Merge branch 'master' into from_upstream

Change-Id: I61e24edbdeceddba265514fd7e0a489ec23e2a4c
This commit is contained in:
Tim Newsome 2022-01-28 09:40:43 -08:00
commit b6fabdd429
13 changed files with 284 additions and 104 deletions

View File

@ -174,7 +174,7 @@ them. It is similar to this bash statement.
EXPORT vn=`date` EXPORT vn=`date`
LINE 2 & 3 LINE 2 & 3
set $vn [expr (1024 * $x)] set $vn [expr {1024 * $x}]
global $vn global $vn
In line 1, we dynamically created a variable name. Here, we are In line 1, we dynamically created a variable name. Here, we are

View File

@ -2009,9 +2009,9 @@ proc setc15 @{regs value@} @{
echo [format "set p15 0x%04x, 0x%08x" $regs $value] echo [format "set p15 0x%04x, 0x%08x" $regs $value]
arm mcr 15 [expr ($regs>>12)&0x7] \ arm mcr 15 [expr @{($regs >> 12) & 0x7@}] \
[expr ($regs>>0)&0xf] [expr ($regs>>4)&0xf] \ [expr @{($regs >> 0) & 0xf@}] [expr @{($regs >> 4) & 0xf@}] \
[expr ($regs>>8)&0x7] $value [expr @{($regs >> 8) & 0x7@}] $value
@} @}
@end example @end example
@ -3157,7 +3157,9 @@ the target's supply voltage.
The result can be converted to Volts (ignoring the most significant bytes, always zero) The result can be converted to Volts (ignoring the most significant bytes, always zero)
@example @example
> set a [st-link cmd 8 0xf7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] > set a [st-link cmd 8 0xf7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
> echo [expr 2*1.2*([lindex $a 4]+256*[lindex $a 5])/([lindex $a 0]+256*[lindex $a 1])] > set n [expr @{[lindex $a 4] + 256 * [lindex $a 5]@}]
> set d [expr @{[lindex $a 0] + 256 * [lindex $a 1]@}]
> echo [expr @{2 * 1.2 * $n / $d@}]
3.24891518738 3.24891518738
@end example @end example
@end deffn @end deffn
@ -4151,6 +4153,10 @@ option. When vendors put out multiple versions of a chip, or use the same
JTAG-level ID for several largely-compatible chips, it may be more practical JTAG-level ID for several largely-compatible chips, it may be more practical
to ignore the version field than to update config files to handle all of to ignore the version field than to update config files to handle all of
the various chip IDs. The version field is defined as bit 28-31 of the IDCODE. the various chip IDs. The version field is defined as bit 28-31 of the IDCODE.
@item @code{-ignore-bypass}
@*Specify this to ignore the 'bypass' bit of the idcode. Some vendor put
an invalid idcode regarding this bit. Specify this to ignore this bit and
to not consider this tap in bypass mode.
@item @code{-ircapture} @var{NUMBER} @item @code{-ircapture} @var{NUMBER}
@*The bit pattern loaded by the TAP into the JTAG shift register @*The bit pattern loaded by the TAP into the JTAG shift register
on entry to the @sc{ircapture} state, such as 0x01. on entry to the @sc{ircapture} state, such as 0x01.
@ -4523,13 +4529,13 @@ where the mask bit is 1. The following example sets HPROT3 (cacheable)
and leaves the rest of the pattern intact. It configures memory access through and leaves the rest of the pattern intact. It configures memory access through
DCache on Cortex-M7. DCache on Cortex-M7.
@example @example
set CSW_HPROT3_CACHEABLE [expr 1 << 27] set CSW_HPROT3_CACHEABLE [expr @{1 << 27@}]
samv.dap apcsw $CSW_HPROT3_CACHEABLE $CSW_HPROT3_CACHEABLE samv.dap apcsw $CSW_HPROT3_CACHEABLE $CSW_HPROT3_CACHEABLE
@end example @end example
Another example clears SPROT bit and leaves the rest of pattern intact: Another example clears SPROT bit and leaves the rest of pattern intact:
@example @example
set CSW_SPROT [expr 1 << 30] set CSW_SPROT [expr @{1 << 30@}]
samv.dap apcsw 0 $CSW_SPROT samv.dap apcsw 0 $CSW_SPROT
@end example @end example
@ -6351,13 +6357,22 @@ flash bank $_FLASHNAME cc3220sf 0 0 0 0 $_TARGETNAME
@end deffn @end deffn
@deffn {Flash Driver} {efm32} @deffn {Flash Driver} {efm32}
All members of the EFM32 microcontroller family from Energy Micro include All members of the EFM32/EFR32 microcontroller family from Energy Micro (now Silicon Labs)
internal flash and use ARM Cortex-M3 cores. The driver automatically recognizes include internal flash and use Arm Cortex-M3 or Cortex-M4 cores. The driver automatically
a number of these chips using the chip identification register, and recognizes a number of these chips using the chip identification register, and
autoconfigures itself. autoconfigures itself.
@example @example
flash bank $_FLASHNAME efm32 0 0 0 0 $_TARGETNAME flash bank $_FLASHNAME efm32 0 0 0 0 $_TARGETNAME
@end example @end example
It supports writing to the user data page, as well as the portion of the lockbits page
past 512 bytes on chips with larger page sizes. The latter is used by the SiLabs
bootloader/AppLoader system for encryption keys. Setting protection on these pages is
currently not supported.
@example
flash bank userdata.flash efm32 0x0FE00000 0 0 0 $_TARGETNAME
flash bank lockbits.flash efm32 0x0FE04000 0 0 0 $_TARGETNAME
@end example
A special feature of efm32 controllers is that it is possible to completely disable the A special feature of efm32 controllers is that it is possible to completely disable the
debug interface by writing the correct values to the 'Debug Lock Word'. OpenOCD supports debug interface by writing the correct values to the 'Debug Lock Word'. OpenOCD supports
this via the following command: this via the following command:
@ -8611,7 +8626,7 @@ In addition the following arguments may be specified:
proc load_image_bin @{fname foffset address length @} @{ proc load_image_bin @{fname foffset address length @} @{
# Load data from fname filename at foffset offset to # Load data from fname filename at foffset offset to
# target at address. Load at most length bytes. # target at address. Load at most length bytes.
load_image $fname [expr $address - $foffset] bin \ load_image $fname [expr @{$address - $foffset@}] bin \
$address $length $address $length
@} @}
@end example @end example
@ -10431,7 +10446,7 @@ trivial challenge-response protocol could be implemented as follows in a
configuration file, immediately following @command{init}: configuration file, immediately following @command{init}:
@example @example
set challenge [riscv authdata_read] set challenge [riscv authdata_read]
riscv authdata_write [expr $challenge + 1] riscv authdata_write [expr @{$challenge + 1@}]
@end example @end example
@deffn {Command} {riscv authdata_read} [index=0] @deffn {Command} {riscv authdata_read} [index=0]
@ -12142,7 +12157,7 @@ it reads a file and executes as a script.
@example @example
set x 6 set x 6
set y 7 set y 7
puts [format "The answer: %d" [expr $x * $y]] puts [format "The answer: %d" [expr @{$x * $y@}]]
@end example @end example
@enumerate @enumerate
@item The SET command creates 2 variables, X and Y. @item The SET command creates 2 variables, X and Y.
@ -12213,13 +12228,13 @@ proc myproc @{ @} @{
@b{Dynamic variable creation} @b{Dynamic variable creation}
@example @example
# Dynamically create a bunch of variables. # Dynamically create a bunch of variables.
for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{ for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr @{$x + 1@}]@} @{
# Create var name # Create var name
set vn [format "BIT%d" $x] set vn [format "BIT%d" $x]
# Make it a global # Make it a global
global $vn global $vn
# Set it. # Set it.
set $vn [expr (1 << $x)] set $vn [expr @{1 << $x@}]
@} @}
@end example @end example
@b{Dynamic proc/command creation} @b{Dynamic proc/command creation}

View File

@ -14,6 +14,9 @@
* Copyright (C) 2014 Nemui Trinomius * * Copyright (C) 2014 Nemui Trinomius *
* nemuisan_kawausogasuki@live.jp * * nemuisan_kawausogasuki@live.jp *
* * * *
* Copyright (C) 2021 Doug Brunner *
* doug.a.brunner@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify * * This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by * * it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or * * the Free Software Foundation; either version 2 of the License, or *
@ -45,13 +48,16 @@
#define EFM32_FLASH_WDATAREADY_TMO 100 #define EFM32_FLASH_WDATAREADY_TMO 100
#define EFM32_FLASH_WRITE_TMO 100 #define EFM32_FLASH_WRITE_TMO 100
#define EFM32_FLASH_BASE 0
/* size in bytes, not words; must fit all Gecko devices */ /* size in bytes, not words; must fit all Gecko devices */
#define LOCKBITS_PAGE_SZ 512 #define LOCKWORDS_SZ 512
#define EFM32_MSC_INFO_BASE 0x0fe00000 #define EFM32_MSC_INFO_BASE 0x0fe00000
#define EFM32_MSC_USER_DATA EFM32_MSC_INFO_BASE #define EFM32_MSC_USER_DATA EFM32_MSC_INFO_BASE
#define EFM32_MSC_LOCK_BITS (EFM32_MSC_INFO_BASE+0x4000) #define EFM32_MSC_LOCK_BITS (EFM32_MSC_INFO_BASE+0x4000)
#define EFM32_MSC_LOCK_BITS_EXTRA (EFM32_MSC_LOCK_BITS+LOCKWORDS_SZ)
#define EFM32_MSC_DEV_INFO (EFM32_MSC_INFO_BASE+0x8000) #define EFM32_MSC_DEV_INFO (EFM32_MSC_INFO_BASE+0x8000)
/* PAGE_SIZE is not present in Zero, Happy and the original Gecko MCU */ /* PAGE_SIZE is not present in Zero, Happy and the original Gecko MCU */
@ -83,6 +89,27 @@
#define EFM32_MSC_REG_LOCK_SERIES1 0x040 #define EFM32_MSC_REG_LOCK_SERIES1 0x040
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71 #define EFM32_MSC_LOCK_LOCKKEY 0x1b71
enum efm32_bank_index {
EFM32_BANK_INDEX_MAIN,
EFM32_BANK_INDEX_USER_DATA,
EFM32_BANK_INDEX_LOCK_BITS,
EFM32_N_BANKS
};
static int efm32x_get_bank_index(target_addr_t base)
{
switch (base) {
case EFM32_FLASH_BASE:
return EFM32_BANK_INDEX_MAIN;
case EFM32_MSC_USER_DATA:
return EFM32_BANK_INDEX_USER_DATA;
case EFM32_MSC_LOCK_BITS:
return EFM32_BANK_INDEX_LOCK_BITS;
default:
return ERROR_FAIL;
}
}
struct efm32_family_data { struct efm32_family_data {
int family_id; int family_id;
const char *name; const char *name;
@ -98,13 +125,6 @@ struct efm32_family_data {
uint32_t msc_regbase; uint32_t msc_regbase;
}; };
struct efm32x_flash_bank {
bool probed;
uint32_t lb_page[LOCKBITS_PAGE_SZ/4];
uint32_t reg_base;
uint32_t reg_lock;
};
struct efm32_info { struct efm32_info {
const struct efm32_family_data *family_data; const struct efm32_family_data *family_data;
uint16_t flash_sz_kib; uint16_t flash_sz_kib;
@ -115,6 +135,15 @@ struct efm32_info {
uint16_t page_size; uint16_t page_size;
}; };
struct efm32x_flash_chip {
struct efm32_info info;
bool probed[EFM32_N_BANKS];
uint32_t lb_page[LOCKWORDS_SZ/4];
uint32_t reg_base;
uint32_t reg_lock;
uint32_t refcount;
};
static const struct efm32_family_data efm32_families[] = { static const struct efm32_family_data efm32_families[] = {
{ 16, "EFR32MG1P Mighty", .series = 1 }, { 16, "EFR32MG1P Mighty", .series = 1 },
{ 17, "EFR32MG1B Mighty", .series = 1 }, { 17, "EFR32MG1B Mighty", .series = 1 },
@ -175,9 +204,12 @@ static const struct efm32_family_data efm32_families[] = {
{ 122, "EZR32HG Happy", .series = 0, .page_size = 1024 }, { 122, "EZR32HG Happy", .series = 0, .page_size = 1024 },
}; };
const struct flash_driver efm32_flash;
static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer, static int efm32x_priv_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count); uint32_t addr, uint32_t count);
static int efm32x_write_only_lockbits(struct flash_bank *bank);
static int efm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_sz) static int efm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_sz)
{ {
@ -207,7 +239,7 @@ static int efm32x_get_prod_rev(struct flash_bank *bank, uint8_t *prev)
static int efm32x_read_reg_u32(struct flash_bank *bank, target_addr_t offset, static int efm32x_read_reg_u32(struct flash_bank *bank, target_addr_t offset,
uint32_t *value) uint32_t *value)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
uint32_t base = efm32x_info->reg_base; uint32_t base = efm32x_info->reg_base;
return target_read_u32(bank->target, base + offset, value); return target_read_u32(bank->target, base + offset, value);
@ -216,18 +248,18 @@ static int efm32x_read_reg_u32(struct flash_bank *bank, target_addr_t offset,
static int efm32x_write_reg_u32(struct flash_bank *bank, target_addr_t offset, static int efm32x_write_reg_u32(struct flash_bank *bank, target_addr_t offset,
uint32_t value) uint32_t value)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
uint32_t base = efm32x_info->reg_base; uint32_t base = efm32x_info->reg_base;
return target_write_u32(bank->target, base + offset, value); return target_write_u32(bank->target, base + offset, value);
} }
static int efm32x_read_info(struct flash_bank *bank, static int efm32x_read_info(struct flash_bank *bank)
struct efm32_info *efm32_info)
{ {
int ret; int ret;
uint32_t cpuid = 0; uint32_t cpuid = 0;
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
struct efm32_info *efm32_info = &(efm32x_info->info);
memset(efm32_info, 0, sizeof(struct efm32_info)); memset(efm32_info, 0, sizeof(struct efm32_info));
@ -327,20 +359,61 @@ static int efm32x_read_info(struct flash_bank *bank,
/* flash bank efm32 <base> <size> 0 0 <target#> */ /* flash bank efm32 <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(efm32x_flash_bank_command) FLASH_BANK_COMMAND_HANDLER(efm32x_flash_bank_command)
{ {
struct efm32x_flash_bank *efm32x_info; struct efm32x_flash_chip *efm32x_info = NULL;
if (CMD_ARGC < 6) if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR; return ERROR_COMMAND_SYNTAX_ERROR;
efm32x_info = malloc(sizeof(struct efm32x_flash_bank)); int bank_index = efm32x_get_bank_index(bank->base);
if (bank_index < 0) {
LOG_ERROR("Flash bank with base address %" PRIx32 " is not supported",
(uint32_t) bank->base);
return ERROR_FAIL;
}
/* look for an existing flash structure matching target */
for (struct flash_bank *bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
if (bank_iter->driver == &efm32_flash
&& bank_iter->target == bank->target
&& bank->driver_priv) {
efm32x_info = bank->driver_priv;
break;
}
}
if (!efm32x_info) {
/* target not matched, make a new one */
efm32x_info = calloc(1, sizeof(struct efm32x_flash_chip));
memset(efm32x_info->lb_page, 0xff, LOCKWORDS_SZ);
}
++efm32x_info->refcount;
bank->driver_priv = efm32x_info; bank->driver_priv = efm32x_info;
efm32x_info->probed = false;
memset(efm32x_info->lb_page, 0xff, LOCKBITS_PAGE_SZ);
return ERROR_OK; return ERROR_OK;
} }
/**
* Remove flash structure corresponding to this bank,
* if and only if it's not used by any others
*/
static void efm32x_free_driver_priv(struct flash_bank *bank)
{
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
if (efm32x_info) {
/* Use ref count to determine if it can be freed; scanning bank list doesn't work,
* because this function can be called after some banks in the list have been
* already destroyed */
--efm32x_info->refcount;
if (efm32x_info->refcount == 0) {
free(efm32x_info);
bank->driver_priv = NULL;
}
}
}
/* set or reset given bits in a register */ /* set or reset given bits in a register */
static int efm32x_set_reg_bits(struct flash_bank *bank, uint32_t reg, static int efm32x_set_reg_bits(struct flash_bank *bank, uint32_t reg,
uint32_t bitmask, int set) uint32_t bitmask, int set)
@ -368,7 +441,7 @@ static int efm32x_set_wren(struct flash_bank *bank, int write_enable)
static int efm32x_msc_lock(struct flash_bank *bank, int lock) static int efm32x_msc_lock(struct flash_bank *bank, int lock)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
return efm32x_write_reg_u32(bank, efm32x_info->reg_lock, return efm32x_write_reg_u32(bank, efm32x_info->reg_lock,
(lock ? 0 : EFM32_MSC_LOCK_LOCKKEY)); (lock ? 0 : EFM32_MSC_LOCK_LOCKKEY));
} }
@ -416,7 +489,6 @@ static int efm32x_erase_page(struct flash_bank *bank, uint32_t addr)
*/ */
int ret = 0; int ret = 0;
uint32_t status = 0; uint32_t status = 0;
addr += bank->base;
LOG_DEBUG("erasing flash page at 0x%08" PRIx32, addr); LOG_DEBUG("erasing flash page at 0x%08" PRIx32, addr);
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_ADDRB, addr); ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_ADDRB, addr);
@ -470,20 +542,28 @@ static int efm32x_erase(struct flash_bank *bank, unsigned int first,
} }
for (unsigned int i = first; i <= last; i++) { for (unsigned int i = first; i <= last; i++) {
ret = efm32x_erase_page(bank, bank->sectors[i].offset); ret = efm32x_erase_page(bank, bank->base + bank->sectors[i].offset);
if (ret != ERROR_OK) if (ret != ERROR_OK)
LOG_ERROR("Failed to erase page %d", i); LOG_ERROR("Failed to erase page %d", i);
} }
ret = efm32x_set_wren(bank, 0); ret = efm32x_set_wren(bank, 0);
efm32x_msc_lock(bank, 1); efm32x_msc_lock(bank, 1);
if (ret != ERROR_OK)
return ret;
if (bank->base == EFM32_MSC_LOCK_BITS) {
ret = efm32x_write_only_lockbits(bank);
if (ret != ERROR_OK)
LOG_ERROR("Failed to restore lockbits after erase");
}
return ret; return ret;
} }
static int efm32x_read_lock_data(struct flash_bank *bank) static int efm32x_read_lock_data(struct flash_bank *bank)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
struct target *target = bank->target; struct target *target = bank->target;
int data_size = 0; int data_size = 0;
uint32_t *ptr = NULL; uint32_t *ptr = NULL;
@ -557,35 +637,84 @@ static int efm32x_read_lock_data(struct flash_bank *bank)
return ERROR_OK; return ERROR_OK;
} }
static int efm32x_write_only_lockbits(struct flash_bank *bank)
{
struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
return efm32x_priv_write(bank, (uint8_t *)efm32x_info->lb_page, EFM32_MSC_LOCK_BITS, LOCKWORDS_SZ);
}
static int efm32x_write_lock_data(struct flash_bank *bank) static int efm32x_write_lock_data(struct flash_bank *bank)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
int ret = 0; int ret = 0;
/* Preserve any data written to the high portion of the lockbits page */
assert(efm32x_info->info.page_size >= LOCKWORDS_SZ);
uint32_t extra_bytes = efm32x_info->info.page_size - LOCKWORDS_SZ;
uint8_t *extra_data = NULL;
if (extra_bytes) {
extra_data = malloc(extra_bytes);
ret = target_read_buffer(bank->target, EFM32_MSC_LOCK_BITS_EXTRA, extra_bytes, extra_data);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read extra contents of LB page");
free(extra_data);
return ret;
}
}
ret = efm32x_erase_page(bank, EFM32_MSC_LOCK_BITS); ret = efm32x_erase_page(bank, EFM32_MSC_LOCK_BITS);
if (ret != ERROR_OK) { if (ret != ERROR_OK) {
LOG_ERROR("Failed to erase LB page"); LOG_ERROR("Failed to erase LB page");
if (extra_data)
free(extra_data);
return ret; return ret;
} }
return efm32x_write(bank, (uint8_t *)efm32x_info->lb_page, EFM32_MSC_LOCK_BITS, if (extra_data) {
LOCKBITS_PAGE_SZ); ret = efm32x_priv_write(bank, extra_data, EFM32_MSC_LOCK_BITS_EXTRA, extra_bytes);
free(extra_data);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to restore extra contents of LB page");
return ret;
}
}
return efm32x_write_only_lockbits(bank);
} }
static int efm32x_get_page_lock(struct flash_bank *bank, size_t page) static int efm32x_get_page_lock(struct flash_bank *bank, size_t page)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
uint32_t dw = efm32x_info->lb_page[page >> 5]; uint32_t dw = 0;
uint32_t mask = 0; uint32_t mask = 0;
mask = 1 << (page & 0x1f); switch (bank->base) {
case EFM32_FLASH_BASE:
dw = efm32x_info->lb_page[page >> 5];
mask = 1 << (page & 0x1f);
break;
case EFM32_MSC_USER_DATA:
dw = efm32x_info->lb_page[126];
mask = 0x1;
break;
case EFM32_MSC_LOCK_BITS:
dw = efm32x_info->lb_page[126];
mask = 0x2;
break;
}
return (dw & mask) ? 0 : 1; return (dw & mask) ? 0 : 1;
} }
static int efm32x_set_page_lock(struct flash_bank *bank, size_t page, int set) static int efm32x_set_page_lock(struct flash_bank *bank, size_t page, int set)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
if (bank->base != EFM32_FLASH_BASE) {
LOG_ERROR("Locking user and lockbits pages is not supported yet");
return ERROR_FAIL;
}
uint32_t *dw = &efm32x_info->lb_page[page >> 5]; uint32_t *dw = &efm32x_info->lb_page[page >> 5];
uint32_t mask = 0; uint32_t mask = 0;
@ -605,11 +734,6 @@ static int efm32x_protect(struct flash_bank *bank, int set, unsigned int first,
struct target *target = bank->target; struct target *target = bank->target;
int ret = 0; int ret = 0;
if (!set) {
LOG_ERROR("Erase device data to reset page locks");
return ERROR_FAIL;
}
if (target->state != TARGET_HALTED) { if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted"); LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED; return ERROR_TARGET_NOT_HALTED;
@ -633,16 +757,15 @@ static int efm32x_protect(struct flash_bank *bank, int set, unsigned int first,
} }
static int efm32x_write_block(struct flash_bank *bank, const uint8_t *buf, static int efm32x_write_block(struct flash_bank *bank, const uint8_t *buf,
uint32_t offset, uint32_t count) uint32_t address, uint32_t count)
{ {
struct target *target = bank->target; struct target *target = bank->target;
uint32_t buffer_size = 16384; uint32_t buffer_size = 16384;
struct working_area *write_algorithm; struct working_area *write_algorithm;
struct working_area *source; struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5]; struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info; struct armv7m_algorithm armv7m_info;
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
int ret = ERROR_OK; int ret = ERROR_OK;
/* see contrib/loaders/flash/efm32.S for src */ /* see contrib/loaders/flash/efm32.S for src */
@ -864,8 +987,8 @@ static int efm32x_write_word(struct flash_bank *bank, uint32_t addr,
return ERROR_OK; return ERROR_OK;
} }
static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer, static int efm32x_priv_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count) uint32_t addr, uint32_t count)
{ {
struct target *target = bank->target; struct target *target = bank->target;
uint8_t *new_buffer = NULL; uint8_t *new_buffer = NULL;
@ -875,9 +998,9 @@ static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
return ERROR_TARGET_NOT_HALTED; return ERROR_TARGET_NOT_HALTED;
} }
if (offset & 0x3) { if (addr & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte " LOG_ERROR("addr 0x%" PRIx32 " breaks required 4-byte "
"alignment", offset); "alignment", addr);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT; return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
} }
@ -906,7 +1029,7 @@ static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
goto cleanup; goto cleanup;
/* try using a block write */ /* try using a block write */
retval = efm32x_write_block(bank, buffer, offset, words_remaining); retval = efm32x_write_block(bank, buffer, addr, words_remaining);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area), /* if block write failed (no sufficient working area),
@ -918,13 +1041,13 @@ static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t value; uint32_t value;
memcpy(&value, buffer, sizeof(uint32_t)); memcpy(&value, buffer, sizeof(uint32_t));
retval = efm32x_write_word(bank, offset, value); retval = efm32x_write_word(bank, addr, value);
if (retval != ERROR_OK) if (retval != ERROR_OK)
goto reset_pg_and_lock; goto reset_pg_and_lock;
words_remaining--; words_remaining--;
buffer += 4; buffer += 4;
offset += 4; addr += 4;
} }
} }
@ -939,63 +1062,77 @@ cleanup:
return retval; return retval;
} }
static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
if (bank->base == EFM32_MSC_LOCK_BITS && offset < LOCKWORDS_SZ) {
LOG_ERROR("Cannot write to lock words");
return ERROR_FAIL;
}
return efm32x_priv_write(bank, buffer, bank->base + offset, count);
}
static int efm32x_probe(struct flash_bank *bank) static int efm32x_probe(struct flash_bank *bank)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
struct efm32_info efm32_mcu_info; struct efm32_info *efm32_mcu_info = &(efm32x_info->info);
int ret; int ret;
uint32_t base_address = 0x00000000;
efm32x_info->probed = false; int bank_index = efm32x_get_bank_index(bank->base);
memset(efm32x_info->lb_page, 0xff, LOCKBITS_PAGE_SZ); assert(bank_index >= 0);
ret = efm32x_read_info(bank, &efm32_mcu_info); efm32x_info->probed[bank_index] = false;
memset(efm32x_info->lb_page, 0xff, LOCKWORDS_SZ);
ret = efm32x_read_info(bank);
if (ret != ERROR_OK) if (ret != ERROR_OK)
return ret; return ret;
LOG_INFO("detected part: %s Gecko, rev %d", LOG_INFO("detected part: %s Gecko, rev %d",
efm32_mcu_info.family_data->name, efm32_mcu_info.prod_rev); efm32_mcu_info->family_data->name, efm32_mcu_info->prod_rev);
LOG_INFO("flash size = %dkbytes", efm32_mcu_info.flash_sz_kib); LOG_INFO("flash size = %dkbytes", efm32_mcu_info->flash_sz_kib);
LOG_INFO("flash page size = %dbytes", efm32_mcu_info.page_size); LOG_INFO("flash page size = %dbytes", efm32_mcu_info->page_size);
assert(efm32_mcu_info.page_size != 0); assert(efm32_mcu_info->page_size != 0);
int num_pages = efm32_mcu_info.flash_sz_kib * 1024 /
efm32_mcu_info.page_size;
assert(num_pages > 0);
free(bank->sectors); free(bank->sectors);
bank->sectors = NULL; bank->sectors = NULL;
bank->base = base_address; if (bank->base == EFM32_FLASH_BASE) {
bank->size = (num_pages * efm32_mcu_info.page_size); bank->num_sectors = efm32_mcu_info->flash_sz_kib * 1024 /
bank->num_sectors = num_pages; efm32_mcu_info->page_size;
assert(bank->num_sectors > 0);
ret = efm32x_read_lock_data(bank); ret = efm32x_read_lock_data(bank);
if (ret != ERROR_OK) { if (ret != ERROR_OK) {
LOG_ERROR("Failed to read LB data"); LOG_ERROR("Failed to read LB data");
return ret; return ret;
} }
} else
bank->num_sectors = 1;
bank->size = bank->num_sectors * efm32_mcu_info->page_size;
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages); for (uint32_t i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = i * efm32_mcu_info->page_size;
for (int i = 0; i < num_pages; i++) { bank->sectors[i].size = efm32_mcu_info->page_size;
bank->sectors[i].offset = i * efm32_mcu_info.page_size;
bank->sectors[i].size = efm32_mcu_info.page_size;
bank->sectors[i].is_erased = -1; bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1; bank->sectors[i].is_protected = 1;
} }
efm32x_info->probed = true; efm32x_info->probed[bank_index] = true;
return ERROR_OK; return ERROR_OK;
} }
static int efm32x_auto_probe(struct flash_bank *bank) static int efm32x_auto_probe(struct flash_bank *bank)
{ {
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
if (efm32x_info->probed)
int bank_index = efm32x_get_bank_index(bank->base);
assert(bank_index >= 0);
if (efm32x_info->probed[bank_index])
return ERROR_OK; return ERROR_OK;
return efm32x_probe(bank); return efm32x_probe(bank);
} }
@ -1026,16 +1163,17 @@ static int efm32x_protect_check(struct flash_bank *bank)
static int get_efm32x_info(struct flash_bank *bank, struct command_invocation *cmd) static int get_efm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
{ {
struct efm32_info info; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
int ret; int ret;
ret = efm32x_read_info(bank, &info); ret = efm32x_read_info(bank);
if (ret != ERROR_OK) { if (ret != ERROR_OK) {
LOG_ERROR("Failed to read EFM32 info"); LOG_ERROR("Failed to read EFM32 info");
return ret; return ret;
} }
command_print_sameline(cmd, "%s Gecko, rev %d", info.family_data->name, info.prod_rev); command_print_sameline(cmd, "%s Gecko, rev %d", efm32x_info->info.family_data->name,
efm32x_info->info.prod_rev);
return ERROR_OK; return ERROR_OK;
} }
@ -1051,7 +1189,7 @@ COMMAND_HANDLER(efm32x_handle_debuglock_command)
if (retval != ERROR_OK) if (retval != ERROR_OK)
return retval; return retval;
struct efm32x_flash_bank *efm32x_info = bank->driver_priv; struct efm32x_flash_chip *efm32x_info = bank->driver_priv;
target = bank->target; target = bank->target;
@ -1110,5 +1248,5 @@ const struct flash_driver efm32_flash = {
.erase_check = default_flash_blank_check, .erase_check = default_flash_blank_check,
.protect_check = efm32x_protect_check, .protect_check = efm32x_protect_check,
.info = get_efm32x_info, .info = get_efm32x_info,
.free_driver_priv = default_flash_free_driver_priv, .free_driver_priv = efm32x_free_driver_priv,
}; };

View File

@ -302,6 +302,15 @@ void log_init(void)
start = last_time = timeval_ms(); start = last_time = timeval_ms();
} }
void log_exit(void)
{
if (log_output && log_output != stderr) {
/* Close log file, if it was open and wasn't stderr. */
fclose(log_output);
}
log_output = NULL;
}
int set_log_output(struct command_context *cmd_ctx, FILE *output) int set_log_output(struct command_context *cmd_ctx, FILE *output)
{ {
log_output = output; log_output = output;

View File

@ -72,6 +72,7 @@ __attribute__ ((format (PRINTF_ATTRIBUTE_FORMAT, 5, 6)));
* Initialize logging module. Call during program startup. * Initialize logging module. Call during program startup.
*/ */
void log_init(void); void log_init(void);
void log_exit(void);
int set_log_output(struct command_context *cmd_ctx, FILE *output); int set_log_output(struct command_context *cmd_ctx, FILE *output);
int log_register_commands(struct command_context *cmd_ctx); int log_register_commands(struct command_context *cmd_ctx);

View File

@ -1273,7 +1273,7 @@ static int jtag_examine_chain(void)
jtag_tap_init(tap); jtag_tap_init(tap);
} }
if ((idcode & 1) == 0) { if ((idcode & 1) == 0 && !tap->ignore_bypass) {
/* Zero for LSB indicates a device in bypass */ /* Zero for LSB indicates a device in bypass */
LOG_INFO("TAP %s does not have valid IDCODE (idcode=0x%" PRIx32 ")", LOG_INFO("TAP %s does not have valid IDCODE (idcode=0x%" PRIx32 ")",
tap->dotted_name, idcode); tap->dotted_name, idcode);

View File

@ -59,6 +59,7 @@ static int jim_newtap_expected_id(struct jim_nvp *n, struct jim_getopt_info *goi
#define NTAP_OPT_DISABLED 4 #define NTAP_OPT_DISABLED 4
#define NTAP_OPT_EXPECTED_ID 5 #define NTAP_OPT_EXPECTED_ID 5
#define NTAP_OPT_VERSION 6 #define NTAP_OPT_VERSION 6
#define NTAP_OPT_BYPASS 7
static int jim_hl_newtap_cmd(struct jim_getopt_info *goi) static int jim_hl_newtap_cmd(struct jim_getopt_info *goi)
{ {
@ -75,6 +76,7 @@ static int jim_hl_newtap_cmd(struct jim_getopt_info *goi)
{ .name = "-disable", .value = NTAP_OPT_DISABLED }, { .name = "-disable", .value = NTAP_OPT_DISABLED },
{ .name = "-expected-id", .value = NTAP_OPT_EXPECTED_ID }, { .name = "-expected-id", .value = NTAP_OPT_EXPECTED_ID },
{ .name = "-ignore-version", .value = NTAP_OPT_VERSION }, { .name = "-ignore-version", .value = NTAP_OPT_VERSION },
{ .name = "-ignore-bypass", .value = NTAP_OPT_BYPASS },
{ .name = NULL, .value = -1}, { .name = NULL, .value = -1},
}; };

View File

@ -135,6 +135,9 @@ struct jtag_tap {
/** Flag saying whether to ignore version field in expected_ids[] */ /** Flag saying whether to ignore version field in expected_ids[] */
bool ignore_version; bool ignore_version;
/** Flag saying whether to ignore the bypass bit in the code */
bool ignore_bypass;
/** current instruction */ /** current instruction */
uint8_t *cur_instr; uint8_t *cur_instr;
/** Bypass register selected */ /** Bypass register selected */

View File

@ -470,6 +470,7 @@ static int jim_newtap_expected_id(struct jim_nvp *n, struct jim_getopt_info *goi
#define NTAP_OPT_DISABLED 4 #define NTAP_OPT_DISABLED 4
#define NTAP_OPT_EXPECTED_ID 5 #define NTAP_OPT_EXPECTED_ID 5
#define NTAP_OPT_VERSION 6 #define NTAP_OPT_VERSION 6
#define NTAP_OPT_BYPASS 7
static int jim_newtap_ir_param(struct jim_nvp *n, struct jim_getopt_info *goi, static int jim_newtap_ir_param(struct jim_nvp *n, struct jim_getopt_info *goi,
struct jtag_tap *tap) struct jtag_tap *tap)
@ -532,6 +533,7 @@ static int jim_newtap_cmd(struct jim_getopt_info *goi)
{ .name = "-disable", .value = NTAP_OPT_DISABLED }, { .name = "-disable", .value = NTAP_OPT_DISABLED },
{ .name = "-expected-id", .value = NTAP_OPT_EXPECTED_ID }, { .name = "-expected-id", .value = NTAP_OPT_EXPECTED_ID },
{ .name = "-ignore-version", .value = NTAP_OPT_VERSION }, { .name = "-ignore-version", .value = NTAP_OPT_VERSION },
{ .name = "-ignore-bypass", .value = NTAP_OPT_BYPASS },
{ .name = NULL, .value = -1 }, { .name = NULL, .value = -1 },
}; };
@ -617,6 +619,9 @@ static int jim_newtap_cmd(struct jim_getopt_info *goi)
case NTAP_OPT_VERSION: case NTAP_OPT_VERSION:
tap->ignore_version = true; tap->ignore_version = true;
break; break;
case NTAP_OPT_BYPASS:
tap->ignore_bypass = true;
break;
} /* switch (n->value) */ } /* switch (n->value) */
} /* while (goi->argc) */ } /* while (goi->argc) */
@ -887,6 +892,7 @@ static const struct command_registration jtag_subcommand_handlers[] = {
"['-enable'|'-disable'] " "['-enable'|'-disable'] "
"['-expected_id' number] " "['-expected_id' number] "
"['-ignore-version'] " "['-ignore-version'] "
"['-ignore-bypass'] "
"['-ircapture' number] " "['-ircapture' number] "
"['-mask' number]", "['-mask' number]",
}, },

View File

@ -437,6 +437,8 @@ int openocd_main(int argc, char *argv[])
rtt_exit(); rtt_exit();
free_config(); free_config();
log_exit();
if (ret == ERROR_FAIL) if (ret == ERROR_FAIL)
return EXIT_FAILURE; return EXIT_FAILURE;
else if (ret != ERROR_OK) else if (ret != ERROR_OK)

View File

@ -2635,8 +2635,10 @@ static int aarch64_examine_first(struct target *target)
LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr); LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
LOG_DEBUG("debug = 0x%08" PRIx64, debug); LOG_DEBUG("debug = 0x%08" PRIx64, debug);
if (!pc->cti) if (!pc->cti) {
LOG_TARGET_ERROR(target, "CTI not specified");
return ERROR_FAIL; return ERROR_FAIL;
}
armv8->cti = pc->cti; armv8->cti = pc->cti;

View File

@ -1843,7 +1843,7 @@ int target_call_event_callbacks(struct target *target, enum target_event event)
} }
LOG_DEBUG("target event %i (%s) for core %s", event, LOG_DEBUG("target event %i (%s) for core %s", event,
jim_nvp_value2name_simple(nvp_target_event, event)->name, target_event_name(event),
target_name(target)); target_name(target));
target_handle_event(target, event); target_handle_event(target, event);
@ -4821,7 +4821,7 @@ void target_handle_event(struct target *target, enum target_event e)
target_name(target), target_name(target),
target_type_name(target), target_type_name(target),
e, e,
jim_nvp_value2name_simple(nvp_target_event, e)->name, target_event_name(e),
Jim_GetString(teap->body, NULL)); Jim_GetString(teap->body, NULL));
/* Override current target by the target an event /* Override current target by the target an event
@ -4845,7 +4845,7 @@ void target_handle_event(struct target *target, enum target_event e)
if (retval != JIM_OK) { if (retval != JIM_OK) {
Jim_MakeErrorMessage(teap->interp); Jim_MakeErrorMessage(teap->interp);
LOG_USER("Error executing event %s on target %s:\n%s", LOG_USER("Error executing event %s on target %s:\n%s",
jim_nvp_value2name_simple(nvp_target_event, e)->name, target_event_name(e),
target_name(target), target_name(target),
Jim_GetString(Jim_GetResult(teap->interp), NULL)); Jim_GetString(Jim_GetResult(teap->interp), NULL));
/* clean both error code and stacktrace before return */ /* clean both error code and stacktrace before return */
@ -5508,9 +5508,9 @@ COMMAND_HANDLER(handle_target_event_list)
command_print(CMD, "------------------------- | " command_print(CMD, "------------------------- | "
"----------------------------------------"); "----------------------------------------");
while (teap) { while (teap) {
struct jim_nvp *opt = jim_nvp_value2name_simple(nvp_target_event, teap->event);
command_print(CMD, "%-25s | %s", command_print(CMD, "%-25s | %s",
opt->name, Jim_GetString(teap->body, NULL)); target_event_name(teap->event),
Jim_GetString(teap->body, NULL));
teap = teap->next; teap = teap->next;
} }
command_print(CMD, "***END***"); command_print(CMD, "***END***");

View File

@ -43,6 +43,8 @@ $_TARGETNAME configure -work-area-phys 0x10000000 -work-area-size $_WORKAREASIZE
set _FLASHNAME $_CHIPNAME.flash set _FLASHNAME $_CHIPNAME.flash
flash bank $_FLASHNAME efm32 0 0 0 0 $_TARGETNAME flash bank $_FLASHNAME efm32 0 0 0 0 $_TARGETNAME
flash bank userdata.flash efm32 0x0FE00000 0 0 0 $_TARGETNAME
flash bank lockbits.flash efm32 0x0FE04000 0 0 0 $_TARGETNAME
if {![using_hla]} { if {![using_hla]} {
# if srst is not fitted use SYSRESETREQ to # if srst is not fitted use SYSRESETREQ to