flash/nor/at91samd: Add "nvmuserrow" command.

Add option "nvmuserrow" to "at91samd" for changing and reading the register at 0x804000 which represents various fuses.

Change-Id: I6382cc4ac15e6b9681e2f30b0ae60397a6289c3b
Signed-off-by: Stefan Arnold <sarnold@sh-sw.de>
Reviewed-on: http://openocd.zylin.com/4260
Tested-by: jenkins
Reviewed-by: Tomas Vanek <vanekt@fbl.cz>
This commit is contained in:
Stefan Arnold 2017-10-17 10:50:13 +02:00 committed by Tomas Vanek
parent b08900badc
commit be87994d60
2 changed files with 267 additions and 87 deletions

View File

@ -5319,6 +5319,26 @@ and prepares reset vector catch in case of reset halt.
Command is used internally in event event reset-deassert-post.
@end deffn
@deffn Command {at91samd nvmuserrow}
Writes or reads the entire 64 bit wide NVM user row register which is located at
0x804000. This register includes various fuses lock-bits and factory calibration
data. Reading the register is done by invoking this command without any
arguments. Writing is possible by giving 1 or 2 hex values. The first argument
is the register value to be written and the second one is an optional changemask.
Every bit which value in changemask is 0 will stay unchanged. The lock- and
reserved-bits are masked out and cannot be changed.
@example
# Read user row
>at91samd nvmuserrow
NVMUSERROW: 0xFFFFFC5DD8E0C788
# Write 0xFFFFFC5DD8E0C788 to user row
>at91samd nvmuserrow 0xFFFFFC5DD8E0C788
# Write 0x12300 to user row but leave other bits and low byte unchanged
>at91samd nvmuserrow 0x12345 0xFFF00
@end example
@end deffn
@end deffn
@anchor{at91sam3}

View File

@ -83,6 +83,9 @@
#define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
#define SAMD_GET_DEVSEL(id) (id & 0xFF)
/* Bits to mask out lockbits in user row */
#define NVMUSERROW_LOCKBIT_MASK ((uint64_t)0x0000FFFFFFFFFFFF)
struct samd_part {
uint8_t id;
const char *name;
@ -259,28 +262,38 @@ struct samd_family {
uint8_t series;
const struct samd_part *parts;
size_t num_parts;
uint64_t nvm_userrow_res_mask; /* protect bits which are reserved, 0 -> protect */
};
/* Known SAMD families */
static const struct samd_family samd_families[] = {
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
samd20_parts, ARRAY_SIZE(samd20_parts) },
samd20_parts, ARRAY_SIZE(samd20_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
samd21_parts, ARRAY_SIZE(samd21_parts) },
samd21_parts, ARRAY_SIZE(samd21_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_09,
samd09_parts, ARRAY_SIZE(samd09_parts) },
samd09_parts, ARRAY_SIZE(samd09_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
samd10_parts, ARRAY_SIZE(samd10_parts) },
samd10_parts, ARRAY_SIZE(samd10_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
samd11_parts, ARRAY_SIZE(samd11_parts) },
samd11_parts, ARRAY_SIZE(samd11_parts),
(uint64_t)0xFFFF01FFFE01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
saml21_parts, ARRAY_SIZE(saml21_parts) },
saml21_parts, ARRAY_SIZE(saml21_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_22,
saml22_parts, ARRAY_SIZE(saml22_parts) },
saml22_parts, ARRAY_SIZE(saml22_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
samc20_parts, ARRAY_SIZE(samc20_parts) },
samc20_parts, ARRAY_SIZE(samc20_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
{ SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
samc21_parts, ARRAY_SIZE(samc21_parts) },
samc21_parts, ARRAY_SIZE(samc21_parts),
(uint64_t)0xFFFF03FFFC01FF77 },
};
struct samd_info {
@ -296,24 +309,42 @@ struct samd_info {
static struct samd_info *samd_chips;
static const struct samd_part *samd_find_part(uint32_t id)
/**
* Gives the family structure to specific device id.
* @param id The id of the device.
* @return On failure NULL, otherwise a pointer to the structure.
*/
static const struct samd_family *samd_find_family(uint32_t id)
{
uint8_t processor = SAMD_GET_PROCESSOR(id);
uint8_t family = SAMD_GET_FAMILY(id);
uint8_t series = SAMD_GET_SERIES(id);
uint8_t devsel = SAMD_GET_DEVSEL(id);
for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
if (samd_families[i].processor == processor &&
samd_families[i].series == series &&
samd_families[i].family == family) {
for (unsigned j = 0; j < samd_families[i].num_parts; j++) {
if (samd_families[i].parts[j].id == devsel)
return &samd_families[i].parts[j];
}
}
samd_families[i].family == family)
return &samd_families[i];
}
return NULL;
}
/**
* Gives the part structure to specific device id.
* @param id The id of the device.
* @return On failure NULL, otherwise a pointer to the structure.
*/
static const struct samd_part *samd_find_part(uint32_t id)
{
uint8_t devsel = SAMD_GET_DEVSEL(id);
const struct samd_family *family = samd_find_family(id);
if (family == NULL)
return NULL;
for (unsigned i = 0; i < family->num_parts; i++) {
if (family->parts[i].id == devsel)
return &family->parts[i];
}
return NULL;
@ -484,6 +515,12 @@ static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
return samd_check_error(target);
}
/**
* Erases a flash-row at the given address.
* @param target Pointer to the target structure.
* @param address The address of the row.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_erase_row(struct target *target, uint32_t address)
{
int res;
@ -505,49 +542,62 @@ static int samd_erase_row(struct target *target, uint32_t address)
return ERROR_OK;
}
static bool is_user_row_reserved_bit(uint8_t bit)
/**
* Returns the bitmask of reserved bits in register.
* @param target Pointer to the target structure.
* @param mask Bitmask, 0 -> value stays untouched.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_get_reservedmask(struct target *target, uint64_t *mask)
{
/* See Table 9-3 in the SAMD20 datasheet for more information. */
switch (bit) {
/* Reserved bits */
case 3:
case 7:
/* Voltage regulator internal configuration with default value of 0x70,
* may not be changed. */
case 17 ... 24:
/* 41 is voltage regulator internal configuration and must not be
* changed. 42 through 47 are reserved. */
case 41 ... 47:
return true;
default:
break;
int res;
/* Get the devicetype */
uint32_t id;
res = target_read_u32(target, SAMD_DSU + SAMD_DSU_DID, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Device ID register");
return res;
}
return false;
const struct samd_family *family;
family = samd_find_family(id);
if (family == NULL) {
LOG_ERROR("Couldn't determine device family");
return ERROR_FAIL;
}
*mask = family->nvm_userrow_res_mask;
return ERROR_OK;
}
/* Modify the contents of the User Row in Flash. These are described in Table
* 9-3 of the SAMD20 datasheet. The User Row itself has a size of one page
* and contains a combination of "fuses" and calibration data in bits 24:17.
* We therefore try not to erase the row's contents unless we absolutely have
* to and we don't permit modifying reserved bits. */
static int samd_modify_user_row(struct target *target, uint32_t value,
uint8_t startb, uint8_t endb)
static int read_userrow(struct target *target, uint64_t *userrow)
{
int res;
uint8_t buffer[8];
res = target_read_memory(target, SAMD_USER_ROW, 4, 2, buffer);
if (res != ERROR_OK)
return res;
*userrow = target_buffer_get_u64(target, buffer);
return ERROR_OK;
}
/**
* Modify the contents of the User Row in Flash. The User Row itself
* has a size of one page and contains a combination of "fuses" and
* calibration data. Bits which have a value of zero in the mask will
* not be changed. Up to now devices only use the first 64 bits.
* @param target Pointer to the target structure.
* @param value_input The value to write.
* @param value_mask Bitmask, 0 -> value stays untouched.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_modify_user_row_masked(struct target *target,
uint64_t value_input, uint64_t value_mask)
{
int res;
uint32_t nvm_ctrlb;
bool manual_wp = true;
if (is_user_row_reserved_bit(startb) || is_user_row_reserved_bit(endb)) {
LOG_ERROR("Can't modify bits in the requested range");
return ERROR_FAIL;
}
/* Check if we need to do manual page write commands */
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
if (res == ERROR_OK)
manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
/* Retrieve the MCU's page size, in bytes. This is also the size of the
* entire User Row. */
uint32_t page_size;
@ -557,44 +607,49 @@ static int samd_modify_user_row(struct target *target, uint32_t value,
return res;
}
/* Make sure the size is sane before we allocate. */
assert(page_size > 0 && page_size <= SAMD_PAGE_SIZE_MAX);
/* Make sure we're within the single page that comprises the User Row. */
if (startb >= (page_size * 8) || endb >= (page_size * 8)) {
LOG_ERROR("Can't modify bits outside the User Row page range");
return ERROR_FAIL;
}
uint8_t *buf = malloc(page_size);
if (!buf)
return ERROR_FAIL;
/* Make sure the size is sane. */
assert(page_size <= SAMD_PAGE_SIZE_MAX &&
page_size >= sizeof(value_input));
uint8_t buf[SAMD_PAGE_SIZE_MAX];
/* Read the user row (comprising one page) by words. */
res = target_read_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
if (res != ERROR_OK)
goto out_user_row;
return res;
uint64_t value_device;
res = read_userrow(target, &value_device);
if (res != ERROR_OK)
return res;
uint64_t value_new = (value_input & value_mask) | (value_device & ~value_mask);
/* We will need to erase before writing if the new value needs a '1' in any
* position for which the current value had a '0'. Otherwise we can avoid
* erasing. */
uint32_t cur = buf_get_u32(buf, startb, endb - startb + 1);
if ((~cur) & value) {
if ((~value_device) & value_new) {
res = samd_erase_row(target, SAMD_USER_ROW);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't erase user row");
goto out_user_row;
return res;
}
}
/* Modify */
buf_set_u32(buf, startb, endb - startb + 1, value);
target_buffer_set_u64(target, buf, value_new);
/* Write the page buffer back out to the target. */
res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
if (res != ERROR_OK)
goto out_user_row;
return res;
/* Check if we need to do manual page write commands */
res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
if (res == ERROR_OK)
manual_wp = (nvm_ctrlb & SAMD_NVM_CTRLB_MANW) != 0;
else {
LOG_ERROR("Read of NVM register CTRKB failed.");
return ERROR_FAIL;
}
if (manual_wp) {
/* Trigger flash write */
res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_WAP);
@ -602,12 +657,28 @@ static int samd_modify_user_row(struct target *target, uint32_t value,
res = samd_check_error(target);
}
out_user_row:
free(buf);
return res;
}
/**
* Modifies the user row register to the given value.
* @param target Pointer to the target structure.
* @param value The value to write.
* @param startb The bit-offset by which the given value is shifted.
* @param endb The bit-offset of the last bit in value to write.
* @return On success ERROR_OK, on failure an errorcode.
*/
static int samd_modify_user_row(struct target *target, uint64_t value,
uint8_t startb, uint8_t endb)
{
uint64_t mask = 0;
int i;
for (i = startb ; i <= endb ; i++)
mask |= ((uint64_t)1) << i;
return samd_modify_user_row_masked(target, value << startb, mask);
}
static int samd_protect(struct flash_bank *bank, int set, int first_prot_bl, int last_prot_bl)
{
int res = ERROR_OK;
@ -644,7 +715,8 @@ static int samd_protect(struct flash_bank *bank, int set, int first_prot_bl, int
* corresponding to Sector 15. A '1' means unlocked and a '0' means
* locked. See Table 9-3 in the SAMD20 datasheet for more details. */
res = samd_modify_user_row(bank->target, set ? 0x0000 : 0xFFFF,
res = samd_modify_user_row(bank->target,
set ? (uint64_t)0 : (uint64_t)UINT64_MAX,
48 + first_prot_bl, 48 + last_prot_bl);
if (res != ERROR_OK)
LOG_WARNING("SAMD: protect settings were not made persistent!");
@ -945,6 +1017,83 @@ COMMAND_HANDLER(samd_handle_eeprom_command)
return res;
}
static COMMAND_HELPER(get_u64_from_hexarg, unsigned int num, uint64_t *value)
{
if (num >= CMD_ARGC) {
command_print(CMD_CTX, "Too few Arguments.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (strlen(CMD_ARGV[num]) >= 3 &&
CMD_ARGV[num][0] == '0' &&
CMD_ARGV[num][1] == 'x') {
char *check = NULL;
*value = strtoull(&(CMD_ARGV[num][2]), &check, 16);
if ((value == 0 && errno == ERANGE) ||
check == NULL || *check != 0) {
command_print(CMD_CTX, "Invalid 64-bit hex value in argument %d.",
num + 1);
return ERROR_COMMAND_SYNTAX_ERROR;
}
} else {
command_print(CMD_CTX, "Argument %d needs to be a hex value.", num + 1);
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
COMMAND_HANDLER(samd_handle_nvmuserrow_command)
{
int res = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (target) {
if (CMD_ARGC > 2) {
command_print(CMD_CTX, "Too much Arguments given.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (CMD_ARGC > 0) {
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
uint64_t mask;
res = samd_get_reservedmask(target, &mask);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't determine the mask for reserved bits.");
return ERROR_FAIL;
}
mask &= NVMUSERROW_LOCKBIT_MASK;
uint64_t value;
res = CALL_COMMAND_HANDLER(get_u64_from_hexarg, 0, &value);
if (res != ERROR_OK)
return res;
if (CMD_ARGC == 2) {
uint64_t mask_temp;
res = CALL_COMMAND_HANDLER(get_u64_from_hexarg, 1, &mask_temp);
if (res != ERROR_OK)
return res;
mask &= mask_temp;
}
res = samd_modify_user_row_masked(target, value, mask);
if (res != ERROR_OK)
return res;
}
/* read register */
uint64_t value;
res = read_userrow(target, &value);
if (res == ERROR_OK)
command_print(CMD_CTX, "NVMUSERROW: 0x%016"PRIX64, value);
else
LOG_ERROR("NVMUSERROW could not be read.");
}
return res;
}
COMMAND_HANDLER(samd_handle_bootloader_command)
{
int res = ERROR_OK;
@ -1050,29 +1199,29 @@ static const struct command_registration at91samd_exec_command_handlers[] = {
.name = "dsu_reset_deassert",
.handler = samd_handle_reset_deassert,
.mode = COMMAND_EXEC,
.help = "deasert internal reset held by DSU"
.help = "Deasert internal reset held by DSU."
},
{
.name = "info",
.handler = samd_handle_info_command,
.mode = COMMAND_EXEC,
.help = "Print information about the current at91samd chip"
.help = "Print information about the current at91samd chip "
"and its flash configuration.",
},
{
.name = "chip-erase",
.handler = samd_handle_chip_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase the entire Flash by using the Chip"
.help = "Erase the entire Flash by using the Chip-"
"Erase feature in the Device Service Unit (DSU).",
},
{
.name = "set-security",
.handler = samd_handle_set_security_command,
.mode = COMMAND_EXEC,
.help = "Secure the chip's Flash by setting the Security Bit."
"This makes it impossible to read the Flash contents."
"The only way to undo this is to issue the chip-erase"
.help = "Secure the chip's Flash by setting the Security Bit. "
"This makes it impossible to read the Flash contents. "
"The only way to undo this is to issue the chip-erase "
"command.",
},
{
@ -1080,9 +1229,9 @@ static const struct command_registration at91samd_exec_command_handlers[] = {
.usage = "[size_in_bytes]",
.handler = samd_handle_eeprom_command,
.mode = COMMAND_EXEC,
.help = "Show or set the EEPROM size setting, stored in the User Row."
"Please see Table 20-3 of the SAMD20 datasheet for allowed values."
"Changes are stored immediately but take affect after the MCU is"
.help = "Show or set the EEPROM size setting, stored in the User Row. "
"Please see Table 20-3 of the SAMD20 datasheet for allowed values. "
"Changes are stored immediately but take affect after the MCU is "
"reset.",
},
{
@ -1090,11 +1239,22 @@ static const struct command_registration at91samd_exec_command_handlers[] = {
.usage = "[size_in_bytes]",
.handler = samd_handle_bootloader_command,
.mode = COMMAND_EXEC,
.help = "Show or set the bootloader size, stored in the User Row."
"Please see Table 20-2 of the SAMD20 datasheet for allowed values."
"Changes are stored immediately but take affect after the MCU is"
.help = "Show or set the bootloader size, stored in the User Row. "
"Please see Table 20-2 of the SAMD20 datasheet for allowed values. "
"Changes are stored immediately but take affect after the MCU is "
"reset.",
},
{
.name = "nvmuserrow",
.usage = "[value] [mask]",
.handler = samd_handle_nvmuserrow_command,
.mode = COMMAND_EXEC,
.help = "Show or set the nvmuserrow register. It is 64 bit wide "
"and located at address 0x804000. Use the optional mask argument "
"to prevent changes at positions where the bitvalue is zero. "
"For security reasons the lock- and reserved-bits are masked out "
"in background and therefore cannot be changed.",
},
COMMAND_REGISTRATION_DONE
};