pld: add support for lattice ecp2 and ecp3 devices

Change-Id: I29c227c37be464f7ecc97a30d9cf3da1442e2b7f
Signed-off-by: Daniel Anselmi <danselmi@gmx.ch>
Reviewed-on: https://review.openocd.org/c/openocd/+/7396
Reviewed-by: Antonio Borneo <borneo.antonio@gmail.com>
Tested-by: jenkins
This commit is contained in:
Daniel Anselmi 2022-12-12 09:49:51 +01:00 committed by Antonio Borneo
parent 8670ad4caa
commit d35faaa35c
13 changed files with 1044 additions and 1 deletions

View File

@ -8488,13 +8488,43 @@ openocd -f board/digilent_zedboard.cfg -c "init" \
@end example @end example
@deffn {Command} {virtex2 read_stat} num @deffn {Command} {virtex2 read_stat} num
Reads and displays the Virtex-II status register (STAT) Reads and displays the Virtex-II status register (STAT)
for FPGA @var{num}. for FPGA @var{num}.
@end deffn @end deffn
@end deffn @end deffn
@deffn {FPGA Driver} {lattice} [family]
The FGPA families ECP2 and ECP3 by Lattice are supported.
This driver can be used to load the bitstream into the FPGA or read the status register and read/write the usercode register.
The option @option{family} is one of @var{ecp2 ecp3}. This is needed when the JTAG ID of the device is not known by openocd (newer NX devices).
@deffn {Command} {lattice read_status} num
Reads and displays the status register
for FPGA @var{num}.
@end deffn
@deffn {Command} {lattice read_user} num
Reads and displays the user register
for FPGA @var{num}.
@end deffn
@deffn {Command} {lattice write_user} num val
Writes the user register.
for FPGA @var{num} with value @var{val}.
@end deffn
@deffn {Command} {lattice set_preload} num length
Set the length of the register for the preload. This is needed when the JTAG ID of the device is not known by openocd (newer NX devices).
The load command for the FPGA @var{num} will use a length for the preload of @var{length}.
@end deffn
@end deffn
@node General Commands @node General Commands
@chapter General Commands @chapter General Commands
@cindex commands @cindex commands

View File

@ -2,9 +2,17 @@
noinst_LTLIBRARIES += %D%/libpld.la noinst_LTLIBRARIES += %D%/libpld.la
%C%_libpld_la_SOURCES = \ %C%_libpld_la_SOURCES = \
%D%/ecp2_3.c \
%D%/lattice.c \
%D%/lattice_bit.c \
%D%/pld.c \ %D%/pld.c \
%D%/raw_bit.c \
%D%/xilinx_bit.c \ %D%/xilinx_bit.c \
%D%/virtex2.c \ %D%/virtex2.c \
%D%/ecp2_3.h \
%D%/lattice.h \
%D%/lattice_bit.h \
%D%/pld.h \ %D%/pld.h \
%D%/raw_bit.h \
%D%/xilinx_bit.h \ %D%/xilinx_bit.h \
%D%/virtex2.h %D%/virtex2.h

250
src/pld/ecp2_3.c Normal file
View File

@ -0,0 +1,250 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2022 by Daniel Anselmi *
* danselmi@gmx.ch *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "lattice.h"
#define LSCC_REFRESH 0x23
#define ISC_ENABLE 0x15
#define LSCC_RESET_ADDRESS 0x21
#define ISC_PROGRAM_USERCODE 0x1A
#define ISC_ERASE 0x03
#define READ_USERCODE 0x17
#define ISC_DISABLE 0x1E
#define LSCC_READ_STATUS 0x53
#define LSCC_BITSTREAM_BURST 0x02
#define STATUS_DONE_BIT 0x00020000
#define STATUS_ERROR_BITS_ECP2 0x00040003
#define STATUS_ERROR_BITS_ECP3 0x00040007
#define REGISTER_ALL_BITS_1 0xffffffff
#define REGISTER_ALL_BITS_0 0x00000000
int lattice_ecp2_3_read_status(struct jtag_tap *tap, uint32_t *status, uint32_t out, bool do_idle)
{
return lattice_read_u32_register(tap, LSCC_READ_STATUS, status, out, do_idle);
}
int lattice_ecp2_3_read_usercode(struct jtag_tap *tap, uint32_t *usercode, uint32_t out)
{
return lattice_read_u32_register(tap, READ_USERCODE, usercode, out, false);
}
int lattice_ecp2_3_write_usercode(struct lattice_pld_device *lattice_device, uint32_t usercode)
{
struct jtag_tap *tap = lattice_device->tap;
if (!tap)
return ERROR_FAIL;
int retval = lattice_set_instr(tap, ISC_ENABLE, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(20000);
retval = lattice_set_instr(tap, ISC_PROGRAM_USERCODE, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
struct scan_field field;
uint8_t buffer[4];
h_u32_to_le(buffer, usercode);
field.num_bits = 32;
field.out_value = buffer;
field.in_value = NULL;
jtag_add_dr_scan(tap, 1, &field, TAP_IDLE);
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(2000);
retval = lattice_set_instr(tap, ISC_DISABLE, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(200000);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
return lattice_verify_usercode(lattice_device, 0x0, usercode, REGISTER_ALL_BITS_1);
}
static int lattice_ecp2_3_erase_device(struct lattice_pld_device *lattice_device)
{
struct jtag_tap *tap = lattice_device->tap;
if (!tap)
return ERROR_FAIL;
/* program user code with all bits set */
int retval = lattice_set_instr(tap, ISC_PROGRAM_USERCODE, TAP_IRPAUSE);
if (retval != ERROR_OK)
return retval;
struct scan_field field;
uint8_t buffer[4] = {0xff, 0xff, 0xff, 0xff};
field.num_bits = 32;
field.out_value = buffer;
field.in_value = NULL;
jtag_add_dr_scan(tap, 1, &field, TAP_IDLE);
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(2000);
/* verify every bit is set */
const uint32_t out = REGISTER_ALL_BITS_1;
const uint32_t mask = REGISTER_ALL_BITS_1;
const uint32_t expected_pre = REGISTER_ALL_BITS_1;
retval = lattice_verify_usercode(lattice_device, out, expected_pre, mask);
if (retval != ERROR_OK)
return retval;
retval = lattice_set_instr(tap, ISC_ERASE, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
if (lattice_device->family == LATTICE_ECP2)
jtag_add_sleep(100000);
else
jtag_add_sleep(2000000);
retval = lattice_set_instr(tap, LSCC_RESET_ADDRESS, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(2000);
/* after erasing check all bits in user register are cleared */
const uint32_t expected_post = REGISTER_ALL_BITS_0;
return lattice_verify_usercode(lattice_device, out, expected_post, mask);
}
static int lattice_ecp2_3_program_config_map(struct lattice_pld_device *lattice_device,
struct lattice_bit_file *bit_file)
{
struct jtag_tap *tap = lattice_device->tap;
if (!tap)
return ERROR_FAIL;
int retval = lattice_set_instr(tap, LSCC_RESET_ADDRESS, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(2000);
struct scan_field field;
retval = lattice_set_instr(tap, LSCC_BITSTREAM_BURST, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
field.num_bits = (bit_file->raw_bit.length - bit_file->offset) * 8;
field.out_value = bit_file->raw_bit.data + bit_file->offset;
field.in_value = NULL;
jtag_add_dr_scan(tap, 1, &field, TAP_IDLE);
jtag_add_runtest(256, TAP_IDLE);
jtag_add_sleep(2000);
return jtag_execute_queue();
}
static int lattice_ecp2_3_exit_programming_mode(struct lattice_pld_device *lattice_device)
{
struct jtag_tap *tap = lattice_device->tap;
if (!tap)
return ERROR_FAIL;
int retval = lattice_set_instr(tap, ISC_DISABLE, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(200000);
retval = lattice_set_instr(tap, BYPASS, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(100, TAP_IDLE);
jtag_add_sleep(1000);
return jtag_execute_queue();
}
int lattice_ecp2_load(struct lattice_pld_device *lattice_device, struct lattice_bit_file *bit_file)
{
struct jtag_tap *tap = lattice_device->tap;
if (!tap)
return ERROR_FAIL;
int retval = lattice_preload(lattice_device);
if (retval != ERROR_OK)
return retval;
/* Enable the programming mode */
retval = lattice_set_instr(tap, LSCC_REFRESH, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = lattice_set_instr(tap, ISC_ENABLE, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(20000);
/* Erase the device */
retval = lattice_ecp2_3_erase_device(lattice_device);
if (retval != ERROR_OK)
return retval;
/* Program Fuse Map */
retval = lattice_ecp2_3_program_config_map(lattice_device, bit_file);
if (retval != ERROR_OK)
return retval;
retval = lattice_ecp2_3_exit_programming_mode(lattice_device);
if (retval != ERROR_OK)
return retval;
const uint32_t out = REGISTER_ALL_BITS_1;
const uint32_t mask = STATUS_DONE_BIT | STATUS_ERROR_BITS_ECP2;
const uint32_t expected = STATUS_DONE_BIT;
return lattice_verify_status_register_u32(lattice_device, out, expected, mask, false);
}
int lattice_ecp3_load(struct lattice_pld_device *lattice_device, struct lattice_bit_file *bit_file)
{
struct jtag_tap *tap = lattice_device->tap;
if (!tap)
return ERROR_FAIL;
/* Program Bscan register */
int retval = lattice_preload(lattice_device);
if (retval != ERROR_OK)
return retval;
/* Enable the programming mode */
retval = lattice_set_instr(tap, LSCC_REFRESH, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(500000);
retval = lattice_set_instr(tap, ISC_ENABLE, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(5, TAP_IDLE);
jtag_add_sleep(20000);
retval = lattice_ecp2_3_erase_device(lattice_device);
if (retval != ERROR_OK)
return retval;
/* Program Fuse Map */
retval = lattice_ecp2_3_program_config_map(lattice_device, bit_file);
if (retval != ERROR_OK)
return retval;
retval = lattice_ecp2_3_exit_programming_mode(lattice_device);
if (retval != ERROR_OK)
return retval;
const uint32_t out = REGISTER_ALL_BITS_1;
const uint32_t mask = STATUS_DONE_BIT | STATUS_ERROR_BITS_ECP3;
const uint32_t expected = STATUS_DONE_BIT;
return lattice_verify_status_register_u32(lattice_device, out, expected, mask, false);
}

19
src/pld/ecp2_3.h Normal file
View File

@ -0,0 +1,19 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2022 by Daniel Anselmi *
* danselmi@gmx.ch *
***************************************************************************/
#ifndef OPENOCD_PLD_ECP2_3_H
#define OPENOCD_PLD_ECP2_3_H
#include "lattice.h"
int lattice_ecp2_3_read_status(struct jtag_tap *tap, uint32_t *status, uint32_t out, bool do_idle);
int lattice_ecp2_3_read_usercode(struct jtag_tap *tap, uint32_t *usercode, uint32_t out);
int lattice_ecp2_3_write_usercode(struct lattice_pld_device *lattice_device, uint32_t usercode);
int lattice_ecp2_load(struct lattice_pld_device *lattice_device, struct lattice_bit_file *bit_file);
int lattice_ecp3_load(struct lattice_pld_device *lattice_device, struct lattice_bit_file *bit_file);
#endif /* OPENOCD_PLD_ECP2_3_H */

435
src/pld/lattice.c Normal file
View File

@ -0,0 +1,435 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2022 by Daniel Anselmi *
* danselmi@gmx.ch *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "lattice.h"
#include <jtag/jtag.h>
#include "pld.h"
#include "lattice_bit.h"
#include "ecp2_3.h"
#define PRELOAD 0x1C
struct lattice_devices_elem {
uint32_t id;
size_t preload_length;
enum lattice_family_e family;
};
static const struct lattice_devices_elem lattice_devices[] = {
{0x01270043, 654, LATTICE_ECP2 /* ecp2-6e */},
{0x01271043, 643, LATTICE_ECP2 /* ecp2-12e */},
{0x01272043, 827, LATTICE_ECP2 /* ecp2-20e */},
{0x01274043, 1011, LATTICE_ECP2 /* ecp2-35e */},
{0x01273043, 1219, LATTICE_ECP2 /* ecp2-50e */},
{0x01275043, 654, LATTICE_ECP2 /* ecp2-70e */},
{0x01279043, 680, LATTICE_ECP2 /* ecp2m20e */},
{0x0127A043, 936, LATTICE_ECP2 /* ecp2m35e */},
{0x0127B043, 1056, LATTICE_ECP2 /* ecp2m50e */},
{0x0127C043, 1039, LATTICE_ECP2 /* ecp2m70e */},
{0x0127D043, 1311, LATTICE_ECP2 /* ecp2m100e */},
{0x01010043, 467, LATTICE_ECP3 /* ecp3 lae3-17ea & lfe3-17ea*/},
{0x01012043, 675, LATTICE_ECP3 /* ecp3 lae3-35ea & lfe3-35ea*/},
{0x01014043, 1077, LATTICE_ECP3 /* ecp3 lfe3-70ea & lfe3-70e & lfe3-95ea && lfe3-95e*/},
{0x01015043, 1326, LATTICE_ECP3 /* ecp3 lfe3-150e*/},
};
int lattice_set_instr(struct jtag_tap *tap, uint8_t new_instr, tap_state_t endstate)
{
struct scan_field field;
field.num_bits = tap->ir_length;
void *t = calloc(DIV_ROUND_UP(field.num_bits, 8), 1);
if (!t) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
field.out_value = t;
buf_set_u32(t, 0, field.num_bits, new_instr);
field.in_value = NULL;
jtag_add_ir_scan(tap, &field, endstate);
free(t);
return ERROR_OK;
}
static int lattice_check_device_family(struct lattice_pld_device *lattice_device)
{
if (lattice_device->family != LATTICE_UNKNOWN && lattice_device->preload_length != 0)
return ERROR_OK;
if (!lattice_device->tap || !lattice_device->tap->hasidcode)
return ERROR_FAIL;
for (size_t i = 0; i < ARRAY_SIZE(lattice_devices); ++i) {
if (lattice_devices[i].id == lattice_device->tap->idcode) {
if (lattice_device->family == LATTICE_UNKNOWN)
lattice_device->family = lattice_devices[i].family;
if (lattice_device->preload_length == 0)
lattice_device->preload_length = lattice_devices[i].preload_length;
return ERROR_OK;
}
}
LOG_ERROR("Unknown id! Specify family and preload-length manually.");
return ERROR_FAIL;
}
int lattice_read_u32_register(struct jtag_tap *tap, uint8_t cmd, uint32_t *in_val,
uint32_t out_val, bool do_idle)
{
struct scan_field field;
uint8_t buffer[4];
int retval = lattice_set_instr(tap, cmd, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
if (do_idle) {
jtag_add_runtest(2, TAP_IDLE);
jtag_add_sleep(1000);
}
h_u32_to_le(buffer, out_val);
field.num_bits = 32;
field.out_value = buffer;
field.in_value = buffer;
jtag_add_dr_scan(tap, 1, &field, TAP_IDLE);
retval = jtag_execute_queue();
if (retval == ERROR_OK)
*in_val = le_to_h_u32(buffer);
return retval;
}
int lattice_preload(struct lattice_pld_device *lattice_device)
{
struct scan_field field;
size_t sz_bytes = DIV_ROUND_UP(lattice_device->preload_length, 8);
int retval = lattice_set_instr(lattice_device->tap, PRELOAD, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
uint8_t *buffer = malloc(sz_bytes);
if (!buffer) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
memset(buffer, 0xff, sz_bytes);
field.num_bits = lattice_device->preload_length;
field.out_value = buffer;
field.in_value = NULL;
jtag_add_dr_scan(lattice_device->tap, 1, &field, TAP_IDLE);
retval = jtag_execute_queue();
free(buffer);
return retval;
}
static int lattice_read_usercode(struct lattice_pld_device *lattice_device, uint32_t *usercode, uint32_t out)
{
struct jtag_tap *tap = lattice_device->tap;
if (!tap)
return ERROR_FAIL;
if (lattice_device->family == LATTICE_ECP2 || lattice_device->family == LATTICE_ECP3)
return lattice_ecp2_3_read_usercode(tap, usercode, out);
return ERROR_FAIL;
}
int lattice_verify_usercode(struct lattice_pld_device *lattice_device, uint32_t out,
uint32_t expected, uint32_t mask)
{
uint32_t usercode;
int retval = lattice_read_usercode(lattice_device, &usercode, out);
if (retval != ERROR_OK)
return retval;
if ((usercode & mask) != expected) {
LOG_ERROR("verifying user code register failed got: 0x%08" PRIx32 " expected: 0x%08" PRIx32,
usercode & mask, expected);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int lattice_write_usercode(struct lattice_pld_device *lattice_device, uint32_t usercode)
{
if (lattice_device->family == LATTICE_ECP2 || lattice_device->family == LATTICE_ECP3)
return lattice_ecp2_3_write_usercode(lattice_device, usercode);
return ERROR_FAIL;
}
static int lattice_read_status_u32(struct lattice_pld_device *lattice_device, uint32_t *status,
uint32_t out, bool do_idle)
{
if (!lattice_device->tap)
return ERROR_FAIL;
if (lattice_device->family == LATTICE_ECP2 || lattice_device->family == LATTICE_ECP3)
return lattice_ecp2_3_read_status(lattice_device->tap, status, out, do_idle);
return ERROR_FAIL;
}
int lattice_verify_status_register_u32(struct lattice_pld_device *lattice_device, uint32_t out,
uint32_t expected, uint32_t mask, bool do_idle)
{
uint32_t status;
int retval = lattice_read_status_u32(lattice_device, &status, out, do_idle);
if (retval != ERROR_OK)
return retval;
if ((status & mask) != expected) {
LOG_ERROR("verifying status register failed got: 0x%08" PRIx32 " expected: 0x%08" PRIx32,
status & mask, expected);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int lattice_load_command(struct pld_device *pld_device, const char *filename)
{
if (!pld_device)
return ERROR_FAIL;
struct lattice_pld_device *lattice_device = pld_device->driver_priv;
if (!lattice_device || !lattice_device->tap)
return ERROR_FAIL;
struct jtag_tap *tap = lattice_device->tap;
if (!tap || !tap->hasidcode)
return ERROR_FAIL;
int retval = lattice_check_device_family(lattice_device);
if (retval != ERROR_OK)
return retval;
struct lattice_bit_file bit_file;
retval = lattice_read_file(&bit_file, filename, lattice_device->family);
if (retval != ERROR_OK)
return retval;
retval = ERROR_FAIL;
switch (lattice_device->family) {
case LATTICE_ECP2:
retval = lattice_ecp2_load(lattice_device, &bit_file);
break;
case LATTICE_ECP3:
retval = lattice_ecp3_load(lattice_device, &bit_file);
break;
default:
LOG_ERROR("loading unknown device family");
break;
}
free(bit_file.raw_bit.data);
return retval;
}
PLD_DEVICE_COMMAND_HANDLER(lattice_pld_device_command)
{
if (CMD_ARGC < 2 || CMD_ARGC > 3)
return ERROR_COMMAND_SYNTAX_ERROR;
struct jtag_tap *tap = jtag_tap_by_string(CMD_ARGV[1]);
if (!tap) {
command_print(CMD, "Tap: %s does not exist", CMD_ARGV[1]);
return ERROR_FAIL;
}
struct lattice_pld_device *lattice_device = malloc(sizeof(struct lattice_pld_device));
if (!lattice_device) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
/* id is not known yet -> postpone lattice_check_device_family() */
enum lattice_family_e family = LATTICE_UNKNOWN;
if (CMD_ARGC == 3) {
if (strcasecmp(CMD_ARGV[2], "ecp2") == 0) {
family = LATTICE_ECP2;
} else if (strcasecmp(CMD_ARGV[2], "ecp3") == 0) {
family = LATTICE_ECP3;
} else {
command_print(CMD, "unknown family");
free(lattice_device);
return ERROR_FAIL;
}
}
lattice_device->tap = tap;
lattice_device->family = family;
lattice_device->preload_length = 0;
pld->driver_priv = lattice_device;
return ERROR_OK;
}
COMMAND_HANDLER(lattice_read_usercode_register_command_handler)
{
int dev_id;
uint32_t usercode;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], dev_id);
struct pld_device *device = get_pld_device_by_num(dev_id);
if (!device) {
command_print(CMD, "pld device '#%s' is out of bounds", CMD_ARGV[0]);
return ERROR_FAIL;
}
struct lattice_pld_device *lattice_device = device->driver_priv;
if (!lattice_device)
return ERROR_FAIL;
int retval = lattice_check_device_family(lattice_device);
if (retval != ERROR_OK)
return retval;
retval = lattice_read_usercode(lattice_device, &usercode, 0x0);
if (retval == ERROR_OK)
command_print(CMD, "0x%8.8" PRIx32, usercode);
return retval;
}
COMMAND_HANDLER(lattice_set_preload_command_handler)
{
int dev_id;
unsigned int preload_length;
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], dev_id);
struct pld_device *device = get_pld_device_by_num(dev_id);
if (!device) {
command_print(CMD, "pld device '#%s' is out of bounds", CMD_ARGV[0]);
return ERROR_FAIL;
}
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], preload_length);
struct lattice_pld_device *lattice_device = device->driver_priv;
if (!lattice_device)
return ERROR_FAIL;
lattice_device->preload_length = preload_length;
return ERROR_OK;
}
COMMAND_HANDLER(lattice_write_usercode_register_command_handler)
{
int dev_id;
uint32_t usercode;
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], dev_id);
struct pld_device *device = get_pld_device_by_num(dev_id);
if (!device) {
command_print(CMD, "pld device '#%s' is out of bounds", CMD_ARGV[0]);
return ERROR_FAIL;
}
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], usercode);
struct lattice_pld_device *lattice_device = device->driver_priv;
if (!lattice_device)
return ERROR_FAIL;
int retval = lattice_check_device_family(lattice_device);
if (retval != ERROR_OK)
return retval;
return lattice_write_usercode(lattice_device, usercode);
}
COMMAND_HANDLER(lattice_read_status_command_handler)
{
int dev_id;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], dev_id);
struct pld_device *device = get_pld_device_by_num(dev_id);
if (!device) {
command_print(CMD, "pld device '#%s' is out of bounds", CMD_ARGV[0]);
return ERROR_FAIL;
}
struct lattice_pld_device *lattice_device = device->driver_priv;
if (!lattice_device)
return ERROR_FAIL;
int retval = lattice_check_device_family(lattice_device);
if (retval != ERROR_OK)
return retval;
uint32_t status;
retval = lattice_read_status_u32(lattice_device, &status, 0x0, false);
if (retval == ERROR_OK)
command_print(CMD, "0x%8.8" PRIx32, status);
return retval;
}
static const struct command_registration lattice_exec_command_handlers[] = {
{
.name = "read_status",
.mode = COMMAND_EXEC,
.handler = lattice_read_status_command_handler,
.help = "reading status register from FPGA",
.usage = "num_pld",
}, {
.name = "read_user",
.mode = COMMAND_EXEC,
.handler = lattice_read_usercode_register_command_handler,
.help = "reading usercode register from FPGA",
.usage = "num_pld",
}, {
.name = "write_user",
.mode = COMMAND_EXEC,
.handler = lattice_write_usercode_register_command_handler,
.help = "writing usercode register to FPGA",
.usage = "num_pld value",
}, {
.name = "set_preload",
.mode = COMMAND_EXEC,
.handler = lattice_set_preload_command_handler,
.help = "set length for preload (device specific)",
.usage = "num_pld value",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration lattice_command_handler[] = {
{
.name = "lattice",
.mode = COMMAND_ANY,
.help = "lattice specific commands",
.usage = "",
.chain = lattice_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct pld_driver lattice_pld = {
.name = "lattice",
.commands = lattice_command_handler,
.pld_device_command = &lattice_pld_device_command,
.load = &lattice_load_command,
};

32
src/pld/lattice.h Normal file
View File

@ -0,0 +1,32 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2022 by Daniel Anselmi *
* danselmi@gmx.ch *
***************************************************************************/
#ifndef OPENOCD_PLD_LATTICE_H
#define OPENOCD_PLD_LATTICE_H
#include <jtag/jtag.h>
#include "pld.h"
#include "lattice_bit.h"
#define BYPASS 0xFF
struct lattice_pld_device {
struct jtag_tap *tap;
size_t preload_length;
enum lattice_family_e family;
};
int lattice_set_instr(struct jtag_tap *tap, uint8_t new_instr, tap_state_t endstate);
int lattice_read_u32_register(struct jtag_tap *tap, uint8_t cmd, uint32_t *in_val,
uint32_t out_val, bool do_idle);
int lattice_verify_usercode(struct lattice_pld_device *lattice_device, uint32_t out,
uint32_t expected, uint32_t mask);
int lattice_verify_status_register_u32(struct lattice_pld_device *lattice_device, uint32_t out,
uint32_t expected, uint32_t mask, bool do_idle);
int lattice_preload(struct lattice_pld_device *lattice_device);
#endif /* OPENOCD_PLD_LATTICE_H */

105
src/pld/lattice_bit.c Normal file
View File

@ -0,0 +1,105 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2022 by Daniel Anselmi *
* danselmi@gmx.ch *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "lattice_bit.h"
#include "raw_bit.h"
#include "pld.h"
#include <helper/system.h>
#include <helper/log.h>
#include <helper/binarybuffer.h>
enum read_bit_state {
SEEK_HEADER_START,
SEEK_HEADER_END,
SEEK_PREAMBLE,
SEEK_ID,
DONE,
};
static int lattice_read_bit_file(struct lattice_bit_file *bit_file, const char *filename, enum lattice_family_e family)
{
int retval = cpld_read_raw_bit_file(&bit_file->raw_bit, filename);
if (retval != ERROR_OK)
return retval;
bit_file->part = 0;
bit_file->has_id = false;
enum read_bit_state state = SEEK_HEADER_START;
for (size_t pos = 1; pos < bit_file->raw_bit.length && state != DONE; ++pos) {
switch (state) {
case SEEK_HEADER_START:
if (bit_file->raw_bit.data[pos] == 0 && bit_file->raw_bit.data[pos - 1] == 0xff)
state = SEEK_HEADER_END;
break;
case SEEK_HEADER_END:
if (pos + 6 < bit_file->raw_bit.length &&
strncmp((const char *)(bit_file->raw_bit.data + pos), "Part: ", 6) == 0) {
bit_file->part = (const char *)bit_file->raw_bit.data + pos + 6;
LOG_INFO("part found: %s\n", bit_file->part);
} else if (bit_file->raw_bit.data[pos] == 0xff && bit_file->raw_bit.data[pos - 1] == 0) {
bit_file->offset = pos;
state = (family != LATTICE_ECP2 && family != LATTICE_ECP3) ? SEEK_PREAMBLE : DONE;
}
break;
case SEEK_PREAMBLE:
if (pos >= 4) {
uint32_t preamble = be_to_h_u32(bit_file->raw_bit.data + pos - 3);
switch (preamble) {
case 0xffffbdb3:
state = SEEK_ID;
break;
case 0xffffbfb3:
case 0xffffbeb3:
state = DONE;
break;
}
}
break;
case SEEK_ID:
if (pos + 7 < bit_file->raw_bit.length && bit_file->raw_bit.data[pos] == 0xe2) {
bit_file->idcode = be_to_h_u32(&bit_file->raw_bit.data[pos + 4]);
bit_file->has_id = true;
state = DONE;
}
break;
default:
break;
}
}
if (state != DONE) {
LOG_ERROR("parsing bitstream failed");
return ERROR_PLD_FILE_LOAD_FAILED;
}
for (size_t i = bit_file->offset; i < bit_file->raw_bit.length; i++)
bit_file->raw_bit.data[i] = flip_u32(bit_file->raw_bit.data[i], 8);
return ERROR_OK;
}
int lattice_read_file(struct lattice_bit_file *bit_file, const char *filename, enum lattice_family_e family)
{
if (!filename || !bit_file)
return ERROR_COMMAND_SYNTAX_ERROR;
/* check if binary .bin or ascii .bit/.hex */
const char *file_suffix_pos = strrchr(filename, '.');
if (!file_suffix_pos) {
LOG_ERROR("Unable to detect filename suffix");
return ERROR_PLD_FILE_LOAD_FAILED;
}
if (strcasecmp(file_suffix_pos, ".bit") == 0)
return lattice_read_bit_file(bit_file, filename, family);
LOG_ERROR("Filetype not supported");
return ERROR_PLD_FILE_LOAD_FAILED;
}

33
src/pld/lattice_bit.h Normal file
View File

@ -0,0 +1,33 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2022 by Daniel Anselmi *
* danselmi@gmx.ch *
***************************************************************************/
#ifndef OPENOCD_PLD_LATTICE_BIT_H
#define OPENOCD_PLD_LATTICE_BIT_H
#include "helper/types.h"
#include "raw_bit.h"
struct lattice_bit_file {
struct raw_bit_file raw_bit;
size_t offset;
uint32_t idcode;
const char *part; /* reuses memory in raw_bit_file */
bool has_id;
};
enum lattice_family_e {
LATTICE_ECP2,
LATTICE_ECP3,
LATTICE_ECP5,
LATTICE_CERTUS,
LATTICE_UNKNOWN,
};
int lattice_read_file(struct lattice_bit_file *bit_file, const char *filename, enum lattice_family_e family);
#endif /* OPENOCD_PLD_LATTICE_BIT_H */

View File

@ -18,9 +18,11 @@
/* pld drivers /* pld drivers
*/ */
extern struct pld_driver lattice_pld;
extern struct pld_driver virtex2_pld; extern struct pld_driver virtex2_pld;
static struct pld_driver *pld_drivers[] = { static struct pld_driver *pld_drivers[] = {
&lattice_pld,
&virtex2_pld, &virtex2_pld,
NULL, NULL,
}; };

55
src/pld/raw_bit.c Normal file
View File

@ -0,0 +1,55 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2022 by Daniel Anselmi *
* danselmi@gmx.ch *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "raw_bit.h"
#include "pld.h"
#include <helper/system.h>
#include <helper/log.h>
int cpld_read_raw_bit_file(struct raw_bit_file *bit_file, const char *filename)
{
FILE *input_file = fopen(filename, "rb");
if (!input_file) {
LOG_ERROR("Couldn't open %s: %s", filename, strerror(errno));
return ERROR_PLD_FILE_LOAD_FAILED;
}
fseek(input_file, 0, SEEK_END);
long length = ftell(input_file);
fseek(input_file, 0, SEEK_SET);
if (length < 0) {
fclose(input_file);
LOG_ERROR("Failed to get length of file %s: %s", filename, strerror(errno));
return ERROR_PLD_FILE_LOAD_FAILED;
}
bit_file->length = (size_t)length;
bit_file->data = malloc(bit_file->length);
if (!bit_file->data) {
fclose(input_file);
LOG_ERROR("Out of memory");
return ERROR_PLD_FILE_LOAD_FAILED;
}
size_t read_count = fread(bit_file->data, sizeof(char), bit_file->length, input_file);
fclose(input_file);
if (read_count != bit_file->length) {
free(bit_file->data);
bit_file->data = NULL;
return ERROR_PLD_FILE_LOAD_FAILED;
}
return ERROR_OK;
}

21
src/pld/raw_bit.h Normal file
View File

@ -0,0 +1,21 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2022 by Daniel Anselmi *
* danselmi@gmx.ch *
***************************************************************************/
#ifndef OPENOCD_PLD_RAW_BIN_H
#define OPENOCD_PLD_RAW_BIN_H
#include <stddef.h>
#include <stdint.h>
struct raw_bit_file {
size_t length;
uint8_t *data;
};
int cpld_read_raw_bit_file(struct raw_bit_file *bit_file, const char *filename);
#endif /* OPENOCD_PLD_RAW_BIN_H */

31
tcl/fpga/lattice_ecp2.cfg Normal file
View File

@ -0,0 +1,31 @@
# SPDX-License-Identifier: GPL-2.0-or-later
if { [info exists CHIPNAME] } {
set _CHIPNAME $_CHIPNAME
} else {
set _CHIPNAME ecp2
}
# Lattice ECP2 family
# TAP IDs are extracted from BSDL files found on this page:
# https://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP2M
#
# LFE2M20E: 0x01279043
# LFE2M35E: 0x0127A043
# LFE2M50E: 0x0127B043
# LFE2M70E: 0x0127C043
# LFE2M100E: 0x0127D043
# LFEC2_6E: 0x01270043
# LFEC2_12E: 0x01271043
# LFEC2_20E: 0x01272043
# LFEC2_35E: 0x01274043
# LFEC2_50E: 0x01273043
# LFEC2_70E: 0x01275043
jtag newtap $_CHIPNAME tap -irlen 8 \
-expected-id 0x01279043 -expected-id 0x0127A043 -expected-id 0x0127B043 \
-expected-id 0x0127C043 -expected-id 0x0127D043 -expected-id 0x01270043 \
-expected-id 0x01271043 -expected-id 0x01272043 -expected-id 0x01274043 \
-expected-id 0x01273043 -expected-id 0x01275043
pld device lattice $_CHIPNAME.tap

22
tcl/fpga/lattice_ecp3.cfg Normal file
View File

@ -0,0 +1,22 @@
# SPDX-License-Identifier: GPL-2.0-or-later
if { [info exists CHIPNAME] } {
set _CHIPNAME $_CHIPNAME
} else {
set _CHIPNAME ecp3
}
# Lattice ECP3 family
# TAP IDs are extracted from BSDL files found on this page:
# https://www.latticesemi.com/Products/FPGAandCPLD/LatticeECP3
#
# LFE3_17: 0x01010043
# LFE3_35: 0x01012043
# LFE3_95: 0x01014043 and LFE3_70
# LFE3_150: 0x01015043
jtag newtap $_CHIPNAME tap -irlen 8 \
-expected-id 0x01010043 -expected-id 0x01012043 \
-expected-id 0x01014043 -expected-id 0x01015043
pld device lattice $_CHIPNAME.tap