- add missing svn props from svn 1768 commit
git-svn-id: svn://svn.berlios.de/openocd/trunk@1769 b42882b7-edfa-0310-969c-e2dbd0fdcd60
This commit is contained in:
parent
cbfa0304f9
commit
b7b586ac6b
|
@ -1,174 +1,174 @@
|
|||
/*
|
||||
* Reed-Solomon ECC handling for the Marvell Kirkwood SOC
|
||||
* Copyright (C) 2009 Marvell Semiconductor, Inc.
|
||||
*
|
||||
* Authors: Lennert Buytenhek <buytenh@wantstofly.org>
|
||||
* Nicolas Pitre <nico@cam.org>
|
||||
*
|
||||
* This file is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License as published by the
|
||||
* Free Software Foundation; either version 2 or (at your option) any
|
||||
* later version.
|
||||
*
|
||||
* This file is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include <sys/types.h>
|
||||
#include "nand.h"
|
||||
|
||||
|
||||
/*****************************************************************************
|
||||
* Arithmetic in GF(2^10) ("F") modulo x^10 + x^3 + 1.
|
||||
*
|
||||
* For multiplication, a discrete log/exponent table is used, with
|
||||
* primitive element x (F is a primitive field, so x is primitive).
|
||||
*/
|
||||
#define MODPOLY 0x409 /* x^10 + x^3 + 1 in binary */
|
||||
|
||||
/*
|
||||
* Maps an integer a [0..1022] to a polynomial b = gf_exp[a] in
|
||||
* GF(2^10) mod x^10 + x^3 + 1 such that b = x ^ a. There's two
|
||||
* identical copies of this array back-to-back so that we can save
|
||||
* the mod 1023 operation when doing a GF multiplication.
|
||||
*/
|
||||
static uint16_t gf_exp[1023 + 1023];
|
||||
|
||||
/*
|
||||
* Maps a polynomial b in GF(2^10) mod x^10 + x^3 + 1 to an index
|
||||
* a = gf_log[b] in [0..1022] such that b = x ^ a.
|
||||
*/
|
||||
static uint16_t gf_log[1024];
|
||||
|
||||
static void gf_build_log_exp_table(void)
|
||||
{
|
||||
int i;
|
||||
int p_i;
|
||||
|
||||
/*
|
||||
* p_i = x ^ i
|
||||
*
|
||||
* Initialise to 1 for i = 0.
|
||||
*/
|
||||
p_i = 1;
|
||||
|
||||
for (i = 0; i < 1023; i++) {
|
||||
gf_exp[i] = p_i;
|
||||
gf_exp[i + 1023] = p_i;
|
||||
gf_log[p_i] = i;
|
||||
|
||||
/*
|
||||
* p_i = p_i * x
|
||||
*/
|
||||
p_i <<= 1;
|
||||
if (p_i & (1 << 10))
|
||||
p_i ^= MODPOLY;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*****************************************************************************
|
||||
* Reed-Solomon code
|
||||
*
|
||||
* This implements a (1023,1015) Reed-Solomon ECC code over GF(2^10)
|
||||
* mod x^10 + x^3 + 1, shortened to (520,512). The ECC data consists
|
||||
* of 8 10-bit symbols, or 10 8-bit bytes.
|
||||
*
|
||||
* Given 512 bytes of data, computes 10 bytes of ECC.
|
||||
*
|
||||
* This is done by converting the 512 bytes to 512 10-bit symbols
|
||||
* (elements of F), interpreting those symbols as a polynomial in F[X]
|
||||
* by taking symbol 0 as the coefficient of X^8 and symbol 511 as the
|
||||
* coefficient of X^519, and calculating the residue of that polynomial
|
||||
* divided by the generator polynomial, which gives us the 8 ECC symbols
|
||||
* as the remainder. Finally, we convert the 8 10-bit ECC symbols to 10
|
||||
* 8-bit bytes.
|
||||
*
|
||||
* The generator polynomial is hardcoded, as that is faster, but it
|
||||
* can be computed by taking the primitive element a = x (in F), and
|
||||
* constructing a polynomial in F[X] with roots a, a^2, a^3, ..., a^8
|
||||
* by multiplying the minimal polynomials for those roots (which are
|
||||
* just 'x - a^i' for each i).
|
||||
*
|
||||
* Note: due to unfortunate circumstances, the bootrom in the Kirkwood SOC
|
||||
* expects the ECC to be computed backward, i.e. from the last byte down
|
||||
* to the first one.
|
||||
*/
|
||||
int nand_calculate_ecc_kw(struct nand_device_s *device, const u8 *data, u8 *ecc)
|
||||
{
|
||||
unsigned int r7, r6, r5, r4, r3, r2, r1, r0;
|
||||
int i;
|
||||
static int tables_initialized = 0;
|
||||
|
||||
if (!tables_initialized) {
|
||||
gf_build_log_exp_table();
|
||||
tables_initialized = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Load bytes 504..511 of the data into r.
|
||||
*/
|
||||
r0 = data[504];
|
||||
r1 = data[505];
|
||||
r2 = data[506];
|
||||
r3 = data[507];
|
||||
r4 = data[508];
|
||||
r5 = data[509];
|
||||
r6 = data[510];
|
||||
r7 = data[511];
|
||||
|
||||
|
||||
/*
|
||||
* Shift bytes 503..0 (in that order) into r0, followed
|
||||
* by eight zero bytes, while reducing the polynomial by the
|
||||
* generator polynomial in every step.
|
||||
*/
|
||||
for (i = 503; i >= -8; i--) {
|
||||
unsigned int d;
|
||||
|
||||
d = 0;
|
||||
if (i >= 0)
|
||||
d = data[i];
|
||||
|
||||
if (r7) {
|
||||
u16 *t = gf_exp + gf_log[r7];
|
||||
|
||||
r7 = r6 ^ t[0x21c];
|
||||
r6 = r5 ^ t[0x181];
|
||||
r5 = r4 ^ t[0x18e];
|
||||
r4 = r3 ^ t[0x25f];
|
||||
r3 = r2 ^ t[0x197];
|
||||
r2 = r1 ^ t[0x193];
|
||||
r1 = r0 ^ t[0x237];
|
||||
r0 = d ^ t[0x024];
|
||||
} else {
|
||||
r7 = r6;
|
||||
r6 = r5;
|
||||
r5 = r4;
|
||||
r4 = r3;
|
||||
r3 = r2;
|
||||
r2 = r1;
|
||||
r1 = r0;
|
||||
r0 = d;
|
||||
}
|
||||
}
|
||||
|
||||
ecc[0] = r0;
|
||||
ecc[1] = (r0 >> 8) | (r1 << 2);
|
||||
ecc[2] = (r1 >> 6) | (r2 << 4);
|
||||
ecc[3] = (r2 >> 4) | (r3 << 6);
|
||||
ecc[4] = (r3 >> 2);
|
||||
ecc[5] = r4;
|
||||
ecc[6] = (r4 >> 8) | (r5 << 2);
|
||||
ecc[7] = (r5 >> 6) | (r6 << 4);
|
||||
ecc[8] = (r6 >> 4) | (r7 << 6);
|
||||
ecc[9] = (r7 >> 2);
|
||||
|
||||
return 0;
|
||||
}
|
||||
/*
|
||||
* Reed-Solomon ECC handling for the Marvell Kirkwood SOC
|
||||
* Copyright (C) 2009 Marvell Semiconductor, Inc.
|
||||
*
|
||||
* Authors: Lennert Buytenhek <buytenh@wantstofly.org>
|
||||
* Nicolas Pitre <nico@cam.org>
|
||||
*
|
||||
* This file is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License as published by the
|
||||
* Free Software Foundation; either version 2 or (at your option) any
|
||||
* later version.
|
||||
*
|
||||
* This file is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* for more details.
|
||||
*/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "config.h"
|
||||
#endif
|
||||
|
||||
#include <sys/types.h>
|
||||
#include "nand.h"
|
||||
|
||||
|
||||
/*****************************************************************************
|
||||
* Arithmetic in GF(2^10) ("F") modulo x^10 + x^3 + 1.
|
||||
*
|
||||
* For multiplication, a discrete log/exponent table is used, with
|
||||
* primitive element x (F is a primitive field, so x is primitive).
|
||||
*/
|
||||
#define MODPOLY 0x409 /* x^10 + x^3 + 1 in binary */
|
||||
|
||||
/*
|
||||
* Maps an integer a [0..1022] to a polynomial b = gf_exp[a] in
|
||||
* GF(2^10) mod x^10 + x^3 + 1 such that b = x ^ a. There's two
|
||||
* identical copies of this array back-to-back so that we can save
|
||||
* the mod 1023 operation when doing a GF multiplication.
|
||||
*/
|
||||
static uint16_t gf_exp[1023 + 1023];
|
||||
|
||||
/*
|
||||
* Maps a polynomial b in GF(2^10) mod x^10 + x^3 + 1 to an index
|
||||
* a = gf_log[b] in [0..1022] such that b = x ^ a.
|
||||
*/
|
||||
static uint16_t gf_log[1024];
|
||||
|
||||
static void gf_build_log_exp_table(void)
|
||||
{
|
||||
int i;
|
||||
int p_i;
|
||||
|
||||
/*
|
||||
* p_i = x ^ i
|
||||
*
|
||||
* Initialise to 1 for i = 0.
|
||||
*/
|
||||
p_i = 1;
|
||||
|
||||
for (i = 0; i < 1023; i++) {
|
||||
gf_exp[i] = p_i;
|
||||
gf_exp[i + 1023] = p_i;
|
||||
gf_log[p_i] = i;
|
||||
|
||||
/*
|
||||
* p_i = p_i * x
|
||||
*/
|
||||
p_i <<= 1;
|
||||
if (p_i & (1 << 10))
|
||||
p_i ^= MODPOLY;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*****************************************************************************
|
||||
* Reed-Solomon code
|
||||
*
|
||||
* This implements a (1023,1015) Reed-Solomon ECC code over GF(2^10)
|
||||
* mod x^10 + x^3 + 1, shortened to (520,512). The ECC data consists
|
||||
* of 8 10-bit symbols, or 10 8-bit bytes.
|
||||
*
|
||||
* Given 512 bytes of data, computes 10 bytes of ECC.
|
||||
*
|
||||
* This is done by converting the 512 bytes to 512 10-bit symbols
|
||||
* (elements of F), interpreting those symbols as a polynomial in F[X]
|
||||
* by taking symbol 0 as the coefficient of X^8 and symbol 511 as the
|
||||
* coefficient of X^519, and calculating the residue of that polynomial
|
||||
* divided by the generator polynomial, which gives us the 8 ECC symbols
|
||||
* as the remainder. Finally, we convert the 8 10-bit ECC symbols to 10
|
||||
* 8-bit bytes.
|
||||
*
|
||||
* The generator polynomial is hardcoded, as that is faster, but it
|
||||
* can be computed by taking the primitive element a = x (in F), and
|
||||
* constructing a polynomial in F[X] with roots a, a^2, a^3, ..., a^8
|
||||
* by multiplying the minimal polynomials for those roots (which are
|
||||
* just 'x - a^i' for each i).
|
||||
*
|
||||
* Note: due to unfortunate circumstances, the bootrom in the Kirkwood SOC
|
||||
* expects the ECC to be computed backward, i.e. from the last byte down
|
||||
* to the first one.
|
||||
*/
|
||||
int nand_calculate_ecc_kw(struct nand_device_s *device, const u8 *data, u8 *ecc)
|
||||
{
|
||||
unsigned int r7, r6, r5, r4, r3, r2, r1, r0;
|
||||
int i;
|
||||
static int tables_initialized = 0;
|
||||
|
||||
if (!tables_initialized) {
|
||||
gf_build_log_exp_table();
|
||||
tables_initialized = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Load bytes 504..511 of the data into r.
|
||||
*/
|
||||
r0 = data[504];
|
||||
r1 = data[505];
|
||||
r2 = data[506];
|
||||
r3 = data[507];
|
||||
r4 = data[508];
|
||||
r5 = data[509];
|
||||
r6 = data[510];
|
||||
r7 = data[511];
|
||||
|
||||
|
||||
/*
|
||||
* Shift bytes 503..0 (in that order) into r0, followed
|
||||
* by eight zero bytes, while reducing the polynomial by the
|
||||
* generator polynomial in every step.
|
||||
*/
|
||||
for (i = 503; i >= -8; i--) {
|
||||
unsigned int d;
|
||||
|
||||
d = 0;
|
||||
if (i >= 0)
|
||||
d = data[i];
|
||||
|
||||
if (r7) {
|
||||
u16 *t = gf_exp + gf_log[r7];
|
||||
|
||||
r7 = r6 ^ t[0x21c];
|
||||
r6 = r5 ^ t[0x181];
|
||||
r5 = r4 ^ t[0x18e];
|
||||
r4 = r3 ^ t[0x25f];
|
||||
r3 = r2 ^ t[0x197];
|
||||
r2 = r1 ^ t[0x193];
|
||||
r1 = r0 ^ t[0x237];
|
||||
r0 = d ^ t[0x024];
|
||||
} else {
|
||||
r7 = r6;
|
||||
r6 = r5;
|
||||
r5 = r4;
|
||||
r4 = r3;
|
||||
r3 = r2;
|
||||
r2 = r1;
|
||||
r1 = r0;
|
||||
r0 = d;
|
||||
}
|
||||
}
|
||||
|
||||
ecc[0] = r0;
|
||||
ecc[1] = (r0 >> 8) | (r1 << 2);
|
||||
ecc[2] = (r1 >> 6) | (r2 << 4);
|
||||
ecc[3] = (r2 >> 4) | (r3 << 6);
|
||||
ecc[4] = (r3 >> 2);
|
||||
ecc[5] = r4;
|
||||
ecc[6] = (r4 >> 8) | (r5 << 2);
|
||||
ecc[7] = (r5 >> 6) | (r6 << 4);
|
||||
ecc[8] = (r6 >> 4) | (r7 << 6);
|
||||
ecc[9] = (r7 >> 2);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue