Merge pull request #886 from erhankur/update_espressif_chips

Update espressif chips
This commit is contained in:
Tim Newsome 2023-07-20 12:06:59 -07:00 committed by GitHub
commit c1cce47933
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 666 additions and 349 deletions

View File

@ -0,0 +1,15 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Example OpenOCD configuration file for ESP32-C3 connected via builtin USB-JTAG adapter.
#
# For example, OpenOCD can be started for ESP32-C3 debugging on
#
# openocd -f board/esp32c3-builtin.cfg
#
# Source the JTAG interface configuration file
source [find interface/esp_usb_jtag.cfg]
# Source the ESP32-C3 configuration file
source [find target/esp32c3.cfg]
adapter speed 40000

View File

@ -0,0 +1,15 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Example OpenOCD configuration file for ESP32-C6 connected via builtin USB-JTAG adapter.
#
# For example, OpenOCD can be started for ESP32-C6 debugging on
#
# openocd -f board/esp32c6-builtin.cfg
#
# Source the JTAG interface configuration file
source [find interface/esp_usb_jtag.cfg]
# Source the ESP32-C6 configuration file
source [find target/esp32c6.cfg]
adapter speed 40000

View File

@ -0,0 +1,15 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Example OpenOCD configuration file for ESP32-C3 connected via builtin USB-JTAG adapter.
#
# For example, OpenOCD can be started for ESP32-C3 debugging on
#
# openocd -f board/esp32c3-builtin.cfg
#
# Source the JTAG interface configuration file
source [find interface/esp_usb_jtag.cfg]
# Source the ESP32-C3 configuration file
source [find target/esp32h2.cfg]
adapter speed 40000

View File

@ -0,0 +1,15 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Example OpenOCD configuration file for ESP32-S3 connected via builtin USB-JTAG adapter.
#
# For example, OpenOCD can be started for ESP32-S3 debugging on
#
# openocd -f board/esp32s3-builtin.cfg
#
# Source the JTAG interface configuration file
source [find interface/esp_usb_jtag.cfg]
# Source the ESP32-S3 configuration file
source [find target/esp32s3.cfg]
adapter speed 40000

View File

@ -0,0 +1,9 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Espressif builtin USB-JTAG adapter
#
adapter driver esp_usb_jtag
espusbjtag vid_pid 0x303a 0x1001
espusbjtag caps_descriptor 0x2000

View File

@ -1,99 +1,35 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# The ESP32 only supports JTAG.
transport select jtag
# Source the ESP common configuration file
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME esp32
}
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x120034e5
}
# Target specific global variables
set _CHIPNAME "esp32"
set _CPUTAPID 0x120034e5
set _ESP_ARCH "xtensa"
set _ONLYCPU 3
set _FLASH_VOLTAGE 3.3
set _ESP_SMP_TARGET 1
set _ESP_SMP_BREAK 1
set _ESP_EFUSE_MAC_ADDR_REG 0x3ff5A004
if { [info exists ESP32_ONLYCPU] } {
set _ONLYCPU $ESP32_ONLYCPU
} else {
set _ONLYCPU 2
}
if { [info exists ESP32_FLASH_VOLTAGE] } {
set _FLASH_VOLTAGE $ESP32_FLASH_VOLTAGE
} else {
set _FLASH_VOLTAGE 3.3
}
set _CPU0NAME cpu0
set _CPU1NAME cpu1
set _TARGETNAME_0 $_CHIPNAME.$_CPU0NAME
set _TARGETNAME_1 $_CHIPNAME.$_CPU1NAME
jtag newtap $_CHIPNAME $_CPU0NAME -irlen 5 -expected-id $_CPUTAPID
if { $_ONLYCPU != 1 } {
jtag newtap $_CHIPNAME $_CPU1NAME -irlen 5 -expected-id $_CPUTAPID
} else {
jtag newtap $_CHIPNAME $_CPU1NAME -irlen 5 -disable -expected-id $_CPUTAPID
proc esp32_memprot_is_enabled { } {
return 0
}
# PRO-CPU
target create $_TARGETNAME_0 $_CHIPNAME -endian little -chain-position $_TARGETNAME_0 -coreid 0
# APP-CPU
if { $_ONLYCPU != 1 } {
target create $_TARGETNAME_1 $_CHIPNAME -endian little -chain-position $_TARGETNAME_1 -coreid 1
target smp $_TARGETNAME_0 $_TARGETNAME_1
proc esp32_soc_reset { } {
soft_reset_halt
}
$_TARGETNAME_0 esp32 flashbootstrap $_FLASH_VOLTAGE
$_TARGETNAME_0 xtensa maskisr on
$_TARGETNAME_0 xtensa smpbreak BreakIn BreakOut
$_TARGETNAME_0 configure -event reset-assert-post { soft_reset_halt }
$_TARGETNAME_0 configure -event gdb-attach {
$_TARGETNAME_0 xtensa smpbreak BreakIn BreakOut
# necessary to auto-probe flash bank when GDB is connected
halt 1000
}
if { $_ONLYCPU != 1 } {
$_TARGETNAME_1 configure -event gdb-attach {
$_TARGETNAME_1 xtensa smpbreak BreakIn BreakOut
# necessary to auto-probe flash bank when GDB is connected
halt 1000
}
$_TARGETNAME_1 configure -event reset-assert-post { soft_reset_halt }
}
$_TARGETNAME_0 configure -event examine-end {
# Need to enable to set 'semihosting_basedir'
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
arm semihosting_basedir $_SEMIHOST_BASEDIR
}
}
}
if { $_ONLYCPU != 1 } {
$_TARGETNAME_1 configure -event examine-end {
# Need to enable to set 'semihosting_basedir'
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
arm semihosting_basedir $_SEMIHOST_BASEDIR
}
}
}
}
gdb_breakpoint_override hard
create_esp_target $_ESP_ARCH
source [find target/xtensa-core-esp32.cfg]

View File

@ -1,30 +1,20 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# The ESP32-C2 only supports JTAG.
transport select jtag
# Source the ESP common configuration file
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME esp32c2
}
# Target specific global variables
set _CHIPNAME "riscv"
set _CPUTAPID 0x0000cc25
set _ESP_ARCH "riscv"
set _ONLYCPU 1
set _ESP_SMP_TARGET 0
set _ESP_SMP_BREAK 0
set _ESP_EFUSE_MAC_ADDR_REG 0x60008840
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x0000cc25
}
set _TARGETNAME $_CHIPNAME
set _CPUNAME cpu
set _TAPNAME $_CHIPNAME.$_CPUNAME
jtag newtap $_CHIPNAME $_CPUNAME -irlen 5 -expected-id $_CPUTAPID
proc esp32c2_wdt_disable { } {
# Target specific functions should be implemented for each riscv chips.
proc riscv_wdt_disable { } {
# Halt event can occur during config phase (before "init" is done).
# Ignore it since mww commands don't work at that time.
if { [string compare [command mode] config] == 0 } {
@ -42,9 +32,9 @@ proc esp32c2_wdt_disable { } {
mww 0x600080A0 0x84B00000
}
# This is almost identical with the esp32c3_soc_reset.
# Will be refactored with the other common settings.
proc esp32c2_soc_reset { } {
proc riscv_soc_reset { } {
global _RISCV_DMCONTROL
# This procedure does "digital system reset", i.e. resets
# all the peripherals except for the RTC block.
# It is called from reset-assert-post target event callback,
@ -52,7 +42,7 @@ proc esp32c2_soc_reset { } {
# Since we need the hart to to execute a write to RTC_CNTL_SW_SYS_RST,
# temporarily take it out of reset. Save the dmcontrol state before
# doing so.
riscv dmi_write 0x10 0x80000001
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
# Trigger the reset
mww 0x60008000 0x9c00a000
# Workaround for stuck in cpu start during calibration.
@ -62,50 +52,66 @@ proc esp32c2_soc_reset { } {
sleep 10
poll
# Disable the watchdogs again
esp32c2_wdt_disable
riscv_wdt_disable
# Here debugger reads allresumeack and allhalted bits as set (0x330a2)
# We will clean allhalted state by resuming the core.
riscv dmi_write 0x10 0x40000001
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Put the hart back into reset state. Note that we need to keep haltreq set.
riscv dmi_write 0x10 0x80000003
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
}
if { $_RTOS == "none" } {
target create $_TARGETNAME riscv -chain-position $_TAPNAME
} else {
target create $_TARGETNAME riscv -chain-position $_TAPNAME -rtos $_RTOS
}
proc riscv_memprot_is_enabled { } {
global _RISCV_ABS_CMD _RISCV_ABS_DATA0
$_TARGETNAME configure -event reset-assert-post { esp32c2_soc_reset }
$_TARGETNAME configure -event halted {
esp32c2_wdt_disable
}
$_TARGETNAME configure -event examine-end {
# Need this to handle 'apptrace init' syscall correctly because semihosting is not enabled by default
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
# TODO: cherry-pick from upstream
# https://review.openocd.org/c/openocd/+/6888
# https://review.openocd.org/c/openocd/+/7005
# arm semihosting_basedir $_SEMIHOST_BASEDIR
# PMPADDR 0-1 covers entire valid IRAM range and PMPADDR 2-3 covers entire DRAM region
# pmpcfg0 holds the configuration for the PMP 0-3 address registers
# read pmpcfg0 and extract into 8-bit variables.
riscv dmi_write $_RISCV_ABS_CMD 0x2203a0
set pmpcfg0 [riscv dmi_read $_RISCV_ABS_DATA0]
set pmp0cfg [expr {($pmpcfg0 >> (8 * 0)) & 0xFF}]
set pmp1cfg [expr {($pmpcfg0 >> (8 * 1)) & 0xFF}]
set pmp2cfg [expr {($pmpcfg0 >> (8 * 2)) & 0xFF}]
set pmp3cfg [expr {($pmpcfg0 >> (8 * 3)) & 0xFF}]
# read PMPADDR 0-3
riscv dmi_write $_RISCV_ABS_CMD 0x2203b0
set pmpaddr0 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b1
set pmpaddr1 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b2
set pmpaddr2 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b3
set pmpaddr3 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
set IRAM_LOW 0x40380000
set IRAM_HIGH 0x403C0000
set DRAM_LOW 0x3FCA0000
set DRAM_HIGH 0x3FCE0000
set PMP_RWX 0x07
set PMP_RW 0x03
# The lock bit remains unset during the execution of the 2nd stage bootloader.
# Thus we do not perform a lock bit check for IRAM and DRAM regions.
# Check OpenOCD can write and execute from IRAM.
if {$pmpaddr0 >= $IRAM_LOW && $pmpaddr1 <= $IRAM_HIGH} {
if {($pmp0cfg & $PMP_RWX) != 0 || ($pmp1cfg & $PMP_RWX) != $PMP_RWX} {
return 1
}
}
}
$_TARGETNAME configure -event gdb-attach {
halt 1000
# by default mask interrupts while stepping
riscv set_maskisr steponly
# Check OpenOCD can read/write entire DRAM region.
if {$pmpaddr2 >= $DRAM_LOW && $pmpaddr3 <= $DRAM_HIGH} {
if {($pmp2cfg & $PMP_RW) != 0 && ($pmp3cfg & $PMP_RW) != $PMP_RW} {
return 1
}
}
return 0
}
gdb_breakpoint_override hard
riscv set_reset_timeout_sec 2
riscv set_command_timeout_sec 5
riscv set_mem_access sysbus progbuf abstract
riscv set_ebreakm on
riscv set_ebreaks on
riscv set_ebreaku on
create_esp_target $_ESP_ARCH

View File

@ -1,30 +1,20 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# The ESP32-C3 only supports JTAG.
transport select jtag
# Source the ESP common configuration file
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME esp32c3
}
# Target specific global variables
set _CHIPNAME "riscv"
set _CPUTAPID 0x00005c25
set _ESP_ARCH "riscv"
set _ONLYCPU 1
set _ESP_SMP_TARGET 0
set _ESP_SMP_BREAK 0
set _ESP_EFUSE_MAC_ADDR_REG 0x60008844
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x00005c25
}
set _TARGETNAME $_CHIPNAME
set _CPUNAME cpu
set _TAPNAME $_CHIPNAME.$_CPUNAME
jtag newtap $_CHIPNAME $_CPUNAME -irlen 5 -expected-id $_CPUTAPID
proc esp32c3_wdt_disable { } {
# Target specific functions should be implemented for each riscv chips.
proc riscv_wdt_disable { } {
# Halt event can occur during config phase (before "init" is done).
# Ignore it since mww commands don't work at that time.
if { [string compare [command mode] config] == 0 } {
@ -46,7 +36,9 @@ proc esp32c3_wdt_disable { } {
# This is almost identical with the esp32c2_soc_reset.
# Will be refactored with the other common settings.
proc esp32c3_soc_reset { } {
proc riscv_soc_reset { } {
global _RISCV_DMCONTROL
# This procedure does "digital system reset", i.e. resets
# all the peripherals except for the RTC block.
# It is called from reset-assert-post target event callback,
@ -54,7 +46,7 @@ proc esp32c3_soc_reset { } {
# Since we need the hart to to execute a write to RTC_CNTL_SW_SYS_RST,
# temporarily take it out of reset. Save the dmcontrol state before
# doing so.
riscv dmi_write 0x10 0x80000001
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
# Trigger the reset
mww 0x60008000 0x9c00a000
# Workaround for stuck in cpu start during calibration.
@ -64,50 +56,26 @@ proc esp32c3_soc_reset { } {
sleep 10
poll
# Disable the watchdogs again
esp32c3_wdt_disable
riscv_wdt_disable
# Here debugger reads allresumeack and allhalted bits as set (0x330a2)
# We will clean allhalted state by resuming the core.
riscv dmi_write 0x10 0x40000001
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Put the hart back into reset state. Note that we need to keep haltreq set.
riscv dmi_write 0x10 0x80000003
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
}
if { $_RTOS == "none" } {
target create $_TARGETNAME riscv -chain-position $_TAPNAME
} else {
target create $_TARGETNAME riscv -chain-position $_TAPNAME -rtos $_RTOS
}
$_TARGETNAME configure -event reset-assert-post { esp32c3_soc_reset }
$_TARGETNAME configure -event halted {
esp32c3_wdt_disable
}
$_TARGETNAME configure -event examine-end {
# Need this to handle 'apptrace init' syscall correctly because semihosting is not enabled by default
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
# TODO: cherry-pick from upstream
# https://review.openocd.org/c/openocd/+/6888
# https://review.openocd.org/c/openocd/+/7005
# arm semihosting_basedir $_SEMIHOST_BASEDIR
proc riscv_memprot_is_enabled { } {
# IRAM0 PMS lock, SENSITIVE_CORE_X_IRAM0_PMS_CONSTRAIN_0_REG
if { [get_mmr_bit 0x600C10A8 0] != 0 } {
return 1
}
# DRAM0 PMS lock, SENSITIVE_CORE_X_DRAM0_PMS_CONSTRAIN_0_REG
if { [get_mmr_bit 0x600C10C0 0] != 0 } {
return 1
}
}
$_TARGETNAME configure -event gdb-attach {
halt 1000
# by default mask interrupts while stepping
riscv set_maskisr steponly
return 0
}
gdb_breakpoint_override hard
riscv set_reset_timeout_sec 2
riscv set_command_timeout_sec 5
riscv set_mem_access sysbus progbuf abstract
riscv set_ebreakm on
riscv set_ebreaks on
riscv set_ebreaku on
create_esp_target $_ESP_ARCH

142
tcl/target/esp32c6.cfg Normal file
View File

@ -0,0 +1,142 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
# Target specific global variables
set _CHIPNAME "riscv"
set _CPUTAPID 0x0000dc25
set _ESP_ARCH "riscv"
set _ONLYCPU 1
set _ESP_SMP_TARGET 0
set _ESP_SMP_BREAK 0
set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844
# Target specific functions should be implemented for each riscv chips.
proc riscv_wdt_disable { } {
# Halt event can occur during config phase (before "init" is done).
# Ignore it since mww commands don't work at that time.
if { [string compare [command mode] config] == 0 } {
return
}
# Timer Group 0 & 1 WDTs
mww 0x60008064 0x50D83AA1
mww 0x60008048 0
mww 0x60009064 0x50D83AA1
mww 0x60009048 0
# LP_WDT_RTC
mww 0x600b1c18 0x50D83AA1
mww 0x600B1C00 0
# LP_WDT_SWD
mww 0x600b1c20 0x50D83AA1
mww 0x600b1c1c 0x40000000
}
proc riscv_soc_reset { } {
global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
riscv dmi_write $_RISCV_SB_CS 0x48000
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034
riscv dmi_write $_RISCV_SB_DATA0 0x80000000
# clear dmactive to clear sbbusy otherwise debug module gets stuck
riscv dmi_write $_RISCV_DMCONTROL 0
riscv dmi_write $_RISCV_SB_CS 0x48000
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038
riscv dmi_write $_RISCV_SB_DATA0 0x10000000
# clear dmactive to clear sbbusy otherwise debug module gets stuck
riscv dmi_write $_RISCV_DMCONTROL 0
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Here debugger reads dmstatus as 0xc03a2
# Wait for the reset to happen
sleep 10
poll
# Here debugger reads dmstatus as 0x3a2
# Disable the watchdogs again
riscv_wdt_disable
# Here debugger reads anyhalted and allhalted bits as set (0x3a2)
# We will clean allhalted state by resuming the core.
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Put the hart back into reset state. Note that we need to keep haltreq set.
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
}
proc riscv_memprot_is_enabled { } {
global _RISCV_ABS_CMD _RISCV_ABS_DATA0
# If IRAM/DRAM split is enabled TOR address match mode is used.
# If IRAM/DRAM split is disabled NAPOT mode is used.
# In order to determine if the IRAM/DRAM regions are protected against RWX/RW,
# it is necessary to first read the mode and then apply the appropriate method for checking.
# We can understand the mode reading pmp5cfg in pmpcfg1 register.
# If it is none we know that pmp6cfg and pmp7cfg is in TOR mode.
# Read pmpcfg1 and extract into 8-bit variables.
riscv dmi_write $_RISCV_ABS_CMD 0x2203a1
set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0]
set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}]
set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}]
set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}]
set IRAM_LOW 0x40800000
set IRAM_HIGH 0x40880000
set DRAM_LOW 0x40800000
set DRAM_HIGH 0x40880000
set PMP_RWX 0x07
set PMP_RW 0x03
set PMP_A [expr {($pmp5cfg >> 3) & 0x03}]
if {$PMP_A == 0} {
# TOR mode used to protect valid address space.
# Read PMPADDR 5-7
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b6
set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b7
set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
# The lock bit remains unset during the execution of the 2nd stage bootloader.
# Thus we do not perform a lock bit check for IRAM and DRAM regions.
# Check OpenOCD can write and execute from IRAM.
if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} {
if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} {
return 1
}
}
# Check OpenOCD can read/write entire DRAM region.
if {$pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} {
if {($pmp7cfg & $PMP_RW) != $PMP_RW} {
return 1
}
}
} elseif {$PMP_A == 3} {
# NAPOT mode used to protect valid address space.
# Read PMPADDR 5
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0]}]
# Expected value written to the pmpaddr5
set pmpaddr_napot [expr {($IRAM_LOW | (($IRAM_HIGH - $IRAM_LOW - 1) >> 1)) >> 2}]
if {($pmpaddr_napot != $pmpaddr5) || ($pmp5cfg & $PMP_RWX) != $PMP_RWX} {
return 1
}
}
return 0
}
create_esp_target $_ESP_ARCH

122
tcl/target/esp32h2.cfg Normal file
View File

@ -0,0 +1,122 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
# Target specific global variables
set _CHIPNAME "riscv"
set _CPUTAPID 0x00010c25
set _ESP_ARCH "riscv"
set _ONLYCPU 1
set _ESP_SMP_TARGET 0
set _ESP_SMP_BREAK 0
set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844
# Target specific functions should be implemented for each riscv chips.
proc riscv_wdt_disable { } {
# Halt event can occur during config phase (before "init" is done).
# Ignore it since mww commands don't work at that time.
if { [string compare [command mode] config] == 0 } {
return
}
# Timer Group 0 & 1 WDTs
mww 0x60009064 0x50D83AA1
mww 0x60009048 0
mww 0x6000A064 0x50D83AA1
mww 0x6000A048 0
# WDT_RTC
#mww 0x600b1c18 0x50D83AA1
#mww 0x600B1C00 0
# WDT_SWD
#mww 0x600b1c20 0x8F1D312A
#mww 0x600b1c1c 0x84B00000
}
proc riscv_soc_reset { } {
global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0
riscv dmi_write $_RISCV_DMCONTROL 0x80000001
riscv dmi_write $_RISCV_SB_CS 0x48000
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034
riscv dmi_write $_RISCV_SB_DATA0 0x80000000
# clear dmactive to clear sbbusy otherwise debug module gets stuck
riscv dmi_write $_RISCV_DMCONTROL 0
riscv dmi_write $_RISCV_SB_CS 0x48000
riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038
riscv dmi_write $_RISCV_SB_DATA0 0x10000000
# clear dmactive to clear sbbusy otherwise debug module gets stuck
riscv dmi_write $_RISCV_DMCONTROL 0
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Here debugger reads dmstatus as 0xc03a2
# Wait for the reset to happen
sleep 10
poll
# Here debugger reads dmstatus as 0x3a2
# Disable the watchdogs again
riscv_wdt_disable
# Here debugger reads anyhalted and allhalted bits as set (0x3a2)
# We will clean allhalted state by resuming the core.
riscv dmi_write $_RISCV_DMCONTROL 0x40000001
# Put the hart back into reset state. Note that we need to keep haltreq set.
riscv dmi_write $_RISCV_DMCONTROL 0x80000003
}
proc riscv_memprot_is_enabled { } {
global _RISCV_ABS_CMD _RISCV_ABS_DATA0
# If IRAM/DRAM split is enabled, PMPADDR 5-6 will cover valid IRAM region and PMPADDR 7 will cover valid DRAM region
# Only TOR mode is used for IRAM and DRAM protections.
# Read pmpcfg1 and extract into 8-bit variables.
riscv dmi_write $_RISCV_ABS_CMD 0x2203a1
set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0]
set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}]
set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}]
set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}]
# Read PMPADDR 5-7
riscv dmi_write $_RISCV_ABS_CMD 0x2203b5
set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b6
set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
riscv dmi_write $_RISCV_ABS_CMD 0x2203b7
set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}]
set IRAM_LOW 0x40800000
set IRAM_HIGH 0x40850000
set DRAM_LOW 0x40800000
set DRAM_HIGH 0x40850000
set PMP_RWX 0x07
set PMP_RW 0x03
# The lock bit remains unset during the execution of the 2nd stage bootloader.
# Thus, we do not perform a lock bit check for IRAM and DRAM regions.
# Check OpenOCD can write and execute from IRAM.
if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} {
if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} {
return 1
}
}
# Check OpenOCD can read/write entire DRAM region.
# If IRAM/DRAM split is disabled, pmpaddr7 will be zero, checking only IRAM region is enough.
if {$pmpaddr7 != 0 && $pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} {
if {($pmp7cfg & $PMP_RW) != $PMP_RW} {
return 1
}
}
return 0
}
create_esp_target $_ESP_ARCH

View File

@ -1,32 +1,17 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# The ESP32-S2 only supports JTAG.
transport select jtag
set CPU_MAX_ADDRESS 0xFFFFFFFF
source [find bitsbytes.tcl]
source [find memory.tcl]
source [find mmr_helpers.tcl]
# Source the ESP common configuration file
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME esp32s2
}
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x120034e5
}
set _TARGETNAME $_CHIPNAME
set _CPUNAME cpu
set _TAPNAME $_CHIPNAME.$_CPUNAME
jtag newtap $_CHIPNAME $_CPUNAME -irlen 5 -expected-id $_CPUTAPID
# Target specific global variables
set _CHIPNAME "esp32s2"
set _CPUTAPID 0x120034e5
set _ESP_ARCH "xtensa"
set _ONLYCPU 1
set _ESP_SMP_TARGET 0
set _ESP_SMP_BREAK 1
set _ESP_EFUSE_MAC_ADDR_REG 0x3f41A004
proc esp32s2_memprot_is_enabled { } {
# IRAM0, DPORT_PMS_PRO_IRAM0_0_REG
@ -48,33 +33,10 @@ proc esp32s2_memprot_is_enabled { } {
return 0
}
target create $_TARGETNAME esp32s2 -endian little -chain-position $_TAPNAME
$_TARGETNAME configure -event gdb-attach {
# necessary to auto-probe flash bank when GDB is connected and generate proper memory map
halt 1000
if { [esp32s2_memprot_is_enabled] } {
# 'reset halt' to disable memory protection and allow flasher to work correctly
echo "Memory protection is enabled. Reset target to disable it..."
reset halt
}
proc esp32s2_soc_reset { } {
soft_reset_halt
}
xtensa maskisr on
$_TARGETNAME configure -event examine-end {
# Need to enable to set 'semihosting_basedir'
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
arm semihosting_basedir $_SEMIHOST_BASEDIR
}
}
}
$_TARGETNAME configure -event reset-assert-post { soft_reset_halt }
gdb_breakpoint_override hard
create_esp_target $_ESP_ARCH
source [find target/xtensa-core-esp32s2.cfg]

View File

@ -1,44 +1,20 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
# The ESP32-S3 only supports JTAG.
transport select jtag
set CPU_MAX_ADDRESS 0xFFFFFFFF
source [find bitsbytes.tcl]
source [find memory.tcl]
source [find mmr_helpers.tcl]
# Source the ESP common configuration file
# Source the ESP common configuration file.
source [find target/esp_common.cfg]
if { [info exists CHIPNAME] } {
set _CHIPNAME $CHIPNAME
} else {
set _CHIPNAME esp32s3
}
if { [info exists CPUTAPID] } {
set _CPUTAPID $CPUTAPID
} else {
set _CPUTAPID 0x120034e5
}
# Target specific global variables
set _CHIPNAME "esp32s3"
set _CPUTAPID 0x120034e5
set _ESP_ARCH "xtensa"
set _ONLYCPU 3
set _ESP_SMP_TARGET 1
set _ESP_SMP_BREAK 1
set _ESP_EFUSE_MAC_ADDR_REG 0x60007044
if { [info exists ESP32_S3_ONLYCPU] } {
set _ONLYCPU $ESP32_S3_ONLYCPU
} else {
set _ONLYCPU 2
}
set _CPU0NAME cpu0
set _CPU1NAME cpu1
set _TARGETNAME_0 $_CHIPNAME.$_CPU0NAME
set _TARGETNAME_1 $_CHIPNAME.$_CPU1NAME
jtag newtap $_CHIPNAME $_CPU0NAME -irlen 5 -expected-id $_CPUTAPID
if { $_ONLYCPU != 1 } {
jtag newtap $_CHIPNAME $_CPU1NAME -irlen 5 -expected-id $_CPUTAPID
} else {
jtag newtap $_CHIPNAME $_CPU1NAME -irlen 5 -disable -expected-id $_CPUTAPID
}
proc esp32s3_memprot_is_enabled { } {
@ -89,66 +65,10 @@ proc esp32s3_memprot_is_enabled { } {
return 0
}
# PRO-CPU
target create $_TARGETNAME_0 $_CHIPNAME -endian little -chain-position $_TARGETNAME_0 -coreid 0
# APP-CPU
if { $_ONLYCPU != 1 } {
target create $_TARGETNAME_1 $_CHIPNAME -endian little -chain-position $_TARGETNAME_1 -coreid 1
target smp $_TARGETNAME_0 $_TARGETNAME_1
proc esp32s3_soc_reset { } {
soft_reset_halt
}
$_TARGETNAME_0 xtensa maskisr on
$_TARGETNAME_0 xtensa smpbreak BreakIn BreakOut
$_TARGETNAME_0 configure -event examine-end {
# Need to enable to set 'semihosting_basedir'
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
arm semihosting_basedir $_SEMIHOST_BASEDIR
}
}
}
if { $_ONLYCPU != 1 } {
$_TARGETNAME_1 configure -event examine-end {
# Need to enable to set 'semihosting_basedir'
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
arm semihosting_basedir $_SEMIHOST_BASEDIR
}
}
}
}
$_TARGETNAME_0 configure -event gdb-attach {
$_TARGETNAME_0 xtensa smpbreak BreakIn BreakOut
# necessary to auto-probe flash bank when GDB is connected and generate proper memory map
halt 1000
if { [esp32s3_memprot_is_enabled] } {
# 'reset halt' to disable memory protection and allow flasher to work correctly
echo "Memory protection is enabled. Reset target to disable it..."
reset halt
}
}
$_TARGETNAME_0 configure -event reset-assert-post { soft_reset_halt }
if { $_ONLYCPU != 1 } {
$_TARGETNAME_1 configure -event gdb-attach {
$_TARGETNAME_1 xtensa smpbreak BreakIn BreakOut
# necessary to auto-probe flash bank when GDB is connected
halt 1000
if { [esp32s3_memprot_is_enabled] } {
# 'reset halt' to disable memory protection and allow flasher to work correctly
echo "Memory protection is enabled. Reset target to disable it..."
reset halt
}
}
$_TARGETNAME_1 configure -event reset-assert-post { soft_reset_halt }
}
gdb_breakpoint_override hard
create_esp_target $_ESP_ARCH
source [find target/xtensa-core-esp32s3.cfg]

View File

@ -1,16 +1,208 @@
# SPDX-License-Identifier: GPL-2.0-or-later
#
set CPU_MAX_ADDRESS 0xFFFFFFFF
source [find bitsbytes.tcl]
source [find memory.tcl]
source [find mmr_helpers.tcl]
# Riscv Debug Module Registers which are used around esp configuration files.
set _RISCV_ABS_DATA0 0x04
set _RISCV_DMCONTROL 0x10
set _RISCV_ABS_CMD 0x17
set _RISCV_SB_CS 0x38
set _RISCV_SB_ADDR0 0x39
set _RISCV_SB_DATA0 0x3C
# Common ESP chips definitions
# Espressif supports only NuttX in the upstream.
# FreeRTOS support is not upstreamed yet.
set _RTOS "hwthread"
if { [info exists ESP_RTOS] } {
set _RTOS "$ESP_RTOS"
} else {
set _RTOS "FreeRTOS"
}
# by default current dir (when OOCD has been started)
set _SEMIHOST_BASEDIR "."
if { [info exists ESP_SEMIHOST_BASEDIR] } {
set _SEMIHOST_BASEDIR $ESP_SEMIHOST_BASEDIR
} else {
# by default current dir (when OOCD has been started)
set _SEMIHOST_BASEDIR "."
}
proc set_esp_common_variables { } {
global _CHIPNAME _ONLYCPU _ESP_SMP_TARGET
global _CPUNAME_0 _CPUNAME_1 _TARGETNAME_0 _TARGETNAME_1 _TAPNAME_0 _TAPNAME_1
global _ESP_WDT_DISABLE _ESP_SOC_RESET _ESP_MEMPROT_IS_ENABLED
# For now we support dual core at most.
if { $_ONLYCPU == 1 && $_ESP_SMP_TARGET == 0} {
set _TARGETNAME_0 $_CHIPNAME
set _CPUNAME_0 cpu
set _TAPNAME_0 $_CHIPNAME.$_CPUNAME_0
} else {
set _CPUNAME_0 cpu0
set _CPUNAME_1 cpu1
set _TARGETNAME_0 $_CHIPNAME.$_CPUNAME_0
set _TARGETNAME_1 $_CHIPNAME.$_CPUNAME_1
set _TAPNAME_0 $_TARGETNAME_0
set _TAPNAME_1 $_TARGETNAME_1
}
set _ESP_WDT_DISABLE "${_CHIPNAME}_wdt_disable"
set _ESP_SOC_RESET "${_CHIPNAME}_soc_reset"
set _ESP_MEMPROT_IS_ENABLED "${_CHIPNAME}_memprot_is_enabled"
}
proc create_esp_jtag { } {
global _CHIPNAME _CPUNAME_0 _CPUNAME_1 _CPUTAPID _ONLYCPU
jtag newtap $_CHIPNAME $_CPUNAME_0 -irlen 5 -expected-id $_CPUTAPID
if { $_ONLYCPU != 1 } {
jtag newtap $_CHIPNAME $_CPUNAME_1 -irlen 5 -expected-id $_CPUTAPID
} elseif [info exists _CPUNAME_1] {
jtag newtap $_CHIPNAME $_CPUNAME_1 -irlen 5 -disable -expected-id $_CPUTAPID
}
}
proc create_openocd_targets { } {
global _TARGETNAME_0 _TARGETNAME_1 _TAPNAME_0 _TAPNAME_1 _RTOS _CHIPNAME _ONLYCPU
target create $_TARGETNAME_0 $_CHIPNAME -chain-position $_TAPNAME_0 -coreid 0 -rtos $_RTOS
if { $_ONLYCPU != 1 } {
target create $_TARGETNAME_1 $_CHIPNAME -chain-position $_TAPNAME_1 -coreid 1 -rtos $_RTOS
target smp $_TARGETNAME_0 $_TARGETNAME_1
}
}
proc create_esp_target { ARCH } {
set_esp_common_variables
create_esp_jtag
create_openocd_targets
configure_openocd_events $ARCH
if { $ARCH == "xtensa"} {
configure_esp_xtensa_default_settings
} else {
configure_esp_riscv_default_settings
}
}
#################### Set event handlers and default settings ####################
proc configure_event_examine_end { } {
global _TARGETNAME_0 _TARGETNAME_1 _ONLYCPU
$_TARGETNAME_0 configure -event examine-end {
# Need to enable to set 'semihosting_basedir'
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
arm semihosting_basedir $_SEMIHOST_BASEDIR
}
}
}
if { $_ONLYCPU != 1 } {
$_TARGETNAME_1 configure -event examine-end {
# Need to enable to set 'semihosting_basedir'
arm semihosting enable
arm semihosting_resexit enable
if { [info exists _SEMIHOST_BASEDIR] } {
if { $_SEMIHOST_BASEDIR != "" } {
arm semihosting_basedir $_SEMIHOST_BASEDIR
}
}
}
}
}
proc configure_event_reset_assert_post { } {
global _TARGETNAME_0 _TARGETNAME_1 _ONLYCPU
$_TARGETNAME_0 configure -event reset-assert-post {
global _ESP_SOC_RESET
$_ESP_SOC_RESET
}
if { $_ONLYCPU != 1 } {
$_TARGETNAME_1 configure -event reset-assert-post {
global _ESP_SOC_RESET
$_ESP_SOC_RESET
}
}
}
proc configure_event_halted { } {
global _TARGETNAME_0
$_TARGETNAME_0 configure -event halted {
global _ESP_WDT_DISABLE
$_ESP_WDT_DISABLE
}
}
proc configure_event_gdb_attach { } {
global _TARGETNAME_0 _TARGETNAME_1 _ONLYCPU
$_TARGETNAME_0 configure -event gdb-attach {
if { $_ESP_SMP_BREAK != 0 } {
$_TARGETNAME_0 xtensa smpbreak BreakIn BreakOut
}
# necessary to auto-probe flash bank when GDB is connected and generate proper memory map
halt 1000
if { [$_ESP_MEMPROT_IS_ENABLED] } {
# 'reset halt' to disable memory protection and allow flasher to work correctly
echo "Memory protection is enabled. Reset target to disable it..."
reset halt
}
}
if { $_ONLYCPU != 1 } {
$_TARGETNAME_1 configure -event gdb-attach {
if { $_ESP_SMP_BREAK != 0 } {
$_TARGETNAME_1 xtensa smpbreak BreakIn BreakOut
}
# necessary to auto-probe flash bank when GDB is connected
halt 1000
if { [$_ESP_MEMPROT_IS_ENABLED] } {
# 'reset halt' to disable memory protection and allow flasher to work correctly
echo "Memory protection is enabled. Reset target to disable it..."
reset halt
}
}
}
}
proc configure_openocd_events { ARCH } {
if { $ARCH == "riscv" } {
configure_event_halted
}
configure_event_examine_end
configure_event_reset_assert_post
configure_event_gdb_attach
}
proc configure_esp_riscv_default_settings { } {
gdb_breakpoint_override hard
riscv set_reset_timeout_sec 2
riscv set_command_timeout_sec 5
riscv set_mem_access sysbus progbuf abstract
riscv set_ebreakm on
riscv set_ebreaks on
riscv set_ebreaku on
}
proc configure_esp_xtensa_default_settings { } {
global _TARGETNAME_0 _ESP_SMP_BREAK _FLASH_VOLTAGE _CHIPNAME
$_TARGETNAME_0 xtensa maskisr on
if { $_ESP_SMP_BREAK != 0 } {
$_TARGETNAME_0 xtensa smpbreak BreakIn BreakOut
}
gdb_breakpoint_override hard
if { [info exists _FLASH_VOLTAGE] } {
$_TARGETNAME_0 $_CHIPNAME flashbootstrap $_FLASH_VOLTAGE
}
}