- reworked file i/o. every fileaccess (target, flash, nand, in future configuration, too) should now go through the fileio subsystem

- added support for reading IHEX files (through fileio)
- load/dump_binary renamed to the more generic load/dump_image <file> <address> ['bin'|'ihex']
- added NAND framework (preliminary)
- added support for the LPC3180 SLC and MLC NAND controllers (preliminary)
- fix initialization for parport
- gw16012 fixes/cleanups
- added EmbeddedICE version 7 (preliminary, reported on two LPC23xx devices so far)
- added 'arm7_9 etm <target#>' configuration command to enable access to the ETM registers


git-svn-id: svn://svn.berlios.de/openocd/trunk@132 b42882b7-edfa-0310-969c-e2dbd0fdcd60
This commit is contained in:
drath 2007-03-15 13:36:44 +00:00
parent e0c2e30660
commit cb58279653
20 changed files with 2898 additions and 129 deletions

View File

@ -1,5 +1,5 @@
INCLUDES = -I$(top_srcdir)/src/helper -I$(top_srcdir)/src/jtag -I$(top_srcdir)/src/target $(all_includes)
METASOURCES = AUTO
noinst_LIBRARIES = libflash.a
libflash_a_SOURCES = flash.c lpc2000.c cfi.c at91sam7.c str7x.c str9x.c
noinst_HEADERS = flash.h lpc2000.h cfi.h at91sam7.h str7x.h str9x.h
libflash_a_SOURCES = flash.c lpc2000.c cfi.c at91sam7.c str7x.c str9x.c nand.c lpc3180_nand_controller.c
noinst_HEADERS = flash.h lpc2000.h cfi.h at91sam7.h str7x.h str9x.h nand.h lpc3180_nand_controller.h

View File

@ -34,6 +34,8 @@
#include <sys/stat.h>
#include <errno.h>
#include <fileio.h>
/* command handlers */
int handle_flash_bank_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_flash_banks_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
@ -486,24 +488,31 @@ int handle_flash_protect_command(struct command_context_s *cmd_ctx, char *cmd, c
int handle_flash_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
FILE *binary;
u32 offset;
struct stat binary_stat;
u32 binary_size;
u8 *buffer;
u32 buf_cnt;
fileio_t file;
fileio_image_t image_info;
enum fileio_sec_type sec_type;
duration_t duration;
char *duration_text;
int retval;
flash_bank_t *p;
struct timeval start, end, duration;
gettimeofday(&start, NULL);
if (argc < 3)
{
command_print(cmd_ctx, "usage: flash write <bank> <file> <offset>");
command_print(cmd_ctx, "usage: flash write <bank> <file> <offset> [type]");
return ERROR_OK;
}
duration_start_measure(&duration);
fileio_identify_image_type(&sec_type, (argc == 4) ? args[3] : NULL);
offset = strtoul(args[2], NULL, 0);
p = get_flash_bank_by_num(strtoul(args[0], NULL, 0));
if (!p)
@ -512,36 +521,21 @@ int handle_flash_write_command(struct command_context_s *cmd_ctx, char *cmd, cha
return ERROR_OK;
}
if (stat(args[1], &binary_stat) == -1)
{
ERROR("couldn't stat() %s: %s", args[1], strerror(errno));
return ERROR_OK;
}
image_info.base_address = strtoul(args[2], NULL, 0);
image_info.has_start_address = 0;
if (S_ISDIR(binary_stat.st_mode))
if (fileio_open(&file, args[1], FILEIO_READ,
FILEIO_IMAGE, &image_info, sec_type) != ERROR_OK)
{
ERROR("%s is a directory", args[1]);
command_print(cmd_ctx,"%s is a directory", args[1]);
command_print(cmd_ctx, "flash write error: %s", file.error_str);
return ERROR_OK;
}
if (binary_stat.st_size == 0){
ERROR("Empty file %s", args[1]);
command_print(cmd_ctx,"Empty file %s", args[1]);
return ERROR_OK;
}
if (!(binary = fopen(args[1], "rb")))
{
ERROR("couldn't open %s: %s", args[1], strerror(errno));
command_print(cmd_ctx, "couldn't open %s", args[1]);
return ERROR_OK;
}
binary_size = binary_stat.st_size;
binary_size = file.size;
buffer = malloc(binary_size);
buf_cnt = fread(buffer, 1, binary_size, binary);
fileio_read(&file, binary_size, buffer, &buf_cnt);
if ((retval = p->driver->write(p, buffer, offset, buf_cnt)) != ERROR_OK)
{
command_print(cmd_ctx, "failed writing file %s to flash bank %i at offset 0x%8.8x",
@ -575,14 +569,14 @@ int handle_flash_write_command(struct command_context_s *cmd_ctx, char *cmd, cha
}
else
{
gettimeofday(&end, NULL);
timeval_subtract(&duration, &end, &start);
command_print(cmd_ctx, "wrote file %s to flash bank %i at offset 0x%8.8x in %is %ius", args[1], strtoul(args[0], NULL, 0), strtoul(args[2], NULL, 0), duration.tv_sec, duration.tv_usec);
duration_stop_measure(&duration, &duration_text);
command_print(cmd_ctx, "wrote file %s to flash bank %i at offset 0x%8.8x in %s",
file.url, strtoul(args[0], NULL, 0), offset, duration_text);
free(duration_text);
}
free(buffer);
fclose(binary);
fileio_close(&file);
return ERROR_OK;
}

View File

@ -0,0 +1,916 @@
/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "lpc3180_nand_controller.h"
#include "replacements.h"
#include "log.h"
#include <stdlib.h>
#include <string.h>
#include "nand.h"
#include "target.h"
int lpc3180_nand_device_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct nand_device_s *device);
int lpc3180_register_commands(struct command_context_s *cmd_ctx);
int lpc3180_init(struct nand_device_s *device);
int lpc3180_reset(struct nand_device_s *device);
int lpc3180_command(struct nand_device_s *device, u8 command);
int lpc3180_address(struct nand_device_s *device, u8 address);
int lpc3180_write_data(struct nand_device_s *device, u16 data);
int lpc3180_read_data(struct nand_device_s *device, void *data);
int lpc3180_write_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
int lpc3180_read_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
int lpc3180_controller_ready(struct nand_device_s *device, int timeout);
int lpc3180_nand_ready(struct nand_device_s *device, int timeout);
int handle_lpc3180_select_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
nand_flash_controller_t lpc3180_nand_controller =
{
.name = "lpc3180",
.nand_device_command = lpc3180_nand_device_command,
.register_commands = lpc3180_register_commands,
.init = lpc3180_init,
.reset = lpc3180_reset,
.command = lpc3180_command,
.address = lpc3180_address,
.write_data = lpc3180_write_data,
.read_data = lpc3180_read_data,
.write_page = lpc3180_write_page,
.read_page = lpc3180_read_page,
.controller_ready = lpc3180_controller_ready,
.nand_ready = lpc3180_nand_ready,
};
/* nand device lpc3180 <target#> <oscillator_frequency>
*/
int lpc3180_nand_device_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct nand_device_s *device)
{
lpc3180_nand_controller_t *lpc3180_info;
if (argc < 3)
{
WARNING("incomplete 'lpc3180' nand flash configuration");
return ERROR_FLASH_BANK_INVALID;
}
lpc3180_info = malloc(sizeof(lpc3180_nand_controller_t));
device->controller_priv = lpc3180_info;
lpc3180_info->target = get_target_by_num(strtoul(args[1], NULL, 0));
if (!lpc3180_info->target)
{
ERROR("no target '%s' configured", args[1]);
return ERROR_NAND_DEVICE_INVALID;
}
lpc3180_info->osc_freq = strtoul(args[2], NULL, 0);
if ((lpc3180_info->osc_freq < 1000) || (lpc3180_info->osc_freq > 20000))
{
WARNING("LPC3180 oscillator frequency should be between 1000 and 20000 kHz, was %i", lpc3180_info->osc_freq);
}
lpc3180_info->selected_controller = LPC3180_NO_CONTROLLER;
lpc3180_info->sw_write_protection = 0;
lpc3180_info->sw_wp_lower_bound = 0x0;
lpc3180_info->sw_wp_upper_bound = 0x0;
return ERROR_OK;
}
int lpc3180_register_commands(struct command_context_s *cmd_ctx)
{
command_t *lpc3180_cmd = register_command(cmd_ctx, NULL, "lpc3180", NULL, COMMAND_ANY, "commands specific to the LPC3180 NAND flash controllers");
register_command(cmd_ctx, lpc3180_cmd, "select", handle_lpc3180_select_command, COMMAND_EXEC, "select <'mlc'|'slc'> controller (default is mlc)");
return ERROR_OK;
}
int lpc3180_pll(int fclkin, u32 pll_ctrl)
{
int bypass = (pll_ctrl & 0x8000) >> 15;
int direct = (pll_ctrl & 0x4000) >> 14;
int feedback = (pll_ctrl & 0x2000) >> 13;
int p = (1 << ((pll_ctrl & 0x1800) >> 11) * 2);
int n = ((pll_ctrl & 0x0600) >> 9) + 1;
int m = ((pll_ctrl & 0x01fe) >> 1) + 1;
int lock = (pll_ctrl & 0x1);
if (!lock)
WARNING("PLL is not locked");
if (!bypass && direct) /* direct mode */
return (m * fclkin) / n;
if (bypass && !direct) /* bypass mode */
return fclkin / (2 * p);
if (bypass & direct) /* direct bypass mode */
return fclkin;
if (feedback) /* integer mode */
return m * (fclkin / n);
else /* non-integer mode */
return (m / (2 * p)) * (fclkin / n);
}
float lpc3180_cycle_time(lpc3180_nand_controller_t *lpc3180_info)
{
target_t *target = lpc3180_info->target;
u32 sysclk_ctrl, pwr_ctrl, hclkdiv_ctrl, hclkpll_ctrl;
int sysclk;
int hclk;
int hclk_pll;
float cycle;
/* calculate timings */
/* determine current SYSCLK (13'MHz or main oscillator) */
target_read_u32(target, 0x40004050, &sysclk_ctrl);
if (sysclk_ctrl & 1)
sysclk = lpc3180_info->osc_freq;
else
sysclk = 13000;
/* determine selected HCLK source */
target_read_u32(target, 0x40004044, &pwr_ctrl);
if ((pwr_ctrl & (1 << 2)) == 0) /* DIRECT RUN mode */
{
hclk = sysclk;
}
else
{
target_read_u32(target, 0x40004058, &hclkpll_ctrl);
hclk_pll = lpc3180_pll(sysclk, hclkpll_ctrl);
target_read_u32(target, 0x40004040, &hclkdiv_ctrl);
if (pwr_ctrl & (1 << 10)) /* ARM_CLK and HCLK use PERIPH_CLK */
{
hclk = hclk_pll / (((hclkdiv_ctrl & 0x7c) >> 2) + 1);
}
else /* HCLK uses HCLK_PLL */
{
hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3));
}
}
DEBUG("LPC3180 HCLK currently clocked at %i kHz", hclk);
cycle = (1.0 / hclk) * 1000000.0;
return cycle;
}
int lpc3180_init(struct nand_device_s *device)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
int bus_width = (device->bus_width) ? (device->bus_width) : 8;
int address_cycles = (device->address_cycles) ? (device->address_cycles) : 3;
int page_size = (device->page_size) ? (device->page_size) : 512;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
/* sanitize arguments */
if ((bus_width != 8) && (bus_width != 16))
{
ERROR("LPC3180 only supports 8 or 16 bit bus width, not %i", bus_width);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* The LPC3180 only brings out 8 bit NAND data bus, but the controller
* would support 16 bit, too, so we just warn about this for now
*/
if (bus_width == 16)
{
WARNING("LPC3180 only supports 8 bit bus width");
}
/* inform calling code about selected bus width */
device->bus_width = bus_width;
if ((address_cycles != 3) && (address_cycles != 4))
{
ERROR("LPC3180 only supports 3 or 4 address cycles, not %i", address_cycles);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if ((page_size != 512) && (page_size != 2048))
{
ERROR("LPC3180 only supports 512 or 2048 byte pages, not %i", page_size);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* select MLC controller if none is currently selected */
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
DEBUG("no LPC3180 NAND flash controller selected, using default 'mlc'");
lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER;
}
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u32 mlc_icr_value = 0x0;
float cycle;
int twp, twh, trp, treh, trhz, trbwb, tcea;
/* FLASHCLK_CTRL = 0x22 (enable clock for MLC flash controller) */
target_write_u32(target, 0x400040c8, 0x22);
/* MLC_CEH = 0x0 (Force nCE assert) */
target_write_u32(target, 0x200b804c, 0x0);
/* MLC_LOCK = 0xa25e (unlock protected registers) */
target_write_u32(target, 0x200b8044, 0xa25e);
/* MLC_ICR = configuration */
if (lpc3180_info->sw_write_protection)
mlc_icr_value |= 0x8;
if (page_size == 2048)
mlc_icr_value |= 0x4;
if (address_cycles == 4)
mlc_icr_value |= 0x2;
if (bus_width == 16)
mlc_icr_value |= 0x1;
target_write_u32(target, 0x200b8030, mlc_icr_value);
/* calculate NAND controller timings */
cycle = lpc3180_cycle_time(lpc3180_info);
twp = ((40 / cycle) + 1);
twh = ((20 / cycle) + 1);
trp = ((30 / cycle) + 1);
treh = ((15 / cycle) + 1);
trhz = ((30 / cycle) + 1);
trbwb = ((100 / cycle) + 1);
tcea = ((45 / cycle) + 1);
/* MLC_LOCK = 0xa25e (unlock protected registers) */
target_write_u32(target, 0x200b8044, 0xa25e);
/* MLC_TIME_REG */
target_write_u32(target, 0x200b8034, (twp & 0xf) | ((twh & 0xf) << 4) |
((trp & 0xf) << 8) | ((treh & 0xf) << 12) | ((trhz & 0x7) << 16) |
((trbwb & 0x1f) << 19) | ((tcea & 0x3) << 24));
lpc3180_reset(device);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
float cycle;
int r_setup, r_hold, r_width, r_rdy;
int w_setup, w_hold, w_width, w_rdy;
/* FLASHCLK_CTRL = 0x05 (enable clock for SLC flash controller) */
target_write_u32(target, 0x400040c8, 0x05);
/* SLC_CFG = 0x (Force nCE assert, ECC enabled, WIDTH = bus_width) */
target_write_u32(target, 0x20020014, 0x28 | (bus_width == 16) ? 1 : 0);
/* calculate NAND controller timings */
cycle = lpc3180_cycle_time(lpc3180_info);
r_setup = w_setup = 0;
r_hold = w_hold = 10 / cycle;
r_width = 30 / cycle;
w_width = 40 / cycle;
r_rdy = w_rdy = 100 / cycle;
/* SLC_TAC: SLC timing arcs register */
target_write_u32(target, 0x2002002c, (r_setup & 0xf) | ((r_hold & 0xf) << 4) |
((r_width & 0xf) << 8) | ((r_rdy & 0xf) << 12) | ((w_setup & 0xf) << 16) |
((w_hold & 0xf) << 20) | ((w_width & 0xf) << 24) | ((w_rdy & 0xf) << 28));
lpc3180_reset(device);
}
return ERROR_OK;
}
int lpc3180_reset(struct nand_device_s *device)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* MLC_CMD = 0xff (reset controller and NAND device) */
target_write_u32(target, 0x200b8000, 0xff);
if (!lpc3180_controller_ready(device, 100))
{
ERROR("LPC3180 NAND controller timed out after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* SLC_CTRL = 0x6 (ECC_CLEAR, SW_RESET) */
target_write_u32(target, 0x20020010, 0x6);
if (!lpc3180_controller_ready(device, 100))
{
ERROR("LPC3180 NAND controller timed out after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
}
return ERROR_OK;
}
int lpc3180_command(struct nand_device_s *device, u8 command)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* MLC_CMD = command */
target_write_u32(target, 0x200b8000, command);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* SLC_CMD = command */
target_write_u32(target, 0x20020008, command);
}
return ERROR_OK;
}
int lpc3180_address(struct nand_device_s *device, u8 address)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* MLC_ADDR = address */
target_write_u32(target, 0x200b8004, address);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* SLC_ADDR = address */
target_write_u32(target, 0x20020004, address);
}
return ERROR_OK;
}
int lpc3180_write_data(struct nand_device_s *device, u16 data)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* MLC_DATA = data */
target_write_u32(target, 0x200b0000, data);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* SLC_DATA = data */
target_write_u32(target, 0x20020000, data);
}
return ERROR_OK;
}
int lpc3180_read_data(struct nand_device_s *device, void *data)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* data = MLC_DATA, use sized access */
if (device->bus_width == 8)
{
u8 *data8 = data;
target_read_u8(target, 0x200b0000, data8);
}
else if (device->bus_width == 16)
{
u16 *data16 = data;
target_read_u16(target, 0x200b0000, data16);
}
else
{
ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
u32 data32;
/* data = SLC_DATA, must use 32-bit access */
target_read_u32(target, 0x20020000, &data32);
if (device->bus_width == 8)
{
u8 *data8 = data;
*data8 = data32 & 0xff;
}
else if (device->bus_width == 16)
{
u16 *data16 = data;
*data16 = data32 & 0xffff;
}
else
{
ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
}
return ERROR_OK;
}
int lpc3180_write_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
int retval;
u8 status;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u8 *page_buffer;
u8 *oob_buffer;
int quarter, num_quarters;
if (!data && oob)
{
ERROR("LPC3180 MLC controller can't write OOB data only");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (oob && (oob_size > 6))
{
ERROR("LPC3180 MLC controller can't write more than 6 bytes of OOB data");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (data_size > device->page_size)
{
ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* MLC_CMD = sequential input */
target_write_u32(target, 0x200b8000, NAND_CMD_SEQIN);
page_buffer = malloc(512);
oob_buffer = malloc(6);
if (device->page_size == 512)
{
/* MLC_ADDR = 0x0 (one column cycle) */
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
if (device->address_cycles == 4)
target_write_u32(target, 0x200b8004, (page >> 16) & 0xff);
}
else
{
/* MLC_ADDR = 0x0 (two column cycles) */
target_write_u32(target, 0x200b8004, 0x0);
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
}
/* when using the MLC controller, we have to treat a large page device
* as being made out of four quarters, each the size of a small page device
*/
num_quarters = (device->page_size == 2048) ? 4 : 1;
for (quarter = 0; quarter < num_quarters; quarter++)
{
int thisrun_data_size = (data_size > 512) ? 512 : data_size;
int thisrun_oob_size = (oob_size > 6) ? 6 : oob_size;
memset(page_buffer, 0xff, 512);
if (data)
{
memcpy(page_buffer, data, thisrun_data_size);
data_size -= thisrun_data_size;
data += thisrun_data_size;
}
memset(oob_buffer, 0xff, (device->page_size == 512) ? 6 : 24);
if (oob)
{
memcpy(page_buffer, oob, thisrun_oob_size);
oob_size -= thisrun_oob_size;
oob += thisrun_oob_size;
}
/* write MLC_ECC_ENC_REG to start encode cycle */
target_write_u32(target, 0x200b8008, 0x0);
target->type->write_memory(target, 0x200a8000, 4, 128, page_buffer + (quarter * 512));
target->type->write_memory(target, 0x200a8000, 1, 6, oob_buffer + (quarter * 6));
/* write MLC_ECC_AUTO_ENC_REG to start auto encode */
target_write_u32(target, 0x200b8010, 0x0);
if (!lpc3180_controller_ready(device, 1000))
{
ERROR("timeout while waiting for completion of auto encode cycle");
return ERROR_NAND_OPERATION_FAILED;
}
}
/* MLC_CMD = auto program command */
target_write_u32(target, 0x200b8000, NAND_CMD_PAGEPROG);
if ((retval = nand_read_status(device, &status)) != ERROR_OK)
{
ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & NAND_STATUS_FAIL)
{
ERROR("write operation didn't pass, status: 0x%2.2x", status);
return ERROR_NAND_OPERATION_FAILED;
}
free(page_buffer);
free(oob_buffer);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
return nand_write_page_raw(device, page, data, data_size, oob, oob_size);
}
return ERROR_OK;
}
int lpc3180_read_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER)
{
ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
}
else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u8 *page_buffer;
u8 *oob_buffer;
u32 page_bytes_done = 0;
u32 oob_bytes_done = 0;
u32 mlc_isr;
#if 0
if (oob && (oob_size > 6))
{
ERROR("LPC3180 MLC controller can't read more than 6 bytes of OOB data");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
#endif
if (data_size > device->page_size)
{
ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (device->page_size == 2048)
{
page_buffer = malloc(2048);
oob_buffer = malloc(64);
}
else
{
page_buffer = malloc(512);
oob_buffer = malloc(16);
}
if (!data && oob)
{
/* MLC_CMD = Read OOB
* we can use the READOOB command on both small and large page devices,
* as the controller translates the 0x50 command to a 0x0 with appropriate
* positioning of the serial buffer read pointer
*/
target_write_u32(target, 0x200b8000, NAND_CMD_READOOB);
}
else
{
/* MLC_CMD = Read0 */
target_write_u32(target, 0x200b8000, NAND_CMD_READ0);
}
if (device->page_size == 512)
{
/* small page device */
/* MLC_ADDR = 0x0 (one column cycle) */
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
if (device->address_cycles == 4)
target_write_u32(target, 0x200b8004, (page >> 16) & 0xff);
}
else
{
/* large page device */
/* MLC_ADDR = 0x0 (two column cycles) */
target_write_u32(target, 0x200b8004, 0x0);
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
/* MLC_CMD = Read Start */
target_write_u32(target, 0x200b8000, NAND_CMD_READSTART);
}
while (page_bytes_done < device->page_size)
{
/* MLC_ECC_AUTO_DEC_REG = dummy */
target_write_u32(target, 0x200b8014, 0xaa55aa55);
if (!lpc3180_controller_ready(device, 1000))
{
ERROR("timeout while waiting for completion of auto decode cycle");
return ERROR_NAND_OPERATION_FAILED;
}
target_read_u32(target, 0x200b8048, &mlc_isr);
if (mlc_isr & 0x8)
{
if (mlc_isr & 0x40)
{
ERROR("uncorrectable error detected: 0x%2.2x", mlc_isr);
return ERROR_NAND_OPERATION_FAILED;
}
WARNING("%i symbol error detected and corrected", ((mlc_isr & 0x30) >> 4) + 1);
}
if (data)
{
target->type->read_memory(target, 0x200a8000, 4, 128, page_buffer + page_bytes_done);
}
if (oob)
{
target->type->read_memory(target, 0x200a8000, 4, 4, oob_buffer + oob_bytes_done);
}
page_bytes_done += 512;
oob_bytes_done += 16;
}
if (data)
memcpy(data, page_buffer, data_size);
if (oob)
memcpy(oob, oob_buffer, oob_size);
free(page_buffer);
free(oob_buffer);
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
return nand_read_page_raw(device, page, data, data_size, oob, oob_size);
}
return ERROR_OK;
}
int lpc3180_controller_ready(struct nand_device_s *device, int timeout)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
u8 status = 0x0;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
do
{
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
/* Read MLC_ISR, wait for controller to become ready */
target_read_u8(target, 0x200b8048, &status);
if (status & 2)
return 1;
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
/* we pretend that the SLC controller is always ready */
return 1;
}
usleep(1000);
} while (timeout-- > 0);
return 0;
}
int lpc3180_nand_ready(struct nand_device_s *device, int timeout)
{
lpc3180_nand_controller_t *lpc3180_info = device->controller_priv;
target_t *target = lpc3180_info->target;
if (target->state != TARGET_HALTED)
{
ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
do
{
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
{
u8 status = 0x0;
/* Read MLC_ISR, wait for NAND flash device to become ready */
target_read_u8(target, 0x200b8048, &status);
if (status & 1)
return 1;
}
else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER)
{
u32 status = 0x0;
/* Read SLC_STAT and check READY bit */
target_read_u32(target, 0x20020018, &status);
if (status & 1)
return 1;
}
usleep(1000);
} while (timeout-- > 0);
return 0;
}
int handle_lpc3180_select_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
nand_device_t *device = NULL;
lpc3180_nand_controller_t *lpc3180_info = NULL;
char *selected[] =
{
"no", "mlc", "slc"
};
if ((argc < 1) || (argc > 2))
{
command_print(cmd_ctx, "usage: lpc3180 select <num> <'mlc'|'slc'>");
return ERROR_OK;
}
device = get_nand_device_by_num(strtoul(args[0], NULL, 0));
if (!device)
{
command_print(cmd_ctx, "nand device '#%s' is out of bounds", args[0]);
return ERROR_OK;
}
lpc3180_info = device->controller_priv;
if (argc == 2)
{
if (strcmp(args[1], "mlc") == 0)
{
lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER;
}
else if (strcmp(args[1], "slc") == 0)
{
lpc3180_info->selected_controller = LPC3180_SLC_CONTROLLER;
}
else
{
command_print(cmd_ctx, "usage: lpc3180 select <'mlc'|'slc'>");
}
}
command_print(cmd_ctx, "%s controller selected", selected[lpc3180_info->selected_controller]);
return ERROR_OK;
}

View File

@ -0,0 +1,42 @@
/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef LPC3180_NAND_CONTROLLER_H
#define LPC3180_NAND_CONTROLLER_H
#include "target.h"
enum lpc3180_selected_controller
{
LPC3180_NO_CONTROLLER,
LPC3180_MLC_CONTROLLER,
LPC3180_SLC_CONTROLLER,
};
typedef struct lpc3180_nand_controller_s
{
struct target_s *target;
int osc_freq;
enum lpc3180_selected_controller selected_controller;
int sw_write_protection;
u32 sw_wp_lower_bound;
u32 sw_wp_upper_bound;
} lpc3180_nand_controller_t;
#endif /*LPC3180_NAND_CONTROLLER_H */

1482
src/flash/nand.c Normal file

File diff suppressed because it is too large Load Diff

207
src/flash/nand.h Normal file
View File

@ -0,0 +1,207 @@
/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* partially based on *
* linux/include/linux/mtd/nand.h *
* *
* Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com> *
* Steven J. Hill <sjhill@realitydiluted.com> *
* Thomas Gleixner <tglx@linutronix.de> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef NAND_H
#define NAND_H
#include "flash.h"
struct nand_device_s;
typedef struct nand_flash_controller_s
{
char *name;
int (*nand_device_command)(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct nand_device_s *device);
int (*register_commands)(struct command_context_s *cmd_ctx);
int (*init)(struct nand_device_s *device);
int (*reset)(struct nand_device_s *device);
int (*command)(struct nand_device_s *device, u8 command);
int (*address)(struct nand_device_s *device, u8 address);
int (*write_data)(struct nand_device_s *device, u16 data);
int (*read_data)(struct nand_device_s *device, void *data);
int (*write_page)(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
int (*read_page)(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
int (*controller_ready)(struct nand_device_s *device, int timeout);
int (*nand_ready)(struct nand_device_s *device, int timeout);
} nand_flash_controller_t;
typedef struct nand_block_s
{
u32 offset;
u32 size;
int is_erased;
int is_bad;
} nand_block_t;
typedef struct nand_device_s
{
nand_flash_controller_t *controller;
void *controller_priv;
struct nand_manufacturer_s *manufacturer;
struct nand_info_s *device;
int bus_width;
int address_cycles;
int page_size;
int erase_size;
int use_raw;
int num_blocks;
nand_block_t *blocks;
struct nand_device_s *next;
} nand_device_t;
/* NAND Flash Manufacturer ID Codes
*/
enum
{
NAND_MFR_TOSHIBA = 0x98,
NAND_MFR_SAMSUNG = 0xec,
NAND_MFR_FUJITSU = 0x04,
NAND_MFR_NATIONAL = 0x8f,
NAND_MFR_RENESAS = 0x07,
NAND_MFR_STMICRO = 0x20,
NAND_MFR_HYNIX = 0xad,
};
typedef struct nand_manufacturer_s
{
int id;
char *name;
} nand_manufacturer_t;
typedef struct nand_info_s
{
char *name;
int id;
int page_size;
int chip_size;
int erase_size;
int options;
} nand_info_t;
/* Option constants for bizarre disfunctionality and real features
*/
enum {
/* Chip can not auto increment pages */
NAND_NO_AUTOINCR = 0x00000001,
/* Buswitdh is 16 bit */
NAND_BUSWIDTH_16 = 0x00000002,
/* Device supports partial programming without padding */
NAND_NO_PADDING = 0x00000004,
/* Chip has cache program function */
NAND_CACHEPRG = 0x00000008,
/* Chip has copy back function */
NAND_COPYBACK = 0x00000010,
/* AND Chip which has 4 banks and a confusing page / block
* assignment. See Renesas datasheet for further information */
NAND_IS_AND = 0x00000020,
/* Chip has a array of 4 pages which can be read without
* additional ready /busy waits */
NAND_4PAGE_ARRAY = 0x00000040,
/* Chip requires that BBT is periodically rewritten to prevent
* bits from adjacent blocks from 'leaking' in altering data.
* This happens with the Renesas AG-AND chips, possibly others. */
BBT_AUTO_REFRESH = 0x00000080,
/* Chip does not require ready check on read. True
* for all large page devices, as they do not support
* autoincrement.*/
NAND_NO_READRDY = 0x00000100,
/* Options valid for Samsung large page devices */
NAND_SAMSUNG_LP_OPTIONS = (NAND_NO_PADDING | NAND_CACHEPRG | NAND_COPYBACK),
/* Options for new chips with large page size. The pagesize and the
* erasesize is determined from the extended id bytes
*/
LP_OPTIONS = (NAND_SAMSUNG_LP_OPTIONS | NAND_NO_READRDY | NAND_NO_AUTOINCR),
LP_OPTIONS16 = (LP_OPTIONS | NAND_BUSWIDTH_16),
};
enum
{
/* Standard NAND flash commands */
NAND_CMD_READ0 = 0x0,
NAND_CMD_READ1 = 0x1,
NAND_CMD_RNDOUT = 0x5,
NAND_CMD_PAGEPROG = 0x10,
NAND_CMD_READOOB = 0x50,
NAND_CMD_ERASE1 = 0x60,
NAND_CMD_STATUS = 0x70,
NAND_CMD_STATUS_MULTI = 0x71,
NAND_CMD_SEQIN = 0x80,
NAND_CMD_RNDIN = 0x85,
NAND_CMD_READID = 0x90,
NAND_CMD_ERASE2 = 0xd0,
NAND_CMD_RESET = 0xff,
/* Extended commands for large page devices */
NAND_CMD_READSTART = 0x30,
NAND_CMD_RNDOUTSTART = 0xE0,
NAND_CMD_CACHEDPROG = 0x15,
};
/* Status bits */
enum
{
NAND_STATUS_FAIL = 0x01,
NAND_STATUS_FAIL_N1 = 0x02,
NAND_STATUS_TRUE_READY = 0x20,
NAND_STATUS_READY = 0x40,
NAND_STATUS_WP = 0x80,
};
/* OOB (spare) data formats */
enum oob_formats
{
NAND_OOB_NONE = 0x0, /* no OOB data at all */
NAND_OOB_RAW = 0x1, /* raw OOB data (16 bytes for 512b page sizes, 64 bytes for 2048b page sizes) */
NAND_OOB_ONLY = 0x2, /* only OOB data */
NAND_OOB_SW_ECC = 0x10, /* when writing, use SW ECC (as opposed to no ECC) */
NAND_OOB_HW_ECC = 0x20, /* when writing, use HW ECC (as opposed to no ECC) */
NAND_OOB_JFFS2 = 0x100, /* when writing, use JFFS2 OOB layout */
NAND_OOB_YAFFS2 = 0x100,/* when writing, use YAFFS2 OOB layout */
};
/* Function prototypes */
extern nand_device_t *get_nand_device_by_num(int num);
extern int nand_read_page_raw(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
extern int nand_write_page_raw(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
#define ERROR_NAND_DEVICE_INVALID (-1100)
#define ERROR_NAND_OPERATION_FAILED (-1101)
#define ERROR_NAND_OPERATION_TIMEOUT (-1102)
#define ERROR_NAND_OPERATION_NOT_SUPPORTED (-1103)
#define ERROR_NAND_DEVICE_NOT_PROBED (-1104)
#define ERROR_NAND_ERROR_CORRECTION_FAILED (-1105)
#endif /* NAND_H */

View File

@ -1,6 +1,7 @@
INCLUDES = $(all_includes)
METASOURCES = AUTO
noinst_LIBRARIES = libhelper.a
libhelper_a_SOURCES = binarybuffer.c configuration.c log.c interpreter.c command.c time_support.c replacements.c
libhelper_a_SOURCES = binarybuffer.c configuration.c log.c interpreter.c command.c time_support.c \
replacements.c fileio.c
noinst_HEADERS = binarybuffer.h configuration.h types.h log.h command.h \
interpreter.h time_support.h replacements.h
interpreter.h time_support.h replacements.h fileio.h

View File

@ -22,6 +22,7 @@
#endif
#include "time_support.h"
#include "log.h"
#include <sys/time.h>
#include <time.h>
@ -82,3 +83,26 @@ int timeval_add_time(struct timeval *result, int sec, int usec)
return 0;
}
int duration_start_measure(duration_t *duration)
{
gettimeofday(&duration->start, NULL);
return ERROR_OK;
}
int duration_stop_measure(duration_t *duration, char **text)
{
struct timeval end;
gettimeofday(&end, NULL);
timeval_subtract(&duration->duration, &end, &duration->start);
if (text)
{
*text = malloc(16);
snprintf(*text, 16, "%is %ius", duration->duration.tv_sec, duration->duration.tv_usec);
}
return ERROR_OK;
}

View File

@ -27,4 +27,13 @@ extern int timeval_subtract(struct timeval *result, struct timeval *x, struct ti
extern int timeval_add(struct timeval *result, struct timeval *x, struct timeval *y);
extern int timeval_add_time(struct timeval *result, int sec, int usec);
typedef struct duration_s
{
struct timeval start;
struct timeval duration;
} duration_t;
extern int duration_start_measure(duration_t *duration);
extern int duration_stop_measure(duration_t *duration, char **text);
#endif /* TIME_SUPPORT_H */

View File

@ -34,6 +34,10 @@ typedef unsigned short u16;
typedef unsigned int u32;
#endif
#ifndef u64
typedef unsigned long long u64;
#endif
#ifdef WORDS_BIGENDIAN /* big endian host */
#define le_to_h_u32(x) (u32)(x[0] | x[1] << 8 | x[2] << 16 | x[3] << 24)
@ -61,8 +65,8 @@ typedef unsigned int u32;
#else /* little endian host */
#define le_to_h_u32(x) (*(u32*)(x))
#define le_to_h_u16(x) (*(u16*)(x))
#define be_to_h_u32(x) (u32)(x[3] | x[2] << 8 | x[1] << 16 | x[0] << 24)
#define be_to_h_u16(x) (u16)(x[1] | x[0] << 8)
#define be_to_h_u32(x) (u32)((x)[3] | (x)[2] << 8 | (x)[1] << 16 | (x)[0] << 24)
#define be_to_h_u16(x) (u16)((x)[1] | (x)[0] << 8)
#define h_u32_to_le(buf, val) do { *(u32*)(buf) = (val); } while (0)
#define h_u16_to_le(buf, val) do { *(u16*)(buf) = (val); } while (0)

View File

@ -288,13 +288,17 @@ void gw16012_scan(int ir_scan, enum scan_type type, u8 *buffer, int scan_size)
enum tap_state saved_end_state = end_state;
u8 scan_out, scan_in;
if (ir_scan)
gw16012_end_state(TAP_SI);
else
gw16012_end_state(TAP_SD);
/* only if we're not already in the correct Shift state */
if (!((!ir_scan && (cur_state == TAP_SD)) || (ir_scan && (cur_state == TAP_SI))))
{
if (ir_scan)
gw16012_end_state(TAP_SI);
else
gw16012_end_state(TAP_SD);
gw16012_state_move();
gw16012_end_state(saved_end_state);
gw16012_state_move();
gw16012_end_state(saved_end_state);
}
while (type == SCAN_OUT && ((bits_left - 1) > 7))
{
@ -309,6 +313,9 @@ void gw16012_scan(int ir_scan, enum scan_type type, u8 *buffer, int scan_size)
while (bits_left-- > 0)
{
u8 tms = 0;
scan_out = buf_get_u32(buffer, bit_count, 1);
if (bits_left == 0) /* last bit */
{
if ((ir_scan && (end_state == TAP_SI))
@ -321,14 +328,15 @@ void gw16012_scan(int ir_scan, enum scan_type type, u8 *buffer, int scan_size)
tms = 2;
}
}
scan_out = buf_get_u32(buffer, bit_count, 1);
gw16012_data(scan_out | tms);
if (type != SCAN_OUT)
{
gw16012_input(&scan_in);
buf_set_u32(buffer, bit_count, 1, ((scan_in & 0x08) >> 3));
}
}
bit_count++;
}
@ -530,6 +538,13 @@ int gw16012_init(void)
return ERROR_JTAG_INIT_FAILED;
}
DEBUG("...privileges granted");
/* make sure parallel port is in right mode (clear tristate and interrupt */
#ifdef __FreeBSD__
outb(gw16012_port + 2, 0x0);
#else
outb(0x0, gw16012_port + 2);
#endif
#endif /* PARPORT_USE_PPDEV */
gw16012_input(&status_port);

View File

@ -1143,6 +1143,7 @@ void jtag_sleep(u32 us)
*/
int jtag_examine_chain()
{
jtag_device_t *device = jtag_devices;
scan_field_t field;
u8 idcode_buffer[JTAG_MAX_CHAIN_SIZE * 4];
int i;
@ -1204,6 +1205,11 @@ int jtag_examine_chain()
break;
}
if (device)
{
device->idcode = idcode;
device = device->next;
}
device_count++;
manufacturer = (idcode & 0xffe) >> 1;

View File

@ -25,7 +25,7 @@
#include "command.h"
#if 1
#if 0
#define _DEBUG_JTAG_IO_
#endif

View File

@ -94,6 +94,7 @@ cable_t cables[] =
{
/* name tdo trst tms tck tdi srst o_inv i_inv init */
{ "wiggler", 0x80, 0x10, 0x02, 0x04, 0x08, 0x01, 0x01, 0x80, 0x80 },
{ "wiggler_ntrst_inverted", 0x80, 0x10, 0x02, 0x04, 0x08, 0x01, 0x11, 0x80, 0x80 },
{ "old_amt_wiggler", 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x11, 0x80, 0x80 },
{ "chameleon", 0x80, 0x00, 0x04, 0x01, 0x02, 0x00, 0x00, 0x80, 0x00 },
{ "dlc5", 0x10, 0x00, 0x04, 0x02, 0x01, 0x00, 0x00, 0x00, 0x10 },
@ -390,7 +391,7 @@ int parport_init(void)
#ifdef __FreeBSD__
outb(parport_port + 2, 0x0);
#else
outb(0x0, dataport);
outb(0x0, parport_port + 2);
#endif
#endif /* PARPORT_USE_PPDEV */

View File

@ -18,7 +18,7 @@
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#define OPENOCD_VERSION "Open On-Chip Debugger (2007-01-31 12:00 CET)"
#define OPENOCD_VERSION "Open On-Chip Debugger (2007-03-15 14:30 CET)"
#ifdef HAVE_CONFIG_H
#include "config.h"
@ -75,6 +75,7 @@ int main(int argc, char *argv[])
xsvf_register_commands(cmd_ctx);
target_register_commands(cmd_ctx);
flash_register_commands(cmd_ctx);
nand_register_commands(cmd_ctx);
pld_register_commands(cmd_ctx);
if (log_init(cmd_ctx) != ERROR_OK)
@ -109,6 +110,10 @@ int main(int argc, char *argv[])
return EXIT_FAILURE;
DEBUG("flash init complete");
if (nand_init(cmd_ctx) != ERROR_OK)
return EXIT_FAILURE;
DEBUG("NAND init complete");
if (pld_init(cmd_ctx) != ERROR_OK)
return EXIT_FAILURE;
DEBUG("pld init complete");

View File

@ -54,6 +54,7 @@ int handle_arm7_9_force_hw_bkpts_command(struct command_context_s *cmd_ctx, char
int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int arm7_9_reinit_embeddedice(target_t *target)
{
@ -2049,6 +2050,8 @@ int arm7_9_register_commands(struct command_context_s *cmd_ctx)
command_t *arm7_9_cmd;
arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
register_command(cmd_ctx, arm7_9_cmd, "etm", handle_arm7_9_etm_command, COMMAND_CONFIG, NULL);
register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr|spsr>");
register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr|spsr>");
@ -2376,6 +2379,37 @@ int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char
return ERROR_OK;
}
int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
if (argc != 1)
{
ERROR("incomplete 'arm7_9 etm <target>' command");
exit(-1);
}
target = get_target_by_num(strtoul(args[0], NULL, 0));
if (!target)
{
ERROR("target number '%s' not defined", args[0]);
exit(-1);
}
if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
{
command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
return ERROR_OK;
}
arm7_9->has_etm = 1;
return ERROR_OK;
}
int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
{
armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;

View File

@ -736,8 +736,6 @@ void arm7tdmi_build_reg_cache(target_t *target)
armv4_5_common_t *armv4_5 = target->arch_info;
arm7_9_common_t *arm7_9 = armv4_5->arch_info;
arm_jtag_t *jtag_info = &arm7_9->jtag_info;
arm7tdmi_common_t *arch_info = arm7_9->arch_info;
(*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
armv4_5->core_cache = (*cache_p);
@ -771,7 +769,6 @@ int arm7tdmi_init_arch_info(target_t *target, arm7tdmi_common_t *arm7tdmi, int c
{
armv4_5_common_t *armv4_5;
arm7_9_common_t *arm7_9;
int has_etm = 0;
arm7_9 = &arm7tdmi->arm7_9_common;
armv4_5 = &arm7_9->armv4_5_common;

View File

@ -28,6 +28,7 @@
#include "target.h"
#include "armv4_5.h"
#include "embeddedice.h"
#include "etm.h"
#include "log.h"
#include "jtag.h"
#include "arm_jtag.h"
@ -824,9 +825,6 @@ void arm9tdmi_build_reg_cache(target_t *target)
armv4_5_common_t *armv4_5 = target->arch_info;
arm7_9_common_t *arm7_9 = armv4_5->arch_info;
arm_jtag_t *jtag_info = &arm7_9->jtag_info;
arm9tdmi_common_t *arm9tdmi = arm7_9->arch_info;
embeddedice_reg_t *vec_catch_arch_info;
(*cache_p) = armv4_5_build_reg_cache(target, armv4_5);
armv4_5->core_cache = (*cache_p);
@ -835,17 +833,11 @@ void arm9tdmi_build_reg_cache(target_t *target)
(*cache_p)->next = embeddedice_build_reg_cache(target, arm7_9);
arm7_9->eice_cache = (*cache_p)->next;
#if 0
(*cache_p)->next->reg_list[EICE_VEC_CATCH].name = "vector catch";
(*cache_p)->next->reg_list[EICE_VEC_CATCH].dirty = 0;
(*cache_p)->next->reg_list[EICE_VEC_CATCH].valid = 0;
(*cache_p)->next->reg_list[EICE_VEC_CATCH].bitfield_desc = NULL;
(*cache_p)->next->reg_list[EICE_VEC_CATCH].num_bitfields = 0;
(*cache_p)->next->reg_list[EICE_VEC_CATCH].size = 8;
(*cache_p)->next->reg_list[EICE_VEC_CATCH].value = calloc(1, 4);
vec_catch_arch_info = (*cache_p)->next->reg_list[EICE_VEC_CATCH].arch_info;
vec_catch_arch_info->addr = 0x2;
#endif
if (arm7_9->has_etm)
{
(*cache_p)->next->next = etm_build_reg_cache(target, jtag_info, 0);
arm7_9->etm_cache = (*cache_p)->next->next;
}
}
int arm9tdmi_init_target(struct command_context_s *cmd_ctx, struct target_s *target)

View File

@ -171,6 +171,12 @@ reg_cache_t* embeddedice_build_reg_cache(target_t *target, arm7_9_common_t *arm7
reg_list[EICE_DBG_STAT].size = 10;
arm7_9->has_monitor_mode = 1;
break;
case 7:
WARNING("EmbeddedICE version 7 detected, EmbeddedICE handling might be broken");
reg_list[EICE_DBG_CTRL].size = 6;
reg_list[EICE_DBG_STAT].size = 5;
arm7_9->has_monitor_mode = 1;
break;
default:
ERROR("unknown EmbeddedICE version (comms ctrl: 0x%4.4x)", buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
}

View File

@ -42,6 +42,8 @@
#include <time_support.h>
#include <fileio.h>
int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
@ -62,8 +64,8 @@ int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **a
int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_load_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_dump_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
@ -732,6 +734,8 @@ void target_read_u32(struct target_s *target, u32 address, u32 *value)
target->type->read_memory(target, address, 4, 1, value_buf);
*value = target_buffer_get_u32(target, value_buf);
DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
}
void target_read_u16(struct target_s *target, u32 address, u16 *value)
@ -741,17 +745,23 @@ void target_read_u16(struct target_s *target, u32 address, u16 *value)
target->type->read_memory(target, address, 2, 1, value_buf);
*value = target_buffer_get_u16(target, value_buf);
DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
}
void target_read_u8(struct target_s *target, u32 address, u8 *value)
{
target->type->read_memory(target, address, 1, 1, value);
DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
}
void target_write_u32(struct target_s *target, u32 address, u32 value)
{
u8 value_buf[4];
DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
target_buffer_set_u32(target, value_buf, value);
target->type->write_memory(target, address, 4, 1, value_buf);
}
@ -760,12 +770,16 @@ void target_write_u16(struct target_s *target, u32 address, u16 value)
{
u8 value_buf[2];
DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
target_buffer_set_u16(target, value_buf, value);
target->type->write_memory(target, address, 2, 1, value_buf);
}
void target_write_u8(struct target_s *target, u32 address, u8 value)
{
DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
target->type->read_memory(target, address, 1, 1, &value);
}
@ -773,7 +787,7 @@ int target_register_user_commands(struct command_context_s *cmd_ctx)
{
register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt");
register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction");
@ -793,8 +807,10 @@ int target_register_user_commands(struct command_context_s *cmd_ctx)
register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
register_command(cmd_ctx, NULL, "load_binary", handle_load_binary_command, COMMAND_EXEC, "load binary <file> <address>");
register_command(cmd_ctx, NULL, "dump_binary", handle_dump_binary_command, COMMAND_EXEC, "dump binary <file> <address> <size>");
register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex']");
register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
register_command(cmd_ctx, NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
register_command(cmd_ctx, NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
return ERROR_OK;
}
@ -1223,7 +1239,17 @@ int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char
struct timeval timeout, now;
gettimeofday(&timeout, NULL);
timeval_add_time(&timeout, 5, 0);
if (!argc)
timeval_add_time(&timeout, 5, 0);
else {
char *end;
timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
if (*end) {
command_print(cmd_ctx, "usage: wait_halt [seconds]");
return ERROR_OK;
}
}
command_print(cmd_ctx, "waiting for target halted...");
@ -1560,118 +1586,126 @@ int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args,
}
int handle_load_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
FILE *binary;
u32 address;
struct stat binary_stat;
u32 binary_size;
u8 *buffer;
u32 buf_cnt;
u32 binary_size;
fileio_t file;
enum fileio_pri_type pri_type = FILEIO_IMAGE;
fileio_image_t image_info;
enum fileio_sec_type sec_type;
duration_t duration;
char *duration_text;
struct timeval start, end, duration;
target_t *target = get_current_target(cmd_ctx);
if (argc != 2)
if (argc < 2)
{
command_print(cmd_ctx, "usage: load_binary <filename> <address>");
command_print(cmd_ctx, "usage: load_image <filename> <address> [type]");
return ERROR_OK;
}
memset(&file, 0, sizeof(fileio_t));
fileio_identify_image_type(&sec_type, (argc == 3) ? args[2] : NULL);
address = strtoul(args[1], NULL, 0);
if (stat(args[0], &binary_stat) == -1)
{
ERROR("couldn't stat() %s: %s", args[0], strerror(errno));
command_print(cmd_ctx, "error accessing file %s", args[0]);
return ERROR_OK;
}
if (!(binary = fopen(args[0], "rb")))
{
ERROR("couldn't open %s: %s", args[0], strerror(errno));
command_print(cmd_ctx, "error accessing file %s", args[0]);
return ERROR_OK;
}
image_info.base_address = strtoul(args[1], NULL, 0);
image_info.has_start_address = 0;
buffer = malloc(128 * 1024);
gettimeofday(&start, NULL);
binary_size = binary_stat.st_size;
while (binary_size > 0)
duration_start_measure(&duration);
if (fileio_open(&file, args[0], FILEIO_READ,
pri_type, &image_info, sec_type) != ERROR_OK)
{
command_print(cmd_ctx, "load_image error: %s", file.error_str);
return ERROR_OK;
}
binary_size = file.size;
address = image_info.base_address;
while ((binary_size > 0) &&
(fileio_read(&file, 128 * 1024, buffer, &buf_cnt) == ERROR_OK))
{
buf_cnt = fread(buffer, 1, 128*1024, binary);
target_write_buffer(target, address, buf_cnt, buffer);
address += buf_cnt;
binary_size -= buf_cnt;
}
gettimeofday(&end, NULL);
free(buffer);
timeval_subtract(&duration, &end, &start);
command_print(cmd_ctx, "downloaded %lli byte in %is %ius", (long long) binary_stat.st_size, duration.tv_sec, duration.tv_usec);
duration_stop_measure(&duration, &duration_text);
command_print(cmd_ctx, "downloaded %lli byte in %s", file.size, duration_text);
free(duration_text);
fclose(binary);
fileio_close(&file);
return ERROR_OK;
}
int handle_dump_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
FILE *binary;
fileio_t file;
fileio_image_t image_info;
u32 address;
u32 size;
u8 buffer[560];
struct timeval start, end, duration;
duration_t duration;
char *duration_text;
target_t *target = get_current_target(cmd_ctx);
if (argc != 3)
{
command_print(cmd_ctx, "usage: dump_binary <filename> <address> <size>");
command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
return ERROR_OK;
}
address = strtoul(args[1], NULL, 0);
size = strtoul(args[2], NULL, 0);
if (!(binary = fopen(args[0], "wb")))
{
ERROR("couldn't open %s for writing: %s", args[0], strerror(errno));
command_print(cmd_ctx, "error accessing file %s", args[0]);
return ERROR_OK;
}
if ((address & 3) || (size & 3))
{
command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
return ERROR_OK;
}
gettimeofday(&start, NULL);
image_info.base_address = address;
image_info.has_start_address = 0;
if (fileio_open(&file, args[0], FILEIO_WRITE,
FILEIO_IMAGE, &image_info, FILEIO_PLAIN) != ERROR_OK)
{
command_print(cmd_ctx, "dump_image error: %s", file.error_str);
return ERROR_OK;
}
duration_start_measure(&duration);
while (size > 0)
{
u32 size_written;
u32 this_run_size = (size > 560) ? 560 : size;
target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
fwrite(buffer, 1, this_run_size, binary);
fileio_write(&file, this_run_size, buffer, &size_written);
size -= this_run_size;
address += this_run_size;
}
fclose(binary);
fileio_close(&file);
gettimeofday(&end, NULL);
timeval_subtract(&duration, &end, &start);
command_print(cmd_ctx, "dumped %i byte in %is %ius", strtoul(args[2], NULL, 0), duration.tv_sec, duration.tv_usec);
duration_stop_measure(&duration, &duration_text);
command_print(cmd_ctx, "dumped %lli byte in %s", file.size, duration_text);
free(duration_text);
return ERROR_OK;