arm_adi_v5: Rewrite MEM-AP transfer implementation
Create a single pair of relatively simple functions to handle all variants of MEM-AP transfers. This replaces the many separate functions that handled different access sizes and packed or non-packed transfers, which were all implemented rather differently. With this single implementation, performance should be more consistent, regardless of transfer type. Change-Id: I89960e437fc6ba68a389c074fab8eac91abcf844 Signed-off-by: Andreas Fritiofson <andreas.fritiofson@gmail.com> Reviewed-on: http://openocd.zylin.com/1658 Tested-by: jenkins Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
This commit is contained in:
parent
9697e3e5e6
commit
d3c6a071e6
|
@ -10,6 +10,9 @@
|
||||||
* *
|
* *
|
||||||
* Copyright (C) 2009-2010 by David Brownell *
|
* Copyright (C) 2009-2010 by David Brownell *
|
||||||
* *
|
* *
|
||||||
|
* Copyright (C) 2013 by Andreas Fritiofson *
|
||||||
|
* andreas.fritiofson@gmail.com *
|
||||||
|
* *
|
||||||
* This program is free software; you can redistribute it and/or modify *
|
* This program is free software; you can redistribute it and/or modify *
|
||||||
* it under the terms of the GNU General Public License as published by *
|
* it under the terms of the GNU General Public License as published by *
|
||||||
* the Free Software Foundation; either version 2 of the License, or *
|
* the Free Software Foundation; either version 2 of the License, or *
|
||||||
|
@ -115,6 +118,33 @@ void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
|
||||||
|
{
|
||||||
|
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
|
||||||
|
dap->apcsw[dap->ap_current >> 24];
|
||||||
|
|
||||||
|
if (csw != dap->ap_csw_value) {
|
||||||
|
/* LOG_DEBUG("DAP: Set CSW %x",csw); */
|
||||||
|
int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
|
||||||
|
if (retval != ERROR_OK)
|
||||||
|
return retval;
|
||||||
|
dap->ap_csw_value = csw;
|
||||||
|
}
|
||||||
|
return ERROR_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
|
||||||
|
{
|
||||||
|
if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
|
||||||
|
/* LOG_DEBUG("DAP: Set TAR %x",tar); */
|
||||||
|
int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
|
||||||
|
if (retval != ERROR_OK)
|
||||||
|
return retval;
|
||||||
|
dap->ap_tar_value = tar;
|
||||||
|
}
|
||||||
|
return ERROR_OK;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Queue transactions setting up transfer parameters for the
|
* Queue transactions setting up transfer parameters for the
|
||||||
* currently selected MEM-AP.
|
* currently selected MEM-AP.
|
||||||
|
@ -137,26 +167,12 @@ void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
|
||||||
int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
|
int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
|
||||||
{
|
{
|
||||||
int retval;
|
int retval;
|
||||||
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
|
retval = dap_setup_accessport_csw(dap, csw);
|
||||||
dap->apcsw[dap->ap_current >> 24];
|
|
||||||
|
|
||||||
if (csw != dap->ap_csw_value) {
|
|
||||||
/* LOG_DEBUG("DAP: Set CSW %x",csw); */
|
|
||||||
retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
|
|
||||||
if (retval != ERROR_OK)
|
if (retval != ERROR_OK)
|
||||||
return retval;
|
return retval;
|
||||||
dap->ap_csw_value = csw;
|
retval = dap_setup_accessport_tar(dap, tar);
|
||||||
}
|
|
||||||
if (tar != dap->ap_tar_value) {
|
|
||||||
/* LOG_DEBUG("DAP: Set TAR %x",tar); */
|
|
||||||
retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
|
|
||||||
if (retval != ERROR_OK)
|
if (retval != ERROR_OK)
|
||||||
return retval;
|
return retval;
|
||||||
dap->ap_tar_value = tar;
|
|
||||||
}
|
|
||||||
/* Disable TAR cache when autoincrementing */
|
|
||||||
if (csw & CSW_ADDRINC_MASK)
|
|
||||||
dap->ap_tar_value = -1;
|
|
||||||
return ERROR_OK;
|
return ERROR_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -261,521 +277,257 @@ int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
|
||||||
return dap_run(dap);
|
return dap_run(dap);
|
||||||
}
|
}
|
||||||
|
|
||||||
int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address, bool addr_incr)
|
/**
|
||||||
|
* Synchronous write of a block of memory, using a specific access size.
|
||||||
|
*
|
||||||
|
* @param dap The DAP connected to the MEM-AP.
|
||||||
|
* @param buffer The data buffer to write. No particular alignment is assumed.
|
||||||
|
* @param size Which access size to use, in bytes. 1, 2 or 4.
|
||||||
|
* @param count The number of writes to do (in size units, not bytes).
|
||||||
|
* @param address Address to be written; it must be writable by the currently selected MEM-AP.
|
||||||
|
* @param addrinc Whether the target address should be increased for each write or not. This
|
||||||
|
* should normally be true, except when writing to e.g. a FIFO.
|
||||||
|
* @return ERROR_OK on success, otherwise an error code.
|
||||||
|
*/
|
||||||
|
int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
|
||||||
|
uint32_t address, bool addrinc)
|
||||||
{
|
{
|
||||||
int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
|
size_t nbytes = size * count;
|
||||||
uint32_t adr = address;
|
const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
|
||||||
uint32_t incr_flag = addr_incr ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
|
uint32_t csw_size;
|
||||||
|
int retval;
|
||||||
|
|
||||||
wcount = count >> 2;
|
if (size == 4)
|
||||||
|
csw_size = CSW_32BIT;
|
||||||
|
else if (size == 2)
|
||||||
|
csw_size = CSW_16BIT;
|
||||||
|
else if (size == 1)
|
||||||
|
csw_size = CSW_8BIT;
|
||||||
|
else
|
||||||
|
return ERROR_TARGET_UNALIGNED_ACCESS;
|
||||||
|
|
||||||
while (wcount > 0) {
|
retval = dap_setup_accessport_tar(dap, address);
|
||||||
/* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
|
|
||||||
blocksize = max_tar_block_size(dap->tar_autoincr_block, address) / 4;
|
|
||||||
if (wcount < blocksize)
|
|
||||||
blocksize = wcount;
|
|
||||||
|
|
||||||
/* handle unaligned data at 4k boundary */
|
|
||||||
if (blocksize == 0)
|
|
||||||
blocksize = 1;
|
|
||||||
|
|
||||||
retval = dap_setup_accessport(dap, CSW_32BIT | incr_flag, address);
|
|
||||||
if (retval != ERROR_OK)
|
if (retval != ERROR_OK)
|
||||||
return retval;
|
return retval;
|
||||||
|
|
||||||
for (writecount = 0; writecount < blocksize; writecount++) {
|
while (nbytes > 0) {
|
||||||
|
uint32_t this_size = size;
|
||||||
|
|
||||||
|
/* Select packed transfer if possible */
|
||||||
|
if (addrinc && dap->packed_transfers && nbytes >= 4
|
||||||
|
&& max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
|
||||||
|
this_size = 4;
|
||||||
|
retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
|
||||||
|
} else {
|
||||||
|
retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (retval != ERROR_OK)
|
||||||
|
break;
|
||||||
|
|
||||||
|
/* How many source bytes each transfer will consume, and their location in the DRW,
|
||||||
|
* depends on the type of transfer and alignment. See ARM document IHI0031C. */
|
||||||
uint32_t outvalue = 0;
|
uint32_t outvalue = 0;
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (adr++ & 3);
|
switch (this_size) {
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (adr++ & 3);
|
case 4:
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (adr++ & 3);
|
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (adr++ & 3);
|
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
||||||
|
case 2:
|
||||||
|
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
||||||
|
case 1:
|
||||||
|
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
||||||
|
}
|
||||||
|
|
||||||
|
nbytes -= this_size;
|
||||||
|
|
||||||
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
|
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
|
||||||
if (retval != ERROR_OK)
|
if (retval != ERROR_OK)
|
||||||
break;
|
break;
|
||||||
}
|
|
||||||
|
|
||||||
retval = dap_run(dap);
|
/* Rewrite TAR if it wrapped */
|
||||||
if (retval == ERROR_OK) {
|
if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
|
||||||
wcount -= blocksize;
|
retval = dap_setup_accessport_tar(dap, address);
|
||||||
if (addr_incr)
|
|
||||||
address += 4 * blocksize;
|
|
||||||
} else
|
|
||||||
errorcount++;
|
|
||||||
|
|
||||||
if (errorcount > 1) {
|
|
||||||
LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
|
|
||||||
const uint8_t *buffer, int count, uint32_t address)
|
|
||||||
{
|
|
||||||
int retval = ERROR_OK;
|
|
||||||
int wcount, blocksize, writecount;
|
|
||||||
|
|
||||||
wcount = count >> 1;
|
|
||||||
|
|
||||||
while (wcount > 0) {
|
|
||||||
int nbytes;
|
|
||||||
|
|
||||||
/* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
|
|
||||||
blocksize = max_tar_block_size(dap->tar_autoincr_block, address) / 2;
|
|
||||||
|
|
||||||
if (wcount < blocksize)
|
|
||||||
blocksize = wcount;
|
|
||||||
|
|
||||||
/* handle unaligned data at 4k boundary */
|
|
||||||
if (blocksize == 0)
|
|
||||||
blocksize = 1;
|
|
||||||
|
|
||||||
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
writecount = blocksize;
|
|
||||||
|
|
||||||
do {
|
|
||||||
nbytes = MIN((writecount << 1), 4);
|
|
||||||
|
|
||||||
if (nbytes < 4) {
|
|
||||||
retval = mem_ap_write_buf_u16(dap, buffer,
|
|
||||||
nbytes, address);
|
|
||||||
if (retval != ERROR_OK) {
|
|
||||||
LOG_WARNING("Block write error address "
|
|
||||||
"0x%" PRIx32 ", count 0x%x",
|
|
||||||
address, count);
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
address += nbytes;
|
|
||||||
buffer += nbytes;
|
|
||||||
} else {
|
|
||||||
assert(nbytes == 4);
|
|
||||||
|
|
||||||
uint32_t outvalue = 0;
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
|
|
||||||
retval = dap_queue_ap_write(dap,
|
|
||||||
AP_REG_DRW, outvalue);
|
|
||||||
if (retval != ERROR_OK)
|
if (retval != ERROR_OK)
|
||||||
break;
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* REVISIT: Might want to have a queued version of this function that does not run. */
|
||||||
|
if (retval == ERROR_OK)
|
||||||
retval = dap_run(dap);
|
retval = dap_run(dap);
|
||||||
|
|
||||||
if (retval != ERROR_OK) {
|
if (retval != ERROR_OK) {
|
||||||
LOG_WARNING("Block write error address "
|
uint32_t tar;
|
||||||
"0x%" PRIx32 ", count 0x%x",
|
if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
|
||||||
address, count);
|
&& dap_run(dap) == ERROR_OK)
|
||||||
return retval;
|
LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
|
||||||
}
|
else
|
||||||
}
|
LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
|
||||||
|
|
||||||
writecount -= nbytes >> 1;
|
|
||||||
|
|
||||||
} while (writecount);
|
|
||||||
wcount -= blocksize;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return retval;
|
return retval;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Compatibility wrappers around mem_ap_write(). Note that the count is in bytes for these. */
|
||||||
|
int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address, bool addr_incr)
|
||||||
|
{
|
||||||
|
return mem_ap_write(dap, buffer, 4, count / 4, address, true);
|
||||||
|
}
|
||||||
|
|
||||||
int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
|
int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
|
||||||
{
|
{
|
||||||
int retval = ERROR_OK;
|
return mem_ap_write(dap, buffer, 2, count / 2, address, true);
|
||||||
|
|
||||||
if (dap->packed_transfers && count >= 4)
|
|
||||||
return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
|
|
||||||
|
|
||||||
while (count > 0) {
|
|
||||||
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
|
|
||||||
uint32_t outvalue = 0;
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
|
|
||||||
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
break;
|
|
||||||
|
|
||||||
retval = dap_run(dap);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
break;
|
|
||||||
|
|
||||||
count -= 2;
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
|
|
||||||
const uint8_t *buffer, int count, uint32_t address)
|
|
||||||
{
|
|
||||||
int retval = ERROR_OK;
|
|
||||||
int wcount, blocksize, writecount;
|
|
||||||
|
|
||||||
wcount = count;
|
|
||||||
|
|
||||||
while (wcount > 0) {
|
|
||||||
int nbytes;
|
|
||||||
|
|
||||||
/* Adjust to write blocks within boundaries aligned to the TAR auto-increment size */
|
|
||||||
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
|
|
||||||
|
|
||||||
if (wcount < blocksize)
|
|
||||||
blocksize = wcount;
|
|
||||||
|
|
||||||
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
writecount = blocksize;
|
|
||||||
|
|
||||||
do {
|
|
||||||
nbytes = MIN(writecount, 4);
|
|
||||||
|
|
||||||
if (nbytes < 4) {
|
|
||||||
retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
|
|
||||||
if (retval != ERROR_OK) {
|
|
||||||
LOG_WARNING("Block write error address "
|
|
||||||
"0x%" PRIx32 ", count 0x%x",
|
|
||||||
address, count);
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
address += nbytes;
|
|
||||||
buffer += nbytes;
|
|
||||||
} else {
|
|
||||||
assert(nbytes == 4);
|
|
||||||
|
|
||||||
uint32_t outvalue = 0;
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
|
|
||||||
|
|
||||||
retval = dap_queue_ap_write(dap,
|
|
||||||
AP_REG_DRW, outvalue);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
break;
|
|
||||||
|
|
||||||
retval = dap_run(dap);
|
|
||||||
if (retval != ERROR_OK) {
|
|
||||||
LOG_WARNING("Block write error address "
|
|
||||||
"0x%" PRIx32 ", count 0x%x",
|
|
||||||
address, count);
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
writecount -= nbytes;
|
|
||||||
|
|
||||||
} while (writecount);
|
|
||||||
wcount -= blocksize;
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
|
int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
|
||||||
{
|
{
|
||||||
int retval = ERROR_OK;
|
return mem_ap_write(dap, buffer, 1, count, address, true);
|
||||||
|
|
||||||
if (dap->packed_transfers && count >= 4)
|
|
||||||
return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
|
|
||||||
|
|
||||||
while (count > 0) {
|
|
||||||
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
uint32_t outvalue = (uint32_t)*buffer++ << 8 * (address++ & 0x3);
|
|
||||||
retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
break;
|
|
||||||
|
|
||||||
retval = dap_run(dap);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
break;
|
|
||||||
|
|
||||||
count--;
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Synchronously read a block of 32-bit words into a buffer
|
* Synchronous read of a block of memory, using a specific access size.
|
||||||
|
*
|
||||||
* @param dap The DAP connected to the MEM-AP.
|
* @param dap The DAP connected to the MEM-AP.
|
||||||
* @param buffer where the words will be stored (in host byte order).
|
* @param buffer The data buffer to receive the data. No particular alignment is assumed.
|
||||||
* @param count How many words to read.
|
* @param size Which access size to use, in bytes. 1, 2 or 4.
|
||||||
* @param address Memory address from which to read words; all the
|
* @param count The number of reads to do (in size units, not bytes).
|
||||||
* @param addr_incr if true, increment the source address for each u32
|
* @param address Address to be read; it must be readable by the currently selected MEM-AP.
|
||||||
* words must be readable by the currently selected MEM-AP.
|
* @param addrinc Whether the target address should be increased after each read or not. This
|
||||||
|
* should normally be true, except when reading from e.g. a FIFO.
|
||||||
|
* @return ERROR_OK on success, otherwise an error code.
|
||||||
*/
|
*/
|
||||||
|
int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
|
||||||
|
uint32_t adr, bool addrinc)
|
||||||
|
{
|
||||||
|
size_t nbytes = size * count;
|
||||||
|
const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
|
||||||
|
uint32_t csw_size;
|
||||||
|
uint32_t address = adr;
|
||||||
|
int retval;
|
||||||
|
|
||||||
|
if (size == 4)
|
||||||
|
csw_size = CSW_32BIT;
|
||||||
|
else if (size == 2)
|
||||||
|
csw_size = CSW_16BIT;
|
||||||
|
else if (size == 1)
|
||||||
|
csw_size = CSW_8BIT;
|
||||||
|
else
|
||||||
|
return ERROR_TARGET_UNALIGNED_ACCESS;
|
||||||
|
|
||||||
|
/* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
|
||||||
|
* over-allocation if packed transfers are going to be used, but determining the real need at
|
||||||
|
* this point would be messy. */
|
||||||
|
uint32_t *read_buf = malloc(count * sizeof(uint32_t));
|
||||||
|
uint32_t *read_ptr = read_buf;
|
||||||
|
if (read_buf == NULL) {
|
||||||
|
LOG_ERROR("Failed to allocate read buffer");
|
||||||
|
return ERROR_FAIL;
|
||||||
|
}
|
||||||
|
|
||||||
|
retval = dap_setup_accessport_tar(dap, address);
|
||||||
|
if (retval != ERROR_OK)
|
||||||
|
return retval;
|
||||||
|
|
||||||
|
/* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
|
||||||
|
* useful bytes it contains, and their location in the word, depends on the type of transfer
|
||||||
|
* and alignment. */
|
||||||
|
while (nbytes > 0) {
|
||||||
|
uint32_t this_size = size;
|
||||||
|
|
||||||
|
/* Select packed transfer if possible */
|
||||||
|
if (addrinc && dap->packed_transfers && nbytes >= 4
|
||||||
|
&& max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
|
||||||
|
this_size = 4;
|
||||||
|
retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
|
||||||
|
} else {
|
||||||
|
retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
|
||||||
|
}
|
||||||
|
if (retval != ERROR_OK)
|
||||||
|
break;
|
||||||
|
|
||||||
|
retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
|
||||||
|
if (retval != ERROR_OK)
|
||||||
|
break;
|
||||||
|
|
||||||
|
nbytes -= this_size;
|
||||||
|
address += this_size;
|
||||||
|
|
||||||
|
/* Rewrite TAR if it wrapped */
|
||||||
|
if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
|
||||||
|
retval = dap_setup_accessport_tar(dap, address);
|
||||||
|
if (retval != ERROR_OK)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (retval == ERROR_OK)
|
||||||
|
retval = dap_run(dap);
|
||||||
|
|
||||||
|
/* Restore state */
|
||||||
|
address = adr;
|
||||||
|
nbytes = size * count;
|
||||||
|
read_ptr = read_buf;
|
||||||
|
|
||||||
|
/* If something failed, read TAR to find out how much data was successfully read, so we can
|
||||||
|
* at least give the caller what we have. */
|
||||||
|
if (retval != ERROR_OK) {
|
||||||
|
uint32_t tar;
|
||||||
|
if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
|
||||||
|
&& dap_run(dap) == ERROR_OK) {
|
||||||
|
LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
|
||||||
|
if (nbytes > tar - address)
|
||||||
|
nbytes = tar - address;
|
||||||
|
} else {
|
||||||
|
LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
|
||||||
|
nbytes = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Replay loop to populate caller's buffer from the correct word and byte lane */
|
||||||
|
while (nbytes > 0) {
|
||||||
|
uint32_t this_size = size;
|
||||||
|
|
||||||
|
if (addrinc && dap->packed_transfers && nbytes >= 4
|
||||||
|
&& max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
|
||||||
|
this_size = 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
switch (this_size) {
|
||||||
|
case 4:
|
||||||
|
*buffer++ = *read_ptr >> 8 * (address++ & 3);
|
||||||
|
*buffer++ = *read_ptr >> 8 * (address++ & 3);
|
||||||
|
case 2:
|
||||||
|
*buffer++ = *read_ptr >> 8 * (address++ & 3);
|
||||||
|
case 1:
|
||||||
|
*buffer++ = *read_ptr >> 8 * (address++ & 3);
|
||||||
|
}
|
||||||
|
|
||||||
|
read_ptr++;
|
||||||
|
nbytes -= this_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
free(read_buf);
|
||||||
|
return retval;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Compatibility wrappers around mem_ap_read(). Note that the count is in bytes for these (despite
|
||||||
|
* what their doxygen documentation said). */
|
||||||
int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
|
int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
|
||||||
int count, uint32_t address, bool addr_incr)
|
int count, uint32_t address, bool addr_incr)
|
||||||
{
|
{
|
||||||
int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
|
return mem_ap_read(dap, buffer, 4, count / 4, address, addr_incr);
|
||||||
uint32_t adr = address;
|
|
||||||
uint8_t *pBuffer = buffer;
|
|
||||||
uint32_t incr_flag = CSW_ADDRINC_OFF;
|
|
||||||
|
|
||||||
count >>= 2;
|
|
||||||
wcount = count;
|
|
||||||
|
|
||||||
while (wcount > 0) {
|
|
||||||
/* Adjust to read blocks within boundaries aligned to the
|
|
||||||
* TAR autoincrement size (at least 2^10). Autoincrement
|
|
||||||
* mode avoids an extra per-word roundtrip to update TAR.
|
|
||||||
*/
|
|
||||||
blocksize = max_tar_block_size(dap->tar_autoincr_block, address) / 4;
|
|
||||||
if (wcount < blocksize)
|
|
||||||
blocksize = wcount;
|
|
||||||
|
|
||||||
/* handle unaligned data at 4k boundary */
|
|
||||||
if (blocksize == 0)
|
|
||||||
blocksize = 1;
|
|
||||||
|
|
||||||
if (addr_incr)
|
|
||||||
incr_flag = CSW_ADDRINC_SINGLE;
|
|
||||||
|
|
||||||
retval = dap_setup_accessport(dap, CSW_32BIT | incr_flag,
|
|
||||||
address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
|
|
||||||
retval = dap_queue_ap_read_block(dap, AP_REG_DRW, blocksize, buffer);
|
|
||||||
|
|
||||||
retval = dap_run(dap);
|
|
||||||
if (retval != ERROR_OK) {
|
|
||||||
errorcount++;
|
|
||||||
if (errorcount <= 1) {
|
|
||||||
/* try again */
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
LOG_WARNING("Block read error address 0x%" PRIx32, address);
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
wcount = wcount - blocksize;
|
|
||||||
if (addr_incr)
|
|
||||||
address += 4 * blocksize;
|
|
||||||
buffer += 4 * blocksize;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* if we have an unaligned access - reorder data */
|
|
||||||
if (adr & 0x3u) {
|
|
||||||
for (readcount = 0; readcount < count; readcount++) {
|
|
||||||
int i;
|
|
||||||
uint32_t data;
|
|
||||||
memcpy(&data, pBuffer, sizeof(uint32_t));
|
|
||||||
|
|
||||||
for (i = 0; i < 4; i++) {
|
|
||||||
*((uint8_t *)pBuffer) =
|
|
||||||
(data >> 8 * (adr & 0x3));
|
|
||||||
pBuffer++;
|
|
||||||
adr++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
|
|
||||||
uint8_t *buffer, int count, uint32_t address)
|
|
||||||
{
|
|
||||||
uint32_t invalue;
|
|
||||||
int retval = ERROR_OK;
|
|
||||||
int wcount, blocksize, readcount, i;
|
|
||||||
|
|
||||||
wcount = count >> 1;
|
|
||||||
|
|
||||||
while (wcount > 0) {
|
|
||||||
int nbytes;
|
|
||||||
|
|
||||||
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
|
|
||||||
blocksize = max_tar_block_size(dap->tar_autoincr_block, address) / 2;
|
|
||||||
if (wcount < blocksize)
|
|
||||||
blocksize = wcount;
|
|
||||||
|
|
||||||
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
|
|
||||||
/* handle unaligned data at 4k boundary */
|
|
||||||
if (blocksize == 0)
|
|
||||||
blocksize = 1;
|
|
||||||
readcount = blocksize;
|
|
||||||
|
|
||||||
do {
|
|
||||||
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
retval = dap_run(dap);
|
|
||||||
if (retval != ERROR_OK) {
|
|
||||||
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
nbytes = MIN((readcount << 1), 4);
|
|
||||||
|
|
||||||
for (i = 0; i < nbytes; i++) {
|
|
||||||
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
|
|
||||||
buffer++;
|
|
||||||
address++;
|
|
||||||
}
|
|
||||||
|
|
||||||
readcount -= (nbytes >> 1);
|
|
||||||
} while (readcount);
|
|
||||||
wcount -= blocksize;
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Synchronously read a block of 16-bit halfwords into a buffer
|
|
||||||
* @param dap The DAP connected to the MEM-AP.
|
|
||||||
* @param buffer where the halfwords will be stored (in host byte order).
|
|
||||||
* @param count How many halfwords to read.
|
|
||||||
* @param address Memory address from which to read words; all the
|
|
||||||
* words must be readable by the currently selected MEM-AP.
|
|
||||||
*/
|
|
||||||
int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
|
int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
|
||||||
int count, uint32_t address)
|
int count, uint32_t address)
|
||||||
{
|
{
|
||||||
uint32_t invalue, i;
|
return mem_ap_read(dap, buffer, 2, count / 2, address, true);
|
||||||
int retval = ERROR_OK;
|
|
||||||
|
|
||||||
if (dap->packed_transfers && count >= 4)
|
|
||||||
return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
|
|
||||||
|
|
||||||
while (count > 0) {
|
|
||||||
retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
break;
|
|
||||||
|
|
||||||
retval = dap_run(dap);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
break;
|
|
||||||
|
|
||||||
if (address & 0x1) {
|
|
||||||
for (i = 0; i < 2; i++) {
|
|
||||||
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
|
|
||||||
buffer++;
|
|
||||||
address++;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
uint16_t svalue = (invalue >> 8 * (address & 0x3));
|
|
||||||
memcpy(buffer, &svalue, sizeof(uint16_t));
|
|
||||||
address += 2;
|
|
||||||
buffer += 2;
|
|
||||||
}
|
|
||||||
count -= 2;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
|
|
||||||
* roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
|
|
||||||
*
|
|
||||||
* The solution is to arrange for a large out/in scan in this loop and
|
|
||||||
* and convert data afterwards.
|
|
||||||
*/
|
|
||||||
static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
|
|
||||||
uint8_t *buffer, int count, uint32_t address)
|
|
||||||
{
|
|
||||||
uint32_t invalue;
|
|
||||||
int retval = ERROR_OK;
|
|
||||||
int wcount, blocksize, readcount, i;
|
|
||||||
|
|
||||||
wcount = count;
|
|
||||||
|
|
||||||
while (wcount > 0) {
|
|
||||||
int nbytes;
|
|
||||||
|
|
||||||
/* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
|
|
||||||
blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
|
|
||||||
|
|
||||||
if (wcount < blocksize)
|
|
||||||
blocksize = wcount;
|
|
||||||
|
|
||||||
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
readcount = blocksize;
|
|
||||||
|
|
||||||
do {
|
|
||||||
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
retval = dap_run(dap);
|
|
||||||
if (retval != ERROR_OK) {
|
|
||||||
LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
nbytes = MIN(readcount, 4);
|
|
||||||
|
|
||||||
for (i = 0; i < nbytes; i++) {
|
|
||||||
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
|
|
||||||
buffer++;
|
|
||||||
address++;
|
|
||||||
}
|
|
||||||
|
|
||||||
readcount -= nbytes;
|
|
||||||
} while (readcount);
|
|
||||||
wcount -= blocksize;
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Synchronously read a block of bytes into a buffer
|
|
||||||
* @param dap The DAP connected to the MEM-AP.
|
|
||||||
* @param buffer where the bytes will be stored.
|
|
||||||
* @param count How many bytes to read.
|
|
||||||
* @param address Memory address from which to read data; all the
|
|
||||||
* data must be readable by the currently selected MEM-AP.
|
|
||||||
*/
|
|
||||||
int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
|
int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
|
||||||
int count, uint32_t address)
|
int count, uint32_t address)
|
||||||
{
|
{
|
||||||
uint32_t invalue;
|
return mem_ap_read(dap, buffer, 1, count, address, true);
|
||||||
int retval = ERROR_OK;
|
|
||||||
|
|
||||||
if (dap->packed_transfers && count >= 4)
|
|
||||||
return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
|
|
||||||
|
|
||||||
while (count > 0) {
|
|
||||||
retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
return retval;
|
|
||||||
retval = dap_run(dap);
|
|
||||||
if (retval != ERROR_OK)
|
|
||||||
break;
|
|
||||||
|
|
||||||
*((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
|
|
||||||
count--;
|
|
||||||
address++;
|
|
||||||
buffer++;
|
|
||||||
}
|
|
||||||
|
|
||||||
return retval;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*--------------------------------------------------------------------*/
|
/*--------------------------------------------------------------------*/
|
||||||
|
|
|
@ -410,6 +410,8 @@ int mem_ap_read_buf_u16(struct adiv5_dap *swjdp,
|
||||||
uint8_t *buffer, int count, uint32_t address);
|
uint8_t *buffer, int count, uint32_t address);
|
||||||
int mem_ap_read_buf_u32(struct adiv5_dap *swjdp,
|
int mem_ap_read_buf_u32(struct adiv5_dap *swjdp,
|
||||||
uint8_t *buffer, int count, uint32_t address, bool addr_incr);
|
uint8_t *buffer, int count, uint32_t address, bool addr_incr);
|
||||||
|
int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size,
|
||||||
|
uint32_t count, uint32_t address, bool addrinc);
|
||||||
|
|
||||||
int mem_ap_write_buf_u8(struct adiv5_dap *swjdp,
|
int mem_ap_write_buf_u8(struct adiv5_dap *swjdp,
|
||||||
const uint8_t *buffer, int count, uint32_t address);
|
const uint8_t *buffer, int count, uint32_t address);
|
||||||
|
@ -417,6 +419,9 @@ int mem_ap_write_buf_u16(struct adiv5_dap *swjdp,
|
||||||
const uint8_t *buffer, int count, uint32_t address);
|
const uint8_t *buffer, int count, uint32_t address);
|
||||||
int mem_ap_write_buf_u32(struct adiv5_dap *swjdp,
|
int mem_ap_write_buf_u32(struct adiv5_dap *swjdp,
|
||||||
const uint8_t *buffer, int count, uint32_t address, bool addr_incr);
|
const uint8_t *buffer, int count, uint32_t address, bool addr_incr);
|
||||||
|
int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size,
|
||||||
|
uint32_t count, uint32_t address, bool addrinc);
|
||||||
|
|
||||||
|
|
||||||
/* Queued MEM-AP memory mapped single word transfers with selection of ap */
|
/* Queued MEM-AP memory mapped single word transfers with selection of ap */
|
||||||
int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
|
int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
|
||||||
|
|
Loading…
Reference in New Issue