arm_adi_v5: Rewrite MEM-AP transfer implementation

Create a single pair of relatively simple functions to handle all variants
of MEM-AP transfers. This replaces the many separate functions that
handled different access sizes and packed or non-packed transfers, which
were all implemented rather differently.

With this single implementation, performance should be more consistent,
regardless of transfer type.

Change-Id: I89960e437fc6ba68a389c074fab8eac91abcf844
Signed-off-by: Andreas Fritiofson <andreas.fritiofson@gmail.com>
Reviewed-on: http://openocd.zylin.com/1658
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
This commit is contained in:
Andreas Fritiofson 2013-09-25 23:58:24 +02:00 committed by Spencer Oliver
parent 9697e3e5e6
commit d3c6a071e6
2 changed files with 246 additions and 489 deletions

View File

@ -10,6 +10,9 @@
* * * *
* Copyright (C) 2009-2010 by David Brownell * * Copyright (C) 2009-2010 by David Brownell *
* * * *
* Copyright (C) 2013 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify * * This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by * * it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or * * the Free Software Foundation; either version 2 of the License, or *
@ -115,6 +118,33 @@ void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
} }
} }
static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
{
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
dap->apcsw[dap->ap_current >> 24];
if (csw != dap->ap_csw_value) {
/* LOG_DEBUG("DAP: Set CSW %x",csw); */
int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
if (retval != ERROR_OK)
return retval;
dap->ap_csw_value = csw;
}
return ERROR_OK;
}
static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
{
if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
/* LOG_DEBUG("DAP: Set TAR %x",tar); */
int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
if (retval != ERROR_OK)
return retval;
dap->ap_tar_value = tar;
}
return ERROR_OK;
}
/** /**
* Queue transactions setting up transfer parameters for the * Queue transactions setting up transfer parameters for the
* currently selected MEM-AP. * currently selected MEM-AP.
@ -137,26 +167,12 @@ void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar) int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
{ {
int retval; int retval;
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT | retval = dap_setup_accessport_csw(dap, csw);
dap->apcsw[dap->ap_current >> 24];
if (csw != dap->ap_csw_value) {
/* LOG_DEBUG("DAP: Set CSW %x",csw); */
retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
dap->ap_csw_value = csw; retval = dap_setup_accessport_tar(dap, tar);
}
if (tar != dap->ap_tar_value) {
/* LOG_DEBUG("DAP: Set TAR %x",tar); */
retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
dap->ap_tar_value = tar;
}
/* Disable TAR cache when autoincrementing */
if (csw & CSW_ADDRINC_MASK)
dap->ap_tar_value = -1;
return ERROR_OK; return ERROR_OK;
} }
@ -261,521 +277,257 @@ int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
return dap_run(dap); return dap_run(dap);
} }
int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address, bool addr_incr) /**
* Synchronous write of a block of memory, using a specific access size.
*
* @param dap The DAP connected to the MEM-AP.
* @param buffer The data buffer to write. No particular alignment is assumed.
* @param size Which access size to use, in bytes. 1, 2 or 4.
* @param count The number of writes to do (in size units, not bytes).
* @param address Address to be written; it must be writable by the currently selected MEM-AP.
* @param addrinc Whether the target address should be increased for each write or not. This
* should normally be true, except when writing to e.g. a FIFO.
* @return ERROR_OK on success, otherwise an error code.
*/
int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
uint32_t address, bool addrinc)
{ {
int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK; size_t nbytes = size * count;
uint32_t adr = address; const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
uint32_t incr_flag = addr_incr ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF; uint32_t csw_size;
int retval;
wcount = count >> 2; if (size == 4)
csw_size = CSW_32BIT;
else if (size == 2)
csw_size = CSW_16BIT;
else if (size == 1)
csw_size = CSW_8BIT;
else
return ERROR_TARGET_UNALIGNED_ACCESS;
while (wcount > 0) { retval = dap_setup_accessport_tar(dap, address);
/* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
blocksize = max_tar_block_size(dap->tar_autoincr_block, address) / 4;
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
retval = dap_setup_accessport(dap, CSW_32BIT | incr_flag, address);
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
for (writecount = 0; writecount < blocksize; writecount++) { while (nbytes > 0) {
uint32_t this_size = size;
/* Select packed transfer if possible */
if (addrinc && dap->packed_transfers && nbytes >= 4
&& max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
this_size = 4;
retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
} else {
retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
}
if (retval != ERROR_OK)
break;
/* How many source bytes each transfer will consume, and their location in the DRW,
* depends on the type of transfer and alignment. See ARM document IHI0031C. */
uint32_t outvalue = 0; uint32_t outvalue = 0;
outvalue |= (uint32_t)*buffer++ << 8 * (adr++ & 3); switch (this_size) {
outvalue |= (uint32_t)*buffer++ << 8 * (adr++ & 3); case 4:
outvalue |= (uint32_t)*buffer++ << 8 * (adr++ & 3); outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (adr++ & 3); outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
case 2:
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
case 1:
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
}
nbytes -= this_size;
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue); retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK) if (retval != ERROR_OK)
break; break;
}
retval = dap_run(dap); /* Rewrite TAR if it wrapped */
if (retval == ERROR_OK) { if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
wcount -= blocksize; retval = dap_setup_accessport_tar(dap, address);
if (addr_incr)
address += 4 * blocksize;
} else
errorcount++;
if (errorcount > 1) {
LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
return retval;
}
}
return retval;
}
static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount;
wcount = count >> 1;
while (wcount > 0) {
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
blocksize = max_tar_block_size(dap->tar_autoincr_block, address) / 2;
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
writecount = blocksize;
do {
nbytes = MIN((writecount << 1), 4);
if (nbytes < 4) {
retval = mem_ap_write_buf_u16(dap, buffer,
nbytes, address);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
address += nbytes;
buffer += nbytes;
} else {
assert(nbytes == 4);
uint32_t outvalue = 0;
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
retval = dap_queue_ap_write(dap,
AP_REG_DRW, outvalue);
if (retval != ERROR_OK) if (retval != ERROR_OK)
break; break;
}
}
/* REVISIT: Might want to have a queued version of this function that does not run. */
if (retval == ERROR_OK)
retval = dap_run(dap); retval = dap_run(dap);
if (retval != ERROR_OK) { if (retval != ERROR_OK) {
LOG_WARNING("Block write error address " uint32_t tar;
"0x%" PRIx32 ", count 0x%x", if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
address, count); && dap_run(dap) == ERROR_OK)
return retval; LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
} else
} LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
writecount -= nbytes >> 1;
} while (writecount);
wcount -= blocksize;
} }
return retval; return retval;
} }
/* Compatibility wrappers around mem_ap_write(). Note that the count is in bytes for these. */
int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address, bool addr_incr)
{
return mem_ap_write(dap, buffer, 4, count / 4, address, true);
}
int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address) int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
{ {
int retval = ERROR_OK; return mem_ap_write(dap, buffer, 2, count / 2, address, true);
if (dap->packed_transfers && count >= 4)
return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
uint32_t outvalue = 0;
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
count -= 2;
}
return retval;
}
static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
const uint8_t *buffer, int count, uint32_t address)
{
int retval = ERROR_OK;
int wcount, blocksize, writecount;
wcount = count;
while (wcount > 0) {
int nbytes;
/* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
writecount = blocksize;
do {
nbytes = MIN(writecount, 4);
if (nbytes < 4) {
retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
address += nbytes;
buffer += nbytes;
} else {
assert(nbytes == 4);
uint32_t outvalue = 0;
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
retval = dap_queue_ap_write(dap,
AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block write error address "
"0x%" PRIx32 ", count 0x%x",
address, count);
return retval;
}
}
writecount -= nbytes;
} while (writecount);
wcount -= blocksize;
}
return retval;
} }
int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address) int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
{ {
int retval = ERROR_OK; return mem_ap_write(dap, buffer, 1, count, address, true);
if (dap->packed_transfers && count >= 4)
return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
uint32_t outvalue = (uint32_t)*buffer++ << 8 * (address++ & 0x3);
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
count--;
}
return retval;
} }
/** /**
* Synchronously read a block of 32-bit words into a buffer * Synchronous read of a block of memory, using a specific access size.
*
* @param dap The DAP connected to the MEM-AP. * @param dap The DAP connected to the MEM-AP.
* @param buffer where the words will be stored (in host byte order). * @param buffer The data buffer to receive the data. No particular alignment is assumed.
* @param count How many words to read. * @param size Which access size to use, in bytes. 1, 2 or 4.
* @param address Memory address from which to read words; all the * @param count The number of reads to do (in size units, not bytes).
* @param addr_incr if true, increment the source address for each u32 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
* words must be readable by the currently selected MEM-AP. * @param addrinc Whether the target address should be increased after each read or not. This
* should normally be true, except when reading from e.g. a FIFO.
* @return ERROR_OK on success, otherwise an error code.
*/ */
int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
uint32_t adr, bool addrinc)
{
size_t nbytes = size * count;
const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
uint32_t csw_size;
uint32_t address = adr;
int retval;
if (size == 4)
csw_size = CSW_32BIT;
else if (size == 2)
csw_size = CSW_16BIT;
else if (size == 1)
csw_size = CSW_8BIT;
else
return ERROR_TARGET_UNALIGNED_ACCESS;
/* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
* over-allocation if packed transfers are going to be used, but determining the real need at
* this point would be messy. */
uint32_t *read_buf = malloc(count * sizeof(uint32_t));
uint32_t *read_ptr = read_buf;
if (read_buf == NULL) {
LOG_ERROR("Failed to allocate read buffer");
return ERROR_FAIL;
}
retval = dap_setup_accessport_tar(dap, address);
if (retval != ERROR_OK)
return retval;
/* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
* useful bytes it contains, and their location in the word, depends on the type of transfer
* and alignment. */
while (nbytes > 0) {
uint32_t this_size = size;
/* Select packed transfer if possible */
if (addrinc && dap->packed_transfers && nbytes >= 4
&& max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
this_size = 4;
retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
} else {
retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
}
if (retval != ERROR_OK)
break;
retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
if (retval != ERROR_OK)
break;
nbytes -= this_size;
address += this_size;
/* Rewrite TAR if it wrapped */
if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
retval = dap_setup_accessport_tar(dap, address);
if (retval != ERROR_OK)
break;
}
}
if (retval == ERROR_OK)
retval = dap_run(dap);
/* Restore state */
address = adr;
nbytes = size * count;
read_ptr = read_buf;
/* If something failed, read TAR to find out how much data was successfully read, so we can
* at least give the caller what we have. */
if (retval != ERROR_OK) {
uint32_t tar;
if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
&& dap_run(dap) == ERROR_OK) {
LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
if (nbytes > tar - address)
nbytes = tar - address;
} else {
LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
nbytes = 0;
}
}
/* Replay loop to populate caller's buffer from the correct word and byte lane */
while (nbytes > 0) {
uint32_t this_size = size;
if (addrinc && dap->packed_transfers && nbytes >= 4
&& max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
this_size = 4;
}
switch (this_size) {
case 4:
*buffer++ = *read_ptr >> 8 * (address++ & 3);
*buffer++ = *read_ptr >> 8 * (address++ & 3);
case 2:
*buffer++ = *read_ptr >> 8 * (address++ & 3);
case 1:
*buffer++ = *read_ptr >> 8 * (address++ & 3);
}
read_ptr++;
nbytes -= this_size;
}
free(read_buf);
return retval;
}
/* Compatibility wrappers around mem_ap_read(). Note that the count is in bytes for these (despite
* what their doxygen documentation said). */
int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address, bool addr_incr) int count, uint32_t address, bool addr_incr)
{ {
int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK; return mem_ap_read(dap, buffer, 4, count / 4, address, addr_incr);
uint32_t adr = address;
uint8_t *pBuffer = buffer;
uint32_t incr_flag = CSW_ADDRINC_OFF;
count >>= 2;
wcount = count;
while (wcount > 0) {
/* Adjust to read blocks within boundaries aligned to the
* TAR autoincrement size (at least 2^10). Autoincrement
* mode avoids an extra per-word roundtrip to update TAR.
*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address) / 4;
if (wcount < blocksize)
blocksize = wcount;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
if (addr_incr)
incr_flag = CSW_ADDRINC_SINGLE;
retval = dap_setup_accessport(dap, CSW_32BIT | incr_flag,
address);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read_block(dap, AP_REG_DRW, blocksize, buffer);
retval = dap_run(dap);
if (retval != ERROR_OK) {
errorcount++;
if (errorcount <= 1) {
/* try again */
continue;
}
LOG_WARNING("Block read error address 0x%" PRIx32, address);
return retval;
}
wcount = wcount - blocksize;
if (addr_incr)
address += 4 * blocksize;
buffer += 4 * blocksize;
} }
/* if we have an unaligned access - reorder data */
if (adr & 0x3u) {
for (readcount = 0; readcount < count; readcount++) {
int i;
uint32_t data;
memcpy(&data, pBuffer, sizeof(uint32_t));
for (i = 0; i < 4; i++) {
*((uint8_t *)pBuffer) =
(data >> 8 * (adr & 0x3));
pBuffer++;
adr++;
}
}
}
return retval;
}
static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
wcount = count >> 1;
while (wcount > 0) {
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address) / 2;
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
/* handle unaligned data at 4k boundary */
if (blocksize == 0)
blocksize = 1;
readcount = blocksize;
do {
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return retval;
}
nbytes = MIN((readcount << 1), 4);
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= (nbytes >> 1);
} while (readcount);
wcount -= blocksize;
}
return retval;
}
/**
* Synchronously read a block of 16-bit halfwords into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the halfwords will be stored (in host byte order).
* @param count How many halfwords to read.
* @param address Memory address from which to read words; all the
* words must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address) int count, uint32_t address)
{ {
uint32_t invalue, i; return mem_ap_read(dap, buffer, 2, count / 2, address, true);
int retval = ERROR_OK;
if (dap->packed_transfers && count >= 4)
return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
break;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
if (address & 0x1) {
for (i = 0; i < 2; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
} else {
uint16_t svalue = (invalue >> 8 * (address & 0x3));
memcpy(buffer, &svalue, sizeof(uint16_t));
address += 2;
buffer += 2;
}
count -= 2;
} }
return retval;
}
/* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
* roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
*
* The solution is to arrange for a large out/in scan in this loop and
* and convert data afterwards.
*/
static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
uint8_t *buffer, int count, uint32_t address)
{
uint32_t invalue;
int retval = ERROR_OK;
int wcount, blocksize, readcount, i;
wcount = count;
while (wcount > 0) {
int nbytes;
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
if (wcount < blocksize)
blocksize = wcount;
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
if (retval != ERROR_OK)
return retval;
readcount = blocksize;
do {
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
return retval;
}
nbytes = MIN(readcount, 4);
for (i = 0; i < nbytes; i++) {
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
buffer++;
address++;
}
readcount -= nbytes;
} while (readcount);
wcount -= blocksize;
}
return retval;
}
/**
* Synchronously read a block of bytes into a buffer
* @param dap The DAP connected to the MEM-AP.
* @param buffer where the bytes will be stored.
* @param count How many bytes to read.
* @param address Memory address from which to read data; all the
* data must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address) int count, uint32_t address)
{ {
uint32_t invalue; return mem_ap_read(dap, buffer, 1, count, address, true);
int retval = ERROR_OK;
if (dap->packed_transfers && count >= 4)
return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
while (count > 0) {
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
break;
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
count--;
address++;
buffer++;
}
return retval;
} }
/*--------------------------------------------------------------------*/ /*--------------------------------------------------------------------*/

View File

@ -410,6 +410,8 @@ int mem_ap_read_buf_u16(struct adiv5_dap *swjdp,
uint8_t *buffer, int count, uint32_t address); uint8_t *buffer, int count, uint32_t address);
int mem_ap_read_buf_u32(struct adiv5_dap *swjdp, int mem_ap_read_buf_u32(struct adiv5_dap *swjdp,
uint8_t *buffer, int count, uint32_t address, bool addr_incr); uint8_t *buffer, int count, uint32_t address, bool addr_incr);
int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size,
uint32_t count, uint32_t address, bool addrinc);
int mem_ap_write_buf_u8(struct adiv5_dap *swjdp, int mem_ap_write_buf_u8(struct adiv5_dap *swjdp,
const uint8_t *buffer, int count, uint32_t address); const uint8_t *buffer, int count, uint32_t address);
@ -417,6 +419,9 @@ int mem_ap_write_buf_u16(struct adiv5_dap *swjdp,
const uint8_t *buffer, int count, uint32_t address); const uint8_t *buffer, int count, uint32_t address);
int mem_ap_write_buf_u32(struct adiv5_dap *swjdp, int mem_ap_write_buf_u32(struct adiv5_dap *swjdp,
const uint8_t *buffer, int count, uint32_t address, bool addr_incr); const uint8_t *buffer, int count, uint32_t address, bool addr_incr);
int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size,
uint32_t count, uint32_t address, bool addrinc);
/* Queued MEM-AP memory mapped single word transfers with selection of ap */ /* Queued MEM-AP memory mapped single word transfers with selection of ap */
int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap, int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,