flash/stm32l4x: add support of STM32WLEx devices

STM32WLEx devices are based on arm Cortex-M4 running at 48MHz,
contains a single bank of maximum 256 Kbytes of flash memory.

there is 3 variants with different Flash/RAM sizes:
  STM32WLE5JC : 256K/64K
  STM32WLE5JB : 128K/48K
  STM32WLE5J8 :  64K/20K

the work-area size is set to 20 kb to fit in STM32WLE5J8

Change-Id: Ie8e186fe4be97cbc25c53ef0ade4b4dbbcee6f66
Signed-off-by: Tarek BOCHKATI <tarek.bouchkati@gmail.com>
Reviewed-on: http://openocd.zylin.com/5450
Tested-by: jenkins
Reviewed-by: Andreas Bolsch <hyphen0break@gmail.com>
Reviewed-by: Tomas Vanek <vanekt@fbl.cz>
This commit is contained in:
Tarek BOCHKATI 2020-03-09 15:10:17 +01:00 committed by Tomas Vanek
parent 4b4389a2d6
commit c999fcef3e
4 changed files with 125 additions and 3 deletions

View File

@ -6892,7 +6892,7 @@ The @var{num} parameter is a value shown by @command{flash banks}.
@end deffn
@deffn {Flash Driver} stm32l4x
All members of the STM32L4, STM32L4+, STM32WB and STM32G4
All members of the STM32L4, STM32L4+, STM32WB, STM32WL and STM32G4
microcontroller families from STMicroelectronics include internal flash
and use ARM Cortex-M4 cores.
Additionally this driver supports STM32G0 family with ARM Cortex-M0+ core.

View File

@ -75,6 +75,12 @@
* http://www.st.com/resource/en/reference_manual/dm00622834.pdf
*/
/* STM32WLxxx series for reference.
*
* RM0461 (STM32WLEx)
* http://www.st.com/resource/en/reference_manual/dm00530369.pdf
*/
/*
* STM32G0xxx series for reference.
*
@ -132,7 +138,7 @@ struct stm32l4_flash_bank {
};
/* human readable list of families this drivers supports */
static const char *device_families = "STM32L4/L4+/WB/G4/G0";
static const char *device_families = "STM32L4/L4+/WB/WL/G4/G0";
static const struct stm32l4_rev stm32_415_revs[] = {
{ 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
@ -182,6 +188,10 @@ static const struct stm32l4_rev stm32_495_revs[] = {
{ 0x2001, "2.1" },
};
static const struct stm32l4_rev stm32_497_revs[] = {
{ 0x1000, "1.0" },
};
static const struct stm32l4_part_info stm32l4_parts[] = {
{
.id = 0x415,
@ -303,6 +313,16 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x497,
.revs = stm32_497_revs,
.num_revs = ARRAY_SIZE(stm32_497_revs),
.device_str = "STM32WLEx",
.max_flash_size_kb = 256,
.has_dual_bank = false,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
},
};
/* flash bank stm32l4x <base> <size> 0 0 <target#> */
@ -918,6 +938,7 @@ static int stm32l4_probe(struct flash_bank *bank)
case 0x464: /* STM32L41/L42xx */
case 0x466: /* STM32G03/G04xx */
case 0x468: /* STM32G43/G44xx */
case 0x497: /* STM32WLEx */
/* single bank flash */
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;

View File

@ -113,10 +113,11 @@ proc stm32f7x args { eval stm32f2x $args }
proc stm32l0x args { eval stm32lx $args }
proc stm32l1x args { eval stm32lx $args }
# stm32[g0|g4|wb] uses the same flash driver as the stm32l4x
# stm32[g0|g4|wb|wl] uses the same flash driver as the stm32l4x
proc stm32g0x args { eval stm32l4x $args }
proc stm32g4x args { eval stm32l4x $args }
proc stm32wbx args { eval stm32l4x $args }
proc stm32wlx args { eval stm32l4x $args }
# ease migration to updated flash driver
proc stm32x args {

100
tcl/target/stm32wlx.cfg Normal file
View File

@ -0,0 +1,100 @@
# script for stm32wlx family
#
# stm32wl devices support both JTAG and SWD transports.
#
source [find target/swj-dp.tcl]
source [find mem_helper.tcl]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME stm32wlx
}
set _ENDIAN little
# Work-area is a space in RAM used for flash programming
# By default use 20kB
if { [info exists WORKAREASIZE] } {
set _WORKAREASIZE $WORKAREASIZE
} else {
set _WORKAREASIZE 0x5000
}
#jtag scan chain
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
if { [using_jtag] } {
set _CPUTAPID 0x6ba00477
} else {
# SWD IDCODE (single drop, arm)
set _CPUTAPID 0x6ba02477
}
}
swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu
if {[using_jtag]} {
swj_newdap $_CHIPNAME bs -irlen 5
}
set _TARGETNAME $_CHIPNAME.cpu
target create $_TARGETNAME cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap
$_TARGETNAME configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0
set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME stm32l4x 0 0 0 0 $_TARGETNAME
# Common knowledges tells JTAG speed should be <= F_CPU/6.
# F_CPU after reset is MSI 4MHz, so use F_JTAG = 500 kHz to stay on
# the safe side.
#
# Note that there is a pretty wide band where things are
# more or less stable, see http://openocd.zylin.com/#/c/3366/
adapter speed 500
adapter srst delay 100
if {[using_jtag]} {
jtag_ntrst_delay 100
}
reset_config srst_nogate
if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to
# perform a soft reset
cortex_m reset_config sysresetreq
}
$_TARGETNAME configure -event reset-init {
# CPU comes out of reset with MSI_ON | MSI_RDY | MSI Range 4 MHz.
# Configure system to use MSI 24 MHz clock, compliant with VOS default Range1.
# 2 WS compliant with VOS=Range1 and 24 MHz.
mmw 0x58004000 0x00000102 0 ;# FLASH_ACR |= PRFTEN | 2(Latency)
mmw 0x58000000 0x00000091 0 ;# RCC_CR = MSI_ON | MSI Range 24 MHz
# Boost JTAG frequency
adapter speed 4000
}
$_TARGETNAME configure -event reset-start {
# Reset clock is MSI (4 MHz)
adapter speed 500
}
$_TARGETNAME configure -event examine-end {
# Enable debug during low power modes (uses more power)
# DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP
mmw 0xE0042004 0x00000007 0
# Stop watchdog counters during halt
# DBGMCU_APB1_FZR1 |= DBG_IWDG_STOP | DBG_WWDG_STOP
mmw 0xE004203C 0x00001800 0
}
$_TARGETNAME configure -event trace-config {
# nothing to do
}