_id, sizeof(expected_id), "0x%08x",
(unsigned) tap->expected_ids[ii]);
if (tap->ignore_version)
expected_id[2] = '*';
command_print(CMD,
" %s",
expected_id);
}
tap = tap->next_tap;
}
return ERROR_OK;
}
static int jim_aice_arp_init(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
LOG_DEBUG("No implement: jim_aice_arp_init");
return JIM_OK;
}
/* */
static int aice_init_reset(struct command_context *cmd_ctx)
{
LOG_DEBUG("Initializing with hard TRST+SRST reset");
int retval;
enum reset_types jtag_reset_config = jtag_get_reset_config();
jtag_add_reset(1, 0); /* TAP_RESET */
if (jtag_reset_config & RESET_HAS_SRST) {
jtag_add_reset(1, 1);
if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
jtag_add_reset(0, 1);
}
jtag_add_reset(0, 0);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
/* */
static int jim_aice_arp_init_reset(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
int e = ERROR_OK;
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
if (goi.argc != 0) {
Jim_WrongNumArgs(goi.interp, 1, goi.argv - 1, "(no params)");
return JIM_ERR;
}
struct command_context *context = current_command_context(interp);
e = aice_init_reset(context);
if (e != ERROR_OK) {
Jim_Obj *obj = Jim_NewIntObj(goi.interp, e);
Jim_SetResultFormatted(goi.interp, "error: %#s", obj);
return JIM_ERR;
}
return JIM_OK;
}
static int jim_aice_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
if (goi.argc != 0) {
Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
return JIM_ERR;
}
Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
struct jtag_tap *tap;
for (tap = jtag_all_taps(); tap; tap = tap->next_tap)
Jim_ListAppendElement(goi.interp,
Jim_GetResult(goi.interp),
Jim_NewStringObj(goi.interp,
tap->dotted_name, -1));
return JIM_OK;
}
/* */
static const struct command_registration aice_transport_jtag_subcommand_handlers[] = {
{
.name = "init",
.mode = COMMAND_ANY,
.handler = handle_aice_init_command,
.help = "initialize jtag scan chain",
.usage = ""
},
{
.name = "arp_init",
.mode = COMMAND_ANY,
.jim_handler = jim_aice_arp_init,
.help = "Validates JTAG scan chain against the list of "
"declared TAPs.",
},
{
.name = "arp_init-reset",
.mode = COMMAND_ANY,
.jim_handler = jim_aice_arp_init_reset,
.help = "Uses TRST and SRST to try resetting everything on "
"the JTAG scan chain, then performs 'jtag arp_init'."
},
{
.name = "newtap",
.mode = COMMAND_CONFIG,
.jim_handler = jim_aice_newtap,
.help = "Create a new TAP instance named basename.tap_type, "
"and appends it to the scan chain.",
.usage = "basename tap_type ['-expected_id' number]"
},
{
.name = "tapisenabled",
.mode = COMMAND_EXEC,
.jim_handler = jim_jtag_tap_enabler,
.help = "Returns a Tcl boolean (0/1) indicating whether "
"the TAP is enabled (1) or not (0).",
.usage = "tap_name",
},
{
.name = "tapenable",
.mode = COMMAND_EXEC,
.jim_handler = jim_jtag_tap_enabler,
.help = "Try to enable the specified TAP using the "
"'tap-enable' TAP event.",
.usage = "tap_name",
},
{
.name = "tapdisable",
.mode = COMMAND_EXEC,
.jim_handler = jim_jtag_tap_enabler,
.help = "Try to disable the specified TAP using the "
"'tap-disable' TAP event.",
.usage = "tap_name",
},
{
.name = "configure",
.mode = COMMAND_ANY,
.jim_handler = jim_jtag_configure,
.help = "Provide a Tcl handler for the specified "
"TAP event.",
.usage = "tap_name '-event' event_name handler",
},
{
.name = "cget",
.mode = COMMAND_EXEC,
.jim_handler = jim_jtag_configure,
.help = "Return any Tcl handler for the specified "
"TAP event.",
.usage = "tap_name '-event' event_name",
},
{
.name = "names",
.mode = COMMAND_ANY,
.jim_handler = jim_aice_names,
.help = "Returns list of all JTAG tap names.",
},
{
.name = "scan_chain",
.handler = handle_scan_chain_command,
.mode = COMMAND_ANY,
.help = "print current scan chain configuration",
.usage = ""
},
COMMAND_REGISTRATION_DONE
};
/* */
static const struct command_registration aice_transport_command_handlers[] = {
{
.name = "jtag",
.mode = COMMAND_ANY,
.usage = "",
.chain = aice_transport_jtag_subcommand_handlers,
},
COMMAND_REGISTRATION_DONE
};
/* */
static int aice_transport_register_commands(struct command_context *cmd_ctx)
{
return register_commands(cmd_ctx, NULL, aice_transport_command_handlers);
}
/* */
static int aice_transport_init(struct command_context *cmd_ctx)
{
LOG_DEBUG("aice_transport_init");
struct target *t = get_current_target(cmd_ctx);
struct transport *transport;
if (!t) {
LOG_ERROR("no current target");
return ERROR_FAIL;
}
transport = get_current_transport();
if (!transport) {
LOG_ERROR("no transport selected");
return ERROR_FAIL;
}
LOG_DEBUG("current transport %s", transport->name);
return aice_init_targets();
}
/* */
static int aice_transport_select(struct command_context *ctx)
{
LOG_DEBUG("aice_transport_select");
int retval;
retval = aice_transport_register_commands(ctx);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static struct transport aice_jtag_transport = {
.name = "aice_jtag",
.select = aice_transport_select,
.init = aice_transport_init,
};
const char *aice_transports[] = { "aice_jtag", NULL };
static void aice_constructor(void) __attribute__((constructor));
static void aice_constructor(void)
{
transport_register(&aice_jtag_transport);
}

View File

@ -1,13 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_JTAG_AICE_AICE_TRANSPORT_H
#define OPENOCD_JTAG_AICE_AICE_TRANSPORT_H
extern const char *aice_transports[];
#endif /* OPENOCD_JTAG_AICE_AICE_TRANSPORT_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,122 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 by Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_JTAG_AICE_AICE_USB_H
#define OPENOCD_JTAG_AICE_AICE_USB_H
#include "aice_port.h"
/* AICE USB timeout value */
#define AICE_USB_TIMEOUT 5000
/* AICE USB buffer size */
#define AICE_IN_BUFFER_SIZE 2048
#define AICE_OUT_BUFFER_SIZE 2048
#define AICE_IN_PACKETS_BUFFER_SIZE 2048
#define AICE_OUT_PACKETS_BUFFER_SIZE 2048
#define AICE_IN_BATCH_COMMAND_SIZE 512
#define AICE_OUT_BATCH_COMMAND_SIZE 512
#define AICE_IN_PACK_COMMAND_SIZE 2048
#define AICE_OUT_PACK_COMMAND_SIZE 2048
/* Constants for AICE command READ_CTRL */
#define AICE_READ_CTRL_GET_ICE_STATE 0x00
#define AICE_READ_CTRL_GET_HARDWARE_VERSION 0x01
#define AICE_READ_CTRL_GET_FPGA_VERSION 0x02
#define AICE_READ_CTRL_GET_FIRMWARE_VERSION 0x03
#define AICE_READ_CTRL_GET_JTAG_PIN_STATUS 0x04
#define AICE_READ_CTRL_BATCH_BUF_INFO 0x22
#define AICE_READ_CTRL_BATCH_STATUS 0x23
#define AICE_READ_CTRL_BATCH_BUF0_STATE 0x31
#define AICE_READ_CTRL_BATCH_BUF4_STATE 0x39
#define AICE_READ_CTRL_BATCH_BUF5_STATE 0x3b
/* Constants for AICE command WRITE_CTRL */
#define AICE_WRITE_CTRL_TCK_CONTROL 0x00
#define AICE_WRITE_CTRL_JTAG_PIN_CONTROL 0x01
#define AICE_WRITE_CTRL_CLEAR_TIMEOUT_STATUS 0x02
#define AICE_WRITE_CTRL_RESERVED 0x03
#define AICE_WRITE_CTRL_JTAG_PIN_STATUS 0x04
#define AICE_WRITE_CTRL_CUSTOM_DELAY 0x0d
#define AICE_WRITE_CTRL_BATCH_CTRL 0x20
#define AICE_WRITE_CTRL_BATCH_ITERATION 0x21
#define AICE_WRITE_CTRL_BATCH_DIM_SIZE 0x22
#define AICE_WRITE_CTRL_BATCH_CMD_BUF0_CTRL 0x30
#define AICE_WRITE_CTRL_BATCH_DATA_BUF0_CTRL 0x38
#define AICE_WRITE_CTRL_BATCH_DATA_BUF1_CTRL 0x3a
#define AICE_BATCH_COMMAND_BUFFER_0 0x0
#define AICE_BATCH_COMMAND_BUFFER_1 0x1
#define AICE_BATCH_COMMAND_BUFFER_2 0x2
#define AICE_BATCH_COMMAND_BUFFER_3 0x3
#define AICE_BATCH_DATA_BUFFER_0 0x4
#define AICE_BATCH_DATA_BUFFER_1 0x5
#define AICE_BATCH_DATA_BUFFER_2 0x6
#define AICE_BATCH_DATA_BUFFER_3 0x7
/* Constants for AICE command WRITE_CTRL:TCK_CONTROL */
#define AICE_TCK_CONTROL_TCK3048 0x08
#define AICE_TCK_CONTROL_TCK_SCAN 0x10
/* Constants for AICE command WRITE_CTRL:JTAG_PIN_CONTROL */
#define AICE_JTAG_PIN_CONTROL_SRST 0x01
#define AICE_JTAG_PIN_CONTROL_TRST 0x02
#define AICE_JTAG_PIN_CONTROL_STOP 0x04
#define AICE_JTAG_PIN_CONTROL_RESTART 0x08
/* Constants for AICE command WRITE_CTRL:TCK_CONTROL */
#define AICE_TCK_CONTROL_TCK_SCAN 0x10
/* Custom SRST/DBGI/TRST */
#define AICE_CUSTOM_DELAY_SET_SRST 0x01
#define AICE_CUSTOM_DELAY_CLEAN_SRST 0x02
#define AICE_CUSTOM_DELAY_SET_DBGI 0x04
#define AICE_CUSTOM_DELAY_CLEAN_DBGI 0x08
#define AICE_CUSTOM_DELAY_SET_TRST 0x10
#define AICE_CUSTOM_DELAY_CLEAN_TRST 0x20
struct aice_usb_handler_s {
unsigned int usb_read_ep;
unsigned int usb_write_ep;
struct libusb_device_handle *usb_handle;
};
struct cache_info {
uint32_t set;
uint32_t way;
uint32_t line_size;
uint32_t log2_set;
uint32_t log2_line_size;
};
struct aice_nds32_info {
uint32_t edm_version;
uint32_t r0_backup;
uint32_t r1_backup;
uint32_t host_dtr_backup;
uint32_t target_dtr_backup;
uint32_t edmsw_backup;
uint32_t edm_ctl_backup;
bool debug_under_dex_on;
bool dex_use_psw_on;
bool host_dtr_valid;
bool target_dtr_valid;
enum nds_memory_access access_channel;
enum nds_memory_select memory_select;
enum aice_target_state_s core_state;
bool cache_init;
struct cache_info icache;
struct cache_info dcache;
};
extern struct aice_port_api_s aice_usb_api;
int aice_read_ctrl(uint32_t address, uint32_t *data);
int aice_write_ctrl(uint32_t address, uint32_t data);
#endif /* OPENOCD_JTAG_AICE_AICE_USB_H */

View File

@ -776,17 +776,12 @@ static int armjtagew_usb_read(struct armjtagew *armjtagew, int exp_in_length)
static void armjtagew_debug_buffer(uint8_t *buffer, int length)
{
char line[81];
char s[4];
int i;
int j;
char line[8 + 3 * BYTES_PER_LINE + 1];
for (i = 0; i < length; i += BYTES_PER_LINE) {
snprintf(line, 5, "%04x", i);
for (j = i; j < i + BYTES_PER_LINE && j < length; j++) {
snprintf(s, 4, " %02x", buffer[j]);
strcat(line, s);
}
for (int i = 0; i < length; i += BYTES_PER_LINE) {
int n = snprintf(line, 9, "%04x", i);
for (int j = i; j < i + BYTES_PER_LINE && j < length; j++)
n += snprintf(line + n, 4, " %02x", buffer[j]);
LOG_DEBUG("%s", line);
/* Prevent GDB timeout (writing to log might take some time) */

View File

@ -57,6 +57,15 @@ static struct initial_gpio_state {
} initial_gpio_state[ADAPTER_GPIO_IDX_NUM];
static uint32_t initial_drive_strength_etc;
static inline void bcm2835_gpio_synchronize(void)
{
/* Ensure that previous writes to GPIO registers are flushed out of
* the inner shareable domain to prevent pipelined writes to the
* same address being merged.
*/
__sync_synchronize();
}
static bool is_gpio_config_valid(enum adapter_gpio_config_index idx)
{
/* Only chip 0 is supported, accept unset value (-1) too */
@ -96,6 +105,7 @@ static void set_gpio_value(const struct adapter_gpio_config *gpio_config, int va
}
break;
}
bcm2835_gpio_synchronize();
}
static void restore_gpio(enum adapter_gpio_config_index idx)
@ -109,6 +119,7 @@ static void restore_gpio(enum adapter_gpio_config_index idx)
GPIO_CLR = 1 << adapter_gpio_config[idx].gpio_num;
}
}
bcm2835_gpio_synchronize();
}
static void initialize_gpio(enum adapter_gpio_config_index idx)
@ -143,6 +154,7 @@ static void initialize_gpio(enum adapter_gpio_config_index idx)
/* Direction for non push-pull is already set by set_gpio_value() */
if (adapter_gpio_config[idx].drive == ADAPTER_GPIO_DRIVE_MODE_PUSH_PULL)
OUT_GPIO(adapter_gpio_config[idx].gpio_num);
bcm2835_gpio_synchronize();
}
static bb_value_t bcm2835gpio_read(void)
@ -164,6 +176,7 @@ static int bcm2835gpio_write(int tck, int tms, int tdi)
GPIO_SET = set;
GPIO_CLR = clear;
bcm2835_gpio_synchronize();
for (unsigned int i = 0; i < jtag_delay; i++)
asm volatile ("");
@ -184,6 +197,7 @@ static int bcm2835gpio_swd_write_fast(int swclk, int swdio)
GPIO_SET = set;
GPIO_CLR = clear;
bcm2835_gpio_synchronize();
for (unsigned int i = 0; i < jtag_delay; i++)
asm volatile ("");
@ -234,6 +248,7 @@ static void bcm2835_swdio_drive(bool is_output)
if (is_gpio_config_valid(ADAPTER_GPIO_IDX_SWDIO_DIR))
set_gpio_value(&adapter_gpio_config[ADAPTER_GPIO_IDX_SWDIO_DIR], 0);
}
bcm2835_gpio_synchronize();
}
static int bcm2835_swdio_read(void)

View File

@ -380,8 +380,6 @@ static int bitbang_swd_init(void)
static void bitbang_swd_exchange(bool rnw, uint8_t buf[], unsigned int offset, unsigned int bit_cnt)
{
LOG_DEBUG("bitbang_swd_exchange");
if (bitbang_interface->blink) {
/* FIXME: we should manage errors */
bitbang_interface->blink(1);
@ -412,11 +410,9 @@ static void bitbang_swd_exchange(bool rnw, uint8_t buf[], unsigned int offset, u
static int bitbang_swd_switch_seq(enum swd_special_seq seq)
{
LOG_DEBUG("bitbang_swd_switch_seq");
switch (seq) {
case LINE_RESET:
LOG_DEBUG("SWD line reset");
LOG_DEBUG_IO("SWD line reset");
bitbang_swd_exchange(false, (uint8_t *)swd_seq_line_reset, 0, swd_seq_line_reset_len);
break;
case JTAG_TO_SWD:
@ -459,7 +455,6 @@ static void swd_clear_sticky_errors(void)
static void bitbang_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay_clk)
{
LOG_DEBUG("bitbang_swd_read_reg");
assert(cmd & SWD_CMD_RNW);
if (queued_retval != ERROR_OK) {
@ -481,7 +476,7 @@ static void bitbang_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay
uint32_t data = buf_get_u32(trn_ack_data_parity_trn, 1 + 3, 32);
int parity = buf_get_u32(trn_ack_data_parity_trn, 1 + 3 + 32, 1);
LOG_DEBUG("%s %s read reg %X = %08"PRIx32,
LOG_DEBUG_IO("%s %s read reg %X = %08" PRIx32,
ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
cmd & SWD_CMD_APNDP ? "AP" : "DP",
(cmd & SWD_CMD_A32) >> 1,
@ -510,7 +505,6 @@ static void bitbang_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay
static void bitbang_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay_clk)
{
LOG_DEBUG("bitbang_swd_write_reg");
assert(!(cmd & SWD_CMD_RNW));
if (queued_retval != ERROR_OK) {
@ -537,7 +531,7 @@ static void bitbang_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay
int ack = buf_get_u32(trn_ack_data_parity_trn, 1, 3);
LOG_DEBUG("%s%s %s write reg %X = %08"PRIx32,
LOG_DEBUG_IO("%s%s %s write reg %X = %08" PRIx32,
check_ack ? "" : "ack ignored ",
ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
cmd & SWD_CMD_APNDP ? "AP" : "DP",
@ -562,14 +556,13 @@ static void bitbang_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay
static int bitbang_swd_run_queue(void)
{
LOG_DEBUG("bitbang_swd_run_queue");
/* A transaction must be followed by another transaction or at least 8 idle cycles to
* ensure that data is clocked through the AP. */
bitbang_swd_exchange(true, NULL, 0, 8);
int retval = queued_retval;
queued_retval = ERROR_OK;
LOG_DEBUG("SWD queue return value: %02x", retval);
LOG_DEBUG_IO("SWD queue return value: %02x", retval);
return retval;
}

View File

@ -573,6 +573,8 @@ static int cmsis_dap_metacmd_targetsel(uint32_t instance_id)
The purpose of this operation is to select the target
corresponding to the instance_id that is written */
LOG_DEBUG_IO("DP write reg TARGETSEL %" PRIx32, instance_id);
size_t idx = 0;
command[idx++] = CMD_DAP_SWD_SEQUENCE;
command[idx++] = 3; /* sequence count */
@ -658,7 +660,7 @@ static int cmsis_dap_cmd_dap_swo_baudrate(
command[0] = CMD_DAP_SWO_BAUDRATE;
h_u32_to_le(&command[1], in_baudrate);
int retval = cmsis_dap_xfer(cmsis_dap_handle, 4);
int retval = cmsis_dap_xfer(cmsis_dap_handle, 5);
uint32_t rvbr = le_to_h_u32(&cmsis_dap_handle->response[1]);
if (retval != ERROR_OK || rvbr == 0) {
LOG_ERROR("CMSIS-DAP: command CMD_SWO_Baudrate(%u) -> %u failed.", in_baudrate, rvbr);

View File

@ -262,8 +262,10 @@ static int cmsis_dap_usb_open(struct cmsis_dap *dap, uint16_t vids[], uint16_t p
/* If the interface is reliably identified
* then we need not insist on setting USB class, subclass and protocol
* exactly as the specification requires.
* Just filter out the well known classes, mainly CDC and MSC.
* At least KitProg3 uses class 0 contrary to the specification */
if (intf_identified_reliably) {
if (intf_identified_reliably &&
(intf_desc->bInterfaceClass == 0 || intf_desc->bInterfaceClass > 0x12)) {
LOG_WARNING("Using CMSIS-DAPv2 interface %d with wrong class %" PRId8
" subclass %" PRId8 " or protocol %" PRId8,
interface_num,

View File

@ -16,8 +16,6 @@
#include "bitq.h"
#include "libusb_helper.h"
#define __packed __attribute__((packed))
/*
Holy Crap, it's protocol documentation, and it's even vendor-provided!
@ -110,7 +108,7 @@ descriptor.
struct jtag_proto_caps_hdr {
uint8_t proto_ver; /* Protocol version. Expects JTAG_PROTO_CAPS_VER for now. */
uint8_t length; /* of this plus any following descriptors */
} __packed;
} __attribute__((packed));
/* start of the descriptor headers */
#define JTAG_BUILTIN_DESCR_START_OFF 0 /* Devices with builtin usb jtag */
@ -133,7 +131,7 @@ of caps header to assume this. If no such caps exist, assume a minimum (in) buff
struct jtag_gen_hdr {
uint8_t type;
uint8_t length;
} __packed;
} __attribute__((packed));
struct jtag_proto_caps_speed_apb {
uint8_t type; /* Type, always JTAG_PROTO_CAPS_SPEED_APB_TYPE */
@ -141,7 +139,7 @@ struct jtag_proto_caps_speed_apb {
uint8_t apb_speed_10khz[2]; /* ABP bus speed, in 10KHz increments. Base speed is half this. */
uint8_t div_min[2]; /* minimum divisor (to base speed), inclusive */
uint8_t div_max[2]; /* maximum divisor (to base speed), inclusive */
} __packed;
} __attribute__((packed));
#define JTAG_PROTO_CAPS_DATA_LEN 255
#define JTAG_PROTO_CAPS_SPEED_APB_TYPE 1

View File

@ -796,17 +796,12 @@ int opendous_usb_read(struct opendous_jtag *opendous_jtag)
void opendous_debug_buffer(uint8_t *buffer, int length)
{
char line[81];
char s[4];
int i;
int j;
char line[8 + 3 * BYTES_PER_LINE + 1];
for (i = 0; i < length; i += BYTES_PER_LINE) {
snprintf(line, 5, "%04x", i);
for (j = i; j < i + BYTES_PER_LINE && j < length; j++) {
snprintf(s, 4, " %02x", buffer[j]);
strcat(line, s);
}
for (int i = 0; i < length; i += BYTES_PER_LINE) {
int n = snprintf(line, 9, "%04x", i);
for (int j = i; j < i + BYTES_PER_LINE && j < length; j++)
n += snprintf(line + n, 4, " %02x", buffer[j]);
LOG_DEBUG("%s", line);
}
}

View File

@ -1246,7 +1246,7 @@ static const struct command_registration vdebug_command_handlers[] = {
{
.name = "mem_path",
.handler = &vdebug_set_mem,
.mode = COMMAND_ANY,
.mode = COMMAND_CONFIG,
.help = "set the design memory for the code load",
.usage = "<path> <base_address> <size>",
},

View File

@ -1354,11 +1354,13 @@ static void xds110_swd_queue_cmd(uint8_t cmd, uint32_t *value)
static void xds110_swd_read_reg(uint8_t cmd, uint32_t *value,
uint32_t ap_delay_clk)
{
assert(cmd & SWD_CMD_RNW);
xds110_swd_queue_cmd(cmd, value);
}
static void xds110_swd_write_reg(uint8_t cmd, uint32_t value,
uint32_t ap_delay_clk)
{
assert(!(cmd & SWD_CMD_RNW));
xds110_swd_queue_cmd(cmd, &value);
}

View File

@ -118,9 +118,6 @@ extern struct adapter_driver linuxgpiod_adapter_driver;
#if BUILD_XLNX_PCIE_XVC == 1
extern struct adapter_driver xlnx_pcie_xvc_adapter_driver;
#endif
#if BUILD_AICE == 1
extern struct adapter_driver aice_adapter_driver;
#endif
#if BUILD_BCM2835GPIO == 1
extern struct adapter_driver bcm2835gpio_adapter_driver;
#endif
@ -238,9 +235,6 @@ struct adapter_driver *adapter_drivers[] = {
#if BUILD_XLNX_PCIE_XVC == 1
&xlnx_pcie_xvc_adapter_driver,
#endif
#if BUILD_AICE == 1
&aice_adapter_driver,
#endif
#if BUILD_BCM2835GPIO == 1
&bcm2835gpio_adapter_driver,
#endif

View File

@ -865,12 +865,6 @@ proc ft232r_restore_serial args {
eval ft232r restore_serial $args
}
lappend _telnet_autocomplete_skip "aice serial"
proc "aice serial" {args} {
echo "DEPRECATED! use 'adapter serial' not 'aice serial'"
eval adapter serial $args
}
lappend _telnet_autocomplete_skip cmsis_dap_serial
proc cmsis_dap_serial args {
echo "DEPRECATED! use 'adapter serial' not 'cmsis_dap_serial'"

View File

@ -230,65 +230,6 @@ static int openocd_register_commands(struct command_context *cmd_ctx)
return register_commands(cmd_ctx, NULL, openocd_command_handlers);
}
/*
* TODO: to be removed after v0.12.0
* workaround for syntax change of "expr" in jimtcl 0.81
* replace "expr" with openocd version that prints the deprecated msg
*/
struct jim_scriptobj {
void *token;
Jim_Obj *filename_obj;
int len;
int subst_flags;
int in_use;
int firstline;
int linenr;
int missing;
};
static int jim_expr_command(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
if (argc == 2)
return Jim_EvalExpression(interp, argv[1]);
if (argc > 2) {
Jim_Obj *obj = Jim_ConcatObj(interp, argc - 1, argv + 1);
Jim_IncrRefCount(obj);
const char *s = Jim_String(obj);
struct jim_scriptobj *script = Jim_GetIntRepPtr(interp->currentScriptObj);
if (interp->currentScriptObj == interp->emptyObj ||
strcmp(interp->currentScriptObj->typePtr->name, "script") ||
script->subst_flags ||
script->filename_obj == interp->emptyObj)
LOG_WARNING("DEPRECATED! use 'expr { %s }' not 'expr %s'", s, s);
else
LOG_WARNING("DEPRECATED! (%s:%d) use 'expr { %s }' not 'expr %s'",
Jim_String(script->filename_obj), script->linenr, s, s);
int retcode = Jim_EvalExpression(interp, obj);
Jim_DecrRefCount(interp, obj);
return retcode;
}
Jim_WrongNumArgs(interp, 1, argv, "expression ?...?");
return JIM_ERR;
}
static const struct command_registration expr_handler[] = {
{
.name = "expr",
.jim_handler = jim_expr_command,
.mode = COMMAND_ANY,
.help = "",
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
static int workaround_for_jimtcl_expr(struct command_context *cmd_ctx)
{
return register_commands(cmd_ctx, NULL, expr_handler);
}
struct command_context *global_cmd_ctx;
static struct command_context *setup_command_handler(Jim_Interp *interp)
@ -301,7 +242,6 @@ static struct command_context *setup_command_handler(Jim_Interp *interp)
/* register subsystem commands */
typedef int (*command_registrant_t)(struct command_context *cmd_ctx_value);
static const command_registrant_t command_registrants[] = {
&workaround_for_jimtcl_expr,
&openocd_register_commands,
&server_register_commands,
&gdb_register_commands,

View File

@ -157,6 +157,8 @@ static int virtex2_load(struct pld_device *pld_device, const char *filename)
virtex2_set_instr(virtex2_info->tap, 0x3f); /* BYPASS */
jtag_execute_queue();
xilinx_free_bit_file(&bit_file);
return ERROR_OK;
}
@ -173,7 +175,7 @@ COMMAND_HANDLER(virtex2_handle_read_stat_command)
device = get_pld_device_by_num(dev_id);
if (!device) {
command_print(CMD, "pld device '#%s' is out of bounds", CMD_ARGV[0]);
return ERROR_OK;
return ERROR_FAIL;
}
virtex2_read_stat(device, &status);
@ -195,7 +197,7 @@ PLD_DEVICE_COMMAND_HANDLER(virtex2_pld_device_command)
tap = jtag_tap_by_string(CMD_ARGV[1]);
if (!tap) {
command_print(CMD, "Tap: %s does not exist", CMD_ARGV[1]);
return ERROR_OK;
return ERROR_FAIL;
}
virtex2_info = malloc(sizeof(struct virtex2_pld_device));

View File

@ -87,26 +87,48 @@ int xilinx_read_bit_file(struct xilinx_bit_file *bit_file, const char *filename)
return ERROR_PLD_FILE_LOAD_FAILED;
}
bit_file->source_file = NULL;
bit_file->part_name = NULL;
bit_file->date = NULL;
bit_file->time = NULL;
bit_file->data = NULL;
read_count = fread(bit_file->unknown_header, 1, 13, input_file);
if (read_count != 13) {
LOG_ERROR("couldn't read unknown_header from file '%s'", filename);
fclose(input_file);
return ERROR_PLD_FILE_LOAD_FAILED;
}
if (read_section(input_file, 2, 'a', NULL, &bit_file->source_file) != ERROR_OK)
if (read_section(input_file, 2, 'a', NULL, &bit_file->source_file) != ERROR_OK) {
xilinx_free_bit_file(bit_file);
fclose(input_file);
return ERROR_PLD_FILE_LOAD_FAILED;
}
if (read_section(input_file, 2, 'b', NULL, &bit_file->part_name) != ERROR_OK)
if (read_section(input_file, 2, 'b', NULL, &bit_file->part_name) != ERROR_OK) {
xilinx_free_bit_file(bit_file);
fclose(input_file);
return ERROR_PLD_FILE_LOAD_FAILED;
}
if (read_section(input_file, 2, 'c', NULL, &bit_file->date) != ERROR_OK)
if (read_section(input_file, 2, 'c', NULL, &bit_file->date) != ERROR_OK) {
xilinx_free_bit_file(bit_file);
fclose(input_file);
return ERROR_PLD_FILE_LOAD_FAILED;
}
if (read_section(input_file, 2, 'd', NULL, &bit_file->time) != ERROR_OK)
if (read_section(input_file, 2, 'd', NULL, &bit_file->time) != ERROR_OK) {
xilinx_free_bit_file(bit_file);
fclose(input_file);
return ERROR_PLD_FILE_LOAD_FAILED;
}
if (read_section(input_file, 4, 'e', &bit_file->length, &bit_file->data) != ERROR_OK)
if (read_section(input_file, 4, 'e', &bit_file->length, &bit_file->data) != ERROR_OK) {
xilinx_free_bit_file(bit_file);
fclose(input_file);
return ERROR_PLD_FILE_LOAD_FAILED;
}
LOG_DEBUG("bit_file: %s %s %s,%s %" PRIu32 "", bit_file->source_file, bit_file->part_name,
bit_file->date, bit_file->time, bit_file->length);
@ -115,3 +137,12 @@ int xilinx_read_bit_file(struct xilinx_bit_file *bit_file, const char *filename)
return ERROR_OK;
}
void xilinx_free_bit_file(struct xilinx_bit_file *bit_file)
{
free(bit_file->source_file);
free(bit_file->part_name);
free(bit_file->date);
free(bit_file->time);
free(bit_file->data);
}

View File

@ -22,4 +22,6 @@ struct xilinx_bit_file {
int xilinx_read_bit_file(struct xilinx_bit_file *bit_file, const char *filename);
void xilinx_free_bit_file(struct xilinx_bit_file *bit_file);
#endif /* OPENOCD_PLD_XILINX_BIT_H */

View File

@ -112,13 +112,6 @@ static int cortex_m_stacking(struct rtos *rtos, const struct rtos_register_stack
return ERROR_OK;
}
static int nds32_stacking(struct rtos *rtos, const struct rtos_register_stacking **stacking,
target_addr_t stack_ptr)
{
*stacking = &rtos_standard_nds32_n1068_stacking;
return ERROR_OK;
}
/* take 4 bytes (32 bits) as the default size,
* which is suitable for most 32-bit targets and
* configuration of configUSE_16_BIT_TICKS = 0. */
@ -226,10 +219,6 @@ static const struct freertos_params freertos_params_list[] = {
.stacking = cortex_m_stacking
},
{
.target_name = "nds32_v3",
.stacking = nds32_stacking,
},
{
.target_name = "riscv",
.stacking = riscv_stacking,
.commands = riscv_commands,

View File

@ -320,6 +320,12 @@ static int threadx_update_threads(struct rtos *rtos)
rtos->thread_details->thread_name_str = malloc(sizeof(tmp_str));
strcpy(rtos->thread_details->thread_name_str, tmp_str);
/* If we just invented thread 1 to represent the current execution, we
* need to make sure the RTOS object also claims it's the current thread
* so that threadx_get_thread_reg_list() doesn't attempt to read a
* thread control block at 0x00000001. */
rtos->current_thread = 1;
if (thread_list_size == 0) {
rtos->thread_count = 1;
return ERROR_OK;
@ -364,6 +370,10 @@ static int threadx_update_threads(struct rtos *rtos)
}
/* Read the thread name */
tmp_str[0] = '\x00';
/* Check if thread has a valid name */
if (name_ptr != 0) {
retval =
target_read_buffer(rtos->target,
name_ptr,
@ -374,6 +384,7 @@ static int threadx_update_threads(struct rtos *rtos)
return retval;
}
tmp_str[THREADX_THREAD_NAME_STR_SIZE - 1] = '\x00';
}
if (tmp_str[0] == '\x00')
strcpy(tmp_str, "No Name");

File diff suppressed because it is too large Load Diff

View File

@ -87,6 +87,7 @@ static int hwthread_update_threads(struct rtos *rtos)
struct target_list *head;
struct target *target;
int64_t current_thread = 0;
int64_t current_threadid = rtos->current_threadid; /* thread selected by GDB */
enum target_debug_reason current_reason = DBG_REASON_UNDEFINED;
if (!rtos)
@ -108,10 +109,14 @@ static int hwthread_update_threads(struct rtos *rtos)
} else
thread_list_size = 1;
/* Wipe out previous thread details if any, but preserve threadid. */
int64_t current_threadid = rtos->current_threadid;
rtos_free_threadlist(rtos);
/* restore the threadid which is currently selected by GDB
* because rtos_free_threadlist() wipes out it
* (GDB thread id is 1-based indexing) */
if (current_threadid <= thread_list_size)
rtos->current_threadid = current_threadid;
else
LOG_WARNING("SMP node change, disconnect GDB from core/thread %" PRId64,
current_threadid);
/* create space for new thread details */
rtos->thread_details = malloc(sizeof(struct thread_detail) * thread_list_size);
@ -264,10 +269,19 @@ static int hwthread_get_thread_reg_list(struct rtos *rtos, int64_t thread_id,
for (int i = 0; i < reg_list_size; i++) {
if (!reg_list[i] || reg_list[i]->exist == false || reg_list[i]->hidden)
continue;
(*rtos_reg_list)[j].number = (*reg_list)[i].number;
(*rtos_reg_list)[j].size = (*reg_list)[i].size;
memcpy((*rtos_reg_list)[j].value, (*reg_list)[i].value,
((*reg_list)[i].size + 7) / 8);
if (!reg_list[i]->valid) {
retval = reg_list[i]->type->get(reg_list[i]);
if (retval != ERROR_OK) {
LOG_ERROR("Couldn't get register %s.", reg_list[i]->name);
free(reg_list);
free(*rtos_reg_list);
return retval;
}
}
(*rtos_reg_list)[j].number = reg_list[i]->number;
(*rtos_reg_list)[j].size = reg_list[i]->size;
memcpy((*rtos_reg_list)[j].value, reg_list[i]->value,
DIV_ROUND_UP(reg_list[i]->size, 8));
j++;
}
free(reg_list);

View File

@ -8,6 +8,13 @@
#include "rtos_standard_stackings.h"
#include "target/armv7m.h"
/* For Cortex-M eCos applications the actual thread context register layout can
* be different between active threads of an application depending on whether
* the FPU is in use, configured for lazy FPU context saving, etc. */
/* Default fixed thread register context description used for older eCos
* application builds without the necessary symbolic information describing the
* actual configuration-dependent offsets. */
static const struct stack_register_offset rtos_ecos_cortex_m3_stack_offsets[ARMV7M_NUM_CORE_REGS] = {
{ ARMV7M_R0, 0x0c, 32 }, /* r0 */
{ ARMV7M_R1, 0x10, 32 }, /* r1 */

View File

@ -103,45 +103,6 @@ static const struct stack_register_offset rtos_standard_cortex_r4_stack_offsets[
{ 26, 0x04, 32 }, /* CSPR */
};
static const struct stack_register_offset rtos_standard_nds32_n1068_stack_offsets[] = {
{ 0, 0x88, 32 }, /* R0 */
{ 1, 0x8C, 32 }, /* R1 */
{ 2, 0x14, 32 }, /* R2 */
{ 3, 0x18, 32 }, /* R3 */
{ 4, 0x1C, 32 }, /* R4 */
{ 5, 0x20, 32 }, /* R5 */
{ 6, 0x24, 32 }, /* R6 */
{ 7, 0x28, 32 }, /* R7 */
{ 8, 0x2C, 32 }, /* R8 */
{ 9, 0x30, 32 }, /* R9 */
{ 10, 0x34, 32 }, /* R10 */
{ 11, 0x38, 32 }, /* R11 */
{ 12, 0x3C, 32 }, /* R12 */
{ 13, 0x40, 32 }, /* R13 */
{ 14, 0x44, 32 }, /* R14 */
{ 15, 0x48, 32 }, /* R15 */
{ 16, 0x4C, 32 }, /* R16 */
{ 17, 0x50, 32 }, /* R17 */
{ 18, 0x54, 32 }, /* R18 */
{ 19, 0x58, 32 }, /* R19 */
{ 20, 0x5C, 32 }, /* R20 */
{ 21, 0x60, 32 }, /* R21 */
{ 22, 0x64, 32 }, /* R22 */
{ 23, 0x68, 32 }, /* R23 */
{ 24, 0x6C, 32 }, /* R24 */
{ 25, 0x70, 32 }, /* R25 */
{ 26, 0x74, 32 }, /* R26 */
{ 27, 0x78, 32 }, /* R27 */
{ 28, 0x7C, 32 }, /* R28 */
{ 29, 0x80, 32 }, /* R29 */
{ 30, 0x84, 32 }, /* R30 (LP) */
{ 31, 0x00, 32 }, /* R31 (SP) */
{ 32, 0x04, 32 }, /* PSW */
{ 33, 0x08, 32 }, /* IPC */
{ 34, 0x0C, 32 }, /* IPSW */
{ 35, 0x10, 32 }, /* IFC_LP */
};
static const struct stack_register_offset rtos_metal_rv32_stack_offsets[] = {
/* zero isn't on the stack. By making its offset -1 we leave the value at 0
* inside rtos_generic_stack_read(). */
@ -436,14 +397,6 @@ const struct rtos_register_stacking rtos_standard_cortex_r4_stacking = {
.register_offsets = rtos_standard_cortex_r4_stack_offsets
};
const struct rtos_register_stacking rtos_standard_nds32_n1068_stacking = {
.stack_registers_size = 0x90,
.stack_growth_direction = -1,
.num_output_registers = 32,
.calculate_process_stack = rtos_generic_stack_align8,
.register_offsets = rtos_standard_nds32_n1068_stack_offsets
};
const struct rtos_register_stacking rtos_metal_rv32_stacking = {
.stack_registers_size = (32 + 2) * 4,
.stack_growth_direction = -1,

View File

@ -18,7 +18,6 @@ extern const struct rtos_register_stacking rtos_standard_cortex_m3_stacking;
extern const struct rtos_register_stacking rtos_standard_cortex_m4f_stacking;
extern const struct rtos_register_stacking rtos_standard_cortex_m4f_fpu_stacking;
extern const struct rtos_register_stacking rtos_standard_cortex_r4_stacking;
extern const struct rtos_register_stacking rtos_standard_nds32_n1068_stacking;
target_addr_t rtos_generic_stack_align8(struct target *target,
const uint8_t *stack_data, const struct rtos_register_stacking *stacking,
target_addr_t stack_ptr);

View File

@ -19,7 +19,6 @@ noinst_LTLIBRARIES += %D%/libtarget.la
$(ARM_MISC_SRC) \
$(AVR32_SRC) \
$(MIPS32_SRC) \
$(NDS32_SRC) \
$(STM8_SRC) \
$(INTEL_IA32_SRC) \
$(ESIRISC_SRC) \
@ -134,18 +133,6 @@ MIPS64_SRC = \
%D%/trace.c \
%D%/mips_ejtag.c
NDS32_SRC = \
%D%/nds32.c \
%D%/nds32_reg.c \
%D%/nds32_cmd.c \
%D%/nds32_disassembler.c \
%D%/nds32_tlb.c \
%D%/nds32_v2.c \
%D%/nds32_v3_common.c \
%D%/nds32_v3.c \
%D%/nds32_v3m.c \
%D%/nds32_aice.c
STM8_SRC = \
%D%/stm8.c
@ -235,18 +222,6 @@ ARC_SRC = \
%D%/avr32_jtag.h \
%D%/avr32_mem.h \
%D%/avr32_regs.h \
%D%/nds32.h \
%D%/nds32_cmd.h \
%D%/nds32_disassembler.h \
%D%/nds32_edm.h \
%D%/nds32_insn.h \
%D%/nds32_reg.h \
%D%/nds32_tlb.h \
%D%/nds32_v2.h \
%D%/nds32_v3_common.h \
%D%/nds32_v3.h \
%D%/nds32_v3m.h \
%D%/nds32_aice.h \
%D%/semihosting_common.h \
%D%/stm8.h \
%D%/lakemont.h \

View File

@ -2546,11 +2546,7 @@ static int aarch64_examine_first(struct target *target)
if (!pc)
return ERROR_FAIL;
if (armv8->debug_ap) {
dap_put_ap(armv8->debug_ap);
armv8->debug_ap = NULL;
}
if (!armv8->debug_ap) {
if (pc->adiv5_config.ap_num == DP_APSEL_INVALID) {
/* Search for the APB-AB */
retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
@ -2565,6 +2561,7 @@ static int aarch64_examine_first(struct target *target)
return ERROR_FAIL;
}
}
}
retval = mem_ap_init(armv8->debug_ap);
if (retval != ERROR_OK) {

View File

@ -177,6 +177,19 @@ static int swd_multidrop_select_inner(struct adiv5_dap *dap, uint32_t *dpidr_ptr
assert(dap_is_multidrop(dap));
swd_send_sequence(dap, LINE_RESET);
/* From ARM IHI 0074C ADIv6.0, chapter B4.3.3 "Connection and line reset
* sequence":
* - line reset sets DP_SELECT_DPBANK to zero;
* - read of DP_DPIDR takes the connection out of reset;
* - write of DP_TARGETSEL keeps the connection in reset;
* - other accesses return protocol error (SWDIO not driven by target).
*
* Read DP_DPIDR to get out of reset. Initialize dap->select to zero to
* skip the write to DP_SELECT, avoiding the protocol error. Set again
* dap->select to DP_SELECT_INVALID because the rest of the register is
* unknown after line reset.
*/
dap->select = 0;
retval = swd_queue_dp_write_inner(dap, DP_TARGETSEL, dap->multidrop_targetsel);
if (retval != ERROR_OK)
@ -196,6 +209,8 @@ static int swd_multidrop_select_inner(struct adiv5_dap *dap, uint32_t *dpidr_ptr
return retval;
}
dap->select = DP_SELECT_INVALID;
retval = swd_queue_dp_read_inner(dap, DP_DLPIDR, &dlpidr);
if (retval != ERROR_OK)
return retval;
@ -257,6 +272,8 @@ static int swd_multidrop_select(struct adiv5_dap *dap)
LOG_DEBUG("Failed to select multidrop %s, retrying...",
adiv5_dap_name(dap));
/* we going to retry localy, do not ask for full reconnect */
dap->do_reconnect = false;
}
return retval;
@ -342,6 +359,7 @@ static int swd_connect_single(struct adiv5_dap *dap)
dap->switch_through_dormant = !dap->switch_through_dormant;
} while (timeval_ms() < timeout);
dap->select = DP_SELECT_INVALID;
if (retval != ERROR_OK) {

View File

@ -113,7 +113,7 @@ static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR(ap->dap), (uint32_t)(tar & 0xffffffffUL));
if (retval == ERROR_OK && is_64bit_ap(ap)) {
/* See if bits 63:32 of tar is different from last setting */
if ((ap->tar_value >> 32) != (tar >> 32))
if (!ap->tar_valid || (ap->tar_value >> 32) != (tar >> 32))
retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64(ap->dap), (uint32_t)(tar >> 32));
}
if (retval != ERROR_OK) {

View File

@ -116,27 +116,27 @@ static const struct {
{ ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
/* ARMv8-M specific registers */
{ ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
{ ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
/* ARMv8-M security extension (TrustZone) specific registers */
{ ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
{ ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
{ ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
{ ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
{ ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
{ ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
{ ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
{ ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "org.gnu.gdb.arm.secext" },
{ ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
{ ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
{ ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
{ ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
{ ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
{ ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
{ ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
{ ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
{ ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
{ ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
{ ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.secext" },
/* FPU registers */
{ ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
@ -182,8 +182,11 @@ int armv7m_restore_context(struct target *target)
for (i = cache->num_regs - 1; i >= 0; i--) {
struct reg *r = &cache->reg_list[i];
if (r->exist && r->dirty)
armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
if (r->exist && r->dirty) {
int retval = armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
if (retval != ERROR_OK)
return retval;
}
}
return ERROR_OK;
@ -528,11 +531,17 @@ int armv7m_start_algorithm(struct target *target,
/* Store all non-debug execution registers to armv7m_algorithm_info context */
for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
struct reg *reg = &armv7m->arm.core_cache->reg_list[i];
if (!reg->exist)
continue;
armv7m_algorithm_info->context[i] = buf_get_u32(
armv7m->arm.core_cache->reg_list[i].value,
0,
32);
if (!reg->valid)
armv7m_get_core_reg(reg);
if (!reg->valid)
LOG_TARGET_WARNING(target, "Storing invalid register %s", reg->name);
armv7m_algorithm_info->context[i] = buf_get_u32(reg->value, 0, 32);
}
for (int i = 0; i < num_mem_params; i++) {
@ -685,16 +694,19 @@ int armv7m_wait_algorithm(struct target *target,
}
for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
struct reg *reg = &armv7m->arm.core_cache->reg_list[i];
if (!reg->exist)
continue;
uint32_t regvalue;
regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
regvalue = buf_get_u32(reg->value, 0, 32);
if (regvalue != armv7m_algorithm_info->context[i]) {
LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
armv7m->arm.core_cache->reg_list[i].name,
armv7m_algorithm_info->context[i]);
buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
reg->name, armv7m_algorithm_info->context[i]);
buf_set_u32(reg->value,
0, 32, armv7m_algorithm_info->context[i]);
armv7m->arm.core_cache->reg_list[i].valid = true;
armv7m->arm.core_cache->reg_list[i].dirty = true;
reg->valid = true;
reg->dirty = true;
}
}
@ -726,8 +738,9 @@ int armv7m_arch_state(struct target *target)
ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
LOG_USER("target halted due to %s, current mode: %s %s\n"
LOG_USER("[%s] halted due to %s, current mode: %s %s\n"
"xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
target_name(target),
debug_reason_name(target),
arm_mode_name(arm->core_mode),
armv7m_exception_string(armv7m->exception_number),

View File

@ -114,6 +114,166 @@ const char *armv8_mode_name(unsigned psr_mode)
return "UNRECOGNIZED";
}
static uint8_t armv8_pa_size(uint32_t ps)
{
uint8_t ret = 0;
switch (ps) {
case 0:
ret = 32;
break;
case 1:
ret = 36;
break;
case 2:
ret = 40;
break;
case 3:
ret = 42;
break;
case 4:
ret = 44;
break;
case 5:
ret = 48;
break;
default:
LOG_INFO("Unknown physical address size");
break;
}
return ret;
}
static __attribute__((unused)) int armv8_read_ttbcr32(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
uint32_t ttbcr, ttbcr_n;
int retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* MRC p15,0,<Rt>,c2,c0,2 ; Read CP15 Translation Table Base Control Register*/
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 2, 0, 2),
&ttbcr);
if (retval != ERROR_OK)
goto done;
LOG_DEBUG("ttbcr %" PRIx32, ttbcr);
ttbcr_n = ttbcr & 0x7;
armv8->armv8_mmu.ttbcr = ttbcr;
/*
* ARM Architecture Reference Manual (ARMv7-A and ARMv7-R edition),
* document # ARM DDI 0406C
*/
armv8->armv8_mmu.ttbr_range[0] = 0xffffffff >> ttbcr_n;
armv8->armv8_mmu.ttbr_range[1] = 0xffffffff;
armv8->armv8_mmu.ttbr_mask[0] = 0xffffffff << (14 - ttbcr_n);
armv8->armv8_mmu.ttbr_mask[1] = 0xffffffff << 14;
LOG_DEBUG("ttbr1 %s, ttbr0_mask %" PRIx32 " ttbr1_mask %" PRIx32,
(ttbcr_n != 0) ? "used" : "not used",
armv8->armv8_mmu.ttbr_mask[0],
armv8->armv8_mmu.ttbr_mask[1]);
done:
dpm->finish(dpm);
return retval;
}
static int armv8_read_ttbcr(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
struct arm *arm = &armv8->arm;
uint32_t ttbcr;
uint64_t ttbcr_64;
int retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* clear ttrr1_used and ttbr0_mask */
memset(&armv8->armv8_mmu.ttbr1_used, 0, sizeof(armv8->armv8_mmu.ttbr1_used));
memset(&armv8->armv8_mmu.ttbr0_mask, 0, sizeof(armv8->armv8_mmu.ttbr0_mask));
switch (armv8_curel_from_core_mode(arm->core_mode)) {
case SYSTEM_CUREL_EL3:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_TCR_EL3, 0),
&ttbcr);
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL3, 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
armv8->va_size = 64 - (ttbcr & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
armv8->page_size = (ttbcr >> 14) & 3;
break;
case SYSTEM_CUREL_EL2:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_TCR_EL2, 0),
&ttbcr);
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL2, 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
armv8->va_size = 64 - (ttbcr & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
armv8->page_size = (ttbcr >> 14) & 3;
break;
case SYSTEM_CUREL_EL0:
armv8_dpm_modeswitch(dpm, ARMV8_64_EL1H);
/* fall through */
case SYSTEM_CUREL_EL1:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TCR_EL1, 0),
&ttbcr_64);
armv8->va_size = 64 - (ttbcr_64 & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr_64 >> 32) & 7);
armv8->page_size = (ttbcr_64 >> 14) & 3;
armv8->armv8_mmu.ttbr1_used = (((ttbcr_64 >> 16) & 0x3F) != 0) ? 1 : 0;
armv8->armv8_mmu.ttbr0_mask = 0x0000FFFFFFFFFFFF;
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL1 | (armv8->armv8_mmu.ttbr1_used), 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
break;
default:
LOG_ERROR("unknown core state");
retval = ERROR_FAIL;
break;
}
if (retval != ERROR_OK)
goto done;
if (armv8->armv8_mmu.ttbr1_used == 1)
LOG_INFO("TTBR0 access above %" PRIx64, (uint64_t)(armv8->armv8_mmu.ttbr0_mask));
done:
armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
dpm->finish(dpm);
return retval;
}
static int armv8_get_pauth_mask(struct armv8_common *armv8, uint64_t *mask)
{
struct arm *arm = &armv8->arm;
int retval = ERROR_OK;
if (armv8->va_size == 0)
retval = armv8_read_ttbcr(arm->target);
if (retval != ERROR_OK)
return retval;
*mask = ~(((uint64_t)1 << armv8->va_size) - 1);
return retval;
}
static int armv8_read_reg(struct armv8_common *armv8, int regnum, uint64_t *regval)
{
struct arm_dpm *dpm = &armv8->dpm;
@ -191,6 +351,10 @@ static int armv8_read_reg(struct armv8_common *armv8, int regnum, uint64_t *regv
ARMV8_MRS(SYSTEM_SPSR_EL3, 0), &value);
value_64 = value;
break;
case ARMV8_PAUTH_CMASK:
case ARMV8_PAUTH_DMASK:
retval = armv8_get_pauth_mask(armv8, &value_64);
break;
default:
retval = ERROR_FAIL;
break;
@ -772,152 +936,6 @@ static __attribute__((unused)) void armv8_show_fault_registers(struct target *ta
armv8_show_fault_registers32(armv8);
}
static uint8_t armv8_pa_size(uint32_t ps)
{
uint8_t ret = 0;
switch (ps) {
case 0:
ret = 32;
break;
case 1:
ret = 36;
break;
case 2:
ret = 40;
break;
case 3:
ret = 42;
break;
case 4:
ret = 44;
break;
case 5:
ret = 48;
break;
default:
LOG_INFO("Unknown physical address size");
break;
}
return ret;
}
static __attribute__((unused)) int armv8_read_ttbcr32(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
uint32_t ttbcr, ttbcr_n;
int retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* MRC p15,0,<Rt>,c2,c0,2 ; Read CP15 Translation Table Base Control Register*/
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 2, 0, 2),
&ttbcr);
if (retval != ERROR_OK)
goto done;
LOG_DEBUG("ttbcr %" PRIx32, ttbcr);
ttbcr_n = ttbcr & 0x7;
armv8->armv8_mmu.ttbcr = ttbcr;
/*
* ARM Architecture Reference Manual (ARMv7-A and ARMv7-R edition),
* document # ARM DDI 0406C
*/
armv8->armv8_mmu.ttbr_range[0] = 0xffffffff >> ttbcr_n;
armv8->armv8_mmu.ttbr_range[1] = 0xffffffff;
armv8->armv8_mmu.ttbr_mask[0] = 0xffffffff << (14 - ttbcr_n);
armv8->armv8_mmu.ttbr_mask[1] = 0xffffffff << 14;
LOG_DEBUG("ttbr1 %s, ttbr0_mask %" PRIx32 " ttbr1_mask %" PRIx32,
(ttbcr_n != 0) ? "used" : "not used",
armv8->armv8_mmu.ttbr_mask[0],
armv8->armv8_mmu.ttbr_mask[1]);
done:
dpm->finish(dpm);
return retval;
}
static __attribute__((unused)) int armv8_read_ttbcr(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = armv8->arm.dpm;
struct arm *arm = &armv8->arm;
uint32_t ttbcr;
uint64_t ttbcr_64;
int retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* clear ttrr1_used and ttbr0_mask */
memset(&armv8->armv8_mmu.ttbr1_used, 0, sizeof(armv8->armv8_mmu.ttbr1_used));
memset(&armv8->armv8_mmu.ttbr0_mask, 0, sizeof(armv8->armv8_mmu.ttbr0_mask));
switch (armv8_curel_from_core_mode(arm->core_mode)) {
case SYSTEM_CUREL_EL3:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_TCR_EL3, 0),
&ttbcr);
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL3, 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
armv8->va_size = 64 - (ttbcr & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
armv8->page_size = (ttbcr >> 14) & 3;
break;
case SYSTEM_CUREL_EL2:
retval = dpm->instr_read_data_r0(dpm,
ARMV8_MRS(SYSTEM_TCR_EL2, 0),
&ttbcr);
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL2, 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
armv8->va_size = 64 - (ttbcr & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
armv8->page_size = (ttbcr >> 14) & 3;
break;
case SYSTEM_CUREL_EL0:
armv8_dpm_modeswitch(dpm, ARMV8_64_EL1H);
/* fall through */
case SYSTEM_CUREL_EL1:
retval = dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TCR_EL1, 0),
&ttbcr_64);
armv8->va_size = 64 - (ttbcr_64 & 0x3F);
armv8->pa_size = armv8_pa_size((ttbcr_64 >> 32) & 7);
armv8->page_size = (ttbcr_64 >> 14) & 3;
armv8->armv8_mmu.ttbr1_used = (((ttbcr_64 >> 16) & 0x3F) != 0) ? 1 : 0;
armv8->armv8_mmu.ttbr0_mask = 0x0000FFFFFFFFFFFF;
retval += dpm->instr_read_data_r0_64(dpm,
ARMV8_MRS(SYSTEM_TTBR0_EL1 | (armv8->armv8_mmu.ttbr1_used), 0),
&armv8->ttbr_base);
if (retval != ERROR_OK)
goto done;
break;
default:
LOG_ERROR("unknown core state");
retval = ERROR_FAIL;
break;
}
if (retval != ERROR_OK)
goto done;
if (armv8->armv8_mmu.ttbr1_used == 1)
LOG_INFO("TTBR0 access above %" PRIx64, (uint64_t)(armv8->armv8_mmu.ttbr0_mask));
done:
armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
dpm->finish(dpm);
return retval;
}
/* method adapted to cortex A : reused arm v4 v5 method*/
int armv8_mmu_translate_va(struct target *target, target_addr_t va, target_addr_t *val)
{
@ -1083,6 +1101,15 @@ COMMAND_HANDLER(armv8_handle_exception_catch_command)
return ERROR_OK;
}
COMMAND_HANDLER(armv8_pauth_command)
{
struct target *target = get_current_target(CMD_CTX);
struct armv8_common *armv8 = target_to_armv8(target);
return CALL_COMMAND_HANDLER(handle_command_parse_bool,
&armv8->enable_pauth,
"pauth feature");
}
int armv8_handle_cache_info_command(struct command_invocation *cmd,
struct armv8_cache_common *armv8_cache)
{
@ -1421,6 +1448,8 @@ static const struct {
NULL},
{ ARMV8_SPSR_EL3, "SPSR_EL3", 32, ARMV8_64_EL3H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
NULL},
{ ARMV8_PAUTH_DMASK, "pauth_dmask", 64, ARM_MODE_ANY, REG_TYPE_UINT64, NULL, "org.gnu.gdb.aarch64.pauth", NULL},
{ ARMV8_PAUTH_CMASK, "pauth_cmask", 64, ARM_MODE_ANY, REG_TYPE_UINT64, NULL, "org.gnu.gdb.aarch64.pauth", NULL},
};
static const struct {
@ -1650,6 +1679,9 @@ struct reg_cache *armv8_build_reg_cache(struct target *target)
*reg_list[i].reg_data_type = *armv8_regs[i].data_type;
} else
LOG_ERROR("unable to allocate reg type list");
if (i == ARMV8_PAUTH_CMASK || i == ARMV8_PAUTH_DMASK)
reg_list[i].hidden = !armv8->enable_pauth;
}
arm->cpsr = reg_list + ARMV8_XPSR;
@ -1745,6 +1777,17 @@ const struct command_registration armv8_command_handlers[] = {
.help = "configure exception catch",
.usage = "[(nsec_el1,nsec_el2,sec_el1,sec_el3)+,off]",
},
{
.name = "pauth",
.handler = armv8_pauth_command,
.mode = COMMAND_CONFIG,
.help = "enable or disable providing GDB with an 8-bytes mask to "
"remove signature bits added by pointer authentication."
"Pointer authentication feature is broken until gdb 12.1, going to be fixed. "
"Consider using a newer version of gdb if you want enable "
"pauth feature.",
.usage = "[on|off]",
},
COMMAND_REGISTRATION_DONE
};

View File

@ -98,6 +98,10 @@ enum {
ARMV8_ESR_EL3 = 75,
ARMV8_SPSR_EL3 = 76,
/* Pseudo registers defined by GDB to remove the pauth signature. */
ARMV8_PAUTH_DMASK = 77,
ARMV8_PAUTH_CMASK = 78,
ARMV8_LAST_REG,
};
@ -205,6 +209,9 @@ struct armv8_common {
struct arm_cti *cti;
/* True if OpenOCD provides pointer auth related info to GDB */
bool enable_pauth;
/* last run-control command issued to this target (resume, halt, step) */
enum run_control_op last_run_control_op;

View File

@ -2246,7 +2246,7 @@ static int cortex_a_write_cpu_memory(struct target *target,
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
if (retval != ERROR_OK)
goto out;
return retval;
/* Mark R0 as dirty. */
arm_reg_current(arm, 0)->dirty = true;
@ -2254,16 +2254,16 @@ static int cortex_a_write_cpu_memory(struct target *target,
/* Read DFAR and DFSR, as they will be modified in the event of a fault. */
retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
if (retval != ERROR_OK)
goto out;
return retval;
/* Get the memory address into R0. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRRX, address);
if (retval != ERROR_OK)
goto out;
return retval;
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
if (retval != ERROR_OK)
goto out;
return retval;
if (size == 4 && (address % 4) == 0) {
/* We are doing a word-aligned transfer, so use fast mode. */
@ -2288,7 +2288,6 @@ static int cortex_a_write_cpu_memory(struct target *target,
retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
}
out:
final_retval = retval;
/* Switch to non-blocking mode if not already in that mode. */
@ -2564,7 +2563,7 @@ static int cortex_a_read_cpu_memory(struct target *target,
/* Switch to non-blocking mode if not already in that mode. */
retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
if (retval != ERROR_OK)
goto out;
return retval;
/* Mark R0 as dirty. */
arm_reg_current(arm, 0)->dirty = true;
@ -2572,16 +2571,16 @@ static int cortex_a_read_cpu_memory(struct target *target,
/* Read DFAR and DFSR, as they will be modified in the event of a fault. */
retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
if (retval != ERROR_OK)
goto out;
return retval;
/* Get the memory address into R0. */
retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRRX, address);
if (retval != ERROR_OK)
goto out;
return retval;
retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
if (retval != ERROR_OK)
goto out;
return retval;
if (size == 4 && (address % 4) == 0) {
/* We are doing a word-aligned transfer, so use fast mode. */
@ -2607,7 +2606,6 @@ static int cortex_a_read_cpu_memory(struct target *target,
retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
}
out:
final_retval = retval;
/* Switch to non-blocking mode if not already in that mode. */
@ -2874,11 +2872,7 @@ static int cortex_a_examine_first(struct target *target)
int retval = ERROR_OK;
uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
if (armv7a->debug_ap) {
dap_put_ap(armv7a->debug_ap);
armv7a->debug_ap = NULL;
}
if (!armv7a->debug_ap) {
if (pc->ap_num == DP_APSEL_INVALID) {
/* Search for the APB-AP - it is needed for access to debug registers */
retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
@ -2893,6 +2887,7 @@ static int cortex_a_examine_first(struct target *target)
return ERROR_FAIL;
}
}
}
retval = mem_ap_init(armv7a->debug_ap);
if (retval != ERROR_OK) {

View File

@ -28,6 +28,7 @@
#include "register.h"
#include "arm_opcodes.h"
#include "arm_semihosting.h"
#include "smp.h"
#include <helper/time_support.h>
#include <rtt/rtt.h>
@ -871,7 +872,7 @@ static int cortex_m_debug_entry(struct target *target)
return ERROR_OK;
}
static int cortex_m_poll(struct target *target)
static int cortex_m_poll_one(struct target *target)
{
int detected_failure = ERROR_OK;
int retval = ERROR_OK;
@ -879,16 +880,6 @@ static int cortex_m_poll(struct target *target)
struct cortex_m_common *cortex_m = target_to_cm(target);
struct armv7m_common *armv7m = &cortex_m->armv7m;
/* Check if debug_ap is available to prevent segmentation fault.
* If the re-examination after an error does not find a MEM-AP
* (e.g. the target stopped communicating), debug_ap pointer
* can suddenly become NULL.
*/
if (!armv7m->debug_ap) {
target->state = TARGET_UNKNOWN;
return ERROR_TARGET_NOT_EXAMINED;
}
/* Read from Debug Halting Control and Status Register */
retval = cortex_m_read_dhcsr_atomic_sticky(target);
if (retval != ERROR_OK) {
@ -944,21 +935,26 @@ static int cortex_m_poll(struct target *target)
if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
retval = cortex_m_debug_entry(target);
if (retval != ERROR_OK)
return retval;
if (arm_semihosting(target, &retval) != 0)
/* arm_semihosting needs to know registers, don't run if debug entry returned error */
if (retval == ERROR_OK && arm_semihosting(target, &retval) != 0)
return retval;
if (target->smp) {
LOG_TARGET_DEBUG(target, "postpone target event 'halted'");
target->smp_halt_event_postponed = true;
} else {
/* regardless of errors returned in previous code update state */
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}
}
if (prev_target_state == TARGET_DEBUG_RUNNING) {
retval = cortex_m_debug_entry(target);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
}
if (retval != ERROR_OK)
return retval;
}
if (target->state == TARGET_UNKNOWN) {
@ -991,7 +987,104 @@ static int cortex_m_poll(struct target *target)
return retval;
}
static int cortex_m_halt(struct target *target)
static int cortex_m_halt_one(struct target *target);
static int cortex_m_smp_halt_all(struct list_head *smp_targets)
{
int retval = ERROR_OK;
struct target_list *head;
foreach_smp_target(head, smp_targets) {
struct target *curr = head->target;
if (!target_was_examined(curr))
continue;
if (curr->state == TARGET_HALTED)
continue;
int ret2 = cortex_m_halt_one(curr);
if (retval == ERROR_OK)
retval = ret2; /* store the first error code ignore others */
}
return retval;
}
static int cortex_m_smp_post_halt_poll(struct list_head *smp_targets)
{
int retval = ERROR_OK;
struct target_list *head;
foreach_smp_target(head, smp_targets) {
struct target *curr = head->target;
if (!target_was_examined(curr))
continue;
/* skip targets that were already halted */
if (curr->state == TARGET_HALTED)
continue;
int ret2 = cortex_m_poll_one(curr);
if (retval == ERROR_OK)
retval = ret2; /* store the first error code ignore others */
}
return retval;
}
static int cortex_m_poll_smp(struct list_head *smp_targets)
{
int retval = ERROR_OK;
struct target_list *head;
bool halted = false;
foreach_smp_target(head, smp_targets) {
struct target *curr = head->target;
if (curr->smp_halt_event_postponed) {
halted = true;
break;
}
}
if (halted) {
retval = cortex_m_smp_halt_all(smp_targets);
int ret2 = cortex_m_smp_post_halt_poll(smp_targets);
if (retval == ERROR_OK)
retval = ret2; /* store the first error code ignore others */
foreach_smp_target(head, smp_targets) {
struct target *curr = head->target;
if (!curr->smp_halt_event_postponed)
continue;
curr->smp_halt_event_postponed = false;
if (curr->state == TARGET_HALTED) {
LOG_TARGET_DEBUG(curr, "sending postponed target event 'halted'");
target_call_event_callbacks(curr, TARGET_EVENT_HALTED);
}
}
/* There is no need to set gdb_service->target
* as hwthread_update_threads() selects an interesting thread
* by its own
*/
}
return retval;
}
static int cortex_m_poll(struct target *target)
{
int retval = cortex_m_poll_one(target);
if (target->smp) {
struct target_list *last;
last = list_last_entry(target->smp_targets, struct target_list, lh);
if (target == last->target)
/* After the last target in SMP group has been polled
* check for postponed halted events and eventually halt and re-poll
* other targets */
cortex_m_poll_smp(target->smp_targets);
}
return retval;
}
static int cortex_m_halt_one(struct target *target)
{
LOG_TARGET_DEBUG(target, "target->state: %s", target_state_name(target));
@ -1029,6 +1122,14 @@ static int cortex_m_halt(struct target *target)
return ERROR_OK;
}
static int cortex_m_halt(struct target *target)
{
if (target->smp)
return cortex_m_smp_halt_all(target->smp_targets);
else
return cortex_m_halt_one(target);
}
static int cortex_m_soft_reset_halt(struct target *target)
{
struct cortex_m_common *cortex_m = target_to_cm(target);
@ -1106,8 +1207,8 @@ void cortex_m_enable_breakpoints(struct target *target)
}
}
static int cortex_m_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
static int cortex_m_restore_one(struct target *target, bool current,
target_addr_t *address, bool handle_breakpoints, bool debug_execution)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct breakpoint *breakpoint = NULL;
@ -1115,7 +1216,7 @@ static int cortex_m_resume(struct target *target, int current,
struct reg *r;
if (target->state != TARGET_HALTED) {
LOG_TARGET_WARNING(target, "target not halted");
LOG_TARGET_ERROR(target, "target not halted");
return ERROR_TARGET_NOT_HALTED;
}
@ -1157,7 +1258,7 @@ static int cortex_m_resume(struct target *target, int current,
/* current = 1: continue on current pc, otherwise continue at <address> */
r = armv7m->arm.pc;
if (!current) {
buf_set_u32(r->value, 0, 32, address);
buf_set_u32(r->value, 0, 32, *address);
r->dirty = true;
r->valid = true;
}
@ -1171,8 +1272,12 @@ static int cortex_m_resume(struct target *target, int current,
armv7m_maybe_skip_bkpt_inst(target, NULL);
resume_pc = buf_get_u32(r->value, 0, 32);
if (current)
*address = resume_pc;
armv7m_restore_context(target);
int retval = armv7m_restore_context(target);
if (retval != ERROR_OK)
return retval;
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
@ -1182,34 +1287,99 @@ static int cortex_m_resume(struct target *target, int current,
LOG_TARGET_DEBUG(target, "unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
breakpoint->address,
breakpoint->unique_id);
cortex_m_unset_breakpoint(target, breakpoint);
cortex_m_single_step_core(target);
cortex_m_set_breakpoint(target, breakpoint);
retval = cortex_m_unset_breakpoint(target, breakpoint);
if (retval == ERROR_OK)
retval = cortex_m_single_step_core(target);
int ret2 = cortex_m_set_breakpoint(target, breakpoint);
if (retval != ERROR_OK)
return retval;
if (ret2 != ERROR_OK)
return ret2;
}
}
return ERROR_OK;
}
static int cortex_m_restart_one(struct target *target, bool debug_execution)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
/* Restart core */
cortex_m_set_maskints_for_run(target);
cortex_m_write_debug_halt_mask(target, 0, C_HALT);
target->debug_reason = DBG_REASON_NOTHALTED;
/* registers are now invalid */
register_cache_invalidate(armv7m->arm.core_cache);
if (!debug_execution) {
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
LOG_TARGET_DEBUG(target, "target resumed at 0x%" PRIx32 "", resume_pc);
} else {
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
LOG_TARGET_DEBUG(target, "target debug resumed at 0x%" PRIx32 "", resume_pc);
}
return ERROR_OK;
}
static int cortex_m_restore_smp(struct target *target, bool handle_breakpoints)
{
struct target_list *head;
target_addr_t address;
foreach_smp_target(head, target->smp_targets) {
struct target *curr = head->target;
/* skip calling target */
if (curr == target)
continue;
if (!target_was_examined(curr))
continue;
/* skip running targets */
if (curr->state == TARGET_RUNNING)
continue;
int retval = cortex_m_restore_one(curr, true, &address,
handle_breakpoints, false);
if (retval != ERROR_OK)
return retval;
retval = cortex_m_restart_one(curr, false);
if (retval != ERROR_OK)
return retval;
LOG_TARGET_DEBUG(curr, "SMP resumed at " TARGET_ADDR_FMT, address);
}
return ERROR_OK;
}
static int cortex_m_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
int retval = cortex_m_restore_one(target, !!current, &address, !!handle_breakpoints, !!debug_execution);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "context restore failed, aborting resume");
return retval;
}
if (target->smp && !debug_execution) {
retval = cortex_m_restore_smp(target, !!handle_breakpoints);
if (retval != ERROR_OK)
LOG_WARNING("resume of a SMP target failed, trying to resume current one");
}
cortex_m_restart_one(target, !!debug_execution);
if (retval != ERROR_OK) {
LOG_TARGET_ERROR(target, "resume failed");
return retval;
}
LOG_TARGET_DEBUG(target, "%sresumed at " TARGET_ADDR_FMT,
debug_execution ? "debug " : "", address);
return ERROR_OK;
}
/* int irqstepcount = 0; */
static int cortex_m_step(struct target *target, int current,
target_addr_t address, int handle_breakpoints)
@ -1227,6 +1397,11 @@ static int cortex_m_step(struct target *target, int current,
return ERROR_TARGET_NOT_HALTED;
}
/* Just one of SMP cores will step. Set the gdb control
* target to current one or gdb miss gdb-end event */
if (target->smp && target->gdb_service)
target->gdb_service->target = target;
/* current = 1: continue on current pc, otherwise continue at <address> */
if (!current) {
buf_set_u32(pc->value, 0, 32, address);
@ -1408,8 +1583,9 @@ static int cortex_m_assert_reset(struct target *target)
struct armv7m_common *armv7m = &cortex_m->armv7m;
enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
LOG_TARGET_DEBUG(target, "target->state: %s",
target_state_name(target));
LOG_TARGET_DEBUG(target, "target->state: %s,%s examined",
target_state_name(target),
target_was_examined(target) ? "" : " not");
enum reset_types jtag_reset_config = jtag_get_reset_config();
@ -1428,24 +1604,40 @@ static int cortex_m_assert_reset(struct target *target)
bool srst_asserted = false;
if (!target_was_examined(target)) {
if (jtag_reset_config & RESET_HAS_SRST) {
adapter_assert_reset();
if (target->reset_halt)
LOG_TARGET_ERROR(target, "Target not examined, will not halt after reset!");
return ERROR_OK;
} else {
LOG_TARGET_ERROR(target, "Target not examined, reset NOT asserted!");
return ERROR_FAIL;
}
}
if ((jtag_reset_config & RESET_HAS_SRST) &&
(jtag_reset_config & RESET_SRST_NO_GATING)) {
((jtag_reset_config & RESET_SRST_NO_GATING) || !armv7m->debug_ap)) {
/* If we have no debug_ap, asserting SRST is the only thing
* we can do now */
adapter_assert_reset();
srst_asserted = true;
}
/* TODO: replace the hack calling target_examine_one()
* as soon as a better reset framework is available */
if (!target_was_examined(target) && !target->defer_examine
&& srst_asserted && (jtag_reset_config & RESET_SRST_NO_GATING)) {
LOG_TARGET_DEBUG(target, "Trying to re-examine under reset");
target_examine_one(target);
}
/* We need at least debug_ap to go further.
* Inform user and bail out if we don't have one. */
if (!armv7m->debug_ap) {
if (srst_asserted) {
if (target->reset_halt)
LOG_TARGET_ERROR(target, "Debug AP not available, will not halt after reset!");
/* Do not propagate error: reset was asserted, proceed to deassert! */
target->state = TARGET_RESET;
register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
return ERROR_OK;
} else {
LOG_TARGET_ERROR(target, "Debug AP not available, reset NOT asserted!");
return ERROR_FAIL;
}
}
/* Enable debug requests */
int retval = cortex_m_read_dhcsr_atomic_sticky(target);
@ -1546,7 +1738,7 @@ static int cortex_m_assert_reset(struct target *target)
if (retval != ERROR_OK)
return retval;
if (target->reset_halt) {
if (target->reset_halt && target_was_examined(target)) {
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
@ -1559,8 +1751,9 @@ static int cortex_m_deassert_reset(struct target *target)
{
struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
LOG_TARGET_DEBUG(target, "target->state: %s",
target_state_name(target));
LOG_TARGET_DEBUG(target, "target->state: %s,%s examined",
target_state_name(target),
target_was_examined(target) ? "" : " not");
/* deassert reset lines */
adapter_deassert_reset();
@ -1569,7 +1762,7 @@ static int cortex_m_deassert_reset(struct target *target)
if ((jtag_reset_config & RESET_HAS_SRST) &&
!(jtag_reset_config & RESET_SRST_NO_GATING) &&
target_was_examined(target)) {
armv7m->debug_ap) {
int retval = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
if (retval != ERROR_OK) {
@ -2262,6 +2455,22 @@ static void cortex_m_dwt_free(struct target *target)
cm->dwt_cache = NULL;
}
static bool cortex_m_has_tz(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
uint32_t dauthstatus;
if (armv7m->arm.arch != ARM_ARCH_V8M)
return false;
int retval = target_read_u32(target, DAUTHSTATUS, &dauthstatus);
if (retval != ERROR_OK) {
LOG_WARNING("Error reading DAUTHSTATUS register");
return false;
}
return (dauthstatus & DAUTHSTATUS_SID_MASK) != 0;
}
#define MVFR0 0xe000ef40
#define MVFR1 0xe000ef44
@ -2293,11 +2502,7 @@ int cortex_m_examine(struct target *target)
/* hla_target shares the examine handler but does not support
* all its calls */
if (!armv7m->is_hla_target) {
if (armv7m->debug_ap) {
dap_put_ap(armv7m->debug_ap);
armv7m->debug_ap = NULL;
}
if (!armv7m->debug_ap) {
if (cortex_m->apsel == DP_APSEL_INVALID) {
/* Search for the MEM-AP */
retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap);
@ -2312,6 +2517,7 @@ int cortex_m_examine(struct target *target)
return ERROR_FAIL;
}
}
}
armv7m->debug_ap->memaccess_tck = 8;
@ -2393,7 +2599,7 @@ int cortex_m_examine(struct target *target)
for (size_t idx = ARMV7M_FPU_FIRST_REG; idx <= ARMV7M_FPU_LAST_REG; idx++)
armv7m->arm.core_cache->reg_list[idx].exist = false;
if (armv7m->arm.arch != ARM_ARCH_V8M)
if (!cortex_m_has_tz(target))
for (size_t idx = ARMV8M_FIRST_REG; idx <= ARMV8M_LAST_REG; idx++)
armv7m->arm.core_cache->reg_list[idx].exist = false;
@ -2829,6 +3035,9 @@ static const struct command_registration cortex_m_exec_command_handlers[] = {
.help = "configure software reset handling",
.usage = "['sysresetreq'|'vectreset']",
},
{
.chain = smp_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration cortex_m_command_handlers[] = {

View File

@ -68,6 +68,9 @@ struct cortex_m_part_info {
#define DCB_DEMCR 0xE000EDFC
#define DCB_DSCSR 0xE000EE08
#define DAUTHSTATUS 0xE000EFB8
#define DAUTHSTATUS_SID_MASK 0x00000030
#define DCRSR_WNR BIT(16)
#define DWT_CTRL 0xE0001000

View File

@ -2200,8 +2200,8 @@ int dsp5680xx_f_lock(struct target *target)
struct jtag_tap *tap_chp;
struct jtag_tap *tap_cpu;
uint16_t lock_word[] = { HFM_LOCK_FLASH };
retval = dsp5680xx_f_wr(target, (uint8_t *) (lock_word), HFM_LOCK_ADDR_L, 2, 1);
uint16_t lock_word = HFM_LOCK_FLASH;
retval = dsp5680xx_f_wr(target, (uint8_t *)&lock_word, HFM_LOCK_ADDR_L, 2, 1);
err_check_propagate(retval);
jtag_add_reset(0, 1);

View File

@ -130,7 +130,9 @@ static int esirisc_jtag_recv(struct esirisc_jtag *jtag_info,
int num_in_bytes = DIV_ROUND_UP(num_in_bits, 8);
struct scan_field fields[3];
uint8_t r[num_in_bytes * 2];
/* prevent zero-size variable length array */
int r_size = num_in_bytes ? num_in_bytes * 2 : 1;
uint8_t r[r_size];
esirisc_jtag_set_instr(jtag_info, INSTR_DEBUG);

View File

@ -402,6 +402,8 @@ static int esp32s2_poll(struct target *target)
{
enum target_state old_state = target->state;
int ret = esp_xtensa_poll(target);
if (ret != ERROR_OK)
return ret;
if (old_state != TARGET_HALTED && target->state == TARGET_HALTED) {
/* Call any event callbacks that are applicable */

View File

@ -347,6 +347,13 @@ static int hl_assert_reset(struct target *target)
adapter->layout->api->write_debug_reg(adapter->handle, DCB_DHCSR, DBGKEY|C_DEBUGEN);
if (!target_was_examined(target) && !target->defer_examine
&& srst_asserted && res == ERROR_OK) {
/* If the target is not examined, now under reset it is good time to retry examination */
LOG_TARGET_DEBUG(target, "Trying to re-examine under reset");
target_examine_one(target);
}
/* only set vector catch if halt is requested */
if (target->reset_halt)
adapter->layout->api->write_debug_reg(adapter->handle, DCB_DEMCR, TRCENA|VC_CORERESET);

View File

@ -136,16 +136,13 @@ static int mem_ap_examine(struct target *target)
struct mem_ap *mem_ap = target->arch_info;
if (!target_was_examined(target)) {
if (mem_ap->ap) {
dap_put_ap(mem_ap->ap);
mem_ap->ap = NULL;
}
if (!mem_ap->ap) {
mem_ap->ap = dap_get_ap(mem_ap->dap, mem_ap->ap_num);
if (!mem_ap->ap) {
LOG_ERROR("Cannot get AP");
return ERROR_FAIL;
}
}
target_set_examined(target);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;

View File

@ -900,7 +900,7 @@ static int mips_m4k_set_watchpoint(struct target *target,
LOG_ERROR("BUG: watchpoint->rw neither read, write nor access");
}
watchpoint->number = wp_num;
watchpoint_set(watchpoint, wp_num);
comparator_list[wp_num].used = 1;
comparator_list[wp_num].bp_value = watchpoint->address;

File diff suppressed because it is too large Load Diff

View File

@ -1,447 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_H
#define OPENOCD_TARGET_NDS32_H
#include <jtag/jtag.h>
#include "target.h"
#include "target_type.h"
#include "register.h"
#include "breakpoints.h"
#include "nds32_reg.h"
#include "nds32_insn.h"
#include "nds32_edm.h"
#define NDS32_EDM_OPERATION_MAX_NUM 64
#define CHECK_RETVAL(action) \
do { \
int __retval = (action); \
if (__retval != ERROR_OK) { \
LOG_DEBUG("error while calling \"%s\"", \
# action); \
return __retval; \
} \
} while (0)
/**
* @file
* Holds the interface to Andes cores.
*/
extern const char *nds32_debug_type_name[11];
enum nds32_debug_reason {
NDS32_DEBUG_BREAK = 0,
NDS32_DEBUG_BREAK_16,
NDS32_DEBUG_INST_BREAK,
NDS32_DEBUG_DATA_ADDR_WATCHPOINT_PRECISE,
NDS32_DEBUG_DATA_VALUE_WATCHPOINT_PRECISE,
NDS32_DEBUG_DATA_VALUE_WATCHPOINT_IMPRECISE,
NDS32_DEBUG_DEBUG_INTERRUPT,
NDS32_DEBUG_HARDWARE_SINGLE_STEP,
NDS32_DEBUG_DATA_ADDR_WATCHPOINT_NEXT_PRECISE,
NDS32_DEBUG_DATA_VALUE_WATCHPOINT_NEXT_PRECISE,
NDS32_DEBUG_LOAD_STORE_GLOBAL_STOP,
};
#define NDS32_STRUCT_STAT_SIZE 60
#define NDS32_STRUCT_TIMEVAL_SIZE 8
enum nds32_syscall_id {
NDS32_SYSCALL_UNDEFINED = 0,
NDS32_SYSCALL_EXIT = 1,
NDS32_SYSCALL_OPEN = 2,
NDS32_SYSCALL_CLOSE = 3,
NDS32_SYSCALL_READ = 4,
NDS32_SYSCALL_WRITE = 5,
NDS32_SYSCALL_LSEEK = 6,
NDS32_SYSCALL_UNLINK = 7,
NDS32_SYSCALL_RENAME = 3001,
NDS32_SYSCALL_FSTAT = 10,
NDS32_SYSCALL_STAT = 15,
NDS32_SYSCALL_GETTIMEOFDAY = 19,
NDS32_SYSCALL_ISATTY = 3002,
NDS32_SYSCALL_SYSTEM = 3003,
NDS32_SYSCALL_ERRNO = 6001,
};
#define NDS32_COMMON_MAGIC 0xADE5ADE5U
struct nds32_edm {
/** EDM_CFG.VER, indicate the EDM version */
int version;
/** The number of hardware breakpoints */
int breakpoint_num;
/** EDM_CFG.DALM, indicate if direct local memory access
* feature is supported or not */
bool direct_access_local_memory;
/** Support ACC_CTL register */
bool access_control;
/** */
bool support_max_stop;
};
struct nds32_cache {
/** enable cache or not */
bool enable;
/** cache sets per way */
int set;
/** cache ways */
int way;
/** cache line size */
int line_size;
/** cache locking support */
bool lock_support;
};
struct nds32_memory {
/** ICache */
struct nds32_cache icache;
/** DCache */
struct nds32_cache dcache;
/** On-chip instruction local memory base */
int ilm_base;
/** On-chip instruction local memory size */
int ilm_size;
/** ILM base register alignment version */
int ilm_align_ver;
/** DLM is enabled or not */
bool ilm_enable;
/** DLM start address */
int ilm_start;
/** DLM end address */
int ilm_end;
/** On-chip data local memory base */
int dlm_base;
/** On-chip data local memory size */
int dlm_size;
/** DLM base register alignment version */
int dlm_align_ver;
/** DLM is enabled or not */
bool dlm_enable;
/** DLM start address */
int dlm_start;
/** DLM end address */
int dlm_end;
/** Memory access method */
enum nds_memory_access access_channel;
/** Memory access mode */
enum nds_memory_select mode;
/** Address translation */
bool address_translation;
};
struct nds32_cpu_version {
bool performance_extension;
bool _16bit_extension;
bool performance_extension_2;
bool cop_fpu_extension;
bool string_extension;
int revision;
int cpu_id_family;
int cpu_id_version;
};
struct nds32_mmu_config {
int memory_protection;
int memory_protection_version;
bool fully_associative_tlb;
int tlb_size;
int tlb_ways;
int tlb_sets;
bool _8k_page_support;
int extra_page_size_support;
bool tlb_lock;
bool hardware_page_table_walker;
bool default_endian;
int partition_num;
bool invisible_tlb;
bool vlpt;
bool ntme;
bool drde;
int default_min_page_size;
bool multiple_page_size_in_use;
};
struct nds32_misc_config {
bool edm;
bool local_memory_dma;
bool performance_monitor;
bool high_speed_memory_port;
bool debug_tracer;
bool div_instruction;
bool mac_instruction;
int audio_isa;
bool l2_cache;
bool reduce_register;
bool addr_24;
bool interruption_level;
int baseline_instruction;
bool no_dx_register;
bool implement_dependant_register;
bool implement_dependant_sr_encoding;
bool ifc;
bool mcu;
bool ex9;
int shadow;
};
/**
* Represents a generic Andes core.
*/
struct nds32 {
unsigned int common_magic;
struct reg_cache *core_cache;
/** Handle for the debug module. */
struct nds32_edm edm;
/** Memory information */
struct nds32_memory memory;
/** cpu version */
struct nds32_cpu_version cpu_version;
/** MMU configuration */
struct nds32_mmu_config mmu_config;
/** Misc configuration */
struct nds32_misc_config misc_config;
/** Retrieve all core registers, for display. */
int (*full_context)(struct nds32 *nds32);
/** Register mappings */
int (*register_map)(struct nds32 *nds32, int reg_no);
/** Get debug exception virtual address */
int (*get_debug_reason)(struct nds32 *nds32, uint32_t *reason);
/** Restore target registers may be modified in debug state */
int (*leave_debug_state)(struct nds32 *nds32, bool enable_watchpoint);
/** Backup target registers may be modified in debug state */
int (*enter_debug_state)(struct nds32 *nds32, bool enable_watchpoint);
/** Get address hit watchpoint */
int (*get_watched_address)(struct nds32 *nds32, uint32_t *address, uint32_t reason);
/** maximum interrupt level */
uint32_t max_interrupt_level;
/** current interrupt level */
uint32_t current_interrupt_level;
uint32_t watched_address;
/** Flag reporting whether virtual hosting is active. */
bool virtual_hosting;
/** Flag reporting whether continue/step hits syscall or not */
bool hit_syscall;
/** Value to be returned by virtual hosting SYS_ERRNO request. */
int virtual_hosting_errno;
/** Flag reporting whether syscall is aborted */
bool virtual_hosting_ctrl_c;
/** Record syscall ID for other operations to do special processing for target */
int active_syscall_id;
struct breakpoint syscall_break;
/** Flag reporting whether global stop is active. */
bool global_stop;
/** Flag reporting whether to use soft-reset-halt or not as issuing reset-halt. */
bool soft_reset_halt;
/** reset-halt as target examine */
bool reset_halt_as_examine;
/** backup/restore target EDM_CTL value. As debugging target debug
* handler, it should be true. */
bool keep_target_edm_ctl;
/* Value of $EDM_CTL before target enters debug mode */
uint32_t backup_edm_ctl;
/** always use word-aligned address to access memory */
bool word_access_mem;
/** EDM passcode for debugging secure MCU */
char *edm_passcode;
/** current privilege_level if using secure MCU. value 0 is the highest level. */
int privilege_level;
/** Period to wait after SRST. */
uint32_t boot_time;
/** Flag to indicate HSS steps into ISR or not */
bool step_isr_enable;
/** Flag to indicate register table is ready or not */
bool init_arch_info_after_halted;
/** Flag to indicate audio-extension is enabled or not */
bool audio_enable;
/** Flag to indicate fpu-extension is enabled or not */
bool fpu_enable;
/* Andes Core has mixed endian model. Instruction is always big-endian.
* Data may be big or little endian. Device registers may have different
* endian from data and instruction. */
/** Endian of data memory */
enum target_endianness data_endian;
/** Endian of device registers */
enum target_endianness device_reg_endian;
/** Flag to indicate if auto convert software breakpoints to
* hardware breakpoints or not in ROM */
bool auto_convert_hw_bp;
/* Flag to indicate the target is attached by debugger or not */
bool attached;
/** Backpointer to the target. */
struct target *target;
void *arch_info;
};
struct nds32_reg {
int32_t num;
uint8_t value[8];
struct target *target;
struct nds32 *nds32;
bool enable;
};
struct nds32_edm_operation {
uint32_t reg_no;
uint32_t value;
};
extern int nds32_config(struct nds32 *nds32);
extern int nds32_init_arch_info(struct target *target, struct nds32 *nds32);
extern int nds32_full_context(struct nds32 *nds32);
extern int nds32_arch_state(struct target *target);
extern int nds32_add_software_breakpoint(struct target *target,
struct breakpoint *breakpoint);
extern int nds32_remove_software_breakpoint(struct target *target,
struct breakpoint *breakpoint);
extern int nds32_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class);
extern int nds32_write_buffer(struct target *target, uint32_t address,
uint32_t size, const uint8_t *buffer);
extern int nds32_read_buffer(struct target *target, uint32_t address,
uint32_t size, uint8_t *buffer);
extern int nds32_read_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer);
extern int nds32_write_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, const uint8_t *buffer);
extern int nds32_init_register_table(struct nds32 *nds32);
extern int nds32_init_memory_info(struct nds32 *nds32);
extern int nds32_restore_context(struct target *target);
extern int nds32_get_mapped_reg(struct nds32 *nds32, unsigned regnum, uint32_t *value);
extern int nds32_set_mapped_reg(struct nds32 *nds32, unsigned regnum, uint32_t value);
extern int nds32_edm_config(struct nds32 *nds32);
extern int nds32_cache_sync(struct target *target, target_addr_t address, uint32_t length);
extern int nds32_mmu(struct target *target, int *enabled);
extern int nds32_virtual_to_physical(struct target *target, target_addr_t address,
target_addr_t *physical);
extern int nds32_read_phys_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer);
extern int nds32_write_phys_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer);
extern uint32_t nds32_nextpc(struct nds32 *nds32, int current, uint32_t address);
extern int nds32_examine_debug_reason(struct nds32 *nds32);
extern int nds32_step(struct target *target, int current,
target_addr_t address, int handle_breakpoints);
extern int nds32_target_state(struct nds32 *nds32, enum target_state *state);
extern int nds32_halt(struct target *target);
extern int nds32_poll(struct target *target);
extern int nds32_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution);
extern int nds32_assert_reset(struct target *target);
extern int nds32_init(struct nds32 *nds32);
extern int nds32_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info);
extern int nds32_gdb_fileio_write_memory(struct nds32 *nds32, uint32_t address,
uint32_t size, const uint8_t *buffer);
extern int nds32_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c);
extern int nds32_reset_halt(struct nds32 *nds32);
extern int nds32_login(struct nds32 *nds32);
extern int nds32_profiling(struct target *target, uint32_t *samples,
uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
/** Convert target handle to generic Andes target state handle. */
static inline struct nds32 *target_to_nds32(struct target *target)
{
assert(target);
return target->arch_info;
}
/** */
static inline struct aice_port_s *target_to_aice(struct target *target)
{
assert(target);
return target->tap->priv;
}
static inline bool is_nds32(struct nds32 *nds32)
{
assert(nds32);
return nds32->common_magic == NDS32_COMMON_MAGIC;
}
static inline bool nds32_reach_max_interrupt_level(struct nds32 *nds32)
{
assert(nds32);
return nds32->max_interrupt_level == nds32->current_interrupt_level;
}
#endif /* OPENOCD_TARGET_NDS32_H */

View File

@ -1,147 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 Andes technology. *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/log.h>
#include "nds32_aice.h"
int aice_read_reg_64(struct aice_port_s *aice, uint32_t num, uint64_t *val)
{
if (!aice->port->api->read_reg_64) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->read_reg_64(aice->coreid, num, val);
}
int aice_write_reg_64(struct aice_port_s *aice, uint32_t num, uint64_t val)
{
if (!aice->port->api->write_reg_64) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->write_reg_64(aice->coreid, num, val);
}
int aice_read_tlb(struct aice_port_s *aice, target_addr_t virtual_address,
target_addr_t *physical_address)
{
if (!aice->port->api->read_tlb) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->read_tlb(aice->coreid, virtual_address, physical_address);
}
int aice_cache_ctl(struct aice_port_s *aice, uint32_t subtype, uint32_t address)
{
if (!aice->port->api->cache_ctl) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->cache_ctl(aice->coreid, subtype, address);
}
int aice_set_retry_times(struct aice_port_s *aice, uint32_t a_retry_times)
{
if (!aice->port->api->set_retry_times) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->set_retry_times(a_retry_times);
}
int aice_program_edm(struct aice_port_s *aice, char *command_sequence)
{
if (!aice->port->api->program_edm) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->program_edm(aice->coreid, command_sequence);
}
int aice_set_command_mode(struct aice_port_s *aice,
enum aice_command_mode command_mode)
{
if (!aice->port->api->set_command_mode) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->set_command_mode(command_mode);
}
int aice_execute(struct aice_port_s *aice, uint32_t *instructions,
uint32_t instruction_num)
{
if (!aice->port->api->execute) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->execute(aice->coreid, instructions, instruction_num);
}
int aice_set_custom_srst_script(struct aice_port_s *aice, const char *script)
{
if (!aice->port->api->set_custom_srst_script) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->set_custom_srst_script(script);
}
int aice_set_custom_trst_script(struct aice_port_s *aice, const char *script)
{
if (!aice->port->api->set_custom_trst_script) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->set_custom_trst_script(script);
}
int aice_set_custom_restart_script(struct aice_port_s *aice, const char *script)
{
if (!aice->port->api->set_custom_restart_script) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->set_custom_restart_script(script);
}
int aice_set_count_to_check_dbger(struct aice_port_s *aice, uint32_t count_to_check)
{
if (!aice->port->api->set_count_to_check_dbger) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->set_count_to_check_dbger(count_to_check);
}
int aice_profiling(struct aice_port_s *aice, uint32_t interval, uint32_t iteration,
uint32_t reg_no, uint32_t *samples, uint32_t *num_samples)
{
if (!aice->port->api->profiling) {
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
return aice->port->api->profiling(aice->coreid, interval, iteration,
reg_no, samples, num_samples);
}

View File

@ -1,150 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes technology. *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_AICE_H
#define OPENOCD_TARGET_NDS32_AICE_H
#include <jtag/aice/aice_port.h>
int aice_read_reg_64(struct aice_port_s *aice, uint32_t num, uint64_t *val);
int aice_write_reg_64(struct aice_port_s *aice, uint32_t num, uint64_t val);
int aice_read_tlb(struct aice_port_s *aice, target_addr_t virtual_address,
target_addr_t *physical_address);
int aice_cache_ctl(struct aice_port_s *aice, uint32_t subtype, uint32_t address);
int aice_set_retry_times(struct aice_port_s *aice, uint32_t a_retry_times);
int aice_program_edm(struct aice_port_s *aice, char *command_sequence);
int aice_set_command_mode(struct aice_port_s *aice,
enum aice_command_mode command_mode);
int aice_execute(struct aice_port_s *aice, uint32_t *instructions,
uint32_t instruction_num);
int aice_set_custom_srst_script(struct aice_port_s *aice, const char *script);
int aice_set_custom_trst_script(struct aice_port_s *aice, const char *script);
int aice_set_custom_restart_script(struct aice_port_s *aice, const char *script);
int aice_set_count_to_check_dbger(struct aice_port_s *aice, uint32_t count_to_check);
int aice_profiling(struct aice_port_s *aice, uint32_t interval, uint32_t iteration,
uint32_t reg_no, uint32_t *samples, uint32_t *num_samples);
static inline int aice_open(struct aice_port_s *aice, struct aice_port_param_s *param)
{
return aice->port->api->open(param);
}
static inline int aice_close(struct aice_port_s *aice)
{
return aice->port->api->close();
}
static inline int aice_reset(struct aice_port_s *aice)
{
return aice->port->api->reset();
}
static inline int aice_assert_srst(struct aice_port_s *aice,
enum aice_srst_type_s srst)
{
return aice->port->api->assert_srst(aice->coreid, srst);
}
static inline int aice_run(struct aice_port_s *aice)
{
return aice->port->api->run(aice->coreid);
}
static inline int aice_halt(struct aice_port_s *aice)
{
return aice->port->api->halt(aice->coreid);
}
static inline int aice_step(struct aice_port_s *aice)
{
return aice->port->api->step(aice->coreid);
}
static inline int aice_read_register(struct aice_port_s *aice, uint32_t num,
uint32_t *val)
{
return aice->port->api->read_reg(aice->coreid, num, val);
}
static inline int aice_write_register(struct aice_port_s *aice, uint32_t num,
uint32_t val)
{
return aice->port->api->write_reg(aice->coreid, num, val);
}
static inline int aice_read_debug_reg(struct aice_port_s *aice, uint32_t addr,
uint32_t *val)
{
return aice->port->api->read_debug_reg(aice->coreid, addr, val);
}
static inline int aice_write_debug_reg(struct aice_port_s *aice, uint32_t addr,
const uint32_t val)
{
return aice->port->api->write_debug_reg(aice->coreid, addr, val);
}
static inline int aice_read_mem_unit(struct aice_port_s *aice, uint32_t addr,
uint32_t size, uint32_t count, uint8_t *buffer)
{
return aice->port->api->read_mem_unit(aice->coreid, addr, size, count, buffer);
}
static inline int aice_write_mem_unit(struct aice_port_s *aice, uint32_t addr,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
return aice->port->api->write_mem_unit(aice->coreid, addr, size, count, buffer);
}
static inline int aice_read_mem_bulk(struct aice_port_s *aice, uint32_t addr,
uint32_t length, uint8_t *buffer)
{
return aice->port->api->read_mem_bulk(aice->coreid, addr, length, buffer);
}
static inline int aice_write_mem_bulk(struct aice_port_s *aice, uint32_t addr,
uint32_t length, const uint8_t *buffer)
{
return aice->port->api->write_mem_bulk(aice->coreid, addr, length, buffer);
}
static inline int aice_idcode(struct aice_port_s *aice, uint32_t *idcode,
uint8_t *num_of_idcode)
{
return aice->port->api->idcode(idcode, num_of_idcode);
}
static inline int aice_state(struct aice_port_s *aice,
enum aice_target_state_s *state)
{
return aice->port->api->state(aice->coreid, state);
}
static inline int aice_set_jtag_clock(struct aice_port_s *aice, uint32_t a_clock)
{
return aice->port->api->set_jtag_clock(a_clock);
}
static inline int aice_memory_access(struct aice_port_s *aice,
enum nds_memory_access a_access)
{
return aice->port->api->memory_access(aice->coreid, a_access);
}
static inline int aice_memory_mode(struct aice_port_s *aice,
enum nds_memory_select mem_select)
{
return aice->port->api->memory_mode(aice->coreid, mem_select);
}
static inline int aice_set_data_endian(struct aice_port_s *aice,
enum aice_target_endian target_data_endian)
{
return aice->port->api->set_data_endian(aice->coreid, target_data_endian);
}
#endif /* OPENOCD_TARGET_NDS32_AICE_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_CMD_H
#define OPENOCD_TARGET_NDS32_CMD_H
#include <helper/command.h>
extern const struct command_registration nds32_command_handlers[];
#endif /* OPENOCD_TARGET_NDS32_CMD_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,45 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_DISASSEMBLER_H
#define OPENOCD_TARGET_NDS32_DISASSEMBLER_H
#include <target/nds32.h>
enum nds32_instruction_type {
NDS32_INSN_DATA_PROC = 0,
NDS32_INSN_LOAD_STORE,
NDS32_INSN_JUMP_BRANCH,
NDS32_INSN_RESOURCE_ACCESS,
NDS32_INSN_MISC,
};
struct nds32_instruction {
enum nds32_instruction_type type;
char text[128];
uint32_t opcode;
uint8_t instruction_size;
uint32_t access_start;
uint32_t access_end;
struct {
uint8_t opc_6;
uint8_t rt;
uint8_t ra;
uint8_t rb;
uint8_t rd;
uint8_t sub_opc;
int32_t imm;
} info;
};
int nds32_read_opcode(struct nds32 *nds32, uint32_t address, uint32_t *value);
int nds32_evaluate_opcode(struct nds32 *nds32, uint32_t opcode, uint32_t address,
struct nds32_instruction *instruction);
#endif /* OPENOCD_TARGET_NDS32_DISASSEMBLER_H */

View File

@ -1,106 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_EDM_H
#define OPENOCD_TARGET_NDS32_EDM_H
#include "helper/types.h"
/**
* @file
* This is the interface to the Embedded Debug Module for Andes cores.
*/
/* EDM misc registers */
enum nds_edm_misc_reg {
NDS_EDM_MISC_DIMIR = 0x0,
NDS_EDM_MISC_SBAR,
NDS_EDM_MISC_EDM_CMDR,
NDS_EDM_MISC_DBGER,
NDS_EDM_MISC_ACC_CTL,
NDS_EDM_MISC_EDM_PROBE,
NDS_EDM_MISC_GEN_PORT0,
NDS_EDM_MISC_GEN_PORT1,
};
/* EDM system registers */
enum nds_edm_system_reg {
NDS_EDM_SR_BPC0 = 0x00,
NDS_EDM_SR_BPC1,
NDS_EDM_SR_BPC2,
NDS_EDM_SR_BPC3,
NDS_EDM_SR_BPC4,
NDS_EDM_SR_BPC5,
NDS_EDM_SR_BPC6,
NDS_EDM_SR_BPC7,
NDS_EDM_SR_BPA0 = 0x08,
NDS_EDM_SR_BPA1,
NDS_EDM_SR_BPA2,
NDS_EDM_SR_BPA3,
NDS_EDM_SR_BPA4,
NDS_EDM_SR_BPA5,
NDS_EDM_SR_BPA6,
NDS_EDM_SR_BPA7,
NDS_EDM_SR_BPAM0 = 0x10,
NDS_EDM_SR_BPAM1,
NDS_EDM_SR_BPAM2,
NDS_EDM_SR_BPAM3,
NDS_EDM_SR_BPAM4,
NDS_EDM_SR_BPAM5,
NDS_EDM_SR_BPAM6,
NDS_EDM_SR_BPAM7,
NDS_EDM_SR_BPV0 = 0x18,
NDS_EDM_SR_BPV1,
NDS_EDM_SR_BPV2,
NDS_EDM_SR_BPV3,
NDS_EDM_SR_BPV4,
NDS_EDM_SR_BPV5,
NDS_EDM_SR_BPV6,
NDS_EDM_SR_BPV7,
NDS_EDM_SR_BPCID0 = 0x20,
NDS_EDM_SR_BPCID1,
NDS_EDM_SR_BPCID2,
NDS_EDM_SR_BPCID3,
NDS_EDM_SR_BPCID4,
NDS_EDM_SR_BPCID5,
NDS_EDM_SR_BPCID6,
NDS_EDM_SR_BPCID7,
NDS_EDM_SR_EDM_CFG = 0x28,
NDS_EDM_SR_EDMSW = 0x30,
NDS_EDM_SR_EDM_CTL = 0x38,
NDS_EDM_SR_EDM_DTR = 0x40,
NDS_EDM_SR_BPMTV = 0x48,
NDS_EDM_SR_DIMBR = 0x50,
NDS_EDM_SR_TECR0 = 0x70,
NDS_EDM_SR_TECR1 = 0x71,
};
enum nds_memory_access {
NDS_MEMORY_ACC_BUS = 0,
NDS_MEMORY_ACC_CPU,
};
enum nds_memory_select {
NDS_MEMORY_SELECT_AUTO = 0,
NDS_MEMORY_SELECT_MEM = 1,
NDS_MEMORY_SELECT_ILM = 2,
NDS_MEMORY_SELECT_DLM = 3,
};
#define NDS_DBGER_DEX (0x1)
#define NDS_DBGER_DPED (0x2)
#define NDS_DBGER_CRST (0x4)
#define NDS_DBGER_AT_MAX (0x8)
#define NDS_DBGER_ILL_SEC_ACC (0x10)
#define NDS_DBGER_ALL_SUPRS_EX (0x40000000)
#define NDS_DBGER_RESACC (0x80000000)
#define NDS_DBGER_CLEAR_ALL (0x1F)
#define NDS_EDMSW_WDV (1 << 0)
#define NDS_EDMSW_RDV (1 << 1)
#endif /* OPENOCD_TARGET_NDS32_EDM_H */

View File

@ -1,67 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_INSN_H
#define OPENOCD_TARGET_NDS32_INSN_H
#define NOP (0x40000009)
#define DSB (0x64000008)
#define ISB (0x64000009)
#define BEQ_MINUS_12 (0x4C000000 | 0x3FFA)
#define MTSR_DTR(a) (0x64000003 | (((0x03 << 7) | (0x08 << 3) | (0x00 << 0)) << 10) | (((a) & 0x1F) << 20))
#define MFSR_DTR(a) (0x64000002 | (((0x03 << 7) | (0x08 << 3) | (0x00 << 0)) << 10) | (((a) & 0x1F) << 20))
#define SETHI(a, b) (0x46000000 | ((a) << 20) | (b))
#define ORI(a, b, c) (0x58000000 | ((a) << 20) | ((b) << 15) | (c))
#define LWI_BI(a, b) (0x0C000001 | (a << 20) | (b << 15))
#define LHI_BI(a, b) (0x0A000001 | (a << 20) | (b << 15))
#define LBI_BI(a, b) (0x08000001 | (a << 20) | (b << 15))
#define SWI_BI(a, b) (0x1C000001 | (a << 20) | (b << 15))
#define SHI_BI(a, b) (0x1A000001 | (a << 20) | (b << 15))
#define SBI_BI(a, b) (0x18000001 | (a << 20) | (b << 15))
#define IRET (0x64000004)
#define L1D_IX_WB(a) (0x64000021 | ((a) << 15))
#define L1D_IX_INVAL(a) (0x64000001 | ((a) << 15))
#define L1D_VA_INVAL(a) (0x64000101 | ((a) << 15))
#define L1D_VA_WB(a) (0x64000121 | ((a) << 15))
#define L1D_IX_RTAG(a) (0x64000061 | ((a) << 15))
#define L1D_IX_RWD(a) (0x64000081 | ((a) << 15))
#define L1I_IX_INVAL(a) (0x64000201 | ((a) << 15))
#define L1I_VA_INVAL(a) (0x64000301 | ((a) << 15))
#define L1I_IX_RTAG(a) (0x64000261 | ((a) << 15))
#define L1I_IX_RWD(a) (0x64000281 | ((a) << 15))
#define L1I_VA_FILLCK(a) (0x64000361 | ((a) << 15))
#define ISYNC(a) (0x6400000d | ((a) << 20))
#define MSYNC_STORE (0x6400002c)
#define MSYNC_ALL (0x6400000c)
#define TLBOP_TARGET_READ(a) (0x6400000e | ((a) << 15))
#define TLBOP_TARGET_PROBE(a, b) (0x640000AE | ((a) << 20) | ((b) << 15))
#define MFCPD(a, b, c) (0x6A000041 | (a << 20) | (b << 8) | (c << 4))
#define MFCPW(a, b, c) (0x6A000001 | (a << 20) | (b << 8) | (c << 4))
#define MTCPD(a, b, c) (0x6A000049 | (a << 20) | (b << 8) | (c << 4))
#define MTCPW(a, b, c) (0x6A000009 | (a << 20) | (b << 8) | (c << 4))
#define MOVI_(a, b) (0x44000000 | (a << 20) | (b & 0xFFFFF))
#define MFUSR_G0(a, b) (0x42000020 | (a << 20) | (b << 15))
#define MTUSR_G0(a, b) (0x42000021 | (a << 20) | (b << 15))
#define MFSR(a, b) (0x64000002 | (b << 10) | (a << 20))
#define MTSR(a, b) (0x64000003 | (b << 10) | (a << 20))
#define AMFAR(a, b) (0x60300060 | (a << 15) | b)
#define AMTAR(a, b) (0x60300040 | (a << 15) | b)
#define AMFAR2(a, b) (0x60300260 | (a << 15) | b)
#define AMTAR2(a, b) (0x60300240 | (a << 15) | b)
#define FMFCSR (0x6A000701)
#define FMTCSR (0x6A000709)
#define FMFCFG (0x6A000301)
#define FMFSR(a, b) (0x6A000001 | ((a) << 20) | ((b) << 15))
#define FMTSR(a, b) (0x6A000009 | ((a) << 20) | ((b) << 15))
#define FMFDR(a, b) (0x6A000041 | ((a) << 20) | ((b) << 15))
#define FMTDR(a, b) (0x6A000049 | ((a) << 20) | ((b) << 15))
/* break instructions */
#define NDS32_BREAK_16 (0x00EA)
#define NDS32_BREAK_32 (0x0A000064)
#endif /* OPENOCD_TARGET_NDS32_INSN_H */

View File

@ -1,369 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/log.h>
#include "nds32_reg.h"
static bool nds32_reg_init_done;
static struct nds32_reg_s nds32_regs[TOTAL_REG_NUM];
static const struct nds32_reg_exception_s nds32_ex_reg_values[] = {
{IR0, 3, 0x3, 2},
{IR0, 3, 0x3, 3},
{IR1, 3, 0x3, 2},
{IR1, 3, 0x3, 3},
{IR2, 3, 0x3, 2},
{IR2, 3, 0x3, 3},
{MR3, 1, 0x7, 0},
{MR3, 1, 0x7, 4},
{MR3, 1, 0x7, 6},
{MR3, 8, 0x7, 3},
{0, 0, 0, 0},
};
static inline void nds32_reg_set(uint32_t number, const char *simple_mnemonic,
const char *symbolic_mnemonic, uint32_t sr_index,
enum nds32_reg_type_s type, uint8_t size)
{
nds32_regs[number].simple_mnemonic = simple_mnemonic;
nds32_regs[number].symbolic_mnemonic = symbolic_mnemonic;
nds32_regs[number].sr_index = sr_index;
nds32_regs[number].type = type;
nds32_regs[number].size = size;
}
void nds32_reg_init(void)
{
if (nds32_reg_init_done == true)
return;
nds32_reg_set(R0, "r0", "r0", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R1, "r1", "r1", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R2, "r2", "r2", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R3, "r3", "r3", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R4, "r4", "r4", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R5, "r5", "r5", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R6, "r6", "r6", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R7, "r7", "r7", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R8, "r8", "r8", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R9, "r9", "r9", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R10, "r10", "r10", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R11, "r11", "r11", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R12, "r12", "r12", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R13, "r13", "r13", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R14, "r14", "r14", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R15, "r15", "r15", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R16, "r16", "r16", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R17, "r17", "r17", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R18, "r18", "r18", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R19, "r19", "r19", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R20, "r20", "r20", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R21, "r21", "r21", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R22, "r22", "r22", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R23, "r23", "r23", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R24, "r24", "r24", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R25, "r25", "r25", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R26, "r26", "p0", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R27, "r27", "p1", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R28, "fp", "fp", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R29, "gp", "gp", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R30, "lp", "lp", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(R31, "sp", "sp", 0, NDS32_REG_TYPE_GPR, 32);
nds32_reg_set(PC, "pc", "pc", 31, NDS32_REG_TYPE_SPR, 32);
nds32_reg_set(D0LO, "d0lo", "d0lo", 0, NDS32_REG_TYPE_SPR, 32);
nds32_reg_set(D0HI, "d0hi", "d0hi", 1, NDS32_REG_TYPE_SPR, 32);
nds32_reg_set(D1LO, "d1lo", "d1lo", 2, NDS32_REG_TYPE_SPR, 32);
nds32_reg_set(D1HI, "d1hi", "d1hi", 3, NDS32_REG_TYPE_SPR, 32);
nds32_reg_set(ITB, "itb", "itb", 28, NDS32_REG_TYPE_SPR, 32);
nds32_reg_set(IFC_LP, "ifc_lp", "ifc_lp", 29, NDS32_REG_TYPE_SPR, 32);
nds32_reg_set(CR0, "cr0", "CPU_VER", SRIDX(0, 0, 0), NDS32_REG_TYPE_CR, 32);
nds32_reg_set(CR1, "cr1", "ICM_CFG", SRIDX(0, 1, 0), NDS32_REG_TYPE_CR, 32);
nds32_reg_set(CR2, "cr2", "DCM_CFG", SRIDX(0, 2, 0), NDS32_REG_TYPE_CR, 32);
nds32_reg_set(CR3, "cr3", "MMU_CFG", SRIDX(0, 3, 0), NDS32_REG_TYPE_CR, 32);
nds32_reg_set(CR4, "cr4", "MSC_CFG", SRIDX(0, 4, 0), NDS32_REG_TYPE_CR, 32);
nds32_reg_set(CR5, "cr5", "CORE_ID", SRIDX(0, 0, 1), NDS32_REG_TYPE_CR, 32);
nds32_reg_set(CR6, "cr6", "FUCOP_EXIST", SRIDX(0, 5, 0), NDS32_REG_TYPE_CR, 32);
nds32_reg_set(IR0, "ir0", "PSW", SRIDX(1, 0, 0), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR1, "ir1", "IPSW", SRIDX(1, 0, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR2, "ir2", "P_IPSW", SRIDX(1, 0, 2), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR3, "ir3", "IVB", SRIDX(1, 1, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR4, "ir4", "EVA", SRIDX(1, 2, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR5, "ir5", "P_EVA", SRIDX(1, 2, 2), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR6, "ir6", "ITYPE", SRIDX(1, 3, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR7, "ir7", "P_ITYPE", SRIDX(1, 3, 2), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR8, "ir8", "MERR", SRIDX(1, 4, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR9, "ir9", "IPC", SRIDX(1, 5, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR10, "ir10", "P_IPC", SRIDX(1, 5, 2), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR11, "ir11", "OIPC", SRIDX(1, 5, 3), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR12, "ir12", "P_P0", SRIDX(1, 6, 2), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR13, "ir13", "P_P1", SRIDX(1, 7, 2), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR14, "ir14", "INT_MASK", SRIDX(1, 8, 0), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR15, "ir15", "INT_PEND", SRIDX(1, 9, 0), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR16, "ir16", "", SRIDX(1, 10, 0), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR17, "ir17", "", SRIDX(1, 10, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR18, "ir18", "", SRIDX(1, 11, 0), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR19, "ir19", "", SRIDX(1, 1, 2), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR20, "ir20", "", SRIDX(1, 10, 2), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR21, "ir21", "", SRIDX(1, 10, 3), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR22, "ir22", "", SRIDX(1, 10, 4), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR23, "ir23", "", SRIDX(1, 10, 5), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR24, "ir24", "", SRIDX(1, 10, 6), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR25, "ir25", "", SRIDX(1, 10, 7), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR26, "ir26", "", SRIDX(1, 8, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR27, "ir27", "", SRIDX(1, 9, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR28, "ir28", "", SRIDX(1, 11, 1), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR29, "ir29", "", SRIDX(1, 9, 4), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(IR30, "ir30", "", SRIDX(1, 1, 3), NDS32_REG_TYPE_IR, 32);
nds32_reg_set(MR0, "mr0", "MMU_CTL", SRIDX(2, 0, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR1, "mr1", "L1_PPTB", SRIDX(2, 1, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR2, "mr2", "TLB_VPN", SRIDX(2, 2, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR3, "mr3", "TLB_DATA", SRIDX(2, 3, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR4, "mr4", "TLB_MISC", SRIDX(2, 4, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR5, "mr5", "VLPT_IDX", SRIDX(2, 5, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR6, "mr6", "ILMB", SRIDX(2, 6, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR7, "mr7", "DLMB", SRIDX(2, 7, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR8, "mr8", "CACHE_CTL", SRIDX(2, 8, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR9, "mr9", "HSMP_SADDR", SRIDX(2, 9, 0), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR10, "mr10", "HSMP_EADDR", SRIDX(2, 9, 1), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(MR11, "mr11", "", SRIDX(2, 0, 1), NDS32_REG_TYPE_MR, 32);
nds32_reg_set(DR0, "dr0", "BPC0", SRIDX(3, 0, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR1, "dr1", "BPA0", SRIDX(3, 1, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR2, "dr2", "BPAM0", SRIDX(3, 2, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR3, "dr3", "BPV0", SRIDX(3, 3, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR4, "dr4", "BPCID0", SRIDX(3, 4, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR5, "dr5", "BPC1", SRIDX(3, 0, 1), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR6, "dr6", "BPA1", SRIDX(3, 1, 1), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR7, "dr7", "BPAM1", SRIDX(3, 2, 1), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR8, "dr8", "BPV1", SRIDX(3, 3, 1), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR9, "dr9", "BPCID1", SRIDX(3, 4, 1), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR10, "dr10", "BPC2", SRIDX(3, 0, 2), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR11, "dr11", "BPA2", SRIDX(3, 1, 2), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR12, "dr12", "BPAM2", SRIDX(3, 2, 2), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR13, "dr13", "BPV2", SRIDX(3, 3, 2), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR14, "dr14", "BPCID2", SRIDX(3, 4, 2), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR15, "dr15", "BPC3", SRIDX(3, 0, 3), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR16, "dr16", "BPA3", SRIDX(3, 1, 3), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR17, "dr17", "BPAM3", SRIDX(3, 2, 3), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR18, "dr18", "BPV3", SRIDX(3, 3, 3), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR19, "dr19", "BPCID3", SRIDX(3, 4, 3), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR20, "dr20", "BPC4", SRIDX(3, 0, 4), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR21, "dr21", "BPA4", SRIDX(3, 1, 4), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR22, "dr22", "BPAM4", SRIDX(3, 2, 4), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR23, "dr23", "BPV4", SRIDX(3, 3, 4), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR24, "dr24", "BPCID4", SRIDX(3, 4, 4), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR25, "dr25", "BPC5", SRIDX(3, 0, 5), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR26, "dr26", "BPA5", SRIDX(3, 1, 5), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR27, "dr27", "BPAM5", SRIDX(3, 2, 5), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR28, "dr28", "BPV5", SRIDX(3, 3, 5), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR29, "dr29", "BPCID5", SRIDX(3, 4, 5), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR30, "dr30", "BPC6", SRIDX(3, 0, 6), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR31, "dr31", "BPA6", SRIDX(3, 1, 6), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR32, "dr32", "BPAM6", SRIDX(3, 2, 6), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR33, "dr33", "BPV6", SRIDX(3, 3, 6), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR34, "dr34", "BPCID6", SRIDX(3, 4, 6), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR35, "dr35", "BPC7", SRIDX(3, 0, 7), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR36, "dr36", "BPA7", SRIDX(3, 1, 7), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR37, "dr37", "BPAM7", SRIDX(3, 2, 7), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR38, "dr38", "BPV7", SRIDX(3, 3, 7), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR39, "dr39", "BPCID7", SRIDX(3, 4, 7), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR40, "dr40", "EDM_CFG", SRIDX(3, 5, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR41, "dr41", "EDMSW", SRIDX(3, 6, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR42, "dr42", "EDM_CTL", SRIDX(3, 7, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR43, "dr43", "EDM_DTR", SRIDX(3, 8, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR44, "dr44", "BPMTC", SRIDX(3, 9, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR45, "dr45", "DIMBR", SRIDX(3, 10, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR46, "dr46", "TECR0", SRIDX(3, 14, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR47, "dr47", "TECR1", SRIDX(3, 14, 1), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(DR48, "dr48", "", SRIDX(3, 11, 0), NDS32_REG_TYPE_DR, 32);
nds32_reg_set(PFR0, "pfr0", "PFMC0", SRIDX(4, 0, 0), NDS32_REG_TYPE_PFR, 32);
nds32_reg_set(PFR1, "pfr1", "PFMC1", SRIDX(4, 0, 1), NDS32_REG_TYPE_PFR, 32);
nds32_reg_set(PFR2, "pfr2", "PFMC2", SRIDX(4, 0, 2), NDS32_REG_TYPE_PFR, 32);
nds32_reg_set(PFR3, "pfr3", "PFM_CTL", SRIDX(4, 1, 0), NDS32_REG_TYPE_PFR, 32);
nds32_reg_set(DMAR0, "dmar0", "DMA_CFG", SRIDX(5, 0, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR1, "dmar1", "DMA_GCSW", SRIDX(5, 1, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR2, "dmar2", "DMA_CHNSEL", SRIDX(5, 2, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR3, "dmar3", "DMA_ACT", SRIDX(5, 3, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR4, "dmar4", "DMA_SETUP", SRIDX(5, 4, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR5, "dmar5", "DMA_ISADDR", SRIDX(5, 5, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR6, "dmar6", "DMA_ESADDR", SRIDX(5, 6, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR7, "dmar7", "DMA_TCNT", SRIDX(5, 7, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR8, "dmar8", "DMA_STATUS", SRIDX(5, 8, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR9, "dmar9", "DMA_2DSET", SRIDX(5, 9, 0), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(DMAR10, "dmar10", "DMA_2DSCTL", SRIDX(5, 9, 1), NDS32_REG_TYPE_DMAR, 32);
nds32_reg_set(RACR, "racr", "PRUSR_ACC_CTL", SRIDX(4, 4, 0), NDS32_REG_TYPE_RACR, 32);
nds32_reg_set(FUCPR, "fucpr", "FUCOP_CTL", SRIDX(4, 5, 0), NDS32_REG_TYPE_RACR, 32);
nds32_reg_set(IDR0, "idr0", "SDZ_CTL", SRIDX(2, 15, 0), NDS32_REG_TYPE_IDR, 32);
nds32_reg_set(IDR1, "idr1", "MISC_CTL", SRIDX(2, 15, 1), NDS32_REG_TYPE_IDR, 32);
nds32_reg_set(SECUR0, "secur0", "", SRIDX(6, 0, 0), NDS32_REG_TYPE_SECURE, 32);
nds32_reg_set(D0L24, "D0L24", "D0L24", 0x10, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(D1L24, "D1L24", "D1L24", 0x11, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(I0, "I0", "I0", 0x0, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(I1, "I1", "I1", 0x1, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(I2, "I2", "I2", 0x2, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(I3, "I3", "I3", 0x3, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(I4, "I4", "I4", 0x4, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(I5, "I5", "I5", 0x5, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(I6, "I6", "I6", 0x6, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(I7, "I7", "I7", 0x7, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(M1, "M1", "M1", 0x9, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(M2, "M2", "M2", 0xA, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(M3, "M3", "M3", 0xB, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(M5, "M5", "M5", 0xD, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(M6, "M6", "M6", 0xE, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(M7, "M7", "M7", 0xF, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(MOD, "MOD", "MOD", 0x8, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(LBE, "LBE", "LBE", 0x18, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(LE, "LE", "LE", 0x19, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(LC, "LC", "LC", 0x1A, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(ADM_VBASE, "ADM_VBASE", "ADM_VBASE", 0x1B, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(SHFT_CTL0, "SHFT_CTL0", "SHFT_CTL0", 0x12, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(SHFT_CTL1, "SHFT_CTL1", "SHFT_CTL1", 0x13, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CB_CTL, "CB_CTL", "CB_CTL", 0x1F, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CBB0, "CBB0", "CBB0", 0x0, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CBB1, "CBB1", "CBB1", 0x1, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CBB2, "CBB2", "CBB2", 0x2, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CBB3, "CBB3", "CBB3", 0x3, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CBE0, "CBE0", "CBE0", 0x4, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CBE1, "CBE1", "CBE1", 0x5, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CBE2, "CBE2", "CBE2", 0x6, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(CBE3, "CBE3", "CBE3", 0x7, NDS32_REG_TYPE_AUMR, 32);
nds32_reg_set(FPCSR, "fpcsr", "FPCSR", 0x7, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FPCFG, "fpcfg", "FPCFG", 0x7, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS0, "fs0", "FS0", 0, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS1, "fs1", "FS1", 1, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS2, "fs2", "FS2", 2, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS3, "fs3", "FS3", 3, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS4, "fs4", "FS4", 4, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS5, "fs5", "FS5", 5, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS6, "fs6", "FS6", 6, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS7, "fs7", "FS7", 7, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS8, "fs8", "FS8", 8, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS9, "fs9", "FS9", 9, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS10, "fs10", "FS10", 10, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS11, "fs11", "FS11", 11, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS12, "fs12", "FS12", 12, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS13, "fs13", "FS13", 13, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS14, "fs14", "FS14", 14, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS15, "fs15", "FS15", 15, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS16, "fs16", "FS16", 16, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS17, "fs17", "FS17", 17, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS18, "fs18", "FS18", 18, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS19, "fs19", "FS19", 19, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS20, "fs20", "FS20", 20, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS21, "fs21", "FS21", 21, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS22, "fs22", "FS22", 22, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS23, "fs23", "FS23", 23, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS24, "fs24", "FS24", 24, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS25, "fs25", "FS25", 25, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS26, "fs26", "FS26", 26, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS27, "fs27", "FS27", 27, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS28, "fs28", "FS28", 28, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS29, "fs29", "FS29", 29, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS30, "fs30", "FS30", 30, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FS31, "fs31", "FS31", 31, NDS32_REG_TYPE_FPU, 32);
nds32_reg_set(FD0, "fd0", "FD0", 0, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD1, "fd1", "FD1", 1, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD2, "fd2", "FD2", 2, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD3, "fd3", "FD3", 3, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD4, "fd4", "FD4", 4, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD5, "fd5", "FD5", 5, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD6, "fd6", "FD6", 6, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD7, "fd7", "FD7", 7, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD8, "fd8", "FD8", 8, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD9, "fd9", "FD9", 9, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD10, "fd10", "FD10", 10, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD11, "fd11", "FD11", 11, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD12, "fd12", "FD12", 12, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD13, "fd13", "FD13", 13, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD14, "fd14", "FD14", 14, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD15, "fd15", "FD15", 15, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD16, "fd16", "FD16", 16, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD17, "fd17", "FD17", 17, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD18, "fd18", "FD18", 18, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD19, "fd19", "FD19", 19, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD20, "fd20", "FD20", 20, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD21, "fd21", "FD21", 21, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD22, "fd22", "FD22", 22, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD23, "fd23", "FD23", 23, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD24, "fd24", "FD24", 24, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD25, "fd25", "FD25", 25, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD26, "fd26", "FD26", 26, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD27, "fd27", "FD27", 27, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD28, "fd28", "FD28", 28, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD29, "fd29", "FD29", 29, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD30, "fd30", "FD30", 30, NDS32_REG_TYPE_FPU, 64);
nds32_reg_set(FD31, "fd31", "FD31", 31, NDS32_REG_TYPE_FPU, 64);
nds32_reg_init_done = true;
}
uint32_t nds32_reg_sr_index(uint32_t number)
{
return nds32_regs[number].sr_index;
}
enum nds32_reg_type_s nds32_reg_type(uint32_t number)
{
return nds32_regs[number].type;
}
uint8_t nds32_reg_size(uint32_t number)
{
return nds32_regs[number].size;
}
const char *nds32_reg_simple_name(uint32_t number)
{
return nds32_regs[number].simple_mnemonic;
}
const char *nds32_reg_symbolic_name(uint32_t number)
{
return nds32_regs[number].symbolic_mnemonic;
}
bool nds32_reg_exception(uint32_t number, uint32_t value)
{
int i;
const struct nds32_reg_exception_s *ex_reg_value;
uint32_t field_value;
i = 0;
while (nds32_ex_reg_values[i].reg_num != 0) {
ex_reg_value = nds32_ex_reg_values + i;
if (ex_reg_value->reg_num == number) {
field_value = (value >> ex_reg_value->ex_value_bit_pos) &
ex_reg_value->ex_value_mask;
if (field_value == ex_reg_value->ex_value) {
LOG_WARNING("It will generate exceptions as setting %" PRIu32 " to %s",
value, nds32_regs[number].simple_mnemonic);
return true;
}
}
i++;
}
return false;
}

View File

@ -1,314 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_REG_H
#define OPENOCD_TARGET_NDS32_REG_H
#define SRIDX(a, b, c) ((a << 7) | (b << 3) | c)
#define NDS32_REGISTER_DISABLE (0x0)
enum nds32_reg_number_s {
R0 = 0, /* general registers */
R1,
R2,
R3,
R4,
R5,
R6,
R7,
R8,
R9,
R10,
R11,
R12,
R13,
R14,
R15,
R16,
R17,
R18,
R19,
R20,
R21,
R22,
R23,
R24,
R25,
R26,
R27,
R28,
R29,
R30,
R31,
PC,
D0LO,
D0HI,
D1LO,
D1HI,
ITB,
IFC_LP,
CR0, /* system registers */
CR1,
CR2,
CR3,
CR4,
CR5,
CR6,
IR0,
IR1,
IR2,
IR3,
IR4,
IR5,
IR6,
IR7,
IR8,
IR9,
IR10,
IR11,
IR12,
IR13,
IR14,
IR15,
IR16,
IR17,
IR18,
IR19,
IR20,
IR21,
IR22,
IR23,
IR24,
IR25,
IR26,
IR27,
IR28,
IR29,
IR30,
MR0,
MR1,
MR2,
MR3,
MR4,
MR5,
MR6,
MR7,
MR8,
MR9,
MR10,
MR11,
DR0,
DR1,
DR2,
DR3,
DR4,
DR5,
DR6,
DR7,
DR8,
DR9,
DR10,
DR11,
DR12,
DR13,
DR14,
DR15,
DR16,
DR17,
DR18,
DR19,
DR20,
DR21,
DR22,
DR23,
DR24,
DR25,
DR26,
DR27,
DR28,
DR29,
DR30,
DR31,
DR32,
DR33,
DR34,
DR35,
DR36,
DR37,
DR38,
DR39,
DR40,
DR41,
DR42,
DR43,
DR44,
DR45,
DR46,
DR47,
DR48,
PFR0,
PFR1,
PFR2,
PFR3,
DMAR0,
DMAR1,
DMAR2,
DMAR3,
DMAR4,
DMAR5,
DMAR6,
DMAR7,
DMAR8,
DMAR9,
DMAR10,
RACR,
FUCPR,
IDR0,
IDR1,
SECUR0,
D0L24, /* audio registers */
D1L24,
I0,
I1,
I2,
I3,
I4,
I5,
I6,
I7,
M1,
M2,
M3,
M5,
M6,
M7,
MOD,
LBE,
LE,
LC,
ADM_VBASE,
SHFT_CTL0,
SHFT_CTL1,
CB_CTL,
CBB0,
CBB1,
CBB2,
CBB3,
CBE0,
CBE1,
CBE2,
CBE3,
FPCSR, /* fpu */
FPCFG,
FS0,
FS1,
FS2,
FS3,
FS4,
FS5,
FS6,
FS7,
FS8,
FS9,
FS10,
FS11,
FS12,
FS13,
FS14,
FS15,
FS16,
FS17,
FS18,
FS19,
FS20,
FS21,
FS22,
FS23,
FS24,
FS25,
FS26,
FS27,
FS28,
FS29,
FS30,
FS31,
FD0,
FD1,
FD2,
FD3,
FD4,
FD5,
FD6,
FD7,
FD8,
FD9,
FD10,
FD11,
FD12,
FD13,
FD14,
FD15,
FD16,
FD17,
FD18,
FD19,
FD20,
FD21,
FD22,
FD23,
FD24,
FD25,
FD26,
FD27,
FD28,
FD29,
FD30,
FD31,
TOTAL_REG_NUM,
};
enum nds32_reg_type_s {
NDS32_REG_TYPE_GPR = 0,
NDS32_REG_TYPE_SPR,
NDS32_REG_TYPE_CR,
NDS32_REG_TYPE_IR,
NDS32_REG_TYPE_MR,
NDS32_REG_TYPE_DR,
NDS32_REG_TYPE_PFR,
NDS32_REG_TYPE_DMAR,
NDS32_REG_TYPE_RACR,
NDS32_REG_TYPE_IDR,
NDS32_REG_TYPE_AUMR,
NDS32_REG_TYPE_SECURE,
NDS32_REG_TYPE_FPU,
};
struct nds32_reg_s {
const char *simple_mnemonic;
const char *symbolic_mnemonic;
uint32_t sr_index;
enum nds32_reg_type_s type;
uint8_t size;
};
struct nds32_reg_exception_s {
uint32_t reg_num;
uint32_t ex_value_bit_pos;
uint32_t ex_value_mask;
uint32_t ex_value;
};
void nds32_reg_init(void);
uint32_t nds32_reg_sr_index(uint32_t number);
enum nds32_reg_type_s nds32_reg_type(uint32_t number);
uint8_t nds32_reg_size(uint32_t number);
const char *nds32_reg_simple_name(uint32_t number);
const char *nds32_reg_symbolic_name(uint32_t number);
bool nds32_reg_exception(uint32_t number, uint32_t value);
#endif /* OPENOCD_TARGET_NDS32_REG_H */

View File

@ -1,67 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "nds32_aice.h"
#include "nds32_tlb.h"
int nds32_probe_tlb(struct nds32 *nds32, const target_addr_t virtual_address,
target_addr_t *physical_address)
{
struct target *target = nds32->target;
struct aice_port_s *aice = target_to_aice(target);
return aice_read_tlb(aice, virtual_address, physical_address);
}
static struct page_table_walker_info_s page_table_info[PAGE_SIZE_NUM] = {
/* 4K page */
{0xFFC00000, 20, 0x003FF000, 10, 0x00000FFF, 0xFFFFF000, 0xFFFFF000, 0xFFFFF000},
/* 8K page */
{0xFF000000, 22, 0x00FFE000, 11, 0x00001FFF, 0xFFFFF000, 0xFFFFE000, 0xFFFFE000},
};
int nds32_walk_page_table(struct nds32 *nds32, const target_addr_t virtual_address,
target_addr_t *physical_address)
{
struct target *target = nds32->target;
uint32_t value_mr1;
uint32_t load_address;
uint32_t l1_page_table_entry;
uint32_t l2_page_table_entry;
uint32_t page_size_index = nds32->mmu_config.default_min_page_size;
struct page_table_walker_info_s *page_table_info_p =
&(page_table_info[page_size_index]);
/* Read L1 Physical Page Table */
nds32_get_mapped_reg(nds32, MR1, &value_mr1);
load_address = (value_mr1 & page_table_info_p->l1_base_mask) |
((virtual_address & page_table_info_p->l1_offset_mask) >>
page_table_info_p->l1_offset_shift);
/* load_address is physical address */
nds32_read_buffer(target, load_address, 4, (uint8_t *)&l1_page_table_entry);
/* Read L2 Physical Page Table */
if (l1_page_table_entry & 0x1) /* L1_PTE not present */
return ERROR_FAIL;
load_address = (l1_page_table_entry & page_table_info_p->l2_base_mask) |
((virtual_address & page_table_info_p->l2_offset_mask) >>
page_table_info_p->l2_offset_shift);
/* load_address is physical address */
nds32_read_buffer(target, load_address, 4, (uint8_t *)&l2_page_table_entry);
if ((l2_page_table_entry & 0x1) != 0x1) /* L2_PTE not valid */
return ERROR_FAIL;
*physical_address = (l2_page_table_entry & page_table_info_p->ppn_mask) |
(virtual_address & page_table_info_p->va_offset_mask);
return ERROR_OK;
}

View File

@ -1,36 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_TLB_H
#define OPENOCD_TARGET_NDS32_TLB_H
#include "nds32.h"
enum {
PAGE_SIZE_4K = 0,
PAGE_SIZE_8K,
PAGE_SIZE_NUM,
};
struct page_table_walker_info_s {
uint32_t l1_offset_mask;
uint32_t l1_offset_shift;
uint32_t l2_offset_mask;
uint32_t l2_offset_shift;
uint32_t va_offset_mask;
uint32_t l1_base_mask;
uint32_t l2_base_mask;
uint32_t ppn_mask;
};
extern int nds32_probe_tlb(struct nds32 *nds32, const target_addr_t virtual_address,
target_addr_t *physical_address);
extern int nds32_walk_page_table(struct nds32 *nds32, const target_addr_t virtual_address,
target_addr_t *physical_address);
#endif /* OPENOCD_TARGET_NDS32_TLB_H */

View File

@ -1,774 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/time_support.h>
#include <helper/binarybuffer.h>
#include "breakpoints.h"
#include "nds32_insn.h"
#include "nds32_reg.h"
#include "nds32_edm.h"
#include "nds32_cmd.h"
#include "nds32_v2.h"
#include "nds32_aice.h"
#include "target_type.h"
static int nds32_v2_register_mapping(struct nds32 *nds32, int reg_no)
{
uint32_t max_level = nds32->max_interrupt_level;
uint32_t cur_level = nds32->current_interrupt_level;
if ((cur_level >= 1) && (cur_level < max_level)) {
if (reg_no == IR0) {
LOG_DEBUG("Map PSW to IPSW");
return IR1;
} else if (reg_no == PC) {
LOG_DEBUG("Map PC to IPC");
return IR9;
}
} else if ((cur_level >= 2) && (cur_level < max_level)) {
if (reg_no == R26) {
LOG_DEBUG("Mapping P0 to P_P0");
return IR12;
} else if (reg_no == R27) {
LOG_DEBUG("Mapping P1 to P_P1");
return IR13;
} else if (reg_no == IR1) {
LOG_DEBUG("Mapping IPSW to P_IPSW");
return IR2;
} else if (reg_no == IR4) {
LOG_DEBUG("Mapping EVA to P_EVA");
return IR5;
} else if (reg_no == IR6) {
LOG_DEBUG("Mapping ITYPE to P_ITYPE");
return IR7;
} else if (reg_no == IR9) {
LOG_DEBUG("Mapping IPC to P_IPC");
return IR10;
}
} else if (cur_level == max_level) {
if (reg_no == PC) {
LOG_DEBUG("Mapping PC to O_IPC");
return IR11;
}
}
return reg_no;
}
static int nds32_v2_get_debug_reason(struct nds32 *nds32, uint32_t *reason)
{
uint32_t val_itype;
struct aice_port_s *aice = target_to_aice(nds32->target);
aice_read_register(aice, IR6, &val_itype);
*reason = val_itype & 0x0F;
return ERROR_OK;
}
static int nds32_v2_activate_hardware_breakpoint(struct target *target)
{
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(target);
struct aice_port_s *aice = target_to_aice(target);
struct breakpoint *bp;
int32_t hbr_index = 0;
for (bp = target->breakpoints; bp; bp = bp->next) {
if (bp->type == BKPT_SOFT) {
/* already set at nds32_v2_add_breakpoint() */
continue;
} else if (bp->type == BKPT_HARD) {
/* set address */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0 + hbr_index, bp->address);
/* set mask */
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0 + hbr_index, 0);
/* set value */
aice_write_debug_reg(aice, NDS_EDM_SR_BPV0 + hbr_index, 0);
if (nds32_v2->nds32.memory.address_translation)
/* enable breakpoint (virtual address) */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + hbr_index, 0x2);
else
/* enable breakpoint (physical address) */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + hbr_index, 0xA);
LOG_DEBUG("Add hardware BP %" PRId32 " at %08" TARGET_PRIxADDR, hbr_index,
bp->address);
hbr_index++;
} else {
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int nds32_v2_deactivate_hardware_breakpoint(struct target *target)
{
struct aice_port_s *aice = target_to_aice(target);
struct breakpoint *bp;
int32_t hbr_index = 0;
for (bp = target->breakpoints; bp; bp = bp->next) {
if (bp->type == BKPT_SOFT)
continue;
else if (bp->type == BKPT_HARD)
/* disable breakpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + hbr_index, 0x0);
else
return ERROR_FAIL;
LOG_DEBUG("Remove hardware BP %" PRId32 " at %08" TARGET_PRIxADDR, hbr_index,
bp->address);
hbr_index++;
}
return ERROR_OK;
}
static int nds32_v2_activate_hardware_watchpoint(struct target *target)
{
struct aice_port_s *aice = target_to_aice(target);
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(target);
struct watchpoint *wp;
int32_t wp_num = nds32_v2->next_hbr_index;
uint32_t wp_config = 0;
for (wp = target->watchpoints; wp; wp = wp->next) {
wp_num--;
wp->mask = wp->length - 1;
if ((wp->address % wp->length) != 0)
wp->mask = (wp->mask << 1) + 1;
if (wp->rw == WPT_READ)
wp_config = 0x3;
else if (wp->rw == WPT_WRITE)
wp_config = 0x5;
else if (wp->rw == WPT_ACCESS)
wp_config = 0x7;
/* set/unset physical address bit of BPCn according to PSW.DT */
if (nds32_v2->nds32.memory.address_translation == false)
wp_config |= 0x8;
/* set address */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0 + wp_num,
wp->address - (wp->address % wp->length));
/* set mask */
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0 + wp_num, wp->mask);
/* enable watchpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + wp_num, wp_config);
/* set value */
aice_write_debug_reg(aice, NDS_EDM_SR_BPV0 + wp_num, 0);
LOG_DEBUG("Add hardware watchpoint %" PRId32 " at %08" TARGET_PRIxADDR " mask %08" PRIx32, wp_num,
wp->address, wp->mask);
}
return ERROR_OK;
}
static int nds32_v2_deactivate_hardware_watchpoint(struct target *target)
{
struct aice_port_s *aice = target_to_aice(target);
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(target);
int32_t wp_num = nds32_v2->next_hbr_index;
struct watchpoint *wp;
for (wp = target->watchpoints; wp; wp = wp->next) {
wp_num--;
/* disable watchpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + wp_num, 0x0);
LOG_DEBUG("Remove hardware watchpoint %" PRId32 " at %08" TARGET_PRIxADDR " mask %08" PRIx32,
wp_num, wp->address, wp->mask);
}
return ERROR_OK;
}
static int nds32_v2_check_interrupt_stack(struct nds32_v2_common *nds32_v2)
{
struct nds32 *nds32 = &(nds32_v2->nds32);
struct aice_port_s *aice = target_to_aice(nds32->target);
uint32_t val_ir0;
uint32_t val_ir1;
uint32_t val_ir2;
uint32_t modified_psw;
/* Save interrupt level */
aice_read_register(aice, IR0, &val_ir0); /* get $IR0 directly */
/* backup $IR0 */
nds32_v2->backup_ir0 = val_ir0;
nds32->current_interrupt_level = (val_ir0 >> 1) & 0x3;
if (nds32_reach_max_interrupt_level(nds32)) {
LOG_ERROR("<-- TARGET ERROR! Reaching the max interrupt stack level %" PRIu32 ". -->",
nds32->current_interrupt_level);
/* decrease interrupt level */
modified_psw = val_ir0 - 0x2;
/* disable GIE, IT, DT, HSS */
modified_psw &= (~0x8C1);
aice_write_register(aice, IR0, modified_psw);
return ERROR_OK;
}
/* There is a case that single step also trigger another interrupt,
then HSS bit in psw(ir0) will push to ipsw(ir1).
Then hit debug interrupt HSS bit in ipsw(ir1) will push to (p_ipsw)ir2
Therefore, HSS bit in p_ipsw(ir2) also need clear.
Only update $ir2 as current interrupt level is 2, because $ir2 will be random
value if the target never reaches interrupt level 2. */
if ((nds32->max_interrupt_level == 3) && (nds32->current_interrupt_level == 2)) {
aice_read_register(aice, IR2, &val_ir2); /* get $IR2 directly */
val_ir2 &= ~(0x01 << 11);
aice_write_register(aice, IR2, val_ir2);
}
/* get original DT bit and set to current state let debugger has same memory view
PSW.IT MUST be turned off. Otherwise, DIM could not operate normally. */
aice_read_register(aice, IR1, &val_ir1);
modified_psw = val_ir0 | (val_ir1 & 0x80);
aice_write_register(aice, IR0, modified_psw);
return ERROR_OK;
}
static int nds32_v2_restore_interrupt_stack(struct nds32_v2_common *nds32_v2)
{
struct nds32 *nds32 = &(nds32_v2->nds32);
struct aice_port_s *aice = target_to_aice(nds32->target);
/* restore origin $IR0 */
aice_write_register(aice, IR0, nds32_v2->backup_ir0);
return ERROR_OK;
}
/**
* Save processor state. This is called after a HALT instruction
* succeeds, and on other occasions the processor enters debug mode
* (breakpoint, watchpoint, etc).
*/
static int nds32_v2_debug_entry(struct nds32 *nds32, bool enable_watchpoint)
{
LOG_DEBUG("nds32_v2_debug_entry");
if (nds32->virtual_hosting)
LOG_WARNING("<-- TARGET WARNING! Virtual hosting is not supported "
"under V1/V2 architecture. -->");
enum target_state backup_state = nds32->target->state;
nds32->target->state = TARGET_HALTED;
if (nds32->init_arch_info_after_halted == false) {
/* init architecture info according to config registers */
CHECK_RETVAL(nds32_config(nds32));
nds32->init_arch_info_after_halted = true;
}
/* REVISIT entire cache should already be invalid !!! */
register_cache_invalidate(nds32->core_cache);
/* deactivate all hardware breakpoints */
CHECK_RETVAL(nds32_v2_deactivate_hardware_breakpoint(nds32->target));
if (enable_watchpoint)
CHECK_RETVAL(nds32_v2_deactivate_hardware_watchpoint(nds32->target));
if (nds32_examine_debug_reason(nds32) != ERROR_OK) {
nds32->target->state = backup_state;
/* re-activate all hardware breakpoints & watchpoints */
CHECK_RETVAL(nds32_v2_activate_hardware_breakpoint(nds32->target));
if (enable_watchpoint) {
/* activate all watchpoints */
CHECK_RETVAL(nds32_v2_activate_hardware_watchpoint(nds32->target));
}
return ERROR_FAIL;
}
/* check interrupt level before .full_context(), because
* get_mapped_reg() in nds32_full_context() needs current_interrupt_level
* information */
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(nds32->target);
nds32_v2_check_interrupt_stack(nds32_v2);
/* Save registers. */
nds32_full_context(nds32);
return ERROR_OK;
}
/* target request support */
static int nds32_v2_target_request_data(struct target *target,
uint32_t size, uint8_t *buffer)
{
/* AndesCore could use DTR register to communicate with OpenOCD
* to output messages
* Target data will be put in buffer
* The format of DTR is as follow
* DTR[31:16] => length, DTR[15:8] => size, DTR[7:0] => target_req_cmd
* target_req_cmd has three possible values:
* TARGET_REQ_TRACEMSG
* TARGET_REQ_DEBUGMSG
* TARGET_REQ_DEBUGCHAR
* if size == 0, target will call target_asciimsg(),
* else call target_hexmsg()
*/
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_OK;
}
/**
* Restore processor state.
*/
static int nds32_v2_leave_debug_state(struct nds32 *nds32, bool enable_watchpoint)
{
LOG_DEBUG("nds32_v2_leave_debug_state");
struct target *target = nds32->target;
/* activate all hardware breakpoints */
CHECK_RETVAL(nds32_v2_activate_hardware_breakpoint(nds32->target));
if (enable_watchpoint) {
/* activate all watchpoints */
CHECK_RETVAL(nds32_v2_activate_hardware_watchpoint(nds32->target));
}
/* restore interrupt stack */
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(nds32->target);
nds32_v2_restore_interrupt_stack(nds32_v2);
/* restore PSW, PC, and R0 ... after flushing any modified
* registers.
*/
CHECK_RETVAL(nds32_restore_context(target));
register_cache_invalidate(nds32->core_cache);
return ERROR_OK;
}
static int nds32_v2_deassert_reset(struct target *target)
{
int retval;
CHECK_RETVAL(nds32_poll(target));
if (target->state != TARGET_HALTED) {
/* reset only */
LOG_WARNING("%s: ran after reset and before halt ...",
target_name(target));
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int nds32_v2_checksum_memory(struct target *target,
target_addr_t address, uint32_t count, uint32_t *checksum)
{
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
static int nds32_v2_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(target);
struct nds32 *nds32 = &(nds32_v2->nds32);
int result;
if (breakpoint->type == BKPT_HARD) {
/* check hardware resource */
if (nds32_v2->n_hbr <= nds32_v2->next_hbr_index) {
LOG_WARNING("<-- TARGET WARNING! Insert too many hardware "
"breakpoints/watchpoints! The limit of "
"combined hardware breakpoints/watchpoints "
"is %" PRId32 ". -->", nds32_v2->n_hbr);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* update next place to put hardware breakpoint */
nds32_v2->next_hbr_index++;
/* hardware breakpoint insertion occurs before 'continue' actually */
return ERROR_OK;
} else if (breakpoint->type == BKPT_SOFT) {
result = nds32_add_software_breakpoint(target, breakpoint);
if (result != ERROR_OK) {
/* auto convert to hardware breakpoint if failed */
if (nds32->auto_convert_hw_bp) {
/* convert to hardware breakpoint */
breakpoint->type = BKPT_HARD;
return nds32_v2_add_breakpoint(target, breakpoint);
}
}
return result;
} else /* unrecognized breakpoint type */
return ERROR_FAIL;
return ERROR_OK;
}
static int nds32_v2_remove_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(target);
if (breakpoint->type == BKPT_HARD) {
if (nds32_v2->next_hbr_index <= 0)
return ERROR_FAIL;
/* update next place to put hardware breakpoint */
nds32_v2->next_hbr_index--;
/* hardware breakpoint removal occurs after 'halted' actually */
return ERROR_OK;
} else if (breakpoint->type == BKPT_SOFT) {
return nds32_remove_software_breakpoint(target, breakpoint);
} else /* unrecognized breakpoint type */
return ERROR_FAIL;
return ERROR_OK;
}
static int nds32_v2_add_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(target);
/* check hardware resource */
if (nds32_v2->n_hbr <= nds32_v2->next_hbr_index) {
LOG_WARNING("<-- TARGET WARNING! Insert too many hardware "
"breakpoints/watchpoints! The limit of "
"combined hardware breakpoints/watchpoints is %" PRId32 ". -->", nds32_v2->n_hbr);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* update next place to put hardware watchpoint */
nds32_v2->next_hbr_index++;
return ERROR_OK;
}
static int nds32_v2_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(target);
if (nds32_v2->next_hbr_index <= 0)
return ERROR_FAIL;
/* update next place to put hardware breakpoint */
nds32_v2->next_hbr_index--;
return ERROR_OK;
}
static int nds32_v2_get_exception_address(struct nds32 *nds32,
uint32_t *address, uint32_t reason)
{
struct aice_port_s *aice = target_to_aice(nds32->target);
aice_read_register(aice, IR4, address); /* read $EVA directly */
/* TODO: hit multiple watchpoints */
return ERROR_OK;
}
/**
* find out which watchpoint hits
* get exception address and compare the address to watchpoints
*/
static int nds32_v2_hit_watchpoint(struct target *target,
struct watchpoint **hit_watchpoint)
{
uint32_t exception_address;
struct watchpoint *wp;
static struct watchpoint scan_all_watchpoint;
struct nds32 *nds32 = target_to_nds32(target);
scan_all_watchpoint.address = 0;
scan_all_watchpoint.rw = WPT_WRITE;
scan_all_watchpoint.next = 0;
scan_all_watchpoint.unique_id = 0x5CA8;
exception_address = nds32->watched_address;
if (exception_address == 0) {
/* send watch:0 to tell GDB to do software scan for hitting multiple watchpoints */
*hit_watchpoint = &scan_all_watchpoint;
return ERROR_OK;
}
for (wp = target->watchpoints; wp; wp = wp->next) {
if (((exception_address ^ wp->address) & (~wp->mask)) == 0) {
/* TODO: dispel false match */
*hit_watchpoint = wp;
return ERROR_OK;
}
}
return ERROR_FAIL;
}
static int nds32_v2_run_algorithm(struct target *target,
int num_mem_params,
struct mem_param *mem_params,
int num_reg_params,
struct reg_param *reg_params,
target_addr_t entry_point,
target_addr_t exit_point,
int timeout_ms,
void *arch_info)
{
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
static int nds32_v2_target_create(struct target *target, Jim_Interp *interp)
{
struct nds32_v2_common *nds32_v2;
nds32_v2 = calloc(1, sizeof(*nds32_v2));
if (!nds32_v2)
return ERROR_FAIL;
nds32_v2->nds32.register_map = nds32_v2_register_mapping;
nds32_v2->nds32.get_debug_reason = nds32_v2_get_debug_reason;
nds32_v2->nds32.enter_debug_state = nds32_v2_debug_entry;
nds32_v2->nds32.leave_debug_state = nds32_v2_leave_debug_state;
nds32_v2->nds32.get_watched_address = nds32_v2_get_exception_address;
nds32_init_arch_info(target, &(nds32_v2->nds32));
return ERROR_OK;
}
static int nds32_v2_init_target(struct command_context *cmd_ctx,
struct target *target)
{
/* Initialize anything we can set up without talking to the target */
struct nds32 *nds32 = target_to_nds32(target);
nds32_init(nds32);
return ERROR_OK;
}
/* talk to the target and set things up */
static int nds32_v2_examine(struct target *target)
{
struct nds32_v2_common *nds32_v2 = target_to_nds32_v2(target);
struct nds32 *nds32 = &(nds32_v2->nds32);
struct aice_port_s *aice = target_to_aice(target);
if (!target_was_examined(target)) {
CHECK_RETVAL(nds32_edm_config(nds32));
if (nds32->reset_halt_as_examine)
CHECK_RETVAL(nds32_reset_halt(nds32));
}
uint32_t edm_cfg;
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CFG, &edm_cfg);
/* get the number of hardware breakpoints */
nds32_v2->n_hbr = (edm_cfg & 0x7) + 1;
nds32_v2->next_hbr_index = 0;
LOG_INFO("%s: total hardware breakpoint %" PRId32, target_name(target),
nds32_v2->n_hbr);
nds32->target->state = TARGET_RUNNING;
nds32->target->debug_reason = DBG_REASON_NOTHALTED;
target_set_examined(target);
return ERROR_OK;
}
static int nds32_v2_translate_address(struct target *target, target_addr_t *address)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
target_addr_t physical_address;
/* Following conditions need to do address translation
* 1. BUS mode
* 2. CPU mode under maximum interrupt level */
if ((memory->access_channel == NDS_MEMORY_ACC_BUS) ||
((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
nds32_reach_max_interrupt_level(nds32))) {
if (target->type->virt2phys(target, *address, &physical_address) == ERROR_OK)
*address = physical_address;
else
return ERROR_FAIL;
}
return ERROR_OK;
}
static int nds32_v2_read_buffer(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
nds32_v2_translate_address(target, &address);
return nds32_read_buffer(target, address, size, buffer);
}
static int nds32_v2_write_buffer(struct target *target, target_addr_t address,
uint32_t size, const uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
nds32_v2_translate_address(target, &address);
return nds32_write_buffer(target, address, size, buffer);
}
static int nds32_v2_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
nds32_v2_translate_address(target, &address);
return nds32_read_memory(target, address, size, count, buffer);
}
static int nds32_v2_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
nds32_v2_translate_address(target, &address);
return nds32_write_memory(target, address, size, count, buffer);
}
/** Holds methods for V2 targets. */
struct target_type nds32_v2_target = {
.name = "nds32_v2",
.poll = nds32_poll,
.arch_state = nds32_arch_state,
.target_request_data = nds32_v2_target_request_data,
.halt = nds32_halt,
.resume = nds32_resume,
.step = nds32_step,
.assert_reset = nds32_assert_reset,
.deassert_reset = nds32_v2_deassert_reset,
/* register access */
.get_gdb_reg_list = nds32_get_gdb_reg_list,
/* memory access */
.read_buffer = nds32_v2_read_buffer,
.write_buffer = nds32_v2_write_buffer,
.read_memory = nds32_v2_read_memory,
.write_memory = nds32_v2_write_memory,
.checksum_memory = nds32_v2_checksum_memory,
/* breakpoint/watchpoint */
.add_breakpoint = nds32_v2_add_breakpoint,
.remove_breakpoint = nds32_v2_remove_breakpoint,
.add_watchpoint = nds32_v2_add_watchpoint,
.remove_watchpoint = nds32_v2_remove_watchpoint,
.hit_watchpoint = nds32_v2_hit_watchpoint,
/* MMU */
.mmu = nds32_mmu,
.virt2phys = nds32_virtual_to_physical,
.read_phys_memory = nds32_read_phys_memory,
.write_phys_memory = nds32_write_phys_memory,
.run_algorithm = nds32_v2_run_algorithm,
.commands = nds32_command_handlers,
.target_create = nds32_v2_target_create,
.init_target = nds32_v2_init_target,
.examine = nds32_v2_examine,
};

View File

@ -1,31 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_V2_H
#define OPENOCD_TARGET_NDS32_V2_H
#include "nds32.h"
struct nds32_v2_common {
struct nds32 nds32;
uint32_t backup_ir0;
/** number of hardware breakpoints */
int32_t n_hbr;
/** next hardware breakpoint index */
/** increase from low index to high index */
int32_t next_hbr_index;
};
static inline struct nds32_v2_common *target_to_nds32_v2(struct target *target)
{
return container_of(target->arch_info, struct nds32_v2_common, nds32);
}
#endif /* OPENOCD_TARGET_NDS32_V2_H */

View File

@ -1,510 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "nds32_cmd.h"
#include "nds32_aice.h"
#include "nds32_v3.h"
#include "nds32_v3_common.h"
static int nds32_v3_activate_hardware_breakpoint(struct target *target)
{
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
struct aice_port_s *aice = target_to_aice(target);
struct breakpoint *bp;
int32_t hbr_index = nds32_v3->next_hbr_index;
for (bp = target->breakpoints; bp; bp = bp->next) {
if (bp->type == BKPT_SOFT) {
/* already set at nds32_v3_add_breakpoint() */
continue;
} else if (bp->type == BKPT_HARD) {
hbr_index--;
/* set address */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0 + hbr_index, bp->address);
/* set mask */
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0 + hbr_index, 0);
/* set value */
aice_write_debug_reg(aice, NDS_EDM_SR_BPV0 + hbr_index, 0);
if (nds32_v3->nds32.memory.address_translation)
/* enable breakpoint (virtual address) */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + hbr_index, 0x2);
else
/* enable breakpoint (physical address) */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + hbr_index, 0xA);
LOG_DEBUG("Add hardware BP %" PRId32 " at %08" TARGET_PRIxADDR, hbr_index,
bp->address);
} else {
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int nds32_v3_deactivate_hardware_breakpoint(struct target *target)
{
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
struct aice_port_s *aice = target_to_aice(target);
struct breakpoint *bp;
int32_t hbr_index = nds32_v3->next_hbr_index;
for (bp = target->breakpoints; bp; bp = bp->next) {
if (bp->type == BKPT_SOFT) {
continue;
} else if (bp->type == BKPT_HARD) {
hbr_index--;
/* disable breakpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + hbr_index, 0x0);
} else {
return ERROR_FAIL;
}
LOG_DEBUG("Remove hardware BP %" PRId32 " at %08" TARGET_PRIxADDR, hbr_index,
bp->address);
}
return ERROR_OK;
}
static int nds32_v3_activate_hardware_watchpoint(struct target *target)
{
struct aice_port_s *aice = target_to_aice(target);
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
struct watchpoint *wp;
int32_t wp_num = 0;
uint32_t wp_config = 0;
bool ld_stop, st_stop;
if (nds32_v3->nds32.global_stop)
ld_stop = st_stop = false;
for (wp = target->watchpoints; wp; wp = wp->next) {
if (wp_num < nds32_v3->used_n_wp) {
wp->mask = wp->length - 1;
if ((wp->address % wp->length) != 0)
wp->mask = (wp->mask << 1) + 1;
if (wp->rw == WPT_READ)
wp_config = 0x3;
else if (wp->rw == WPT_WRITE)
wp_config = 0x5;
else if (wp->rw == WPT_ACCESS)
wp_config = 0x7;
/* set/unset physical address bit of BPCn according to PSW.DT */
if (nds32_v3->nds32.memory.address_translation == false)
wp_config |= 0x8;
/* set address */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0 + wp_num,
wp->address - (wp->address % wp->length));
/* set mask */
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0 + wp_num, wp->mask);
/* enable watchpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + wp_num, wp_config);
/* set value */
aice_write_debug_reg(aice, NDS_EDM_SR_BPV0 + wp_num, 0);
LOG_DEBUG("Add hardware watchpoint %" PRId32 " at %08" TARGET_PRIxADDR " mask %08" PRIx32,
wp_num, wp->address, wp->mask);
wp_num++;
} else if (nds32_v3->nds32.global_stop) {
if (wp->rw == WPT_READ)
ld_stop = true;
else if (wp->rw == WPT_WRITE)
st_stop = true;
else if (wp->rw == WPT_ACCESS)
ld_stop = st_stop = true;
}
}
if (nds32_v3->nds32.global_stop) {
uint32_t edm_ctl;
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &edm_ctl);
if (ld_stop)
edm_ctl |= 0x10;
if (st_stop)
edm_ctl |= 0x20;
aice_write_debug_reg(aice, NDS_EDM_SR_EDM_CTL, edm_ctl);
}
return ERROR_OK;
}
static int nds32_v3_deactivate_hardware_watchpoint(struct target *target)
{
struct aice_port_s *aice = target_to_aice(target);
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
int32_t wp_num = 0;
struct watchpoint *wp;
bool clean_global_stop = false;
for (wp = target->watchpoints; wp; wp = wp->next) {
if (wp_num < nds32_v3->used_n_wp) {
/* disable watchpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + wp_num, 0x0);
LOG_DEBUG("Remove hardware watchpoint %" PRId32 " at %08" TARGET_PRIxADDR
" mask %08" PRIx32, wp_num,
wp->address, wp->mask);
wp_num++;
} else if (nds32_v3->nds32.global_stop) {
clean_global_stop = true;
}
}
if (clean_global_stop) {
uint32_t edm_ctl;
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &edm_ctl);
edm_ctl = edm_ctl & (~0x30);
aice_write_debug_reg(aice, NDS_EDM_SR_EDM_CTL, edm_ctl);
}
return ERROR_OK;
}
static int nds32_v3_check_interrupt_stack(struct nds32 *nds32)
{
uint32_t val_ir0;
uint32_t value;
/* Save interrupt level */
nds32_get_mapped_reg(nds32, IR0, &val_ir0);
nds32->current_interrupt_level = (val_ir0 >> 1) & 0x3;
if (nds32_reach_max_interrupt_level(nds32))
LOG_ERROR("<-- TARGET ERROR! Reaching the max interrupt stack level %" PRIu32 ". -->",
nds32->current_interrupt_level);
/* backup $ir4 & $ir6 to avoid suppressed exception overwrite */
nds32_get_mapped_reg(nds32, IR4, &value);
nds32_get_mapped_reg(nds32, IR6, &value);
return ERROR_OK;
}
static int nds32_v3_restore_interrupt_stack(struct nds32 *nds32)
{
uint32_t value;
/* get backup value from cache */
/* then set back to make the register dirty */
nds32_get_mapped_reg(nds32, IR0, &value);
nds32_set_mapped_reg(nds32, IR0, value);
nds32_get_mapped_reg(nds32, IR4, &value);
nds32_set_mapped_reg(nds32, IR4, value);
nds32_get_mapped_reg(nds32, IR6, &value);
nds32_set_mapped_reg(nds32, IR6, value);
return ERROR_OK;
}
static int nds32_v3_deassert_reset(struct target *target)
{
int retval;
struct aice_port_s *aice = target_to_aice(target);
bool switch_to_v3_stack = false;
uint32_t value_edm_ctl;
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &value_edm_ctl);
if (((value_edm_ctl >> 6) & 0x1) == 0) { /* reset to V2 EDM mode */
aice_write_debug_reg(aice, NDS_EDM_SR_EDM_CTL, value_edm_ctl | (0x1 << 6));
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &value_edm_ctl);
if (((value_edm_ctl >> 6) & 0x1) == 1)
switch_to_v3_stack = true;
} else
switch_to_v3_stack = false;
CHECK_RETVAL(nds32_poll(target));
if (target->state != TARGET_HALTED) {
/* reset only */
LOG_WARNING("%s: ran after reset and before halt ...",
target_name(target));
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
} else {
/* reset-halt */
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
struct nds32 *nds32 = &(nds32_v3->nds32);
uint32_t value;
uint32_t interrupt_level;
if (switch_to_v3_stack == true) {
/* PSW.INTL-- */
nds32_get_mapped_reg(nds32, IR0, &value);
interrupt_level = (value >> 1) & 0x3;
interrupt_level--;
value &= ~(0x6);
value |= (interrupt_level << 1);
value |= 0x400; /* set PSW.DEX */
nds32_set_mapped_reg(nds32, IR0, value);
/* copy IPC to OIPC */
if ((interrupt_level + 1) < nds32->max_interrupt_level) {
nds32_get_mapped_reg(nds32, IR9, &value);
nds32_set_mapped_reg(nds32, IR11, value);
}
}
}
return ERROR_OK;
}
static int nds32_v3_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
struct nds32 *nds32 = &(nds32_v3->nds32);
int result;
if (breakpoint->type == BKPT_HARD) {
/* check hardware resource */
if (nds32_v3->n_hbr <= nds32_v3->next_hbr_index) {
LOG_WARNING("<-- TARGET WARNING! Insert too many "
"hardware breakpoints/watchpoints! "
"The limit of combined hardware "
"breakpoints/watchpoints is %" PRId32 ". -->",
nds32_v3->n_hbr);
LOG_WARNING("<-- TARGET STATUS: Inserted number of "
"hardware breakpoint: %" PRId32 ", hardware "
"watchpoints: %" PRId32 ". -->",
nds32_v3->next_hbr_index - nds32_v3->used_n_wp,
nds32_v3->used_n_wp);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* update next place to put hardware breakpoint */
nds32_v3->next_hbr_index++;
/* hardware breakpoint insertion occurs before 'continue' actually */
return ERROR_OK;
} else if (breakpoint->type == BKPT_SOFT) {
result = nds32_add_software_breakpoint(target, breakpoint);
if (result != ERROR_OK) {
/* auto convert to hardware breakpoint if failed */
if (nds32->auto_convert_hw_bp) {
/* convert to hardware breakpoint */
breakpoint->type = BKPT_HARD;
return nds32_v3_add_breakpoint(target, breakpoint);
}
}
return result;
} else /* unrecognized breakpoint type */
return ERROR_FAIL;
return ERROR_OK;
}
static int nds32_v3_remove_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
if (breakpoint->type == BKPT_HARD) {
if (nds32_v3->next_hbr_index <= 0)
return ERROR_FAIL;
/* update next place to put hardware breakpoint */
nds32_v3->next_hbr_index--;
/* hardware breakpoint removal occurs after 'halted' actually */
return ERROR_OK;
} else if (breakpoint->type == BKPT_SOFT) {
return nds32_remove_software_breakpoint(target, breakpoint);
} else /* unrecognized breakpoint type */
return ERROR_FAIL;
return ERROR_OK;
}
static int nds32_v3_add_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
/* check hardware resource */
if (nds32_v3->n_hbr <= nds32_v3->next_hbr_index) {
/* No hardware resource */
if (nds32_v3->nds32.global_stop) {
LOG_WARNING("<-- TARGET WARNING! The number of "
"watchpoints exceeds the hardware "
"resources. Stop at every load/store "
"instruction to check for watchpoint matches. -->");
return ERROR_OK;
}
LOG_WARNING("<-- TARGET WARNING! Insert too many hardware "
"breakpoints/watchpoints! The limit of combined "
"hardware breakpoints/watchpoints is %" PRId32 ". -->",
nds32_v3->n_hbr);
LOG_WARNING("<-- TARGET STATUS: Inserted number of "
"hardware breakpoint: %" PRId32 ", hardware "
"watchpoints: %" PRId32 ". -->",
nds32_v3->next_hbr_index - nds32_v3->used_n_wp,
nds32_v3->used_n_wp);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* update next place to put hardware watchpoint */
nds32_v3->next_hbr_index++;
nds32_v3->used_n_wp++;
return ERROR_OK;
}
static int nds32_v3_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
if (nds32_v3->next_hbr_index <= 0) {
if (nds32_v3->nds32.global_stop)
return ERROR_OK;
return ERROR_FAIL;
}
/* update next place to put hardware breakpoint */
nds32_v3->next_hbr_index--;
nds32_v3->used_n_wp--;
return ERROR_OK;
}
static struct nds32_v3_common_callback nds32_v3_common_callback = {
.check_interrupt_stack = nds32_v3_check_interrupt_stack,
.restore_interrupt_stack = nds32_v3_restore_interrupt_stack,
.activate_hardware_breakpoint = nds32_v3_activate_hardware_breakpoint,
.activate_hardware_watchpoint = nds32_v3_activate_hardware_watchpoint,
.deactivate_hardware_breakpoint = nds32_v3_deactivate_hardware_breakpoint,
.deactivate_hardware_watchpoint = nds32_v3_deactivate_hardware_watchpoint,
};
static int nds32_v3_target_create(struct target *target, Jim_Interp *interp)
{
struct nds32_v3_common *nds32_v3;
nds32_v3 = calloc(1, sizeof(*nds32_v3));
if (!nds32_v3)
return ERROR_FAIL;
nds32_v3_common_register_callback(&nds32_v3_common_callback);
nds32_v3_target_create_common(target, &(nds32_v3->nds32));
return ERROR_OK;
}
/* talk to the target and set things up */
static int nds32_v3_examine(struct target *target)
{
struct nds32_v3_common *nds32_v3 = target_to_nds32_v3(target);
struct nds32 *nds32 = &(nds32_v3->nds32);
struct aice_port_s *aice = target_to_aice(target);
if (!target_was_examined(target)) {
CHECK_RETVAL(nds32_edm_config(nds32));
if (nds32->reset_halt_as_examine)
CHECK_RETVAL(nds32_reset_halt(nds32));
}
uint32_t edm_cfg;
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CFG, &edm_cfg);
/* get the number of hardware breakpoints */
nds32_v3->n_hbr = (edm_cfg & 0x7) + 1;
/* low interference profiling */
if (edm_cfg & 0x100)
nds32_v3->low_interference_profile = true;
else
nds32_v3->low_interference_profile = false;
nds32_v3->next_hbr_index = 0;
nds32_v3->used_n_wp = 0;
LOG_INFO("%s: total hardware breakpoint %" PRId32, target_name(target),
nds32_v3->n_hbr);
nds32->target->state = TARGET_RUNNING;
nds32->target->debug_reason = DBG_REASON_NOTHALTED;
target_set_examined(target);
return ERROR_OK;
}
/** Holds methods for Andes1337 targets. */
struct target_type nds32_v3_target = {
.name = "nds32_v3",
.poll = nds32_poll,
.arch_state = nds32_arch_state,
.target_request_data = nds32_v3_target_request_data,
.halt = nds32_halt,
.resume = nds32_resume,
.step = nds32_step,
.assert_reset = nds32_assert_reset,
.deassert_reset = nds32_v3_deassert_reset,
/* register access */
.get_gdb_reg_list = nds32_get_gdb_reg_list,
/* memory access */
.read_buffer = nds32_v3_read_buffer,
.write_buffer = nds32_v3_write_buffer,
.read_memory = nds32_v3_read_memory,
.write_memory = nds32_v3_write_memory,
.checksum_memory = nds32_v3_checksum_memory,
/* breakpoint/watchpoint */
.add_breakpoint = nds32_v3_add_breakpoint,
.remove_breakpoint = nds32_v3_remove_breakpoint,
.add_watchpoint = nds32_v3_add_watchpoint,
.remove_watchpoint = nds32_v3_remove_watchpoint,
.hit_watchpoint = nds32_v3_hit_watchpoint,
/* MMU */
.mmu = nds32_mmu,
.virt2phys = nds32_virtual_to_physical,
.read_phys_memory = nds32_read_phys_memory,
.write_phys_memory = nds32_write_phys_memory,
.run_algorithm = nds32_v3_run_algorithm,
.commands = nds32_command_handlers,
.target_create = nds32_v3_target_create,
.init_target = nds32_v3_init_target,
.examine = nds32_v3_examine,
.get_gdb_fileio_info = nds32_get_gdb_fileio_info,
.gdb_fileio_end = nds32_gdb_fileio_end,
.profiling = nds32_profiling,
};

View File

@ -1,34 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_V3_H
#define OPENOCD_TARGET_NDS32_V3_H
#include "nds32.h"
struct nds32_v3_common {
struct nds32 nds32;
/** number of hardware breakpoints */
int32_t n_hbr;
/** number of used hardware watchpoints */
int32_t used_n_wp;
/** next hardware breakpoint index */
int32_t next_hbr_index;
/** low interference profiling */
bool low_interference_profile;
};
static inline struct nds32_v3_common *target_to_nds32_v3(struct target *target)
{
return container_of(target->arch_info, struct nds32_v3_common, nds32);
}
#endif /* OPENOCD_TARGET_NDS32_V3_H */

View File

@ -1,664 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "nds32_reg.h"
#include "nds32_disassembler.h"
#include "nds32.h"
#include "nds32_aice.h"
#include "nds32_v3_common.h"
static struct nds32_v3_common_callback *v3_common_callback;
static int nds32_v3_register_mapping(struct nds32 *nds32, int reg_no)
{
if (reg_no == PC)
return IR11;
return reg_no;
}
static int nds32_v3_get_debug_reason(struct nds32 *nds32, uint32_t *reason)
{
uint32_t edmsw;
struct aice_port_s *aice = target_to_aice(nds32->target);
aice_read_debug_reg(aice, NDS_EDM_SR_EDMSW, &edmsw);
*reason = (edmsw >> 12) & 0x0F;
return ERROR_OK;
}
/**
* Save processor state. This is called after a HALT instruction
* succeeds, and on other occasions the processor enters debug mode
* (breakpoint, watchpoint, etc).
*/
static int nds32_v3_debug_entry(struct nds32 *nds32, bool enable_watchpoint)
{
LOG_DEBUG("nds32_v3_debug_entry");
enum target_state backup_state = nds32->target->state;
nds32->target->state = TARGET_HALTED;
if (nds32->init_arch_info_after_halted == false) {
/* init architecture info according to config registers */
CHECK_RETVAL(nds32_config(nds32));
nds32->init_arch_info_after_halted = true;
}
/* REVISIT entire cache should already be invalid !!! */
register_cache_invalidate(nds32->core_cache);
/* deactivate all hardware breakpoints */
CHECK_RETVAL(v3_common_callback->deactivate_hardware_breakpoint(nds32->target));
if (enable_watchpoint)
CHECK_RETVAL(v3_common_callback->deactivate_hardware_watchpoint(nds32->target));
struct breakpoint *syscall_break = &(nds32->syscall_break);
if (nds32->virtual_hosting) {
if (syscall_break->is_set) {
/** disable virtual hosting */
/* remove breakpoint at syscall entry */
target_remove_breakpoint(nds32->target, syscall_break);
syscall_break->is_set = false;
uint32_t value_pc;
nds32_get_mapped_reg(nds32, PC, &value_pc);
if (value_pc == syscall_break->address)
/** process syscall for virtual hosting */
nds32->hit_syscall = true;
}
}
if (nds32_examine_debug_reason(nds32) != ERROR_OK) {
nds32->target->state = backup_state;
/* re-activate all hardware breakpoints & watchpoints */
CHECK_RETVAL(v3_common_callback->activate_hardware_breakpoint(nds32->target));
if (enable_watchpoint)
CHECK_RETVAL(v3_common_callback->activate_hardware_watchpoint(nds32->target));
return ERROR_FAIL;
}
/* Save registers. */
nds32_full_context(nds32);
/* check interrupt level */
v3_common_callback->check_interrupt_stack(nds32);
return ERROR_OK;
}
/**
* Restore processor state.
*/
static int nds32_v3_leave_debug_state(struct nds32 *nds32, bool enable_watchpoint)
{
LOG_DEBUG("nds32_v3_leave_debug_state");
struct target *target = nds32->target;
/* activate all hardware breakpoints */
CHECK_RETVAL(v3_common_callback->activate_hardware_breakpoint(target));
if (enable_watchpoint) {
/* activate all watchpoints */
CHECK_RETVAL(v3_common_callback->activate_hardware_watchpoint(target));
}
/* restore interrupt stack */
v3_common_callback->restore_interrupt_stack(nds32);
/* REVISIT once we start caring about MMU and cache state,
* address it here ...
*/
/* restore PSW, PC, and R0 ... after flushing any modified
* registers.
*/
CHECK_RETVAL(nds32_restore_context(target));
if (nds32->virtual_hosting) {
/** enable virtual hosting */
uint32_t value_ir3;
uint32_t entry_size;
uint32_t syscall_address;
/* get syscall entry address */
nds32_get_mapped_reg(nds32, IR3, &value_ir3);
entry_size = 0x4 << (((value_ir3 >> 14) & 0x3) << 1);
syscall_address = (value_ir3 & 0xFFFF0000) + entry_size * 8; /* The index of SYSCALL is 8 */
if (nds32->hit_syscall) {
/* single step to skip syscall entry */
/* use IRET to skip syscall */
struct aice_port_s *aice = target_to_aice(target);
uint32_t value_ir9;
uint32_t value_ir6;
uint32_t syscall_id;
nds32_get_mapped_reg(nds32, IR6, &value_ir6);
syscall_id = (value_ir6 >> 16) & 0x7FFF;
if (syscall_id == NDS32_SYSCALL_EXIT) {
/* If target hits exit syscall, do not use IRET to skip handler. */
aice_step(aice);
} else {
/* use api->read/write_reg to skip nds32 register cache */
uint32_t value_dimbr;
aice_read_debug_reg(aice, NDS_EDM_SR_DIMBR, &value_dimbr);
aice_write_register(aice, IR11, value_dimbr + 0xC);
aice_read_register(aice, IR9, &value_ir9);
value_ir9 += 4; /* syscall is always 4 bytes */
aice_write_register(aice, IR9, value_ir9);
/* backup hardware breakpoint 0 */
uint32_t backup_bpa, backup_bpam, backup_bpc;
aice_read_debug_reg(aice, NDS_EDM_SR_BPA0, &backup_bpa);
aice_read_debug_reg(aice, NDS_EDM_SR_BPAM0, &backup_bpam);
aice_read_debug_reg(aice, NDS_EDM_SR_BPC0, &backup_bpc);
/* use hardware breakpoint 0 to stop cpu after skipping syscall */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0, value_ir9);
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0, 0);
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0, 0xA);
/* Execute two IRET.
* First IRET is used to quit debug mode.
* Second IRET is used to quit current syscall. */
uint32_t dim_inst[4] = {NOP, NOP, IRET, IRET};
aice_execute(aice, dim_inst, 4);
/* restore origin hardware breakpoint 0 */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0, backup_bpa);
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0, backup_bpam);
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0, backup_bpc);
}
nds32->hit_syscall = false;
}
/* insert breakpoint at syscall entry */
struct breakpoint *syscall_break = &(nds32->syscall_break);
syscall_break->address = syscall_address;
syscall_break->type = BKPT_SOFT;
syscall_break->is_set = true;
target_add_breakpoint(target, syscall_break);
}
return ERROR_OK;
}
static int nds32_v3_get_exception_address(struct nds32 *nds32,
uint32_t *address, uint32_t reason)
{
LOG_DEBUG("nds32_v3_get_exception_address");
struct aice_port_s *aice = target_to_aice(nds32->target);
struct target *target = nds32->target;
uint32_t edmsw;
uint32_t edm_cfg;
uint32_t match_bits;
uint32_t match_count;
int32_t i;
static int32_t number_of_hard_break;
uint32_t bp_control;
if (number_of_hard_break == 0) {
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CFG, &edm_cfg);
number_of_hard_break = (edm_cfg & 0x7) + 1;
}
aice_read_debug_reg(aice, NDS_EDM_SR_EDMSW, &edmsw);
/* clear matching bits (write-one-clear) */
aice_write_debug_reg(aice, NDS_EDM_SR_EDMSW, edmsw);
match_bits = (edmsw >> 4) & 0xFF;
match_count = 0;
for (i = 0 ; i < number_of_hard_break ; i++) {
if (match_bits & (1 << i)) {
aice_read_debug_reg(aice, NDS_EDM_SR_BPA0 + i, address);
match_count++;
/* If target hits multiple read/access watchpoint,
* select the first one. */
aice_read_debug_reg(aice, NDS_EDM_SR_BPC0 + i, &bp_control);
if (0x3 == (bp_control & 0x3)) {
match_count = 1;
break;
}
}
}
if (match_count > 1) { /* multiple hits */
*address = 0;
return ERROR_OK;
} else if (match_count == 1) {
uint32_t val_pc;
uint32_t opcode;
struct nds32_instruction instruction;
struct watchpoint *wp;
bool hit;
nds32_get_mapped_reg(nds32, PC, &val_pc);
if ((reason == NDS32_DEBUG_DATA_ADDR_WATCHPOINT_NEXT_PRECISE) ||
(reason == NDS32_DEBUG_DATA_VALUE_WATCHPOINT_NEXT_PRECISE)) {
if (edmsw & 0x4) /* check EDMSW.IS_16BIT */
val_pc -= 2;
else
val_pc -= 4;
}
nds32_read_opcode(nds32, val_pc, &opcode);
nds32_evaluate_opcode(nds32, opcode, val_pc, &instruction);
LOG_DEBUG("PC: 0x%08" PRIx32 ", access start: 0x%08" PRIx32 ", end: 0x%08" PRIx32,
val_pc, instruction.access_start, instruction.access_end);
/* check if multiple hits in the access range */
uint32_t in_range_watch_count = 0;
for (wp = target->watchpoints; wp; wp = wp->next) {
if ((instruction.access_start <= wp->address) &&
(wp->address < instruction.access_end))
in_range_watch_count++;
}
if (in_range_watch_count > 1) {
/* Hit LSMW instruction. */
*address = 0;
return ERROR_OK;
}
/* dispel false match */
hit = false;
for (wp = target->watchpoints; wp; wp = wp->next) {
if (((*address ^ wp->address) & (~wp->mask)) == 0) {
uint32_t watch_start;
uint32_t watch_end;
watch_start = wp->address;
watch_end = wp->address + wp->length;
if ((watch_end <= instruction.access_start) ||
(instruction.access_end <= watch_start))
continue;
hit = true;
break;
}
}
if (hit)
return ERROR_OK;
else
return ERROR_FAIL;
} else if (match_count == 0) {
/* global stop is precise exception */
if ((reason == NDS32_DEBUG_LOAD_STORE_GLOBAL_STOP) && nds32->global_stop) {
/* parse instruction to get correct access address */
uint32_t val_pc;
uint32_t opcode;
struct nds32_instruction instruction;
nds32_get_mapped_reg(nds32, PC, &val_pc);
nds32_read_opcode(nds32, val_pc, &opcode);
nds32_evaluate_opcode(nds32, opcode, val_pc, &instruction);
*address = instruction.access_start;
return ERROR_OK;
}
}
*address = 0xFFFFFFFF;
return ERROR_FAIL;
}
void nds32_v3_common_register_callback(struct nds32_v3_common_callback *callback)
{
v3_common_callback = callback;
}
/** target_type functions: */
/* target request support */
int nds32_v3_target_request_data(struct target *target,
uint32_t size, uint8_t *buffer)
{
/* AndesCore could use DTR register to communicate with OpenOCD
* to output messages
* Target data will be put in buffer
* The format of DTR is as follow
* DTR[31:16] => length, DTR[15:8] => size, DTR[7:0] => target_req_cmd
* target_req_cmd has three possible values:
* TARGET_REQ_TRACEMSG
* TARGET_REQ_DEBUGMSG
* TARGET_REQ_DEBUGCHAR
* if size == 0, target will call target_asciimsg(),
* else call target_hexmsg()
*/
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_OK;
}
int nds32_v3_checksum_memory(struct target *target,
target_addr_t address, uint32_t count, uint32_t *checksum)
{
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
/**
* find out which watchpoint hits
* get exception address and compare the address to watchpoints
*/
int nds32_v3_hit_watchpoint(struct target *target,
struct watchpoint **hit_watchpoint)
{
static struct watchpoint scan_all_watchpoint;
uint32_t exception_address;
struct watchpoint *wp;
struct nds32 *nds32 = target_to_nds32(target);
exception_address = nds32->watched_address;
if (exception_address == 0xFFFFFFFF)
return ERROR_FAIL;
if (exception_address == 0) {
scan_all_watchpoint.address = 0;
scan_all_watchpoint.rw = WPT_WRITE;
scan_all_watchpoint.next = 0;
scan_all_watchpoint.unique_id = 0x5CA8;
*hit_watchpoint = &scan_all_watchpoint;
return ERROR_OK;
}
for (wp = target->watchpoints; wp; wp = wp->next) {
if (((exception_address ^ wp->address) & (~wp->mask)) == 0) {
*hit_watchpoint = wp;
return ERROR_OK;
}
}
return ERROR_FAIL;
}
int nds32_v3_target_create_common(struct target *target, struct nds32 *nds32)
{
nds32->register_map = nds32_v3_register_mapping;
nds32->get_debug_reason = nds32_v3_get_debug_reason;
nds32->enter_debug_state = nds32_v3_debug_entry;
nds32->leave_debug_state = nds32_v3_leave_debug_state;
nds32->get_watched_address = nds32_v3_get_exception_address;
/* Init target->arch_info in nds32_init_arch_info().
* After this, user could use target_to_nds32() to get nds32 object */
nds32_init_arch_info(target, nds32);
return ERROR_OK;
}
int nds32_v3_run_algorithm(struct target *target,
int num_mem_params,
struct mem_param *mem_params,
int num_reg_params,
struct reg_param *reg_params,
target_addr_t entry_point,
target_addr_t exit_point,
int timeout_ms,
void *arch_info)
{
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
int nds32_v3_read_buffer(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_addr_t physical_address;
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
/* When DEX is set to one, hardware will enforce the following behavior without
* modifying the corresponding control bits in PSW.
*
* Disable all interrupts
* Become superuser mode
* Turn off IT/DT
* Use MMU_CFG.DE as the data access endian
* Use MMU_CFG.DRDE as the device register access endian if MMU_CTL.DREE is asserted
* Disable audio special features
* Disable inline function call
*
* Because hardware will turn off IT/DT by default, it MUST translate virtual address
* to physical address.
*/
if (target->type->virt2phys(target, address, &physical_address) == ERROR_OK)
address = physical_address;
else
return ERROR_FAIL;
int result;
struct aice_port_s *aice = target_to_aice(target);
/* give arbitrary initial value to avoid warning messages */
enum nds_memory_access origin_access_channel = NDS_MEMORY_ACC_CPU;
if (nds32->hit_syscall) {
/* Use bus mode to access memory during virtual hosting */
origin_access_channel = memory->access_channel;
memory->access_channel = NDS_MEMORY_ACC_BUS;
aice_memory_access(aice, NDS_MEMORY_ACC_BUS);
}
result = nds32_read_buffer(target, address, size, buffer);
if (nds32->hit_syscall) {
/* Restore access_channel after virtual hosting */
memory->access_channel = origin_access_channel;
aice_memory_access(aice, origin_access_channel);
}
return result;
}
int nds32_v3_write_buffer(struct target *target, target_addr_t address,
uint32_t size, const uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_addr_t physical_address;
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
/* When DEX is set to one, hardware will enforce the following behavior without
* modifying the corresponding control bits in PSW.
*
* Disable all interrupts
* Become superuser mode
* Turn off IT/DT
* Use MMU_CFG.DE as the data access endian
* Use MMU_CFG.DRDE as the device register access endian if MMU_CTL.DREE is asserted
* Disable audio special features
* Disable inline function call
*
* Because hardware will turn off IT/DT by default, it MUST translate virtual address
* to physical address.
*/
if (target->type->virt2phys(target, address, &physical_address) == ERROR_OK)
address = physical_address;
else
return ERROR_FAIL;
if (nds32->hit_syscall) {
struct aice_port_s *aice = target_to_aice(target);
enum nds_memory_access origin_access_channel;
origin_access_channel = memory->access_channel;
/* If target has no cache, use BUS mode to access memory. */
if ((memory->dcache.line_size == 0)
|| (memory->dcache.enable == false)) {
/* There is no Dcache or Dcache is disabled. */
memory->access_channel = NDS_MEMORY_ACC_BUS;
aice_memory_access(aice, NDS_MEMORY_ACC_BUS);
}
int result;
result = nds32_gdb_fileio_write_memory(nds32, address, size, buffer);
if (origin_access_channel == NDS_MEMORY_ACC_CPU) {
memory->access_channel = NDS_MEMORY_ACC_CPU;
aice_memory_access(aice, NDS_MEMORY_ACC_CPU);
}
return result;
}
return nds32_write_buffer(target, address, size, buffer);
}
int nds32_v3_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_addr_t physical_address;
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
/* When DEX is set to one, hardware will enforce the following behavior without
* modifying the corresponding control bits in PSW.
*
* Disable all interrupts
* Become superuser mode
* Turn off IT/DT
* Use MMU_CFG.DE as the data access endian
* Use MMU_CFG.DRDE as the device register access endian if MMU_CTL.DREE is asserted
* Disable audio special features
* Disable inline function call
*
* Because hardware will turn off IT/DT by default, it MUST translate virtual address
* to physical address.
*/
if (target->type->virt2phys(target, address, &physical_address) == ERROR_OK)
address = physical_address;
else
return ERROR_FAIL;
struct aice_port_s *aice = target_to_aice(target);
/* give arbitrary initial value to avoid warning messages */
enum nds_memory_access origin_access_channel = NDS_MEMORY_ACC_CPU;
int result;
if (nds32->hit_syscall) {
/* Use bus mode to access memory during virtual hosting */
origin_access_channel = memory->access_channel;
memory->access_channel = NDS_MEMORY_ACC_BUS;
aice_memory_access(aice, NDS_MEMORY_ACC_BUS);
}
result = nds32_read_memory(target, address, size, count, buffer);
if (nds32->hit_syscall) {
/* Restore access_channel after virtual hosting */
memory->access_channel = origin_access_channel;
aice_memory_access(aice, origin_access_channel);
}
return result;
}
int nds32_v3_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_addr_t physical_address;
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
/* When DEX is set to one, hardware will enforce the following behavior without
* modifying the corresponding control bits in PSW.
*
* Disable all interrupts
* Become superuser mode
* Turn off IT/DT
* Use MMU_CFG.DE as the data access endian
* Use MMU_CFG.DRDE as the device register access endian if MMU_CTL.DREE is asserted
* Disable audio special features
* Disable inline function call
*
* Because hardware will turn off IT/DT by default, it MUST translate virtual address
* to physical address.
*/
if (target->type->virt2phys(target, address, &physical_address) == ERROR_OK)
address = physical_address;
else
return ERROR_FAIL;
return nds32_write_memory(target, address, size, count, buffer);
}
int nds32_v3_init_target(struct command_context *cmd_ctx,
struct target *target)
{
/* Initialize anything we can set up without talking to the target */
struct nds32 *nds32 = target_to_nds32(target);
nds32_init(nds32);
target->fileio_info = malloc(sizeof(struct gdb_fileio_info));
target->fileio_info->identifier = NULL;
return ERROR_OK;
}

View File

@ -1,50 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_V3_COMMON_H
#define OPENOCD_TARGET_NDS32_V3_COMMON_H
#include "target.h"
struct nds32_v3_common_callback {
int (*check_interrupt_stack)(struct nds32 *nds32);
int (*restore_interrupt_stack)(struct nds32 *nds32);
int (*activate_hardware_breakpoint)(struct target *target);
int (*activate_hardware_watchpoint)(struct target *target);
int (*deactivate_hardware_breakpoint)(struct target *target);
int (*deactivate_hardware_watchpoint)(struct target *target);
};
void nds32_v3_common_register_callback(struct nds32_v3_common_callback *callback);
int nds32_v3_target_request_data(struct target *target,
uint32_t size, uint8_t *buffer);
int nds32_v3_checksum_memory(struct target *target,
target_addr_t address, uint32_t count, uint32_t *checksum);
int nds32_v3_hit_watchpoint(struct target *target,
struct watchpoint **hit_watchpoint);
int nds32_v3_target_create_common(struct target *target, struct nds32 *nds32);
int nds32_v3_run_algorithm(struct target *target,
int num_mem_params,
struct mem_param *mem_params,
int num_reg_params,
struct reg_param *reg_params,
target_addr_t entry_point,
target_addr_t exit_point,
int timeout_ms,
void *arch_info);
int nds32_v3_read_buffer(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer);
int nds32_v3_write_buffer(struct target *target, target_addr_t address,
uint32_t size, const uint8_t *buffer);
int nds32_v3_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer);
int nds32_v3_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer);
int nds32_v3_init_target(struct command_context *cmd_ctx,
struct target *target);
#endif /* OPENOCD_TARGET_NDS32_V3_COMMON_H */

View File

@ -1,495 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "nds32_cmd.h"
#include "nds32_aice.h"
#include "nds32_v3m.h"
#include "nds32_v3_common.h"
static int nds32_v3m_activate_hardware_breakpoint(struct target *target)
{
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
struct aice_port_s *aice = target_to_aice(target);
struct breakpoint *bp;
unsigned brp_num = nds32_v3m->n_hbr - 1;
for (bp = target->breakpoints; bp; bp = bp->next) {
if (bp->type == BKPT_SOFT) {
/* already set at nds32_v3m_add_breakpoint() */
continue;
} else if (bp->type == BKPT_HARD) {
/* set address */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0 + brp_num, bp->address);
/* set mask */
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0 + brp_num, 0);
if (nds32_v3m->nds32.memory.address_translation)
/* enable breakpoint (virtual address) */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + brp_num, 0x2);
else
/* enable breakpoint (physical address) */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + brp_num, 0xA);
LOG_DEBUG("Add hardware BP %u at %08" TARGET_PRIxADDR, brp_num,
bp->address);
brp_num--;
} else {
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int nds32_v3m_deactivate_hardware_breakpoint(struct target *target)
{
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
struct aice_port_s *aice = target_to_aice(target);
struct breakpoint *bp;
unsigned brp_num = nds32_v3m->n_hbr - 1;
for (bp = target->breakpoints; bp; bp = bp->next) {
if (bp->type == BKPT_SOFT)
continue;
else if (bp->type == BKPT_HARD)
/* disable breakpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + brp_num, 0x0);
else
return ERROR_FAIL;
LOG_DEBUG("Remove hardware BP %u at %08" TARGET_PRIxADDR, brp_num,
bp->address);
brp_num--;
}
return ERROR_OK;
}
static int nds32_v3m_activate_hardware_watchpoint(struct target *target)
{
struct aice_port_s *aice = target_to_aice(target);
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
struct watchpoint *wp;
int32_t wp_num = 0;
uint32_t wp_config = 0;
bool ld_stop, st_stop;
if (nds32_v3m->nds32.global_stop)
ld_stop = st_stop = false;
for (wp = target->watchpoints; wp; wp = wp->next) {
if (wp_num < nds32_v3m->used_n_wp) {
wp->mask = wp->length - 1;
if ((wp->address % wp->length) != 0)
wp->mask = (wp->mask << 1) + 1;
if (wp->rw == WPT_READ)
wp_config = 0x3;
else if (wp->rw == WPT_WRITE)
wp_config = 0x5;
else if (wp->rw == WPT_ACCESS)
wp_config = 0x7;
/* set/unset physical address bit of BPCn according to PSW.DT */
if (nds32_v3m->nds32.memory.address_translation == false)
wp_config |= 0x8;
/* set address */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0 + wp_num,
wp->address - (wp->address % wp->length));
/* set mask */
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0 + wp_num, wp->mask);
/* enable watchpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + wp_num, wp_config);
LOG_DEBUG("Add hardware watchpoint %" PRId32 " at %08" TARGET_PRIxADDR
" mask %08" PRIx32, wp_num, wp->address, wp->mask);
wp_num++;
} else if (nds32_v3m->nds32.global_stop) {
if (wp->rw == WPT_READ)
ld_stop = true;
else if (wp->rw == WPT_WRITE)
st_stop = true;
else if (wp->rw == WPT_ACCESS)
ld_stop = st_stop = true;
}
}
if (nds32_v3m->nds32.global_stop) {
uint32_t edm_ctl;
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &edm_ctl);
if (ld_stop)
edm_ctl |= 0x10;
if (st_stop)
edm_ctl |= 0x20;
aice_write_debug_reg(aice, NDS_EDM_SR_EDM_CTL, edm_ctl);
}
return ERROR_OK;
}
static int nds32_v3m_deactivate_hardware_watchpoint(struct target *target)
{
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
struct aice_port_s *aice = target_to_aice(target);
struct watchpoint *wp;
int32_t wp_num = 0;
bool clean_global_stop = false;
for (wp = target->watchpoints; wp; wp = wp->next) {
if (wp_num < nds32_v3m->used_n_wp) {
/* disable watchpoint */
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + wp_num, 0x0);
LOG_DEBUG("Remove hardware watchpoint %" PRId32 " at %08" TARGET_PRIxADDR
" mask %08" PRIx32, wp_num, wp->address, wp->mask);
wp_num++;
} else if (nds32_v3m->nds32.global_stop) {
clean_global_stop = true;
}
}
if (clean_global_stop) {
uint32_t edm_ctl;
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CTL, &edm_ctl);
edm_ctl = edm_ctl & (~0x30);
aice_write_debug_reg(aice, NDS_EDM_SR_EDM_CTL, edm_ctl);
}
return ERROR_OK;
}
static int nds32_v3m_check_interrupt_stack(struct nds32 *nds32)
{
uint32_t val_ir0;
uint32_t value;
/* Save interrupt level */
nds32_get_mapped_reg(nds32, IR0, &val_ir0);
nds32->current_interrupt_level = (val_ir0 >> 1) & 0x3;
if (nds32_reach_max_interrupt_level(nds32))
LOG_ERROR("<-- TARGET ERROR! Reaching the max interrupt stack level %" PRIu32 ". -->",
nds32->current_interrupt_level);
/* backup $ir6 to avoid suppressed exception overwrite */
nds32_get_mapped_reg(nds32, IR6, &value);
return ERROR_OK;
}
static int nds32_v3m_restore_interrupt_stack(struct nds32 *nds32)
{
uint32_t value;
/* get backup value from cache */
/* then set back to make the register dirty */
nds32_get_mapped_reg(nds32, IR0, &value);
nds32_set_mapped_reg(nds32, IR0, value);
nds32_get_mapped_reg(nds32, IR6, &value);
nds32_set_mapped_reg(nds32, IR6, value);
return ERROR_OK;
}
static int nds32_v3m_deassert_reset(struct target *target)
{
int retval;
CHECK_RETVAL(nds32_poll(target));
if (target->state != TARGET_HALTED) {
/* reset only */
LOG_WARNING("%s: ran after reset and before halt ...",
target_name(target));
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int nds32_v3m_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
struct nds32 *nds32 = &(nds32_v3m->nds32);
int result;
if (breakpoint->type == BKPT_HARD) {
/* check hardware resource */
if (nds32_v3m->next_hbr_index < nds32_v3m->next_hwp_index) {
LOG_WARNING("<-- TARGET WARNING! Insert too many "
"hardware breakpoints/watchpoints! "
"The limit of combined hardware "
"breakpoints/watchpoints is %" PRId32 ". -->",
nds32_v3m->n_hbr);
LOG_WARNING("<-- TARGET STATUS: Inserted number of "
"hardware breakpoint: %" PRId32 ", hardware "
"watchpoints: %" PRId32 ". -->",
nds32_v3m->n_hbr - nds32_v3m->next_hbr_index - 1,
nds32_v3m->used_n_wp);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* update next place to put hardware breakpoint */
nds32_v3m->next_hbr_index--;
/* hardware breakpoint insertion occurs before 'continue' actually */
return ERROR_OK;
} else if (breakpoint->type == BKPT_SOFT) {
result = nds32_add_software_breakpoint(target, breakpoint);
if (result != ERROR_OK) {
/* auto convert to hardware breakpoint if failed */
if (nds32->auto_convert_hw_bp) {
/* convert to hardware breakpoint */
breakpoint->type = BKPT_HARD;
return nds32_v3m_add_breakpoint(target, breakpoint);
}
}
return result;
} else /* unrecognized breakpoint type */
return ERROR_FAIL;
return ERROR_OK;
}
static int nds32_v3m_remove_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
if (breakpoint->type == BKPT_HARD) {
if (nds32_v3m->next_hbr_index >= nds32_v3m->n_hbr - 1)
return ERROR_FAIL;
/* update next place to put hardware breakpoint */
nds32_v3m->next_hbr_index++;
/* hardware breakpoint removal occurs after 'halted' actually */
return ERROR_OK;
} else if (breakpoint->type == BKPT_SOFT) {
return nds32_remove_software_breakpoint(target, breakpoint);
} else /* unrecognized breakpoint type */
return ERROR_FAIL;
return ERROR_OK;
}
static int nds32_v3m_add_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
/* check hardware resource */
if (nds32_v3m->next_hwp_index >= nds32_v3m->n_hwp) {
/* No hardware resource */
if (nds32_v3m->nds32.global_stop) {
LOG_WARNING("<-- TARGET WARNING! The number of "
"watchpoints exceeds the hardware "
"resources. Stop at every load/store "
"instruction to check for watchpoint matches. -->");
return ERROR_OK;
}
LOG_WARNING("<-- TARGET WARNING! Insert too many hardware "
"watchpoints! The limit of hardware watchpoints "
"is %" PRId32 ". -->", nds32_v3m->n_hwp);
LOG_WARNING("<-- TARGET STATUS: Inserted number of "
"hardware watchpoint: %" PRId32 ". -->",
nds32_v3m->used_n_wp);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (nds32_v3m->next_hwp_index > nds32_v3m->next_hbr_index) {
/* No hardware resource */
if (nds32_v3m->nds32.global_stop) {
LOG_WARNING("<-- TARGET WARNING! The number of "
"watchpoints exceeds the hardware "
"resources. Stop at every load/store "
"instruction to check for watchpoint matches. -->");
return ERROR_OK;
}
LOG_WARNING("<-- TARGET WARNING! Insert too many hardware "
"breakpoints/watchpoints! The limit of combined "
"hardware breakpoints/watchpoints is %" PRId32 ". -->",
nds32_v3m->n_hbr);
LOG_WARNING("<-- TARGET STATUS: Inserted number of "
"hardware breakpoint: %" PRId32 ", hardware "
"watchpoints: %" PRId32 ". -->",
nds32_v3m->n_hbr - nds32_v3m->next_hbr_index - 1,
nds32_v3m->used_n_wp);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* update next place to put hardware watchpoint */
nds32_v3m->next_hwp_index++;
nds32_v3m->used_n_wp++;
return ERROR_OK;
}
static int nds32_v3m_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
if (nds32_v3m->next_hwp_index <= 0) {
if (nds32_v3m->nds32.global_stop)
return ERROR_OK;
return ERROR_FAIL;
}
/* update next place to put hardware watchpoint */
nds32_v3m->next_hwp_index--;
nds32_v3m->used_n_wp--;
return ERROR_OK;
}
static struct nds32_v3_common_callback nds32_v3m_common_callback = {
.check_interrupt_stack = nds32_v3m_check_interrupt_stack,
.restore_interrupt_stack = nds32_v3m_restore_interrupt_stack,
.activate_hardware_breakpoint = nds32_v3m_activate_hardware_breakpoint,
.activate_hardware_watchpoint = nds32_v3m_activate_hardware_watchpoint,
.deactivate_hardware_breakpoint = nds32_v3m_deactivate_hardware_breakpoint,
.deactivate_hardware_watchpoint = nds32_v3m_deactivate_hardware_watchpoint,
};
static int nds32_v3m_target_create(struct target *target, Jim_Interp *interp)
{
struct nds32_v3m_common *nds32_v3m;
nds32_v3m = calloc(1, sizeof(*nds32_v3m));
if (!nds32_v3m)
return ERROR_FAIL;
nds32_v3_common_register_callback(&nds32_v3m_common_callback);
nds32_v3_target_create_common(target, &(nds32_v3m->nds32));
return ERROR_OK;
}
/* talk to the target and set things up */
static int nds32_v3m_examine(struct target *target)
{
struct nds32_v3m_common *nds32_v3m = target_to_nds32_v3m(target);
struct nds32 *nds32 = &(nds32_v3m->nds32);
struct aice_port_s *aice = target_to_aice(target);
if (!target_was_examined(target)) {
CHECK_RETVAL(nds32_edm_config(nds32));
if (nds32->reset_halt_as_examine)
CHECK_RETVAL(nds32_reset_halt(nds32));
}
uint32_t edm_cfg;
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CFG, &edm_cfg);
/* get the number of hardware breakpoints */
nds32_v3m->n_hbr = (edm_cfg & 0x7) + 1;
nds32_v3m->used_n_wp = 0;
/* get the number of hardware watchpoints */
/* If the WP field is hardwired to zero, it means this is a
* simple breakpoint. Otherwise, if the WP field is writable
* then it means this is a regular watchpoints. */
nds32_v3m->n_hwp = 0;
for (int32_t i = 0 ; i < nds32_v3m->n_hbr ; i++) {
/** check the hardware breakpoint is simple or not */
uint32_t tmp_value;
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0 + i, 0x1);
aice_read_debug_reg(aice, NDS_EDM_SR_BPC0 + i, &tmp_value);
if (tmp_value)
nds32_v3m->n_hwp++;
}
/* hardware breakpoint is inserted from high index to low index */
nds32_v3m->next_hbr_index = nds32_v3m->n_hbr - 1;
/* hardware watchpoint is inserted from low index to high index */
nds32_v3m->next_hwp_index = 0;
LOG_INFO("%s: total hardware breakpoint %" PRId32 " (simple breakpoint %" PRId32 ")",
target_name(target), nds32_v3m->n_hbr, nds32_v3m->n_hbr - nds32_v3m->n_hwp);
LOG_INFO("%s: total hardware watchpoint %" PRId32, target_name(target), nds32_v3m->n_hwp);
nds32->target->state = TARGET_RUNNING;
nds32->target->debug_reason = DBG_REASON_NOTHALTED;
target_set_examined(target);
return ERROR_OK;
}
/** Holds methods for NDS32 V3m targets. */
struct target_type nds32_v3m_target = {
.name = "nds32_v3m",
.poll = nds32_poll,
.arch_state = nds32_arch_state,
.target_request_data = nds32_v3_target_request_data,
.halt = nds32_halt,
.resume = nds32_resume,
.step = nds32_step,
.assert_reset = nds32_assert_reset,
.deassert_reset = nds32_v3m_deassert_reset,
/* register access */
.get_gdb_reg_list = nds32_get_gdb_reg_list,
/* memory access */
.read_buffer = nds32_v3_read_buffer,
.write_buffer = nds32_v3_write_buffer,
.read_memory = nds32_v3_read_memory,
.write_memory = nds32_v3_write_memory,
.checksum_memory = nds32_v3_checksum_memory,
/* breakpoint/watchpoint */
.add_breakpoint = nds32_v3m_add_breakpoint,
.remove_breakpoint = nds32_v3m_remove_breakpoint,
.add_watchpoint = nds32_v3m_add_watchpoint,
.remove_watchpoint = nds32_v3m_remove_watchpoint,
.hit_watchpoint = nds32_v3_hit_watchpoint,
/* MMU */
.mmu = nds32_mmu,
.virt2phys = nds32_virtual_to_physical,
.read_phys_memory = nds32_read_phys_memory,
.write_phys_memory = nds32_write_phys_memory,
.run_algorithm = nds32_v3_run_algorithm,
.commands = nds32_command_handlers,
.target_create = nds32_v3m_target_create,
.init_target = nds32_v3_init_target,
.examine = nds32_v3m_examine,
.get_gdb_fileio_info = nds32_get_gdb_fileio_info,
.gdb_fileio_end = nds32_gdb_fileio_end,
};

View File

@ -1,40 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifndef OPENOCD_TARGET_NDS32_V3M_H
#define OPENOCD_TARGET_NDS32_V3M_H
#include "nds32.h"
struct nds32_v3m_common {
struct nds32 nds32;
/** number of hardware breakpoints */
int32_t n_hbr;
/** number of hardware watchpoints */
int32_t n_hwp;
/** number of used hardware watchpoints */
int32_t used_n_wp;
/** next hardware breakpoint index */
/** for simple breakpoints, hardware breakpoints are inserted
* from high index to low index */
int32_t next_hbr_index;
/** next hardware watchpoint index */
/** increase from low index to high index */
int32_t next_hwp_index;
};
static inline struct nds32_v3m_common *target_to_nds32_v3m(struct target *target)
{
return container_of(target->arch_info, struct nds32_v3m_common, nds32);
}
#endif /* OPENOCD_TARGET_NDS32_V3M_H */

View File

@ -934,7 +934,7 @@ static int or1k_adv_jtag_write_memory(struct or1k_jtag *jtag_info,
void *t = NULL;
struct target *target = jtag_info->target;
if ((target->endianness == TARGET_BIG_ENDIAN) && (size != 1)) {
t = malloc(count * size * sizeof(uint8_t));
t = calloc(count * size, sizeof(uint8_t));
if (!t) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
@ -947,6 +947,9 @@ static int or1k_adv_jtag_write_memory(struct or1k_jtag *jtag_info,
case 2:
buf_bswap16(t, buffer, size * count);
break;
default:
free(t);
return ERROR_TARGET_FAILURE;
}
buffer = t;
}

View File

@ -241,43 +241,37 @@ int target_rtt_find_control_block(struct target *target,
target_addr_t *address, size_t size, const char *id, bool *found,
void *user_data)
{
target_addr_t address_end = *address + size;
uint8_t buf[1024];
*found = false;
size_t j = 0;
size_t cb_offset = 0;
size_t id_matched_length = 0;
const size_t id_length = strlen(id);
LOG_INFO("rtt: Searching for control block '%s'", id);
for (target_addr_t addr = 0; addr < size; addr = addr + sizeof(buf)) {
for (target_addr_t addr = *address; addr < address_end; addr += sizeof(buf)) {
int ret;
const size_t buf_size = MIN(sizeof(buf), size - addr);
ret = target_read_buffer(target, *address + addr, buf_size, buf);
const size_t buf_size = MIN(sizeof(buf), address_end - addr);
ret = target_read_buffer(target, addr, buf_size, buf);
if (ret != ERROR_OK)
return ret;
size_t start = 0;
size_t i = 0;
while (i < buf_size) {
if (buf[i] != id[j]) {
start++;
cb_offset++;
i = start;
j = 0;
continue;
for (size_t buf_off = 0; buf_off < buf_size; buf_off++) {
if (id_matched_length > 0 &&
buf[buf_off] != id[id_matched_length]) {
/* Start from beginning */
id_matched_length = 0;
}
i++;
j++;
if (buf[buf_off] == id[id_matched_length])
id_matched_length++;
if (j == id_length) {
*address = *address + cb_offset;
if (id_matched_length == id_length) {
*address = addr + buf_off + 1 - id_length;
*found = true;
return ERROR_OK;
}

View File

@ -114,11 +114,22 @@ proc ocd_process_reset_inner { MODE } {
continue
}
if { ![$t was_examined] } {
# don't wait for targets where examination is deferred
# they can not be halted anyway at this point
if { ![$t was_examined] && [$t examine_deferred] } {
if { [$t examine_deferred] } {
continue
}
# try to re-examine or target state will be unknown
$t invoke-event examine-start
set err [catch "$t arp_examine allow-defer"]
if { $err } {
$t invoke-event examine-fail
return -code error [format "TARGET: %s - Not examined" $t]
} else {
$t invoke-event examine-end
}
}
# Wait up to 1 second for target to halt. Why 1sec? Cause
# the JTAG tap reset signal might be hooked to a slow

View File

@ -92,9 +92,6 @@ extern struct target_type dsp5680xx_target;
extern struct target_type testee_target;
extern struct target_type avr32_ap7k_target;
extern struct target_type hla_target;
extern struct target_type nds32_v2_target;
extern struct target_type nds32_v3_target;
extern struct target_type nds32_v3m_target;
extern struct target_type esp32_target;
extern struct target_type esp32s2_target;
extern struct target_type esp32s3_target;
@ -132,9 +129,6 @@ static struct target_type *target_types[] = {
&testee_target,
&avr32_ap7k_target,
&hla_target,
&nds32_v2_target,
&nds32_v3_target,
&nds32_v3m_target,
&esp32_target,
&esp32s2_target,
&esp32s3_target,
@ -4253,11 +4247,19 @@ static void write_gmon(uint32_t *samples, uint32_t sample_num, const char *filen
/* max should be (largest sample + 1)
* Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
if (max < UINT32_MAX)
max++;
/* gprof requires (max - min) >= 2 */
while ((max - min) < 2) {
if (max < UINT32_MAX)
max++;
else
min--;
}
}
int address_space = max - min;
assert(address_space >= 2);
uint32_t address_space = max - min;
/* FIXME: What is the reasonable number of buckets?
* The profiling result will be more accurate if there are enough buckets. */
@ -4333,6 +4335,19 @@ COMMAND_HANDLER(handle_profile_command)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
uint32_t start_address = 0;
uint32_t end_address = 0;
bool with_range = false;
if (CMD_ARGC == 4) {
with_range = true;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
if (start_address > end_address || (end_address - start_address) < 2) {
command_print(CMD, "Error: end - start < 2");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
}
uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
if (!samples) {
LOG_ERROR("No memory to store samples.");
@ -4385,15 +4400,6 @@ COMMAND_HANDLER(handle_profile_command)
return retval;
}
uint32_t start_address = 0;
uint32_t end_address = 0;
bool with_range = false;
if (CMD_ARGC == 4) {
with_range = true;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
}
write_gmon(samples, num_of_samples, CMD_ARGV[1],
with_range, start_address, end_address, target, duration_ms);
command_print(CMD, "Wrote %s", CMD_ARGV[1]);
@ -6435,16 +6441,52 @@ static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
return JIM_OK;
}
static struct target_list *
__attribute__((warn_unused_result))
create_target_list_node(Jim_Obj *const name) {
int len;
const char *targetname = Jim_GetString(name, &len);
struct target *target = get_target(targetname);
LOG_DEBUG("%s ", targetname);
if (!target)
return NULL;
struct target_list *new = malloc(sizeof(struct target_list));
if (!new) {
LOG_ERROR("Out of memory");
return new;
}
new->target = target;
return new;
}
static int get_target_with_common_rtos_type(struct list_head *lh, struct target **result)
{
struct target *target = NULL;
struct target_list *curr;
foreach_smp_target(curr, lh) {
struct rtos *curr_rtos = curr->target->rtos;
if (curr_rtos) {
if (target && target->rtos && target->rtos->type != curr_rtos->type) {
LOG_ERROR("Different rtos types in members of one smp target!");
return JIM_ERR;
}
target = curr->target;
}
}
*result = target;
return JIM_OK;
}
static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
int i;
const char *targetname;
int retval, len;
static int smp_group = 1;
struct target *target = NULL;
struct target_list *head, *new;
retval = 0;
if (argc == 1) {
LOG_DEBUG("Empty SMP target");
return JIM_OK;
}
LOG_DEBUG("%d", argc);
/* argv[1] = target to associate in smp
* argv[2] = target to associate in smp
@ -6458,27 +6500,24 @@ static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
}
INIT_LIST_HEAD(lh);
for (i = 1; i < argc; i++) {
targetname = Jim_GetString(argv[i], &len);
target = get_target(targetname);
LOG_DEBUG("%s ", targetname);
if (target) {
new = malloc(sizeof(struct target_list));
new->target = target;
for (int i = 1; i < argc; i++) {
struct target_list *new = create_target_list_node(argv[i]);
if (new)
list_add_tail(&new->lh, lh);
}
}
/* now parse the list of cpu and put the target in smp mode*/
foreach_smp_target(head, lh) {
target = head->target;
struct target_list *curr;
foreach_smp_target(curr, lh) {
struct target *target = curr->target;
target->smp = smp_group;
target->smp_targets = lh;
}
smp_group++;
if (target && target->rtos)
retval = rtos_smp_init(target);
struct target *rtos_target;
int retval = get_target_with_common_rtos_type(lh, &rtos_target);
if (retval == JIM_OK && rtos_target)
retval = rtos_smp_init(rtos_target);
return retval;
}

View File

@ -199,6 +199,10 @@ struct target {
struct list_head *smp_targets; /* list all targets in this smp group/cluster
* The head of the list is shared between the
* cluster, thus here there is a pointer */
bool smp_halt_event_postponed; /* Some SMP implementations (currently Cortex-M) stores
* 'halted' events and emits them after all targets of
* the SMP group has been polled */
/* the gdb service is there in case of smp, we have only one gdb server
* for all smp target
* the target attached to the gdb is changing dynamically by changing

View File

@ -168,8 +168,9 @@
#define XT_REG_A3 (xtensa_regs[XT_REG_IDX_AR3].reg_num)
#define XT_REG_A4 (xtensa_regs[XT_REG_IDX_AR4].reg_num)
#define XT_PS_REG_NUM_BASE (0xc0U) /* (EPS2 - 2), for adding DBGLEVEL */
#define XT_PC_REG_NUM_BASE (0xb0U) /* (EPC1 - 1), for adding DBGLEVEL */
#define XT_PS_REG_NUM (0xe6U)
#define XT_EPS_REG_NUM_BASE (0xc0U) /* (EPS2 - 2), for adding DBGLEVEL */
#define XT_EPC_REG_NUM_BASE (0xb0U) /* (EPC1 - 1), for adding DBGLEVEL */
#define XT_PC_REG_NUM_VIRTUAL (0xffU) /* Marker for computing PC (EPC[DBGLEVEL) */
#define XT_PC_DBREG_NUM_BASE (0x20U) /* External (i.e., GDB) access */
@ -245,7 +246,7 @@ struct xtensa_reg_desc xtensa_regs[XT_NUM_REGS] = {
XT_MK_REG_DESC("ar63", 0x3F, XT_REG_GENERAL, 0),
XT_MK_REG_DESC("windowbase", 0x48, XT_REG_SPECIAL, 0),
XT_MK_REG_DESC("windowstart", 0x49, XT_REG_SPECIAL, 0),
XT_MK_REG_DESC("ps", 0xE6, XT_REG_SPECIAL, 0), /* PS (not mapped through EPS[]) */
XT_MK_REG_DESC("ps", XT_PS_REG_NUM, XT_REG_SPECIAL, 0), /* PS (not mapped through EPS[]) */
XT_MK_REG_DESC("ibreakenable", 0x60, XT_REG_SPECIAL, 0),
XT_MK_REG_DESC("ddr", 0x68, XT_REG_DEBUG, XT_REGF_NOREAD),
XT_MK_REG_DESC("ibreaka0", 0x80, XT_REG_SPECIAL, 0),
@ -630,7 +631,7 @@ static int xtensa_write_dirty_registers(struct target *target)
/* reg number of PC for debug interrupt depends on NDEBUGLEVEL
**/
reg_num =
(XT_PC_REG_NUM_BASE +
(XT_EPC_REG_NUM_BASE +
xtensa->core_config->debug.irq_level);
xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, reg_num, XT_REG_A3));
}
@ -800,7 +801,6 @@ int xtensa_examine(struct target *target)
return ERROR_TARGET_FAILURE;
}
LOG_DEBUG("OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
if (!target_was_examined(target))
target_set_examined(target);
xtensa_smpbreak_write(xtensa, xtensa->smp_break);
return ERROR_OK;
@ -1105,10 +1105,10 @@ int xtensa_fetch_all_regs(struct target *target)
case XT_REG_SPECIAL:
if (reg_num == XT_PC_REG_NUM_VIRTUAL) {
/* reg number of PC for debug interrupt depends on NDEBUGLEVEL */
reg_num = (XT_PC_REG_NUM_BASE + xtensa->core_config->debug.irq_level);
reg_num = XT_EPC_REG_NUM_BASE + xtensa->core_config->debug.irq_level;
} else if (reg_num == xtensa_regs[XT_REG_IDX_PS].reg_num) {
/* reg number of PS for debug interrupt depends on NDEBUGLEVEL */
reg_num = (XT_PS_REG_NUM_BASE + xtensa->core_config->debug.irq_level);
reg_num = XT_EPS_REG_NUM_BASE + xtensa->core_config->debug.irq_level;
} else if (reg_num == xtensa_regs[XT_REG_IDX_CPENABLE].reg_num) {
/* CPENABLE already read/updated; don't re-read */
reg_fetched = false;
@ -1629,7 +1629,6 @@ int xtensa_do_step(struct target *target, int current, target_addr_t address, in
target->debug_reason = DBG_REASON_SINGLESTEP;
target->state = TARGET_HALTED;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
LOG_DEBUG("Done stepping, PC=%" PRIX32, cur_pc);
if (cause & DEBUGCAUSE_DB) {
@ -1657,7 +1656,12 @@ int xtensa_do_step(struct target *target, int current, target_addr_t address, in
int xtensa_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
{
return xtensa_do_step(target, current, address, handle_breakpoints);
int retval = xtensa_do_step(target, current, address, handle_breakpoints);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
/**
@ -1780,9 +1784,9 @@ int xtensa_read_memory(struct target *target, target_addr_t address, uint32_t si
if (res != ERROR_OK) {
if (xtensa->probe_lsddr32p != 0) {
/* Disable fast memory access instructions and retry before reporting an error */
LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
LOG_TARGET_DEBUG(target, "Disabling LDDR32.P/SDDR32.P");
xtensa->probe_lsddr32p = 0;
res = xtensa_read_memory(target, address, size, count, buffer);
res = xtensa_read_memory(target, address, size, count, albuff);
bswap = false;
} else {
LOG_TARGET_WARNING(target, "Failed reading %d bytes at address "TARGET_ADDR_FMT,
@ -2502,6 +2506,12 @@ static int xtensa_build_reg_cache(struct target *target)
unsigned int j;
for (j = 0; j < reg_cache->num_regs; j++) {
if (!strcmp(reg_cache->reg_list[j].name, xtensa->contiguous_regs_desc[i]->name)) {
/* Register number field is not filled above.
Here we are assigning the corresponding index from the contiguous reg list.
These indexes are in the same order with gdb g-packet request/response.
Some more changes may be required for sparse reg lists.
*/
reg_cache->reg_list[j].number = i;
xtensa->contiguous_regs_list[i] = &(reg_cache->reg_list[j]);
LOG_TARGET_DEBUG(target,
"POPULATE contiguous regs list: %-16s, dbreg_num 0x%04x",
@ -3441,8 +3451,8 @@ COMMAND_HELPER(xtensa_cmd_xtreg_do, struct xtensa *xtensa)
else
rptr->flags = 0;
if ((rptr->reg_num == (XT_PS_REG_NUM_BASE + xtensa->core_config->debug.irq_level)) &&
(xtensa->core_config->core_type == XT_LX) && (rptr->type == XT_REG_SPECIAL)) {
if (rptr->reg_num == (XT_EPS_REG_NUM_BASE + xtensa->core_config->debug.irq_level) &&
xtensa->core_config->core_type == XT_LX && rptr->type == XT_REG_SPECIAL) {
xtensa->eps_dbglevel_idx = XT_NUM_REGS + xtensa->num_optregs - 1;
LOG_DEBUG("Setting PS (%s) index to %d", rptr->name, xtensa->eps_dbglevel_idx);
}

View File

@ -1,7 +0,0 @@
# SPDX-License-Identifier: GPL-2.0-or-later
set _CPUTAPID 0x1000063d
set _CHIPNAME nds32
source [find target/nds32v3.cfg]
jtag init

View File

@ -9,7 +9,7 @@ if { [info exists CHIPNAME] } {
set _CHIPNAME xcu
}
# The cvarious chips in the Ultrascale family have different IR length.
# The various chips in the Ultrascale family have different IR length.
# Set $CHIP before including this file to determine the device.
array set _XCU_DATA {
XCKU025 {0x03824093 6}

View File

@ -1,17 +0,0 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Andes AICE
#
# http://www.andestech.com
#
adapter driver aice
aice desc "Andes AICE adapter"
# adapter serial "C001-42163"
aice vid_pid 0x1CFC 0x0000
aice port aice_usb
reset_config trst_and_srst
adapter speed 24000
aice retry_times 50
aice count_to_check_dbger 30

View File

@ -15,9 +15,9 @@ adapter driver bcm2835gpio
bcm2835gpio peripheral_base 0x3F000000
# Transition delay calculation: SPEED_COEFF/khz - SPEED_OFFSET
# These depend on system clock, calibrated for stock 700MHz
# These depend on system clock, calibrated for scaling_max_freq 900MHz
# bcm2835gpio speed SPEED_COEFF SPEED_OFFSET
bcm2835gpio speed_coeffs 146203 36
bcm2835gpio speed_coeffs 225000 36
# Each of the JTAG lines need a gpio number set: tck tms tdi tdo
# Header pin numbers: 23 22 19 21

30
tcl/target/atmega32u4.cfg Normal file
View File

@ -0,0 +1,30 @@
# SPDX-License-Identifier: GPL-2.0-or-later
# ATmega32U4
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME avr
}
if { [info exists ENDIAN] } {
set _ENDIAN $ENDIAN
} else {
set _ENDIAN little
}
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x4958703f
}
adapter speed 4500
jtag newtap $_CHIPNAME cpu -irlen 4 -expected-id $_CPUTAPID
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME avr -endian $_ENDIAN -chain-position $_TARGETNAME
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME avr 0 0 0 0 $_TARGETNAME

Some files were not shown because too many files have changed in this diff Show More