cortex_a : optimize apb read/write access.

Rewrite: Adheres more closely to 'fast read/write' examples in TRM.
up to 50x faster

Change-Id: Ieb4da57d8367628f3e7306827a5b1f0ab550e641
Signed-off-by: Evan Hunter <ehunter@broadcom.com>
Reviewed-on: http://openocd.zylin.com/903
Tested-by: jenkins
Reviewed-by: Michel JAOUEN <michel.jaouen@stericsson.com>
Reviewed-by: Freddie Chopin <freddie.chopin@gmail.com>
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
This commit is contained in:
Evan Hunter 2012-10-23 15:48:41 +11:00 committed by Spencer Oliver
parent 700e7605fe
commit 927e53f8d5
6 changed files with 375 additions and 100 deletions

View File

@ -262,16 +262,17 @@ int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
/*****************************************************************************
* *
* mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
* mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address, bool addr_incr) *
* *
* Write a buffer in target order (little endian) *
* *
*****************************************************************************/
int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address, bool addr_incr)
{
int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
const uint8_t *pBuffer = buffer;
uint32_t incr_flag = CSW_ADDRINC_OFF;
count >>= 2;
wcount = count;
@ -302,7 +303,10 @@ int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count
if (blocksize == 0)
blocksize = 1;
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
if (addr_incr)
incr_flag = CSW_ADDRINC_SINGLE;
retval = dap_setup_accessport(dap, CSW_32BIT | incr_flag, address);
if (retval != ERROR_OK)
return retval;
@ -317,7 +321,8 @@ int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count
retval = dap_run(dap);
if (retval == ERROR_OK) {
wcount = wcount - blocksize;
address = address + 4 * blocksize;
if (addr_incr)
address = address + 4 * blocksize;
buffer = buffer + 4 * blocksize;
} else
errorcount++;
@ -547,14 +552,16 @@ extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
* @param buffer where the words will be stored (in host byte order).
* @param count How many words to read.
* @param address Memory address from which to read words; all the
* @param addr_incr if true, increment the source address for each u32
* words must be readable by the currently selected MEM-AP.
*/
int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
int count, uint32_t address)
int count, uint32_t address, bool addr_incr)
{
int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
uint32_t adr = address;
uint8_t *pBuffer = buffer;
uint32_t incr_flag = CSW_ADDRINC_OFF;
count >>= 2;
wcount = count;
@ -573,7 +580,10 @@ int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
if (blocksize == 0)
blocksize = 1;
retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
if (addr_incr)
incr_flag = CSW_ADDRINC_SINGLE;
retval = dap_setup_accessport(dap, CSW_32BIT | incr_flag,
address);
if (retval != ERROR_OK)
return retval;
@ -622,7 +632,8 @@ int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
return retval;
}
wcount = wcount - blocksize;
address += 4 * blocksize;
if (addr_incr)
address += 4 * blocksize;
buffer += 4 * blocksize;
}
@ -881,11 +892,18 @@ int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
return mem_ap_read_buf_u16(swjdp, buffer, count, address);
}
int mem_ap_sel_read_buf_u32_noincr(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u32(swjdp, buffer, count, address, false);
}
int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_read_buf_u32(swjdp, buffer, count, address);
return mem_ap_read_buf_u32(swjdp, buffer, count, address, true);
}
int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
@ -906,7 +924,14 @@ int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u32(swjdp, buffer, count, address);
return mem_ap_write_buf_u32(swjdp, buffer, count, address, true);
}
int mem_ap_sel_write_buf_u32_noincr(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address)
{
dap_ap_select(swjdp, ap);
return mem_ap_write_buf_u32(swjdp, buffer, count, address, false);
}
#define MDM_REG_STAT 0x00

View File

@ -374,14 +374,14 @@ int mem_ap_read_buf_u8(struct adiv5_dap *swjdp,
int mem_ap_read_buf_u16(struct adiv5_dap *swjdp,
uint8_t *buffer, int count, uint32_t address);
int mem_ap_read_buf_u32(struct adiv5_dap *swjdp,
uint8_t *buffer, int count, uint32_t address);
uint8_t *buffer, int count, uint32_t address, bool addr_incr);
int mem_ap_write_buf_u8(struct adiv5_dap *swjdp,
const uint8_t *buffer, int count, uint32_t address);
int mem_ap_write_buf_u16(struct adiv5_dap *swjdp,
const uint8_t *buffer, int count, uint32_t address);
int mem_ap_write_buf_u32(struct adiv5_dap *swjdp,
const uint8_t *buffer, int count, uint32_t address);
const uint8_t *buffer, int count, uint32_t address, bool addr_incr);
/* Queued MEM-AP memory mapped single word transfers with selection of ap */
int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
@ -395,6 +395,12 @@ int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
uint32_t address, uint32_t value);
/* Non incrementing buffer functions for accessing fifos */
int mem_ap_sel_read_buf_u32_noincr(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address);
int mem_ap_sel_write_buf_u32_noincr(struct adiv5_dap *swjdp, uint8_t ap,
const uint8_t *buffer, int count, uint32_t address);
/* MEM-AP memory mapped bus block transfers with selection of ap */
int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
uint8_t *buffer, int count, uint32_t address);

View File

@ -140,21 +140,58 @@ int arm_dpm_write_dirty_registers(struct arm_dpm *, bool bpwp);
void arm_dpm_report_wfar(struct arm_dpm *, uint32_t wfar);
/* Subset of DSCR bits; see ARMv7a arch spec section C10.3.1.
/* DSCR bits; see ARMv7a arch spec section C10.3.1.
* Not all v7 bits are valid in v6.
*/
#define DSCR_CORE_HALTED (1 << 0)
#define DSCR_CORE_RESTARTED (1 << 1)
#define DSCR_INT_DIS (1 << 11)
#define DSCR_ITR_EN (1 << 13)
#define DSCR_HALT_DBG_MODE (1 << 14)
#define DSCR_MON_DBG_MODE (1 << 15)
#define DSCR_INSTR_COMP (1 << 24)
#define DSCR_DTR_TX_FULL (1 << 29)
#define DSCR_DTR_RX_FULL (1 << 30)
#define DSCR_CORE_HALTED (0x1 << 0)
#define DSCR_CORE_RESTARTED (0x1 << 1)
#define DSCR_ENTRY_MASK (0xF << 2)
#define DSCR_STICKY_ABORT_PRECISE (0x1 << 6)
#define DSCR_STICKY_ABORT_IMPRECISE (0x1 << 7)
#define DSCR_STICKY_UNDEFINED (0x1 << 8)
#define DSCR_DBG_NOPWRDWN (0x1 << 9) /* v6 only */
#define DSCR_DBG_ACK (0x1 << 10)
#define DSCR_INT_DIS (0x1 << 11)
#define DSCR_CP14_USR_COMMS (0x1 << 12)
#define DSCR_ITR_EN (0x1 << 13)
#define DSCR_HALT_DBG_MODE (0x1 << 14)
#define DSCR_MON_DBG_MODE (0x1 << 15)
#define DSCR_SEC_PRIV_INVASV_DIS (0x1 << 16)
#define DSCR_SEC_PRIV_NINVASV_DIS (0x1 << 17)
#define DSCR_NON_SECURE (0x1 << 18)
#define DSCR_DSCRD_IMPRECISE_ABORT (0x1 << 19)
#define DSCR_EXT_DCC_MASK (0x3 << 20) /* DTR mode */ /* bits 22, 23 are reserved */
#define DSCR_INSTR_COMP (0x1 << 24)
#define DSCR_PIPE_ADVANCE (0x1 << 25)
#define DSCR_DTRTX_FULL_LATCHED (0x1 << 26)
#define DSCR_DTRRX_FULL_LATCHED (0x1 << 27) /* bit 28 is reserved */
#define DSCR_DTR_TX_FULL (0x1 << 29)
#define DSCR_DTR_RX_FULL (0x1 << 30) /* bit 31 is reserved */
#define DSCR_ENTRY(dscr) (((dscr) >> 2) & 0xf)
#define DSCR_RUN_MODE(dscr) ((dscr) & (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED))
/* Methods of entry into debug mode */
#define DSCR_ENTRY_HALT_REQ (0x0 << 2)
#define DSCR_ENTRY_BREAKPOINT (0x1 << 2)
#define DSCR_ENTRY_IMPRECISE_WATCHPT (0x2 << 2)
#define DSCR_ENTRY_BKPT_INSTR (0x3 << 2)
#define DSCR_ENTRY_EXT_DBG_REQ (0x4 << 2)
#define DSCR_ENTRY_VECT_CATCH (0x5 << 2)
#define DSCR_ENTRY_D_SIDE_ABORT (0x6 << 2) /* v6 only */
#define DSCR_ENTRY_I_SIDE_ABORT (0x7 << 2) /* v6 only */
#define DSCR_ENTRY_OS_UNLOCK (0x8 << 2)
#define DSCR_ENTRY_PRECISE_WATCHPT (0xA << 2)
/* DTR modes */
#define DSCR_EXT_DCC_NON_BLOCKING (0x0 << 20)
#define DSCR_EXT_DCC_STALL_MODE (0x1 << 20)
#define DSCR_EXT_DCC_FAST_MODE (0x2 << 20) /* bits 22, 23 are reserved */
#define DSCR_ENTRY(dscr) (((dscr) >> 2) & 0xf)
#define DSCR_RUN_MODE(dscr) ((dscr) & (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED))
/* DRCR (debug run control register) bits */
#define DRCR_HALT (1 << 0)

View File

@ -133,6 +133,36 @@
*/
#define ARMV4_5_BX(Rm) (0xe12fff10 | (Rm))
/* Store data from coprocessor to consecutive memory
* See Armv7-A arch doc section A8.6.187
* P: 1=index mode (offset from Rn)
* U: 1=add, 0=subtract Rn address with imm
* D: Opcode D encoding
* W: write back the offset start address to the Rn register
* CP: Coprocessor number (4 bits)
* CRd: Coprocessor source register (4 bits)
* Rn: Base register for memory address (4 bits)
* imm: Immediate value (0 - 1020, must be divisible by 4)
*/
#define ARMV4_5_STC(P, U, D, W, CP, CRd, Rn, imm) \
(0xec000000 | ((P) << 24) | ((U) << 23) | ((D) << 22) | \
((W) << 21) | ((Rn) << 16) | ((CRd) << 12) | ((CP) << 8) | ((imm)>>2))
/* Loads data from consecutive memory to coprocessor
* See Armv7-A arch doc section A8.6.51
* P: 1=index mode (offset from Rn)
* U: 1=add, 0=subtract Rn address with imm
* D: Opcode D encoding
* W: write back the offset start address to the Rn register
* CP: Coprocessor number (4 bits)
* CRd: Coprocessor dest register (4 bits)
* Rn: Base register for memory address (4 bits)
* imm: Immediate value (0 - 1020, must be divisible by 4)
*/
#define ARMV4_5_LDC(P, U, D, W, CP, CRd, Rn, imm) \
(0xec100000 | ((P) << 24) | ((U) << 23) | ((D) << 22) | \
((W) << 21) | ((Rn) << 16) | ((CRd) << 12) | ((CP) << 8) | ((imm) >> 2))
/* Move to ARM register from coprocessor
* CP: Coprocessor number
* op1: Coprocessor opcode

View File

@ -67,6 +67,8 @@ static int cortex_a8_dap_write_coreregister_u32(struct target *target,
static int cortex_a8_mmu(struct target *target, int *enabled);
static int cortex_a8_virt2phys(struct target *target,
uint32_t virt, uint32_t *phys);
static int cortex_a8_read_apb_ab_memory(struct target *target,
uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
/*
* FIXME do topology discovery using the ROM; don't
@ -1787,127 +1789,302 @@ static int cortex_a8_write_apb_ab_memory(struct target *target,
int retval = ERROR_COMMAND_SYNTAX_ERROR;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm *arm = &armv7a->arm;
struct adiv5_dap *swjdp = armv7a->arm.dap;
int total_bytes = count * size;
int start_byte, nbytes_to_write, i;
int total_u32;
int start_byte = address & 0x3;
int end_byte = (address + total_bytes) & 0x3;
struct reg *reg;
union _data {
uint8_t uc_a[4];
uint32_t ui;
} data;
uint32_t dscr;
uint8_t *tmp_buff = NULL;
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
reg = arm_reg_current(arm, 0);
reg->dirty = 1;
reg = arm_reg_current(arm, 1);
reg->dirty = 1;
total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
retval = cortex_a8_dap_write_coreregister_u32(target, address & 0xFFFFFFFC, 0);
/* Mark register R0 as dirty, as it will be used
* for transferring the data.
* It will be restored automatically when exiting
* debug mode
*/
reg = arm_reg_current(arm, 0);
reg->dirty = true;
/* clear any abort */
retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, armv7a->debug_base + CPUDBG_DRCR, 1<<2);
if (retval != ERROR_OK)
return retval;
start_byte = address & 0x3;
/* This algorithm comes from either :
* Cortex-A8 TRM Example 12-25
* Cortex-R4 TRM Example 11-26
* (slight differences)
*/
while (total_bytes > 0) {
/* The algorithm only copies 32 bit words, so the buffer
* should be expanded to include the words at either end.
* The first and last words will be read first to avoid
* corruption if needed.
*/
tmp_buff = (uint8_t *) malloc(total_u32 << 2);
nbytes_to_write = 4 - start_byte;
if (total_bytes < nbytes_to_write)
nbytes_to_write = total_bytes;
if (nbytes_to_write != 4) {
/* execute instruction LDR r1, [r0] */
retval = cortex_a8_exec_opcode(target, ARMV4_5_LDR(1, 0), NULL);
if (retval != ERROR_OK)
return retval;
retval = cortex_a8_dap_read_coreregister_u32(target, &data.ui, 1);
if (retval != ERROR_OK)
return retval;
}
for (i = 0; i < nbytes_to_write; ++i)
data.uc_a[i + start_byte] = *buffer++;
retval = cortex_a8_dap_write_coreregister_u32(target, data.ui, 1);
if ((start_byte != 0) && (total_u32 > 1)) {
/* First bytes not aligned - read the 32 bit word to avoid corrupting
* the other bytes in the word.
*/
retval = cortex_a8_read_apb_ab_memory(target, (address & ~0x3), 4, 1, tmp_buff);
if (retval != ERROR_OK)
return retval;
/* execute instruction STRW r1, [r0], 1 (0xe4801004) */
retval = cortex_a8_exec_opcode(target, ARMV4_5_STRW_IP(1, 0), NULL);
if (retval != ERROR_OK)
return retval;
total_bytes -= nbytes_to_write;
start_byte = 0;
goto error_free_buff_w;
}
return retval;
}
/* If end of write is not aligned, or the write is less than 4 bytes */
if ((end_byte != 0) ||
((total_u32 == 1) && (total_bytes != 4))) {
/* Read the last word to avoid corruption during 32 bit write */
int mem_offset = (total_u32-1) << 4;
retval = cortex_a8_read_apb_ab_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
if (retval != ERROR_OK)
goto error_free_buff_w;
}
/* Copy the write buffer over the top of the temporary buffer */
memcpy(&tmp_buff[start_byte], buffer, total_bytes);
/* We now have a 32 bit aligned buffer that can be written */
/* Read DSCR */
retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
goto error_free_buff_w;
/* Set DTR mode to Fast (2) */
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK)
goto error_free_buff_w;
/* Copy the destination address into R0 */
/* - pend an instruction MRC p14, 0, R0, c5, c0 */
retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_ITR, ARMV4_5_MRC(14, 0, 0, 0, 5, 0));
if (retval != ERROR_OK)
goto error_unset_dtr_w;
/* Write address into DTRRX, which triggers previous instruction */
retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRRX, address & (~0x3));
if (retval != ERROR_OK)
goto error_unset_dtr_w;
/* Write the data transfer instruction into the ITR
* (STC p14, c5, [R0], 4)
*/
retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
if (retval != ERROR_OK)
goto error_unset_dtr_w;
/* Do the write */
retval = mem_ap_sel_write_buf_u32_noincr(swjdp, armv7a->debug_ap,
tmp_buff, (total_u32)<<2, armv7a->debug_base + CPUDBG_DTRRX);
if (retval != ERROR_OK)
goto error_unset_dtr_w;
/* Switch DTR mode back to non-blocking (0) */
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK)
goto error_unset_dtr_w;
/* Check for sticky abort flags in the DSCR */
retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
goto error_free_buff_w;
if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
/* Abort occurred - clear it and exit */
LOG_ERROR("abort occurred - dscr = 0x%08x", dscr);
mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, 1<<2);
goto error_free_buff_w;
}
/* Done */
free(tmp_buff);
return ERROR_OK;
error_unset_dtr_w:
/* Unset DTR mode */
mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
error_free_buff_w:
LOG_ERROR("error");
free(tmp_buff);
return ERROR_FAIL;
}
static int cortex_a8_read_apb_ab_memory(struct target *target,
uint32_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
/* read memory through APB-AP */
int retval = ERROR_COMMAND_SYNTAX_ERROR;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct adiv5_dap *swjdp = armv7a->arm.dap;
struct arm *arm = &armv7a->arm;
int total_bytes = count * size;
int start_byte, nbytes_to_read, i;
int total_u32;
int start_byte = address & 0x3;
struct reg *reg;
union _data {
uint8_t uc_a[4];
uint32_t ui;
} data;
uint32_t dscr;
char *tmp_buff = NULL;
uint32_t buff32[2];
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
reg = arm_reg_current(arm, 0);
reg->dirty = 1;
reg = arm_reg_current(arm, 1);
reg->dirty = 1;
total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
retval = cortex_a8_dap_write_coreregister_u32(target, address & 0xFFFFFFFC, 0);
/* Mark register R0 as dirty, as it will be used
* for transferring the data.
* It will be restored automatically when exiting
* debug mode
*/
reg = arm_reg_current(arm, 0);
reg->dirty = true;
/* clear any abort */
retval =
mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, armv7a->debug_base + CPUDBG_DRCR, 1<<2);
if (retval != ERROR_OK)
return retval;
start_byte = address & 0x3;
/* Read DSCR */
retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
while (total_bytes > 0) {
/* This algorithm comes from either :
* Cortex-A8 TRM Example 12-24
* Cortex-R4 TRM Example 11-25
* (slight differences)
*/
/* execute instruction LDRW r1, [r0], 4 (0xe4901004) */
retval = cortex_a8_exec_opcode(target, ARMV4_5_LDRW_IP(1, 0), NULL);
/* Set DTR access mode to stall mode b01 */
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_STALL_MODE;
retval += mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
/* Write R0 with value 'address' using write procedure for stall mode */
/* - Write the address for read access into DTRRX */
retval += mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRRX, address & ~0x3);
/* - Copy value from DTRRX to R0 using instruction mrc p14, 0, r0, c5, c0 */
cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
/* Write the data transfer instruction (ldc p14, c5, [r0],4)
* and the DTR mode setting to fast mode
* in one combined write (since they are adjacent registers)
*/
buff32[0] = ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4);
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
buff32[1] = dscr;
/* group the 2 access CPUDBG_ITR 0x84 and CPUDBG_DSCR 0x88 */
retval += mem_ap_sel_write_buf_u32(swjdp, armv7a->debug_ap, (uint8_t *)buff32, 8,
armv7a->debug_base + CPUDBG_ITR);
if (retval != ERROR_OK)
goto error_unset_dtr_r;
/* Due to offset word alignment, the buffer may not have space
* to read the full first and last int32 words,
* hence, malloc space to read into, then copy and align into the buffer.
*/
tmp_buff = (char *) malloc(total_u32<<2);
/* The last word needs to be handled separately - read all other words in one go.
*/
if (total_u32 > 1) {
/* Read the data - Each read of the DTRTX register causes the instruction to be reissued
* Abort flags are sticky, so can be read at end of transactions
*
* This data is read in aligned to 32 bit boundary, hence may need shifting later.
*/
retval = mem_ap_sel_read_buf_u32_noincr(swjdp, armv7a->debug_ap, (uint8_t *)tmp_buff, (total_u32-1)<<2,
armv7a->debug_base + CPUDBG_DTRTX);
if (retval != ERROR_OK)
return retval;
retval = cortex_a8_dap_read_coreregister_u32(target, &data.ui, 1);
if (retval != ERROR_OK)
return retval;
nbytes_to_read = 4 - start_byte;
if (total_bytes < nbytes_to_read)
nbytes_to_read = total_bytes;
for (i = 0; i < nbytes_to_read; ++i)
*buffer++ = data.uc_a[i + start_byte];
total_bytes -= nbytes_to_read;
start_byte = 0;
goto error_unset_dtr_r;
}
return retval;
}
/* set DTR access mode back to non blocking b00 */
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
if (retval != ERROR_OK)
goto error_free_buff_r;
/* Wait for the final read instruction to finish */
do {
retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
goto error_free_buff_r;
} while ((dscr & DSCR_INSTR_COMP) == 0);
/* Check for sticky abort flags in the DSCR */
retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
if (retval != ERROR_OK)
goto error_free_buff_r;
if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
/* Abort occurred - clear it and exit */
LOG_ERROR("abort occurred - dscr = 0x%08x", dscr);
mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DRCR, 1<<2);
goto error_free_buff_r;
}
/* Read the last word */
retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DTRTX, (uint32_t *)&tmp_buff[(total_u32-1)<<2]);
if (retval != ERROR_OK)
goto error_free_buff_r;
/* Copy and align the data into the output buffer */
memcpy(buffer, &tmp_buff[start_byte], total_bytes);
free(tmp_buff);
/* Done */
return ERROR_OK;
error_unset_dtr_r:
/* Unset DTR mode */
mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, &dscr);
dscr = (dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_NON_BLOCKING;
mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
armv7a->debug_base + CPUDBG_DSCR, dscr);
error_free_buff_r:
LOG_ERROR("error");
free(tmp_buff);
return ERROR_FAIL;
}
/*

View File

@ -1620,7 +1620,7 @@ static int cortex_m3_read_memory(struct target *target, uint32_t address,
if (count && buffer) {
switch (size) {
case 4:
retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address, true);
break;
case 2:
retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
@ -1650,7 +1650,7 @@ static int cortex_m3_write_memory(struct target *target, uint32_t address,
if (count && buffer) {
switch (size) {
case 4:
retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address, true);
break;
case 2:
retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);